| AD-A253 869 Y @
BETERNEn

Deriving and Manipulating Module Interfaces

Robert Louis Nord
May 1992
CMU-CS-92-126 p———e ..

DTIC

ELECTE
AUGO 51992
School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Submisted in partial fulfillment of the requirements
Jor the degree of Doctor of Philosophy.

This document has been approved
for Publ cleare and role 92-17314

:‘ P
UL T

© 1992 Robert L. Nord

This research was supported in part by the Office of Naval Research under contract N00014-84-K-0415
and in part by the Defense Advanced Research Projects Agency (DOD), ARPA Ovder No. 5404, monitored by
the Office of Naval Research under the same contract. The views and conclusions contained in this document
are thoee of the author and should not be interpreted as representing the official policies, either expressed or
jmnplied, of DARPA or the U.S. Government.

92 6 30 098

Keywords: formal methods, software development, software systems, integration,
adaptation, program transformation, software components, module interfaces, abstract
datatypes, data representations

School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

Deriving and Manipulating Module Interfaces
ROBERT LOUIS NORD

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy . *

ACCEPTED:
Mg/[. 1f nawahsy 194
MAJOR PROFESSOR b DATE
:&L/U‘L u/is/s
MAJOR PROFESSOR / ' DATE
’]Z'L TZ/%/ Y / | / 92
i DEAN i DATE
APPROVED:

PROVOST DATE

bl h f— Joume 1652
|

Abstract

A formal method for systematically integrating general-purpose software modules into
efficient systems is presented. The integration is accomplished through adjustment of
abstract interfaces and transformation of the underlying data representations. The method
provides the software designer with the ability to delay or revise design decisions in cases
where it is difficult to reach an a priori agreement on interfaces and/or data representations.

To demonstrate the method, the development of a text buffer for a simple interactive
text editor is given. For each basic operation on the text buffer, a natural and efficient choice
of data representation is made. This organizes the operations into several “components,”
with each component containing those operations using the same data representation. The
components are then combined using formal! program-manipulation methods to obtain an
efficient composite representation that supports all of the operations.

This approach provides meaningful support for later adaptation. Should a new editing
operation be added at a later time, the initial components can be reused in another com-
bining process, thereby obtaining a new composite representation that works for all of the
operations including the new one. There are also ramifications for the application of formal
methods to larger-scale systems, as this method can be applied to the manipulation of the
interfaces between modules in larger software systems.

Accesion For \
] NTIS CRA&I o
DTIC QUALITY INSPECTED 8 DTIC TAB [
Uuannounced J
Justitication
By .
Disti idution
Availability Cocdes
Statement A per telecon Ralph Wachter L | Avail audjor
S 1135 Dist Special

Arlington, VA 22217-5000

- '
NWW 8/3/92 L.__.....]

Contents
1 Introduction 1
1.1 The Problem of OrganizingInterfaces 1
12 TraditionalSolutions0.... 2
13 FocusoftheThesis0 00 uen... 4
131 ThesisSo v v it i ittt e ettt e 4
132 Approachofthe ThesisResearch 4
1.3.3 A Model of “Module Interface™ Integration 4
134 WhatisNewttt enennns 6
14 StructureoftheThesis 6
2 Module Interface Transformation System 9
2.1 Module Transformation in Software Development 11
211 Datatypesttt et e e 12
212 Larger-ScaleSystemscc00000... 20
22 DataTransformation« . v v v vt v v v e n et 22
23 Module TransformationRules 23
231 Translate it e et e 25
232 Shift i e e e e e e e 27
233 EXPOSE i i ittt e e e e e e e e e e 29
234 INCOTPOTAIE v o v v o v e v oot s o e e a e ann 32
235 Release.ttt ittt e e e 33
2.3.6 Strategies for Using the Module TransformationRules 34
24 Strategies in Constructing Systems Using this Approach 35
3 Integrating Module Interfaces: Deriving and Manipulating an Edit Buffer 37
3.1 DerivingtheBuffer 38
311 ProgramDesign 00 38
312 ProgmmComposition 38
313 AggregateDesign 41
314 AggregateIntegration0.... 43
315 AggregateProtOtype o v v vttt et 46
3.16 Aggregatelmplemeantation 48
32 AdaptingtheBuffer 49
321 Pages.t i e e 50

CONTENTS

322 Regionsttt 53

323 S-Expressions00000c0teienean 54

33 Summary e e e e e e et e 57
Reuse and Customization: Deriving an Interactive Display-Editor 59
4.1 Single-Buffer Single-WindowDisplay 60
41.1 DefiningtheDisplayEditor 60

412 Defining Buffer as a DisplayableObject 63

413 CachingtheScreen.0 vttt 64

4.2 Multiple-Buffers Single-WindowDisplay 67
42.1 Defininga Multiple-BufferEditor 67

422 Integrating the Buffer-ListOperations 68

423 Integratingthe BufferOperations 68

43 Multiple-Buffers Multiple-WindowsDisplay 70
43.1 Defining the Multiple-WindowEditor 70

432 ExposingtheWindow 70

433 BuildingtheDisplayEditor 72

434 Integrating the Window-ListOperations 73
435 Integratingthe BufferOperations 73

44 SUMMATY o ittt ettt et e e 73
Interpreting the Results of the Editor Derivation ¥z
5.1 Integration Design Alternatives 77
5.2 Integration Implementation Alternatives 81
521 CostMeasuresc.otivttenennnnnas 82
522 IntegratingComponentsccoouuuonn 84
523 IntegratingModules 85

53 Scaling e e e e e 85
531 Componentsiuitiutentennenn 86

532 Modulesttt 86

A Framework for the Module Transformation System 87
6.1 Module Transformation in Software Development 87
611 ProgramDesign 88

6.12 ProgramCompogition 88
6.13 ComponentAggregation 91
6.14 AggregateIntegration, 92
6.15 AggregateImplementation 103

616 Optimization, 104

62 Module TransformationRules 104
621 Tramslatet 105

622 Shiftt e 108

623 EXPOSE ittt 111

624 Incorporate.ttt ittt 114

CONTENTS

7 Related Work

7.1 Traditional Solutions —Revisited
72 Building Systems from SoftwareComponents

7.3 Defining and Managing Representations

74 Data Design and Refinement . .
7.5 AdaptingInterfaces

oooooooooooooooooooooo

7.6 Applications for the Module TransformationSystem

oooooooooooooooooooooo

8.2 Turning the Method into a SoftwareReality

8.2.1 Software Process Models
822 Automation
823 FormalModels.
824 Integration is Low-Level

Notation

E
3
i
i

.....................

oooooooooooooooooooooo

137
138
139

149
151
153
157
161

CONTENTS

List of Figures

2.1 Strategy forConstructingSystems 10
22 BuffarDefinition0... 11
23 AggregateDefinition 13
24 Merging withthe Original System 15
25 Translating into the Original System 16
26 Merging with the Implementation 17
27 Translating into the Implementation 18
28 TransformationSteps.0 vunnunun.. 27
31 DerivingaBuffer 39
32 Buffer Aggregate SpecificationforMove-Right 43
3.3 Preliminary Definitionof Move-Right 44
34 BuffrDefinition 45
35 BufferPrototype e e 47
36 BufferImplementation 48
37 BuffrComponentsc.00iuuuunn.. 50
38 AdaptedBufferPrototype0..0.... 58
41 TheDisplayEditort eu.an. 62
42 ModuleHierarchyv..... 74
5.1 Module Interface IntegrationDesigns. 78
6.1 ProjectionsoftheAggregate.. 91
6.2 Aggregate OperationDefinition. 92
6.3 Generating Aggregate Definitions 94
64 AggregateSpecification 97
65 ASimpleDefinition 98
6.6 ProductoftheOperations 99
6.7 Transitivity —Caselc0uu.... 101
68 Tramsitivity —Case3 102
6.9 Transitivity—Cased 102
6.10 IncrementalMerging 104
8.1 Strategy forConstructingSystems 130
8.2 An Abstract View of Traditional Software Development 135

LIST OF FIGURES

83 EvolutionaryTransformation 136
84 ComposabilityofRefinements 139

Acknowledgments

I thank the members of my committee, Peter Lee, William Scherlis, David Garlan, Nico
Habermann, and David Notkin. Peter Lee and Bill Scherlis, my advisors, worked closely
with me, teaching me how to do research, how to write and publish papers. The other
members of my committee provided technical guidance. Their comments and suggestions
have substantially improved the content and presentation of this dissertation. Many people
have been instrumental in focusing the ideas in the thesis, I would especially like to thank
Ira Baxter, Bernd Bruegge, Frank Pfenning, Gene Rollins, and Jeannette Wing.

This thesis grew out of my experience with the Ergo Project and has been influenced
by my interactions with the members of the project. Thanks are due to Penny Anderson,
Scott Dietzen, Conal Elliott, Tim Freeman, and Ulrik Jarring.

I want to thank my friend Howard, my mother and father, my grandparents, my brothers,
Rick, Ran, Russ, and Eric, and all my relatives and friends for their encouragement, love,
and support.

ACKNOWLEDGMENTS

Chapter 1

Introduction

1.1 The Problem of Organizing Interfaces

The organization of interfaces among system components is a key task in the construction
and management of larger-scale software systems. For many large systems, a principal
source of risk is in making the decisions concerning the placement of these interfaces [11]
— in other words, how the components are to be organized into an integrated software
system. Language features for modularity, including various type systems, provide a
means for component structure to be made more explicit, thus facilitating management of
systems interfaces [65].

I suggest that formal methods [19, 31] can be applied to support the development and
evolution of larger-scale systems through the formal manipulation of the interfaces and
components. As a system architecture matures and evolves, interfaces and components
will likely need to be adjusted in various ways, by moving or shifting computations across
interfaces, by introducing new interfaces to create new components, by combining similar
interfaces to merge components, and so on. Indeed, the architecture of large systems is
rarely determined fully in advance and, in any case, evolves rapidly as development ex-
perience is gained. Within maintenance activities, for example, 60 percent of the effort
is for enhancements [53). Formal methods can provide a basis for the creation of soft-
ware tools that support this kind of iterative refinement [4). Such tools could potentiaily
reduce the risks, which are now very high, associated with the determination of overall
systems architecture in software development. The risks are high because of the need for
enhancement

Consider the important problem of combining, or “integrating,” modules that must share
data. The possibility of sharing means that interacting modules must agree not only on the
abstract interfaces, but also on the underlying data representations. Because architectures
evolve, this problem of integration usually persists for as long as the system is maintained.

Consider, for example, the development of an interactive display-editor. A key sub-
problem is the implementation of operations on the text buffer. There are many possible
representations for such buffers, for example a sequence of characters, a sequence of lines,
and so on, and for each operation, one representation may be more natural or appropriate

2 Chapter 1. Introduction

than another. Rather than having to decide in advance on some compromise, it would be
easier to collect into separate components the sets of individual editing operations that use,
in a straightforward implementation, the same “natural” representations. I am proposing an
approach that involves taking individual components, each using its own “natural represen-
tation,” and combining them via program transformation into a single, efficient, composite
implementation.

Performing this composition of components requires a way to mediate the interactions
among them. Program-transformation techniques [25, 67] can provide assistance in ac-
complishing this. Before discussing this, however, we first consider the strategies that are
currently available to the software designer.

1.2 Traditional Solutions

Modem programming languages such as Ada [10], Clu [54], Modula-2 [94], and Standard
ML [61] provide data abstraction and encapsulation constructs called packages, clusters, or
modules that enable one to define and enforce the boundaries separating the components of
a software system. Modularity facilitates reuse and analysis and, when properly structured
(either by design or through evolution), isolates and localizes the revisions that occur as a
system is maintained, adapted, and reused [65]. In this paper, I refer to these data abstrac-
tions as modules. Modules can be viewed as implementing a kind of (usually complex)
datatype definition. Like datatype definitions, there are several aspects to modules. These
are the abstract interface, that is, the exported types and signatures of the operations; the
underlying representations for the data objects created and manipulated by the module; and
the implementations of the operations.

The integration of modules in a large-scale system is difficult. Modules that interact
must agree not only on the abstract interfaces, but also on data representations in the cases
where they share data. Also, as a software system evolves, the need to adapt existing
interfaces can arise [66]. Thus, this problem of integration persists for as long as the system
is maintained. Because the data representations affect the interactions among system
components, I am motivated to use the term module interface to refer collectively to a
module’s abstract interface and associated data representations.

The Existing Choices in Software Development. Confronted with the problem of inte-
grating interfaces in larger-scale systems, the software designer has the following choices:

1. Make an a priori correct choice of abstract interface and data representation defini-
tions that will suffice for all anticipated needs.
The UNIX system integrates tools using streams as a common interface and sequences
of characters as a common data represeatation. Traditional database systems also
devise common interfaces and data representations at the beginning of the design
process. However, it is often the case that good data representations may be difficult
to design a priori, especially when there is not much experience in the particular
application domain. Once built, systems also evolve as users desire additional

12. Traditional Solutions 3

functionality which may not have been anticipated initially. Adapting componeats is
usually difficult once design decisions are made and, indeed, the cost of implementing
change often becomes unmanageable. For example, adding a tool in UNIX that uses
a complex internal data structure would involve introducing an expensive translation
between it and the common interface. These problems of risk have led software
designers toward iterative and evolutionary models of development [11], but little
advice is given on how to get from one stage to the next.

2. Introduce functions for translating between representations in the situations where
the abstract interfaces agree but the data representations do not.
Separately designed modules that share data may be used together by writing trans-
lation functions that convert from one module’s representation for data objects to
the other’s. However, the efficiency cost in the overhead of mapping back and forth
among modules may not be acceptable.

Take, for example, the case in which two modules have been separately designed for
matrix operations, one for computing inverses and another for computing determi-
nants. Let us assume that the modules agree on abstract interfaces, in which there
are operations to create a matrix and also to obtain the elements of a given matrix.
The modules differ, however, on their data representations, perhaps for reasons of
efficiency. To use the modules together it is necessary to write translation functions
that map one matrix representation to the other. This can be done by obtaining the
elements of a matrix from one module and then creating a matrix with those elements
in the other module.

3. Use a very-high-level language with appropriate built-in high-level types.

In this case data representations are not explicitly defined. Instead, design decisions
regarding data representations are left to a compiler (eg., SETL [79]). This means,
however, that the performance of the implementation and expressiveness of the
programming language are limited by the existing compiler technology. Furthermore,
if a designer wants to develop a system using rich abstractions that will have exacting
performance requirements, then it seems that the designer must be involvedin defining
data representations.

4. Adapt or refine the abstract interfaces of existing modules by defining new modules
as extensions of the existing ones.

For example, object-oriented techniques can be used to define new types (and hence
abstract interfaces) in terms of existing ones [55). Objects having the new type will
share meaning with objects of the existing type, typically by inheriting its operations
and adding something more. The new objects will also share implementation by
directly reusing the code for the existing objects. Unfortunately there is no formal
way to specialize that implementation in the context of the new type in order to obtain
better performance.

4 Chapter 1. Introduction

1.3 Focus of the Thesis

Each of these traditional approaches addresses the problem of module interface integration
with varying degrees of success. I am interested in how program transformation might be
used to complement or enhance them.

1.3.1 Thesis

Program transformations can provide systematic support for integrating general-purpose
software modules into efficient systems. This approach also provides support for later
adaptation.

In particular I am exploring the use of transformation-based techniques to (1) provide a
systematic approach to adapting datatypes and modules, (2) remove the overhead of trans-
lation functions at runtime through program manipulation, (3) optimize the performance of
datatypes using insight from the software developer, and (4) specialize implementations to
obtain better performance in programs with modules that reuse code through inheritance.
An evaluation of the utility of the techniques developed in this thesis is given in Chapter 7.

1.3.2 Approach of the Thesis Research

I use program-transformation methods to integrate module interfaces, yielding efficient
implementations. Complex datatype definitions start as a collection of separate modules.
Then, translation functions among the modules are introduced to reach preliminary (or
“baseline™) agreement on data representations, and module extensions defining new inter-
faces are used to reach agreement on abstract interfaces. The initial interfaces are then
integrated and optimized by using an extended form of datatype transformations. This
results in a single consistent and efficient implementation.

133 A Model of “Module Interface” Integration

Let us now consider the problem of designing and implementing a text buffer that manip-
ulates characters and lines for a text editor. (This example will figure prominently in this
thesis.) In a software engineering process, one of the early design issues, and one with
the highest associated design risk, is the selection of the representation for a major data
structure such as the buffer. After deciding on this representation (call it the buffer), it
then remains to define the character and line operations, and finally the exported buffer
operations. In the Standard ML [59) module system, for example, the program for buffer
operations could be decomposed into two modules, one each for the character and line
operations. The aim of modularization is to decompose programs into modules that can be
manipulated relatively independently of each other.

Standard ML handles the problem of sharing of data representations by providing a
means for expressing and managing this interaction through its module system [42]. In this
example, the two modules for character and line operations would be combined by using
them as parameters to a “functor” (a parameterized module) that declares (via a “sharing

1.3. Focus of the Thesis 5

coastraint™ declaration) that they share a common buffer data structure, and thea exports
the buffer operations. (The sharing declaration is necessary, since without it, there may be a
type couflict in the buffer operations module, since the buffer inherited through the character
operations and the buffer inherited through the line operations would be interpreted as two
distinct types.)

buffer-ops

It is, unfortunately, usually difficult to make such a priori decisions on data representations,
especially since new operations might be added after the initial design and implementation
have long been completed.

An alternative approach is to define two separate modules, one for character opera-
tions and the other for line operations, each of which assumes its own specialized data
representation for the buf fer.

(durj-op-) CW)
|bu££or¢.,| |bu££er1m.|

At some point these modules must be somehow integrated if we are to use both character
and line operations on the same buffer. The problem of sharing is now more complex
since the modules might not use the identical data representation for butfer. Rather,
they may each define their own data representations, which are essentially “views” [29] of
some “canonical” buffer. As indicated earlier, integration could be achieved by introducing
functions that translate between the representations. (This would rely for consistency on
an external unifying semantic-model.)

I propose a new approach. Rather than mediating the representations through trans-
lation functions at runtime (which likely incurs a significant performance penalty), these
mappings are incorporated into a single buffer implementation by deriving a new common
(and efficient) data representation. Program-transformation techniques provide a means to
accomplish this by “synthesizing” a new data representation from the collection of special-
ized ones. In essence, the translation of interfaces is “shifted” to an earlier point in the
computation (or “compiled”). An example is presented in Chapter 3.

This approach provides meaningful support for later adaptation. For example, suppose
that at some future time the text buffer implementation is to be used in a new application,
say, a display editor. The display editor may impose new requirements on the functionality
of the buffer. In this case the buffer abstract interface must be extended. Such extensions
could be accomplished by using, for example, inberitance (in the object-orieated sense) to
restructure the interfaces and add the new functionality. Program-transformation techniques
provide a means of fully integrating such extensions. In Chapter 4, 1 sketch out the inclusion
of a finished text buffer in a display editor, deriving a new efficient implementation of the
text buffer that takes advantage of the new context of the display editor.

6 Chapter 1. Introduction

134 Whatis New

Data transformations have been used to implement datatype specifications or to optimize
existing programs. The approach of this thesis is novel in that the research exends data
enables the application of transformation techniques to the development and adaptation of
“larger-scale systems” [20]. Small-scale systems that deal primarily with algorithm devel-
opment have been studied extensively. In this next step up I focus on data representations.
This thesis does not address all issues of large-scale system design, but rather makes a
contribution in extending the current techniques by applying program transformation to the
integration of module interfaces. A study of the derivation of an interactive display-editor
is shown that illustrates the hard problems of module interface integration that occur in
software development. A framework for describing the transformation techniques is then
established.

Solving this integration problem not only enhances existing approaches, but also may
lead to new possibilities in designing systems. For instance, abstract datatypes are good
for isolating clients from change, but not for promoting enhancement and adaptation [30).
This thesis research could lead to a new way of thinking about module construction where
we imagine building more flexible systems that share data.

This thesis suggests a paradigm for datatype implementation by “components.” Some-
times it is difficult to design types or anticipate future needs. Instead of introducing a type
and anticipating all necessary operators, the operations are designed as we discover the
need for them in the program using the datatype. The representations are selected based
on the needed operations. This thesis also suggests a paradigm of system implementation
by modules where we use transformation techniques to get better performance than simply
reusing code. The module transformation system provides a way to manipulate the modules
and to change the cobesiveness and the couplings of the modules [65].

1.4 Structure of the Thesis

I introduce the module interface transformation system in Chapter 2. First, background
information on data transformation is presented that describes the progress made in devel-
oping data transformations. I continue the progression with techniques for datatypes and
modules. The transformation system is introduced informally in two parts. First I enumer-
ate a collection of module transformation rules that are useful for adjusting interfaces and
data representations. Then I demonstrate how the rules are used in different strategies to
implement datatypes by components, and to increase the efficiency of module systems.
In the two chapters that follow, I present an example that is centered around the derivation
of an interactive display-editor to demonstrate the derivation process and techniques. In
Chapeer 3, I design an editor text buffer to illustrate the integration and adaptation of
components t0 implement datatypes. Then in Chapter 4, I add a display to the buffer to
illustrase the building of modules from other modules and to show how to increase the

efficiency of the system.

]

14. Swructure of the Thesis 7

I interpret the results of the editor derivation in Chapter S with a discussion of the
alternatives in integrating the module interfaces that are available to the software designer
at the design level and the implementation level. Also discussed are the criteria that
the software designer might use to chose a specific alternative, the cost of the various
alternatives, and the potential for scaling.

After the example, I examine the module interface transformation system in Chapter 6
to establish a framework for describing the derivation process and techniques. Providing a
framework enhances the understanding of the terms used informally, provides structure to
aid the software designer in using the approach and is an important step towards automating
the system. Many of the terms that are introduced in the example, such as “component,”
“translation function,” and “aggregate™ are given a precise meaning. The decision was
made to split the description of the module transformation system into two chapters in order
to better motivate the system with an example before going into the technical details.

In Chapter 7, I evaluate the module transformation system by comparing it to traditional
approaches and current research in software development, and then examine the applications
in which the techniques would prove useful.

Finally, in Chapter 8, I conclude the thesis with a summary and evaluation of the
contributions of the thesis. This thesis has explored a module interface transformation
system without mechanized support which makes it difficult to apply the techniques to
larger systems. Solutions to optimize the derivation process and to build an automated
system are discussed.

Appendix A summarizes the notation used in the examples. Appendix B is a glossary
of common terminology. The remaining appendices include details about the derivation
and proof steps.

Chapter 1. Introduction

Chapter 2

Module Interface Transformation
System

The general strategy for constructing systems using the module interface transformation
system is illustrated in Figure 2.1. The process starts with the design of the top-level
aggregate specification. The software designer who wishes to design a complex system
is able to decompose the problem into components that best model that portion of the
problem. This aggregate specification is used in the integration phase to produce an
aggregate definition. The aggregate definition is in a format upon which data translations
can be performed to obtain an executable prototype. Then additional transformations such
as expose, incorporate, release, and shift can be performed to optimize the prototype into an
efficient implementation. Later on the software designer may wish to introduce additional
functionality in the adapt phase. The design, integrate, and adapt phases are supported
by the methodology developed in Section 2.1. The prototype and implement phases are
supported by the module transformation rules developed in Section 2.3. These phases will
be elaborated as we progress through this chapter.

We begin in Section 2.1 which demonstrates how the module transformations are used
in different strategies to implement datatypes by components and to increase the efficiency
of module systems. To give us the necessary background, Section 2.2 contains information
on data transformations that is necessary to understand the module transformation rules.
Previous work on data transformation follows a progression of increasing support for larger-
scale systems. Initial transformations affected the data representations of the parameters
of functions; later transformation techniques were applied to abstract datatypes. The pro-
gression continues in Section 2.3 where [introduce applying transformation techniques to
module systems, and enumerate the transformation methods on abstract interfaces and data
representations. (A framework for describing the transformations is presented in Chap-
ter 6.) Section 2.4 ties together the previous sections where I describe how these integration
methods and the module transformation rules are used in the software development process.

10

Chapter 2. Module Interface Transformation System

Figure 2.1: Strategy for Constructing Systems

2.1. Module Transformation in Software Developmens 11

2.1 Module Transformation in Software Development

We have briefly seen in Section 1.3.3 an approach to the derivation of an editor buffer that
is part of the development of an interactive text editor, and in Figure 2.1 a general strategy
for constructing systems using this approach. Using this strategy, the editor is designed as a
collection of separate modules, each of which implements subsets of the buffer operations
efficiently (Figure 2.2). There are three modules: Buf; representing a buffer as a sequence
of characters with an explicit index for the point where editing takes place; Buf, representing
a buffer as a pair of sequences, correspoading to the characters to the left and to the right
of the point of editing; and Buf; representing a buffer as a sequence of lines with an index
consisting of a line and character position for the point of editing. Compatibility maps are
introduced to establish a correspondence among the data representations. This collection
of modules is then integrated. Using an extended form of data transformations (developed
in the following sections) yields an executable prototype (i.e., the first executable system);
further specialization then yields a more efficient implementation.

The following two sections describe these techniques for integrating datatypes (Sec-
tion 2.1.1) and modules (Section 2.1.2). Each section includes a description of the method,
an example, and a pointer to how the method is used in the editor example in the following
two chapters. The examples are extracted from the display-editor derivation in the two
chapters that follow. On first reading it is best to skim through the example. The intention
here is to show the “structure” of the method. Details about the notation, the display editor,
and the method will be learned when we return to the examples in the editor derivation. We
also return to these transformation methods and see a more formal definition in Chapter 6.

Notation and Naming Conventions. Names of types and operations have the name of
the component in which they were defined prepended in order to resolve ambiguities. For
example, if the components define a type buf then Buf;.buf refers to the type defined
in the first component. To enhance the readability of the examples, these “qualified”

12 Chapter 2. Module Interface Transformation System

names are abbreviated by omitting the component name, and using the component number
as a subscript with the type or operation name. For example, buf; and move-right, are
abbreviations for Buf;.buf and Buf;.move-right. The expression “local...in...end” is
used to separate the public operations (that appear after the keyword in) from the private
operations (that appear after the keyword local) which are used by the public functions
but not intended for use elsewhere. It is advisable for the reader to look first at the public
functions and then at the private functions if additional details are desired.

2.1.1 Datatypes

The text buffer example suggests a paradigm for datatype implementation by “components.”
The building blocks for the paradigm are components that implement parts of a type.
Sometimes it is difficult to design types or anticipate future needs. Instead of introducing
a type and anticipating all necessary operators, the operations are designed as we discover
the need for them in the program using the datatype. Here, we use modules to implement
compoaents.

Integrating a Collection of Components

We say what we mean by aggregating a number of components into a composite data
structure by defining an aggregate specification. First we must supplement our notation
(based on Standard ML [42]) with axioms to describe the properties of the data aggregate.
Extended ML [72] gives the developer this ability to add axioms to structures and signatures.
Axioms are expressions of boolean type and are built using the functions of first order logic.

For the purposes of this definition, we consider a system consisting of two components
(which “represeat” the same object), and consider the case where an operation is defined
in the second component. The consistency relations, map], ensure the consistency among
these components. A projection, proj;, of an aggregate data object yields an object of
a particular component, and each such component object is related to other component
objects by a consistency relation. The following two axioms describe the properties of the
aggregate.

axiom proj;(0p(agg)) = OpP,(Proj(agg))
axiom proj,(agg) map] proj;(agg) => Proj(op(agg)) mapl Pproj;(oP(agg))

The first axiom defines the behavior of the operation on the aggregate datatype induced by
the second component operation, 0p,. The remaining axiom ensures that after applying the
operation, all of the components remain coansistent. There is a set of such axioms for each
operation defined. Only one set is shown for illustrative purposes.

Now that we have established what is meant by aggregating a number of components, we
define how the aggregate is implemented. Given a collection of components and compati-
bility maps, an aggregare definition is produced that is amenable to module transformations
(Figure 2.3). The compatibility maps, map;_,;, respect the consistency relations and define
bow 10 make the components consistent. The function span uses the compatibility maps

2.1. Module Transformation in Software Development 13

Given: %: map,_.;
local

" span(ca) < Agg(ci,ca) wherec; = map,_(c2)

PN = span(op;(ea)

Figure 2.3: Aggregate Definition

to translate between the component and the data aggregate. The operation, op, on the data
aggregate can thus be defined using span in a form amenable to transformation. Since more
than one operation may occur on the lefthand side of an expression-procedure definition,
there may be some confusion about which operation is being defined. Because of this, the
operation being defined are underlined to distinguish it from the others. This is but one
example of a definition given a certain set of translation functions. The general case is
treated in Section 6.1.

The Stepsof Integration. The essential steps for implementing datatypes by components:
1. Specify the overall datatype interface. The names of the operations are listed with
their signatures.

2. Define the component implementations, each of which implements some subset of the
overall interface. Collectively, all of the components implement the entire interface.

3. Define functions that translate from one component into another to establish the
consistency of the collection of data representations.
4. Choose the product of the component representations as an expedient representation.

5. Integrate the components to define the composite datatype. Each operation defined

in a component induces a corresponding operation on the aggregate datatype. Each
aggregate datatype operation is defined (in a form amenable to transformation) in
terms of the component where the operation was defined.

Example. Suppose we are given two components that implement different buffer oper-
ations and a relstion that defines what it means for them to be consistent. The operations
move-right and show-char are defined in the first component, Buf;, makebuf is defined
in the second component, Buf;. The consistency relation is defined by map?. Using the
axioms for the aggregate specification as our template, we combine these two components
into a composite data structure.

14 Chapter 2. Module Interface Transformation System

axiom proj,(makebuf) = makebuf,
axiom proj;(5) map} proj(b) == proj,(makebuf) map} proj,(makebuf)

axiom proj, (move-right(b)) = move-right, (Proj, (b))
axiom projy(b) map; proj,(b) => proj;(move-right()) map? proj(move-right(s))
axiom show-char(b) = show-char,(proj, (b))

Using an algorithm that preserves the properties of the axioms, an aggregate definition is
produced from the axioms. This algorithm is explained in Section 6.1.4.

Structure Buf : BUF = struct
structure Buf;, Buf;
type buf = Buf of (int x ch* x ch® x ch®)
local
map,_,(Bufz2(l,r)) <« Bufi(#,!@r)
span(But(l,)) < Buf(p, f, I, ywhere Bufi(p,f) = map,,(Bufs(,n)
unsparn(Buf(p,1,l,r)) <« Bufi({p |p;2}, {t |)}
where Buf;(p2,82) = map,_(Bufz(l,r)

in
makebuf < span(makebut,)

unspan(move-fight(b)) < move-right,(unspan(b))
dshwf-char(b) < show-char,(unspan())

end

Notice how the definitions for makebuf, move-right, and show-char are in the form of data
transform procedures from the template in Figure 2.3. The notation { v; | w; } used in the
definition of unspan denotes alternative ways of computing the same value. It is necessary
in this case to preserve the consistency between the data structures of the two components
that comprise the data aggregate. Sometimes unspan is used instead of span depending
upon what translation functions are available.

Using the Transformation. This integration process is useful for integrating collections
of compounents to implement datatypes. A detailed example is shown in Section 3.1.

Adding a New Component

We adapt the system by introducing a new component, c3, which defines the operation, x.
The aggregate specification for the new system is defined by supplementing the previous
definition for the aggregate specification with a collection of axioms defining the operations
induced from the new component. The first axiom defines the behavior of the operation on
the aggregate datatype in terms of the new component. The following three axioms ensure
that after applying the operation, all of the components are kept consistent. The last two
axioms are extensions to the previously defined axioms for op. They ensure that the newly
introduced component is kept consistent after applying an operation in the existing system.

2.1. Module Transformation in Software Development 15

Given: 0p,, map,_,,, Xs, Map,_3 :
local !
unspan(Agg,.s(cz,cs)) < !
{map,_s(ca) | c3} |
span(Agg,,s(c2,¢3)) < i
Agg’(c1, c2, c3) where c; = map,_,,(c2)]
span’(agg(ci,c2)) <« '
Agg’(c1, c2,Cs) where cy =Map,_s(c2) |

unspan(X,,s(Aggzs(c2,c3))) <«
X3(UnSpan(Agg;3(c2, <3))) P———————— »

X(8pan(Agg,s(c2,c3))) <+

| 1

span(sa(cz, 3)) \ B
op'(span’(Agg(ci,ca))) & ! al !
span’(w(Agg(q, c2))) { 1

| !

| |

in

- s ww w wn mm v e o - - -

end

Figure 2.4: Merging with the Original System

axiom projy(x(agg)) = Xs(Proj(agg))

axiom proj,(agg) Proj,(agg) => proj(x(agg)) map; proj,(x(agg))
axiom proj;(agg) proji(agg) => Projs(x(agg)) proj; (x(agg))
axiom projs(agg) projy(agg) = proj(x(agg)) Proj(x(2gg))
axiom proj,(agg) projj(agg) => Pproj(op(agg)) proj; (0p(agg))
axiom proj;(agg) projy(agg) => proj(0p(agg)) maps Proj(0p(agg))

There is some flexibility in how to integrate the new component to produce the aggregate
definition. Here, we consider four alternative methods of component adaptation. These
definitions all satisfy the axioms. We have the choices to “merge” or “translate” the
new component with the components in the original system or with the data aggregate
implementation.

Merging with the Original System. We could merge the new component with the com-
ponents in the original system (see Figure 2.4). The first two public definitions (after
the keyword in) incrementally build a definition for the new operation (using the method
introduced in Figure 2.3). The first definition “spans” the representation from the new
component to an intermediate aggregate consisting of the second and third component,
Agg;.3. The next definition “spans” the representation from this intermediate aggregate to
the new data aggregate consisting of all three components. Two steps are necessary in this
case because of the translation functions available. Since we are not given a function that
translates from the third component to the first component directly, we must first merge the
third component with the second component, and then with the first component. Compare

16 Chapter 2. Module Interface Transformation System

r-=-=-===-=-- X

Given: 0p,, map,_,;, X3, Map,_3 | r =X I
local 1 : C2! 1
UNSPAN(Aggy(cy)) < Map,_.s(ca) g :

ln span(Agga(cz)) <« Agg(ci,cz) wherec: =map,_, (c2), 3
[T J

Unspan(;(Agg,(ca))) < Xa(unspan(aggy(cz)))
eml!(sﬂal'l(lqu(<=z))) < span(xy(ca))

Figure 2.5: Translating into the Original System

these two definitions with the definition of integrating the existing system in Figure 2.3. The
diagram to the top-right in the figure illustrates the process. The labeled nodes represent
the componenats which are connected by directed arcs that represent the compatibility maps.
The solid box encloses the component where the operation of interest is defined, in this
case, component c3 where x; is defined. Dashed boxes represent the derived operations
on the intermediate and final aggregate (there is one for each of the two definitions). Ex-
amine them starting at the inner-most box and proceeding outward. First xz.3 is derived
(corresponding to the first definition) and then x.

We also add the last definition to extend the previous definitions for the operations in
the existing system. We start with the definition of op defined in the aggregate consisting
of ¢; and c; (solid box in the bottom-right diagram); then we derive op’ to include c; (outer
dashed box).

Translating into the Original System. An alternative to merging is translating the new
component into the existing system (Figure 2.5). Only the operations of the new component
need to be defined, since the existing system does not change. As with merging, the two
public definitions incrementally build a definition for the new operation. The first definition
“spans” the representation from the new component to the existing component, rather than
the intermediate aggregate in Figure 2.4, since we are translating and not merging. The
next definition “spans™ the represeatation from the second component to the data aggregate
of the existing system. There is no third definition, as was the case in merging, because the
existing operations do not have to be modified since the aggregate representation remains
the same.

Merging with the Implementation. Rather than starting with the original definitions
of the existing system, at times it may be beneficial to treat the implementation of the
aggregate as a component, and merge the aggregate and new component directly. Recall
that the process of obtaining an implementation from the aggregate definition involves
applying transformations to the definition to obtain a prototype, and then specializing the
prototype to obtain an implementation. This specialization process can be characterized as
a translation function, map,_,;, that maps prototypes into implementations. For the sake

2.1. Module Transformation in Software Development 17

Given: Xs, '“ap-‘_,s

local
UNSPaN(Agg;, xa(iz2,c3)) <« {map,_@2) | &}
SPan(Agg, x3(iz2,c3)) < Agg; xipxs(ii,i2,cs) where iy =map, _; (i2)
span‘(agg(ii,iz)) <= Agg’(iy, iz, c3) where c3 = map, _;(iz)

ax3(A99;,3(12,63)) < Xa(unspan(agg,,s(iz, ca))
X(Span(Agg;, x3(iz,c3))) <+ 8PaN(X;xa(ia, c3))

e-dﬂ(slia"’(lgg(il.iz))) < span’(op(agg(ii, i2))

in

Figure 2.6: Merging with the Implementation

of concreteness, let us say that the specialization process takes the two components of the
prototype aggregate, and specializes the first component and keeps the second component
intact.

mapp—d(Agg(cls 02» < Aggi(f(cl)v Cz)

Perhaps we can define a translation function, map,,_; , for the relationship between
the two components in the implementation in terms of the compatibility map, map,_,;
(which expresses the relationship between the components in the prototype), and the trans-
lation function, map,_,; (which expresses the relationship between the prototype and the
implementation). Then, if we define the relationship between the new component and the
implementation as the translation function, map; , _, ., we obtain a definition for the adapted
system (Figure 2.6). Notice the similarities between this definition and the previous one in
Figure 2.4. We have substituted map, _; for map,_,; which “promotes” the specialization
filter (i.e., f in map,_,) to the time the integration is performed so that we may be spared
doing extra work only to eliminate it later in the derivation.

We are able to treat the implementation of the aggregate as a component only under
certain conditions though. When there are no interdependencies among the aggregate, then
it is simple to treat the aggregate as a component, since there are no “internal” translation
functions to be concerned with. When the translation functions are many-to-one, it may
not always be possible.

Translating into the Implementation. An alternative to merging is translating the new
component into the existing system (Figure 2.7). Only the operations of the new component
need to be defined, since the existing system does not change. The same comparison made
between merging and translating on the original system applies to merging and translating -
on the implementation.

The Steps of Adaptation. Adaptation, adding a new component, is similar to the orig-
inal problem of designing and implementing the initial system, since both tasks can be
conceptualized as the task of integrating components.

Chapter 2. Module Interface Transformation System

Given: X3, map, _,
local

UNSpan(Agg,(i2)) < mMap,_s(ia)
- $pan(Agg,(i2)) <« Agg; (i1, iz) where i; = map, _; (i2)

unspan(x, (Agg;(i2))) <« Xs(unspan(agg;(iz)))
dx(apan(m;.(iz))) < span(xy(ia)

Figure 2.7: Translating into the Implementation

The steps for adapting a datatype by adding a new component:
1. Extend the overall datatype interface. The names of the new operations and type

information are added to the signature.

. Define the component implementation, using a data representation most suitable for

the operations.

. Write a single translation function between this component and another in the existing

system.

. Choose the product of the new component representation and component represen-

tations of the existing system as an expedient representation. Or, as an alternative
choice, keep the representation of the existing system.

. Integrate the new component by adding new definitions for the operations defined in

the new component, and by extending the definitions for the operations in the existing
system to update the new component. (If the representation of the existing system is
chosen, then the operations of the existing system do not have to be redefined.) Each
aggregate datatype operation can be defined (in a form amenable to transformation)
in terms of the component where the operation was defined.

Example. We use the merging with the original system approach in this example. Recall
that the buffer system in the example of the previous section was defined using axioms
that specified how to integrate the original two components. This definition is enriched to
include a new component for pages by adding these axioms:

axiom proj,(forward-page(b)) = Buf,.forward-page(prol, (b))

axiom proj, (b) proj,(b) == proj,(forward-page(b)) map] proj,(forward-page(b))
axiom proj,(b) proj,(b) == proj(forward-page(b)) map} proj,(forward-page(b))

The first axiom specifies the behavior of the forward page operation on the data aggregate
in terms of the page component where it was defined. The remaining axioms ensure that
the system remains consistent after the operation is performed.

2.1. Module Transformation in Software Development 19

Additionally, the axioms for the original operations must be extended to ensure consis-
tency of the new component when an old operation is applied. For example, the axioms for
move-right would be extended with,

axiom proj,(b) map] proj,(b) => projj(move-fighk(b)) map] proj,(move-right(b)).

In order to produce an aggregate definition, a compatibility map that respects map} must be
provided. In the compatibility map that follows, the new page component is computed from
the original Buf; component using the auxiliary functions npages to count the number of
pages in the sequence of characters to the left of the cursor (where s [..i] is the subsequence
of s from the beginning to i), and chars2pages to parse the sequence of characters into a
sequence of pages.

map,_,(Bufi(p,f)) < Buf,(npages(t[.(p — 1)]), chars2pages(s))

'We obtain a new definition for each page operation in the new data aggregate (using an
extension of the algorithm that integrated the original system in the previous example). For
example, the definition for forward-page follows.

local
unspan(Bufix,(,.,pi,p)) <« {map,_,(Bufip, 1) | Buf(i,)}

unspan’'(But'(p,1,L,r,pi,ip)) <+ Bufig({plp2}).{t| e} pip

where Bufi(p2,i2) = map,_,(Bufz(l, 7)
unspan(forward-page, (%)) < forward-page,(unspan(s))
W(Mb» <« forward-page, ., (unspan’(b))

in

Notice how this take two steps. First we obtain a definition for forward-page for the
intermediate aggregate Buf) 4, and then for the new aggregate consisting of the product of
all the components.

‘We also obtain a new definition for each operation of the existing components in the new
aggregate. For example, the move-right operation must be extended to define the operation
on the new aggregate that includes the new page component in terms of the old aggregate.
This is done by simply adding a new definition.

local
span(But(p,s,l,r)) <« But'(p, ¢, 1,r,pi, tp)
u where Buf,(pi,ip) = map,_,(Bufi(p, 1))

“M(_(Mb» <+ span(move-right())

Notice how the definitions for forward-page and move-right compare with the template
in Figure 24. We may substitute gpan for unspan or vice-versa depending on what
compatibility maps are available.

20 Chapter 2. Module Interface Transformation System

Using the Transformation. This adaptation process is useful for adapting datatypes and
introducing new functionality. A detailed example is shown in Section 3.2

2.1.2 Larger-Scale Systems

This next example of using the text buffer as part of a display editor suggests a paradigm of
system implementation by modules where we use transformation techniques to get better
performance than simply reusing code. The building blocks for this paradigm include
objects and modules (see [33] and [90] and others, [9], [58], [87]). Larger-scale systems
can be built using modules hierarchies (i.e., modules that import other modules). The
module transformation system provides a way to manipulate these building blocks and to
change the cohesiveness and the couplings of the modules. Initial experience suggests
that techniques demonstrated for the integration of components are applicable to module
systems as well.

Adapting Module Interfaces

New modules can be defined in terms of existing modules to adapt abstract interfaces.
This is accomplished by defining a module that imports an existing module, using some
of the existing functions, and perhaps adding additional functions. This is different from
adaptation by adding a new component because in addition to adding new functions, we
can delete or modify them as well.

We are able to build a system using a hierarchy of modules where data among the
modules may be shared. Operations from the imported module can be “propagated” into
the importing module. We say what is meant by extending a module by using axioms
to define a specification. The single axiom below defines the behavior of the propagated
operation op/ in the importing module in terms of the imported module operation op.

axiom proj(op/(a)) = op(proj(a))

Now we define how this specification is implemented. Given the imported module and
a function mapping between the data in the imported and importing module, map;_,,, new
definitions for the operations are defined.

local
span(c) < Agg(c, 9)
wherec’ .MH(C)
and s=f(c)
in

op/(span(c)) <« span(op(c)
od

The importing module, Af’, starts with the imported module, M, and adds something extra,
peshaps a new data field or additional operations. In this example M’ uses the data from
M and adds a new field that is computed using f. The function span uses the mapping
function to translate between M and M” s0 that opY is defined using span as a data transform

procedure.

2.1. Module Transformation in Software Development 21

The Steps of Adaptation. The steps for adapting module interfaces using module exten-
sions is similar to the process for integrating components:

1. Specify the module interface. The names of the operations are listed with their
signatures.

2. Define the implementation. This is done by applying this same methodology to define
a new module, or by using or adapting a module from a reusable library of software
components.

3. Choose a representation, possibly including other modules as substructures, and
defining the data representation in terms of the datatypes contained in these modules.

4. Define the implementation in terms of the substructures. There may be a correspon-
dence (eg., data invariance) between: (1) two imported modules, or (2) a module and
the module it imports. This correspondence is expressed as a translation function.

Example. We define a multiple-buffer display-editor using a module that defines the
screen and a module that defines “generic” association list (A1ist) operations to manage
the state of the buffers. The display editor inherits the state from the Alist module and
adds something more, the state of the screen. Bach operation in the Alist module induces
a corresponding operation in the display editor.

The Alist module has an operation select for selecting data in a list given a key. We
use it to look up a buffer object given its name. This new buffer operation select-buffer
satisfies the axiom:

axiom proj(seiect-buffer(n,a)) = select(n, proj(a))

An Alist is represented as a list of pairs (of keys and data), where the beginning of the list
is cached. The selected data is moved to the beginning of the list in this cached position.
The relationship between the A1ist module and the display-editor module, Ded-Mbsw,
that includes it can be expressed as a translation function.

span(Alist(®,k,d)) < Ded-Mbaw(Alist(l’, %, d), s)
where o’ = policy(d), s = disp-fo-screen(o’, d)

Notice how Ded-Mbsw uses the state from the A1ist module and adds the state of the
screen, s. The screen is computed from information contained in the Alist such as the
current buffer and origin. The operations for the multiple-buffer display-editor are then
defined in texms of the Alist operations.

select-bufier(s,span(a)) < span(seleci(s, a))

The operations defined in the A1ist module are then reimplemented in the context of
the display-editor module. For example, instead of select-buffer having to call select, a new
definition for select-buffer is derived that operates on the state of the buffers directly. Not

2 Chapter 2. Module Interface Transformation System

only does this increase performance by eliminating the invocation of select, but it enables
the possibility of further transformations that could specialize the screen in the context of
the buffer state (¢g., incremental update).

Keep in mind that this example demonstrates a particular set of design decisions. The
software developer has in many cases, a range of alternatives to choose from to produce a
variety of solutions.

Using the Transformation. This transformation provides a controlled methodology for

propagating change and increasing the efficiency of module systems by tighter coupling.
See Chapter 4 for a detailed example.

2.2 Data Transformation

Early data transformation methods focused on the relationship between abstract programs
and their implementations. Hoare [46] presented a method for proving the correctness of a
data representation for an abstract program.
Given an abstract program f on an abstract domain D, the concrete program f' on the
concrete domain D’ is a correct implementation of f if the following diagram commutes,
f
D D
Abs ¢ Abs

D’ 4

That is (where 4’ is an element of domain D’),

KAbs(d)) = Abs(T(d)). ®

represent. This approach has been adopted by VDM (7] where Abs is called a “retrieve”
function.

An altemative approach is to derive the concrete representation using program trans-
formation [12] rather than invent the concrete representation and then prove it correct.
The representation function Rep maps the abstract object into a concrete representation.
This direction is chosen to simplify the derivation but is only applicable when an injective
representation function can be defined (though it does not necessarily have to be unique).

2.3. Module Transformation Rules 23

While the above equation may not immediately suggest an implementation, in many cases
transformations can be applied to obtain an executable definition for f. Darlington [17]
shows how a concrete program is derived from an abstract program using program trans-
formations, thereby ensuring that the implementation is correct; given an abstract program
f on an abstract domain D and a target domain D', the concrete program f' and the mapping
Rep can be derived. Of course it is not enough to transform only one function — all
functions that operate on objects in the domain must be transformed. This can be more
casily accomplished by using datatypes to group the functions that operate on an object.

Not only can transformations be applied to get from abstract to concrete programs, they
can also be applied to concrete programs (or datatypes) themselves. Wile [91] develops
this idea by considering the interrelationships along data paths in programs and outlining a
set of informally described operations on datatypes. These include operations for delaying
or advancing computation and operations for changing type signatures based on the “theory
operations” of Burstall and Goguen [13].

Jeering and Scherlis {49, 76] develop and generalize these ideas evea further to obtain a
framework that permits programmers to take general-purpose abstract datatype definitions
(which might come from a reuse library) and, using type transformations, obtain types
tailored t0 the application. Described in terms of the above diagram, a given datatype
D with its associated operations, for example, f, can be adapted to yield the specialized
datatype D’ with its associated operations, . The mapping Rep is also derived using the
context in which the datatype appears.

2.3 Module Transformation Rules

Schexlis [76] uses four strategies called incorporate, release, expose, and shift for trans-
forming abstract interfaces and data representations. These are techniques for adjusting
interfaces and data representations within a given system. The shift strategy is a data-
represeatation transformation that has a direct effect on program performance. Depending
on the relative frequencies of operations, computation is moved between generation time
(where information can be cached) and access time (where information can be computed on
demand). The incorporate and release strategies transform abstract interfaces by moving
abstraction boundaries (i.e., internal program interfaces as defined by type signatures) to
facilitate improvements in the efficiency of the type representations. The expose strategy
transforms both data representation and abstract interfaces. The internal structure of data
objects is revealed, moving the abstraction boundary of the type “inward,” creating new
abstract type names to move from more abstract representations to more concrete represen-
tations. An example of the transformation of a data representation is given in Section 3.1.5
(with details in Appendix C).

The module transformation rules described in this section start with Scherlis’ frame-
work. The intention is 90 have a small canonical set of transformations supplemented with
knowledge about the domain of the data structure that are used to simplify the datatype.
Each of the following subsections describes a module transformation rule and includes:
an informal description of the transformation method, an example, and a pointer to how

24 Chapter 2. Module Interface Transformation System

the method is used in the editor example. The informal description and example show
the end result of the transformation strategy, but not the intermediate steps. The intent is
t0 present an overview of the transformations to quickly reach Section 2.4 where they are
used in constructing software systems. Different languages are used in the examples to
demonstrste that the transformations are not restricted to a given language but to languages
that support module systems in general. After the editor example is preseated, we return to
these transformation methods in Chapter 6 where we see the steps involved in applying the
transformation and a more formal definition.

When first reading this section, it is sufficient to examine the introductory prose, the
example, and the pointer to how the method is used in the extended example. After reading
the extended example, the reader may wish to return to this section to look at the descriptions
t0 learn more of the details.

Notation and Naming Conventions. The interface of the datatype is represented by the
type name and the signatures of the operations. Here is a template, where the italicized
variables are to be filled in.

Intesface dis
{f:
end

The interface of the datatype d consists of the functions (represented by) f with the type 7.
One or more instances of a pattern is denoted using {...}".
The implementation of the datatype is represented by the type name, the data represen-
tation and the implementations of the operations.
Repadisa

with
{ro©) « »or
ed

The implementation of the datatype d consists of the data representation a, and the imple-
mentations of the functions f with formal parameters v*, and bodies 5. Function definition
is denoted by <=. When dealing with abstract datatypes (as opposed to modules), Rep and
Abs are used 10 manage abstraction boundaries as in the original ML [35]. Rep reveals
the underlying data structure of an abstraction, AbS creates an abstraction. Rep appearing
on the righthand side of a procedure definition has the same effect as Abs appearing on the
lefthand side, revealing the underlying data structure of an abstraction.

A represeatative selection of the operations are shown in the descriptions. For our
purposes, the operations are categorized in terms of whether they produce an instance of
the type, operate on the type, or reveal some information about the type. These are called
generators, extensions, and observers, which are given the names, gen, ext, obs. The
implementation of the operation is signified as a pattemn, using G, E, or O for the three
representative operations (eg., ext(Abe(a)) <« Abe(E(a))). Although these categories
correspond 0 the ones used in defining algebraic specifications of abstract datatypes,

2.3. Module Transformation Rules 25

the reason to use them here is to demonstrate the applicability of the transformational

techniques.
The t ypewriter font is used for datatype names, sans-serif font for function names,

and izalics for variable names. The product type constructor x binds more tightly than the
function type constructor —.

2.3.1 Translate

Using the translate wransformation, the software developer can change the representation
of a datatype and/or move computation along the data paths of a program. This change in
representations is expressed by a function that maps from the original representation into
the new one. The transformation provides a mechanical means (with guidance from the
user) to reimplement the operations of this datatype on the alternative data representation.
The meaning of the abstract datatype, however, remains the same.

Example. A simple buffer datatype has operations to create a new instance of the buffer,
insert a character, and show the character at the point of editing. Standard ML [60] notation
is used to represent this datatype; the abstract interface is denoted by an ML signature.

Sigasture BUF = sig
type but
val makebuf: buf

valinsert: ch + buf — >buf
valshow-char: buf—>ch

ead

The implementation of the datatype is denoted by an ML structure. A buffer with a data
structure that represents the buffer as a pair of sequences of characters (@ is append),

Structure Buf : BUF = struct
type buf = Buf of (ch List «ch List)

valmakebuf = Buf(nil, nil)
fun insert(c,But(/,r)) = Buf(l@ listc),r)
fun show-char(Buz(l,r)) = last())

end

and a function that translates this data representation into a new one consisting of an index
and a sequence of characters,

spen(Bur(l,r)) = But'(len),!@r)

are transformed (after several transformation steps). The new data structure represents the
buffer as an index to the point of editing and text.

26 Chapter 2. Module Interface Transformation System

Structure Buf’ : BUF = struct
typebuf = Buf of (int * ch List)
val makebuf = Buf(0, nil)
faninsert(c,Buf(p,)) = Buf(p+ 1, subseq(s,0,p — 1) @ list(c) @ subseq(s,p, len()))
fun show-char(Buf(p,?)) = nth-tem{s,p—1)
ead

A different example with the steps included is shown in Appendix C.

Description. We illustrate the transformation process with a general datatype. The ab-
stract interface for the general datatype, Dtype, containing a representative collection of
operations follows.
Interface Dtype is

gen: Dtype

ext: Dtype — Dtype

obs: Dtype—p

ead

The operations are defined on a datatype with representation a. For example, ext takes an
instance of the datatype as an argument, reveals the underlying data representation of the

abstraction (represeated by a), performs some operations on it (represented by the pattern
E), before returning the result as & new abstraction.

Repa Dtype s a
with

gen < Abs(G)
exi(Abs(a)) < Abs(E(a))
dom(ma» = 0@

The fonction span that maps the given datatype into the new representation is provided
below. The translation of the data representation is performed by S. The new abstraction
boundary, Abs’, is primed to distinguish it from the old, but they serve the same purpose,
that is, to ensure that the underlying data representation remains hidden outside of the type.
The span function is special then, since it is can manipulate these abstraction boundaries.

S: a—d
span(Abe(a)) <« Abs'(S(a))

Applying the mransiate transformation produces new implementations of the operations
defined on the data representation o’. The steps are shown in Figure 2.8. Typically, the
transformation proceeds where: (1) the bodies of the old operation and span function
are expanded; (2) domain knowledge about the data representation is applied to simplify
the body; (3) an insight step is applied to “bridge” the old and new representations; (4)
additional simplification steps are applied; and (5) the span function is abstracted from the
body of the operation. More information is provided in Section 6.2.1.

23. Module Transformation Rules 27

f(span(4)) <« spani(A))
fspan(4)) < SEFQA)
f(span(d)) <« B)
fspan(a)) <« B'@K)
fspan(a)) <« F(S(A)
f(span(d)) <« F'(span(4))
fa)y <« F@
Figure 2.8: Transformation Steps
Repa Dtype is o/
with
gen <& Abs'(G)

exi(Abe'(a)) <« AbS'(E'(a))
e.dot:s(lans’(a)) < 0@

Thus, given the initial datatype, a function that maps the old representation into the new
representation, and some insight from the software developer to guide the transformation,
the new datatype is produced. The datatype consists of the new implementations of the
operations, represented by G, E', O/, that operate on the new representation.

Using the Transformation. The translate transformation is used for optimization or
integration and implementation. Used as an alternative to shift, computation can be moved
along data paths to increase the efficiency of the program. For example, if a data structure
is accessed frequently but modified infrequeatly, then the program may be made more
efficient by shifting the computation on the data structure from when it is accessed to when
it is modified. Used to change the representation of a datatype, a collection of “views” can
be integrated, or a high-level datatype definition can be implemented in a more concrete
domain. For example, this transformation is an important step in implementing datatypes
by components and is used in deriving an aggregate data structure for a text buffer in
Section 3.1.5.

232 Shift

Using the sh{ft transformation, computation is moved along the data paths of a program to
increase the efficiency of the program (eg., moving computation on a data structure from
when it is accessed to when it is generated). This may change the data representation of a
datatype but the meaning of the abstract datatype remains the same.

Example. Here is an example of the transformation of a data representation. The compu-
tation of the length of a sequence is shifted from access time to creation time by using the
shift transformation. The datatype for the natural numbers contains the operations zero and

28 Chapter 2. Module Interface Transformation System

add-one. An additional operation, count, for converting a natural number into an integer is
added.

Here, the Clu [54] language is used for the example. The abstract interface and
implementation are defined together in a Clu cluster. The keyword cvt denotes the abstract
datatype being defined. Operations defined on a type are referenced t ype$op, for example,
the cons operation on lists is denoted listScons.

Ndef = cluster is
zero, add-one, count;
rep =int List;
Z6er0 = proc() returns (cvt);
return(listsnil);
end zero;
add-one = proc(s: cvt) returns (cvt);
return(listscons(l, s));
end add-one;
count = proc(s: cvt) returns (int);
return(listsiength(s));
end count;

The representation chosen is a sequence of 1°s. Zero is represented by the empty sequence,
adding one by concatenating 1 onto the sequence, and the count is obtained by taking the
length. If count is accessed frequently, then the computation of counting the number of
clements in the sequence may be shifted to creation time in the generator functions zero
and add-one.

After several transformation steps (which have been omitted for the sake of brevity),
the following is obtained:

Ndef = cluster is
zero0, add-one, count;
rep = int;
Zero = proc() returns (cvt);
return(0);
ead Zero;
add-one = proc(n : cvt) returns (cvt);
R=n+l;
return(n);
ead add-one;
count=proc(n: cvt) returns (int);
return(s);
ead count;

In the new implementation, the computation is shifted away from count so that count simply
looks up the value of the number directly. Thus, the transformation allows one to get from
one representation to another in a controlled manner.

23. Module Transformation Rules 29

Description. The abstract interface of the datatype that follows has an operation that
generates the datatype, and an operation that returns some information about the datatype.

Interface Dtype is
gen: Dtype
obs: Dtype —f8
end

‘The observer operation obs that returns some information about the datatype performs some
computation, represented by its body O.

Repa Dtypeis o
with
gen < Abs(G)
mdobS(AbS(a)) < 0@

Using the shift transformation, the work is moved to the operation that generates the
datatype, so that getting information about the datatype is now a simple lookup.

Repa Dtype is 8
with
gen < Abs'(0(G)
obs(AbS'(@)) <« a
end

Sore of the expressiveness of the generators may be lost since it is filtered out by O; but this
does not matter since other types can only access this type through the observer operations.

Using the Transformation. This transformation is used to optimize datatypes. It is
frequently used after the other transformations that affect the abstract interfaces. Once
operations are grouped into the desired context, then a shift is typically done to specialize
the result. This transformation is used after the aggregate data structure is derived to
specialize the buffer operations in this new context (see Section 3.1.6).

2.3.3 Expose

The expose transformation is a “synthetic” approach to revealing the underlying data struc-
ture of an existing datatype. This has the effect of moving the boundary of the type “inward.”
The data representation of the datatype changes but the meaning of the abstract datatype
remains the same.

Example. Here isadatatype for valuations which is a table of mappings from the variables
in a program to their values. This datatype has operations to create a new instance of a
valuatinn, lookup a variable to obtain its value, and to enter a new variable-value mapping.
Modul: 3 [14] notation is used to represent this datatype. The abstract interface is specified
by a Modula-3 interface definition.

“—

30 Chapter 2. Module Interface Transformation System

INTERFACE Vin;
TYPET;
PROCEDURE NulivinQ: T;
PROCEDURE Lookup(v: T;i: Id): Value;
PROCEDURE Adjoin(v: T:;i: 1Id;x: Value): T;
END vin.

The implementation is specified by a Modula-3 module definition. The initial represen-
tation is a collection of variable, value pairs.
MODULE V1n;
TYPET== LISTOFRECORDi: 1d;v: ValueEND;

PROCEDURE NulvinQ: T =
BEGIN RETURN nil END Nulivin;

PROCEDURE Lookup(v: T;i: 1Id): vValue =
VARp: T;
BEGIN
p = as800(v, i); RETURN 1(p)
END Lookup;
PROCEDURE Adjoin(v: T;i: Id;x: Value): T =
BEGIN RETURN cons(cons(i, x), v) END Adjoin;

BEGIN
‘ END vin.

An alternative way to implement this datatype is to store the value in memory with the
variable associated with the memory “location.”
MODULE Vin;

TYPEEnv==RECORD: 14d;/: LocEND;
TYPE states= RECORD !: 1lLoc;v: ValueEND;
TYPE T== RECORDe: LISTOFEnv;s: LISTOF state END;

PROCEDURENuIVING: T =
VAR:!: T;
BEGIN
te:=nil; 1.5 := nii; RETURN ¢
END Nulivin;
PROCEDURE Lookup(v: T;i: Id): Value =
VARp: Env;
BEGIN
p = a8800(v.e, {); RETURN ti(assoc(v.s, t(p)))
END Lookup;
PROCEDURE Adjoin(v: T;i: Id;x: Value): T =
VARI: locit: T
BEGIN
1 := genloc(); t.e := cons(cons(i, /), e); t.s := cons(cons(l,x), s); RETURN ¢
END Adjoin;
BEGIN
END vin.

2.3. Module Transformation Rules 31

This underlying location is “exposed” in the transformation process of the initial imple-
mentation to explicitly reveal the mapping of variables to locations, and locations to values.
In an optimizing compiler, the mapping of variables to locations could be done at compile-
time, while now only the look up of the value at the location would be done at runtime. The
function genloc() generates a new location in memory.

One slight modification to Modula-3 is made to enhance the clarity of the example. A
list constructor “LIST OF «” is introduced. Modula-3 does not have a list constructor, but
this could be implemented using,

TYPE T == REF RECORD d:Data; link : T END;

Description. The abstract interface for a representative collection of operations on the
datatype follows.

Interface Dtype is
gen: Dtype
ext: Dtype — Dtype
obs: Dtype—pf
end

The operations are defined on the data representation a.

RepaDtypeis o
with

gen <« Abs(G)
extia) <= Abs(E(Rep(a))
dobs(a) < O(Rep(a))

Applying the expose transformation reveals the underlying data structure, the tuple
(a1 X ... X ag), and produces new implementations of the operations.

RepaDtypeis (o x ... X ap)
with

gen <« (ml yeeoy ml)(c,)
ext(@) <= (Abs,,...,AbS)E'((Rep,,...,Rep,)a)
dobs(a) < O((Rep,,...,Rep,)a)

The collection of abstraction functions, (Abs,,...,Abs,), is applied to an n-tuple to create
an n-tuple of abstractions. The collection of representation functions is similarly defined.

Using the Transformation. The expose transformation is useful for adapting a datatype
to take advantage of special hardware or for revealing some information about the datatype
that could be partially evaluated at compile-time. This transformation is used to decouple
the buffer from the screen when introducing multiple windows to the editor example in
Chapter 4.

32 Chapter 2. Module Interface Transformation System

2.3.4 Incorporate

‘The incorporate transformation is useful for specializing modules in the context they appear
by moving external functions or subcomponents into a module. This changes the interface
but does not interfere with the existing system because the transformation is only applied
if dependencies (eg., dataflow) within the program are preserved.

Example. Here is one step in the example that is shown in Section 2.3.6. A simple
abstract datatype is used in a programming language interpreter for storing the bodies of
subroutine definitions. The function MkFdef is used to create a subroutine definition given
its body (an expression) and formal parameter names. The functions Body and Vars select
the components. Ada [10] packages are used to specify the abstract interface.

Package FDEF is
type Fdef is private;
function MkFdef(E : i Exp,V: in VarList) retura Fdef;
function Body(F : in Fdef) return Exp;
function Vars(F : in Fdef) retura VarList;
ead FDEF;
function Fcode(F : in Fdef) retura Codetype;

The external function Fcode creates the code necessary to execute the subroutine at ruatime.
It is incorporated into the datatype as a prelude to further specialization.

Package FDEF Is

typeFdef is private;
fenction MkFdef(E : im Exp,V: im VarList)retura Fdef;
function Body(F : ia Fdef) return Exp;
function Vars(F : in Fdef) retwrn VarList;
function Fcode(F : in Fdef) retura Codetype;
ead FDEF;

Description. External functions are made public functions of a type that has the same
external scope. Likewise, imported modules are made substructures. There is a potential
paming conflict with private functions (which would have to be renamed) but not with the
public functions because they are in the same scope. Public functions of a type can be made
privae if there are no references to them in the external scope.

Imterface Dtype is
gen: Dtype
ext: Dtype — Dtype
obs: Dtype —a
od

fun: p—o'y

2.3. Module Transformation Rules 33

Applying the incorporate transformation includes the external function into the interface
of the datatype.

Interface Dtype is
gen: Dtype
ext: Dtype — Dtype
obs: Dtype —«

fun: B—vy
end

Using the Transformation. The incorporate transformation is often used as a prelude
to specialization. Operations or modules could be grouped together for example, and then
additional transformations applied to take advantage of the close coupling (eg., to unfold
calls to functions in the type). This transformation is used in Section 4.1.3 to group the
buffer and the screen to get better performance.

2.3.5 Release

The release transformation is useful for removing unwanted code after a specialization
step. It can be considered the opposite of incorporate because it moves functions or
subcomponents outside of a module.

Example. Here is another step of the example that is shown in Section 2.3.6. After Fcode
(which calls Body and Vars) is incorporated into the datatype, it is determined that there are
no external references to Body and Vars. Ada [10] packages are used to specify the abstract
interface.

Package FDEF is
type Fdef is private;
fanction MkFdef(E : in Exp,V: in VarlList) return Fdef;

function Body(F : in Fdef) retura Exp;
fanctioa Vars(F : in Fdef) return VarList;

function Fcode(F : in Fdef) return Codetype;
end FDEF;

The functions Body and Vars are released from the datatype since they are no longer used.

Package FDET is
type Fdef is private;

function MkFdei(E : in Exp,V: ia VarlList) retura Fdef;
function FCOUO(F : ia Fdef) return Codetype;

ead FDEF;

34 Chapter 2. Module Interface Transformation System

Description. Private functions in a type are made public assuming no name conflicts are
introduced into the external scope. Public functions that do not contain any instances of
Rep or Abs for the defined type can be made external, provided that all private functions
called by any of the public functions are made public. Likewise, substructures can be made
a separate module and then imported.

Interface Dtype is
gen: Dtype
ext: Dtype — Dtype
obs: Dtype —a

fun: B—yvy
end

Applying the release transformation removes the function from the datatype.

Interface Dtype is
gen: Dtype
ext: Dtype — Dtype
ob8: Dtype —a
ead

fun: B—v

Using the Transformation. The release transformation is typically used as a prelude to
specialization, or to remove operations that are no longer useful after a specialization. This
transformation is used in Section 3.1.6 to remove redundant information from the buffer
aggregate once final design decisions are made.

2.3.6 Strategies for Using the Module Transformation Rules

The transformations are typically used together, for example, to move boundaries as a pre-
lude to specialization or shifting. Here is an example taken from Jgrring and Scherlis [48],
of one such transformation on a data representation that has a direct effect on program
performance. A simple abstract datatype is used in a programming language interpreter for
storing the bodies of subroutine definitions.

Interface Pdef is
MkFdef: Exp x Var® — Fdef

Body: Prdef — Exp
Vars: rdef — var®
end

The function MkFdef is used to create a subroutine definition given its body (an expression)
and formal perameter names. The functions Body and Vars select the components. When
a subroutine definition is encountered by the interpreter, MkFdef is called to create the
corresponding object. Fdefs are represented as pairs.

24. Strategies in Constructing Systems Using this Approach 35

Repa Fdef Is Exp x Var*®
with

MKkFdef(E,V*) <« ADSB(CONS(E,V*))
Body(D) < hd(Rep(D))
uW) < ti(Rep(D))

Subroutine calls are carried out by the function Apply. When the subroutine F with
the actual parameters V* is encountered, the name of the subroutine is looked up in the
program environmeat PEnv to obtain the Fdef consisting of the subroutine body and formal
parameter names. The function Apply has two phases. It constructs the runtime code needed
for executing the subroutine in the first phase. Then it applies the actual parameters to the
code within the program environment in the second phase.

Apply(F,V*,PEnv) < letD = find(PEnv, F)im
let code = Phase1(Body(D), MKEnw(Vars(D))) in
Phase2(code, V*, PEnv)

Observation: The first phase could be carried out less frequently if it were done at the
time that subroutines are defined rather than when they are called. This is accomplished by:
abstracting Phase1 into the function Fcode, incorporating Fcode into the type signature,
shifting Phase1 from Fcode to MkFdet, and releasing Body and Vars from the datatype
since they are no longer referenced.

Repa Fdef Is Codetype
with

MkFdeKE,V*) <« Abg'[Phase1(E, MKEnV(V*))]

Fcode(D) <« Rep'iD]
end

Apply(F,V* ,PEnv) < letD =find(PEnv, F)im
let code = Fcode(D) in
Phase2(code, V*, PEnv)

In the new implementation, two things are happening: context outside of the type is
incorporated into the type, that is, the boundary is widened; and computation is shifted from
whea subroutines are called to when they are defined, that is, internal data refinement. The
transformation allows the software developer to get from one representation to another in a
controlled manner.

24 Strategiesin Constructing Systems Using this Approach

The three methods of integrating components, adding new components, and adapting
module interfaces described in Section 2.1 are part of a similar integration process. The
end result of each process is a collection of data transform procedures. The module
transformation rules described in Section 2.3 can then be applied to them t0 yield efficient
implementations. Putting the rules and the integration processes together, a process for
constructing systems using this approach is defined.

36 Chapter 2. Module Interface Transformation System

The essential steps for implementing datatypes or modules by components:
1. Specify the interface. The names of the operations are listed with their signature.

2. Define the component implementations, each of which implements some subset of
the interface. Collectively, all of the components implement the entire interface.

3. Establish any data invariances among the components by defining functions that trans-
late from one component into another to establish the consistency of the collection
of data representations.

4. Choose as an “expedient” representation the product of the component representa-
tions.

5. Integrate the components to define the datatype or module. Each operation defined in
acomponent induces a corresponding operation on the aggregate datatype or module.
Each operation definition is put into a format amenable to transformation.

6. Implement the datatype or module. Since the definitions are data transform pro-
cedures, this is done by applying transformations. The expression procedures are
transformed into functional definitions. When adapting the system, it may be possible
to reuse some of the information from the derivation of the integration of the original
system.

7. Uncover an efficient representation by eliminating unnecessary redundancy and spe-
cializing data in the context that it appears in.

8. Implement an efficient implementation by translation.

Figure 2.1 (seen at the beginning of this chapter) is an abstract view of this process. The
process starts with the design of the top-level aggregate specification (steps 1, 2 and 3). The
software designer who wishes to design a complex system is able to decompose the prob-
lem into components that best model that portion of the problem. The components may be
obtained from 2 library or prototyped by the designer using a data representation that most
closely models the subproblem. Consistency relations establish correspondences among the

data representations. This definition is used in the inzegration phase to produce an aggregate
definition (steps 4 and 5). Obtaining the aggregate definition from the aggregate specifica-
tion is a mechanical process that can be expressed as an algorithm (see Section 6.1.4) once
compatibility maps (which respect the consistency relations) are provided. The aggregate
definition is in a format upon which data translations (Section 2.3.1) can be performed to
obtxin an executable prososype (step 6). Thean additional transformations such as expose,
incorporate, release, and shift (Section 2.3) are performed to optimize the prototype into
an efficient implementation (steps 7 and 8). Later on the software designer may wish to
introduce additional functionality in the adapt phase.

Chapter 3

Integrating Module Interfaces: Deriving
and Manipulating an Edit Buffer

In order to demonstrate the techniques for integrating module interfaces by program-
transformations, we now go through an exercise in the development of a simple interactive
text editor. We work through the derivation of the text-buffer implementationin Section 3.1.
Then we introduce additional functionality in Section 3.2 to examine how the text buffer
is adapted. Important concepts (such a “component™) are informally introduced here, with
their name in izalics. A glossary of these terms is available in Appendix B. All such names
in italics are precisely defined in Chapter 6.

Datatype definitions are represented as modules written in a notation based on an
extended form of Standard ML [60]. The extensions add notation that is described as it
is introduced in the examples. Although the decision was made to base the notation on
Standard ML, as shown in the previous chapter, the transformation techniques are language
independent and can be applied to other languages with modules such as Ada, Clu, and
Modula 3. Standard ML also has some high-level abstraction mechanisms to facilitate
the design of datatypes and that allow one to focus on the module structure and overall
architecture of the system rather than getting lost in the details (which, although important
at later stages in design and development, obscure the system structure that one is focusing
on).

Other notations to consider are specification languages that support the design of large
programs such as Larch [38] and Z [84]. Indeed, the style of developing systems in these
languages has influenced the style of the editor-derivation presentation. However, since
specifications deal with a higher level of abstraction, it is necessary to use a language in
which sbstract intesfaces and data representations can be defined and manipulated. The
decision was made to0 use Standard ML because it has an elegant module facility and fully
defined semantics [61]. Moreover, Extended ML adds a useful extension to the language,
the ability 10 add axioms. This gives the software designer a wide-spectrum language to
represent higher-level specifications that can be refined to an implementable subset. See,
for example, Sannella and Tarlecki [72], where a methodology for software development
is developed using ML modules extended with axioms.

38 Chapter 3. Imtegrating Module Interfaces: Deriving and Manipulating an Edit Byffer

3.1 Derivihg the Buffer

In this derivation, the editor is designed initially as a collection of separate components.
The collection of components is integrated by deriving new module interfaces, resulting in
an executable prototype. Then efficiency transformations are applied. The eatire process
is depicted in Figure 3.1, which is referred to in the example as the steps are elaborated.

3.1.1 Program Design

We are now ready to design the datatype of the text buffer. We start by defining the
abstract interface of the datatype. An abstract interface is simply a signature. We use a
Standard ML-like signature declaration to specify abstract interfaces.

The following specification defines an abstract interface for the datatype buf and the
seven buffer operations: makebuf, delete, insert, move-left, move-right, show-char, and
next-line.

Siguature BUF = sig
type but

makebuf : buf

deleté: buf — buf
ingert: ch x buf — buf
move-left: buf — buf

move-right: buf — buf
show-char: buf —ch
next-line: buf — buf

The next step is to design the data structure of the text buffer. Our goal is to arrive at a
single data representation that supports the efficient implementation of all of the operations.
Since designing a data representation that is satisfactory for all of the operations may be
difficult, we begin by implementing subsets of the operations — each subset comprising a
component — and then try to integrate them later.

3.1.2 Program Composition

The move operations are conveniently implemented by using a representation that is a
sequence of characters with an explicit index for the point where editing takes place. The
point of editing is moved left by decrementing the index and moved right by incrementing
the index. The character at the point of editing is retrieved by looking up the character in
the text to the left of the index. (The #* element of a sequence s is denoted s(»].) The
component implementation shown below is based on this representation. The notation used
for the componeat definition is similar to the Standard ML st ructure declaration. It is
called & component because, unlike a structure, not all of the operations in the signature
noed 10 be implemented. The declaration implements the operations in terms of the domain
of integers and character sequences (.* being the sequence type constructor).

3.1. Deriving the Buffer

39

U
T

Figure 3.1: Deriving a Buffer

40 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Buffer

Component Buf; : BUF = struct
type buf = Buf of (int x ch®)
move-lefi(But(p,f)) < Buf(p-1,1)
move-right(Buf(p,f)) < Buf(p+l,1)
show-char(Buf(p,f)) <« t[p-1)
constraint Buf(p,7) => O0<p<#
end
Abstraction of the underlying datatype represeatation is maintained using the datatype
constructor Buf. Used on the lefthand side of the operation definition, the text-buffer
representation is “revealed.” Only operations defined within the datatype can use the
datatype constructor in this manner. Used on the righthand side of the operation definition,
the representation is ‘“hidden.” This provides an abstraction boundary where operations
defined outside of the component are not allowed access to the data representation.
Constraints are axioms that contain additional information such as invariants of a
datatype expressed in first order logic (where free variables are universally quantified and
== is logical implication). The constraint
Buf(p,f) = 0<p<#
is an abbreviation for
Vb:buf,Vp:int,Ve:ch® |b=Buf(p,).0<p < #.

Extended ML [72] gives the developer this ability to add axioms to structures (and signa-
tures). Constraints may be used as enabling conditions to provide additional context for
transformations (see Appendix C). Constraints may also be refined in the implementation
so that they are satisfied by each operation (see Section 3.1.6).

In the example, the axiom constrains the index to remain within the boundaries of the
text (#s denotes the cardinality of the sequence s). The result of moving the index beyond
the boundary is undefined at this stage in the design. Later on, as the component is refined
into an implementation, more commitments about error handling can be made to ensure that
each operation cannot violate the axiom. For example, the move operations could return the
buffer unchanged if an attempt is made to move out of the buffer boundary. An alternative
is t0 return an error value or flag so that a “beep” from the terminal could be emitted or the
screen flashed. This would necessitate adapting the abstract interface which is discussed in
the following chapter.

This component definition provides simple and natural definitions for the three opera-
tions shown. Implementing insertion and deletion of characters in this Buf, representation,
on the other hand, requires an inconvenient (and hence error-prone) manipulation of sub-
sequences within the text. A more convenient representation for these new operations is
a pair of character sequences, representing the characters to the left and to the right of the
point of editing. The index for the point of editing is left implicit. A character is deleted
by removing the last element from the left sequence. A character is inserted by appending
it 10 the left sequence, / @ [c). There is no constraint on this component, though delete is
unspecified whea at the beginning of the buffer.

3.1. Deriving the Buffer 41

Component Buf; : BUF = struct
type buf = Buf of (ch® x ch®)
makebuf < Buf([], [D

delote(Buf(l @ [c),r)) <& Buf(,r)
inseri(c,Buf(l,r)) <« Buf(l@[c,»

end

Although the makebuf operation is included in this componeat, it could have just as easily
been defined in the first component as makebuf < Buf£(0, []).

The next-iine operation moves the point of editing to the following line with the character
position in the line remaining the same. This is difficult to implement using either of
the previous represeatations, since it requires searching for newlines and computing the
distance between the point of editing and the preceding newline. For this operation, then,
a new component, Bufs, is introduced where the text is a sequence of lines (where a line
is a sequence of characters not containing a newline) and the point of editing is a line
and character position. Then the point of editing is moved to the next line simply by
incrementing the line position by one.

Component Buf, : BUF = struct
type line = (ch — ‘al")*
typebuf = Buf of ((int x int) x line®)
next-tine(But({lp,cp), 1)) <+ Buf({lp+1,6p), t3)
constraint Buf({lp,cp),ts) => O<Ilp<#s
coastraint Buf({lp,cp),t5) => 0<cp < #slip)
ead

The newlines are implicit, giving a more compact representation. Of course, if one so
chooses, an alternative representation can be used that keeps a newline character at the end
of each line. The first invariant constrains the line pointer to remain within the boundaries
of the buffer. The second invariant constrains the character index to remain within the line
that it is on. As in the definition for Buf,, the result of moving the point of editing beyond
the boundary is undefined at this stage in the design. Not only does this happen when
trying to move past the last character of a line, or past the last line of the buffer, but also
when trying to use next-iine to move from one line to the next that is shorter. This invariant
can be refined at a later stage in the software development, for example, by moving to the
same character position within the line if possible, but moving to the end of the line if the
following line is shorter.

3.1.3 Aggregate Design

Collectively, these three components implement all of the operations of the abstract inter-
face for BUF. However, in arder to use all of the operations interchangeably, an “agreement”
among the various data representations must be reached. These data representations are
essentially “views” [29] or projections of some aggregate buffer. One way to reach agree-
ment is to define consistency relations among the componeats, of the form i map] j. An

42 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Byffer

aggregate specification specifies a datatype constructed from a collection of components
and consistency relations, and has the following properties: there are projection functions,
which map the aggregate data object to an object of a particular component; and every
component operation induces a corresponding operation in the aggregate that maintains the
consistency of the components. The aggregate specification encapsulates the complexities
that were avoided by not defining the operations in all of the components.

Using this definition in our example, then, an aggregate text-buffer is defined in terms of
the components Buf,, Buf3, and Bufs, along with the consistency relations that specify the
agreement among these components (Figure 3.1, design step). A projection of an aggregate
buffer data object yields an object of a particular component, and each such component
object is related to other component objects by consistency relations (which is formally
defined in Section 6.1.2). Intuitively, these relations provide a notion of consistency for the
aggregate data objects.

bUf1

In order to avoid ambiguity, names of types and operations are prepended with the name of
the component in which it was defined. For example, each of the components define a type
buf s0 Buf; buf refers to the type defined in the first component. To enhance the readability
of the examples, these “qualified” names are abbreviated by omitting the component name,
and using the component number as a subscript with the type or operation name. For
example, buf; and move-right, are abbreviations for Buf;.buf and Buf;.move-right.

The effect of an operation on a text buffer is defined in terms of the corresponding
component operation. In the aggregate, the operation must ensure that the projections of
the buffer remain consistent. This is expressed in the following commutative diagram.

buf;

The relationships depicted in this diagram can be specified via axioms on the operations in
the various components. Such axioms are written along with the abstract interface of the
datatype (eg., adding axioms to the abstract interface for the buffer shown in Section 3.1.1).
Doing so results in an annotated abstract interface specification that includes a specifica-
tion of component integration. As an example, the axioms for move-right are shown in
Figure 3.2.

3.1. Deriving the Byffer 43

axiom proj,(move-right(b)) = move-right, (proj, (b))

axiom proj; (b) proj;(b) => proj(move-right(b)) proj,(move-right(b))
axiom proj;(b) proj;(b) = proj(move-right(b)) projs(move-right(b))
axiom proj;(b) map; Proj;(b) = proj;(Move-right(b)) map; Pproj;(move-right(b))

Figure 3.2: Buffer Aggregate Specification for Move-Right

3.1.4 Aggregate Integration

An aggregate definition is a datatype that refines the aggregate specification. The data
representation is defined as the product of the component data representations and the
operations are defined in terms of the component operations as “data transform procedures”
(Figure 3.1, integrate step).

Data transform procedures define alternative implementations on data representations
in a way similar to the data transformation definitions presented in Section 2.2. They may
take one of two forms:

1. Given a program f using a data representation D and a function, span, that translates
elements of the data representation D to elements of the data representation D', we
define f’ as:

fspan(d)) <« span(i(d)

2. If, instead, there is a function, unspan, that translates elements of the data represen-
tation D’ to elements of the data representation D, we define f' as:

unspan(f(d)) <« f(unspan(d))

This style of procedure definition is called an “expression procedure” by Scherlis [74].
While the expression procedure definition for f may not suggest an implementation, syn-
tactic transformations can be applied to obtain a functional definition for the program f
on the data representation D’. We saw examples of transforming data representations in
Chapter 2 in the sections on the transiate, shift, and expose transformations. We will see
in Chapter 6 how they are explained in terms of data transform procedures. Since more
than one operation may occur on the lefthand side of an expression procedure definition,
there may be some confusion about which operation is being defined. Because of this, the
operation being defined is underlined to distinguish it from the others.

Following this approach, a preliminary definition of move-right on the aggregate is
obtained (Figure 3.3). Recall that move-right is defined in component Buf;. Alternative
versions of move-right for the other components (i.e., move-right, and move-right,) are
defined as data transform procedures in terms of the Buf; definition once “compatibility
maps” (i.e., map,_,; which serves as unspan) between the components have been defined.

44 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Buffer

map,_,;(move-fight) < move-right,(map,_., (%))
map,_,(Move-fight,()) < move-right, (map,_.,(5))

move-right(But(p, 1, 1,7, {Ip,cp),ts)) <
Buf@': o, (’P’9@l):“’)
where Buf,(p',f) = W(Bufl(p,)
and Bufy)(V'.”) = move-right,(Buf,(l, r)
MB“£3((’PI ’ @')1"’) = mve'ﬁghts(sufS((’p’cP)s 1s))

Figure 3.3: Preliminary Definition of Move-Right

A compatibility map is a function that respects the consistency relation. It translates
one component representation into another representation. Depending on the consistency
relation, it may not be possible to implement compatibility maps in both directions, but
normally it will be straightforward to implement one of them.

The alternative versions of move-right are defined by data transform procedures where
the compatibility maps serve as the span or unspan functions. The data representation of
the aggregate is the product of the component representations. The move-right operation
on the data aggregate is defined as the product of the component operations, where each
component operation updates the appropriate fields of the aggregate representation.

This definition is easy to construct, but is constrained, however. The implementations
of move-right for the other components, move-right, and move-right,, only make use of their
“own” representations, that is, Bufz and Bufj, respectively. Thus we are not able to take
full advantage of any interrelationships among the various representations when deriving
an implementation.

A more general approach is to arrange for all of the component representations to be
available for the operation definitions in order to take advantage of any interrelationships
among the various representations. Going back to the preliminary definition of the aggre-
gate, instead of actually deriving implementations for the component operations, the data
transform procedure itself can be symbolically manipulated to yield a new definition for
the aggregate.

The buffer definition shown in Figure 3.4 uses this approach; here, the buffer operations
(after the keyword in) are again defined by data transform procedures. In taking advantage
of this added generality, the operations are defined in terms of the aggregate buffer repre-
sentation, or some portion of this representation. Then implementations of the operations
are derived with all component representations available. To map between the components
and the various aggregates, “span” and “unspan” functions are used (after the keyword
local in the figure)—this also has the effect of putting things into a form suitable for data
transformation. The constraints on the aggregate (at the bottom of the figure) are obtained
from the constraints on the components.

The translation functions, span and unspan, for the data transform procedures are
defined in terms of the compatibility maps. A span function is a mapping from one
component into the aggregate of all reachable components (i.e., connected by compatibility

3.1. Deriving the Buffer

Structure Buf : BUF = struct

structure Buf;, Buf;, Bufs
type buf = Buf of (int x ch* x ch® x ch® x (int x int) X line")
local
map,_,,(Bufa(l,r)) <« Buf(#,I@r)
maps-x(Bufs((IP»f-‘P).tS)) <
Buf,) (#(lines-to-chars(ts[..(ip — 1)1)) + ¢p, lines-to-chars(ts))
where lines-to-chars(s) = if nuli(s) them [}
else [hd(s)) @ [‘nl’] @ lines-to-chars(ti(s))
W.(Bufz(l, N <«
Buf;xz(n, t, I, ")
where Bufi(p,f) = map,_,,(Bufa(l,)
unspan,(Buf(p,1,l,r, (ip,cp),&s)) <«
Buflxﬁ({p I f] }n {‘ ' 4] }r L0
where Bufl(p’)) = "‘ap)—-l(aufS((lp’ Cp), ts))
unspan (Buf(p,s,l,r, {ip,cp),15)) <«
Bufi{p ;2 i) {tlals)
where Bufi(pz,2) = map,_,(Bufx(l, r)
and Buf;(ps,) = mp,_.l(Bufg((lp, @), ts))

makebuf;2 < span(makebufy)
unspan,, <+ 1x2

unspan,(move-right()) < move-right,(unspan,(b))
show-char()) < show-char,(unspan (b))
next-ine, .,(Spangb)) <« spangnext-iines(b))

dw\span.m:l!m@) < next-iine; xs(unspan, (b))

comstraint Buf(p,,l,r,{lp,cp),ts) => O0<p<#
comstraint Bus(p,1,1,r,(lp,cp),ts) => O0<Ip< ¥t
comstraiat Buf(®,t,l,r, (ip,cp),1s) => O0<cp<#sliip]

end

Figure 3.4: Buffer Definition

46 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Byffer

maps). An unspan function is a mapping from some aggregate of components into the
component that is reached by all of them.

The definitions of the operations and spanning functions are not ad hoc: they are
obtained mechanically by considering the order in which the components must be “merged.”
The basic idea is to consider the buffer definition as a graph, where the components are nodes
and the compatibility maps are directed arcs. The operations for each component must be
reimplemented to operate on the aggregate. This is done in a series of stages. Starting at the
node representing the component where the operations are defined, all connected nodes are
merged into a new “coalesced” node using a variant of the data transformation techniques.
This “coalescing” of connected nodes is repeated until the graph collapses into a single
node. (See Section 6.1.4 for more details.)

In the definition shown in Figure 3.4, Buf implements the abstract interface BUF using
the components Buf,, Bufz, and Bufs;. A representative sample of operations is shown.
Defining the makebuf operation for the aggregate requires two stages because the Buf;
component, in which it is defined, is not directly connected to all the other components. It
is connected directly to Buf; via a compatibility map, but indirectly to Bufs. In the first
stage, an intermediate definition of makebuf is defined, makebuf; 2, on an intermediate
aggregate, Buf 2, (the representation is the product of the Buf, and Buf; representations).
In the second stage, the final operation on the aggregate buffer is defined by merging this
intermediate definition with the Buf; component. Since the Buf; component is directly
connected to all other components, new implementations for the operations defined in this
component (eg., move-right and show-char) are defined in a single step.

The components are kept consistent through the compatibility maps map,_,; and
map;_,;. It is not necessary that all translations among components be given; it is suf-
ficient that the components are connected, possibly through some number of intermediate
components. Component Buf, is mapped into component Buf; by making the point of
editing explicit (which is the number of characters to the left of the point, #0), and by
appending the left and right sequence of characters together. Component Bufs is mapped
into component Buf; by converting the line and character indices into a character index and
by converting the sequence of lines into a sequence of characters. The auxiliary function
lines-to-chars takes a sequence of lines, adds a newline to the end of each one and appends
them to make a sequence of characters. (The notation s[.J] denotes the subsequence of
s from the beginning of s to i inclusive.) The translation functions are easily defined in
terms of the compatibility maps. In the definitions of unspan, and unspan,, a value that is
computed in more than one way is denoted { v | ... | v. }, where v; represents the value
derived from component i. Multiple ways to compute a value are maintained to ensure
consistency among the components.

3.1.5 Aggregate Prototype

Next, a prototype (Figure 3.5) is derived (Figure 3.1, prototype step) where the expression
results in an aggregate prototype, which is a refinement of the aggregate definition. For

!

3.1. Deriving the Biffer 47

i

/

Structure Buf ., : BUF = struct
typebuf = Buf of (int x ch® x ch® x ch® x (int X int) x 1ine®)
makebut < Buf(0, [], {1, [], (0,0), [D

move-right(But(p,1,1,7, (ip,p), 1)) <«
letlp',cp’ =il(cp=#stip))themip+1,0Oclselp, p+1in
Buf(p+1, ¢, 1 @ [hd(), 80, (Ip',cp'), t5)
show-char(But(p,s,l,r,{lp,cp),18)) <«
{tlp—1] | last(D) | (i (cp = 0) them ‘nl’ else ts[Ip] [cp — 1)) }
next-ine(But(p,2,l,7, {lp,cp),15)) <«
let d = (nipos(2s)) Lip] — (nipos(ts)) [ip — 1) im
Buf(p+d, t, |@r(.d], ri(d+1).], (lp+1,cp), 1)
constraint Buf(p,s,1,7,{lp,cp),ts) => O0<p<#
constraint Buf(p,t,l,7,(p,cp),ts) => O0<Ilpp<#ts
constraint Buf(p,s,l,7, (Ip,cp),ts) =+ 0<cp < #islip)

ead

Figure 3.5: Buffer Prototype

brevity, the steps have been omitted. (The steps for transforming move-right are shown
in Appendix C.) As with other data transformations, they consist of a number of purely
mechanical steps and a few insight steps that require input from the designer. Itis notactually
necessary to derive translation functions that are computable. Instead, the transformation
process makes use of them in syntactic manipulations to obtain computable functions for
the buffer operations.

Typically, the transformation proceeds where: (1) the bodies of the old operation
and span function are expanded; (2) domain knowledge about the data representation is
applied to simplify the body; (3) an insight step is applied to “bridge” the old and new
representations; (4) additional simplification steps are applied; and (5) the span function is
abstracted from the body of the operation. The insights required by the user are knowledge
of the properties of the domain and the underlying semantic model, and knowledge of using
traditional transformations. For example, transforming move-right requires knowledge
about the buffer domain that adding a character to the buffer changes the point of editing,
and knowledge about the underlying model of sequences that a sequence is equivalent to
the list formed by the first element appended to the rest of the sequence. The traditional
transformation of case analysis is used to capture the constraints on the buffer domain.

In the prototype, the data representation is simply the product of the data representations
of the components. All components are updated simultanecusly. The makebuf operation
generates each component representation. The move-right operation increments the index
appropriately for each component (the functions hd and ti return the first element and the rest
of a sequence). The show-char operation returns the character at the point of editing in the
buffer (the function last returns the last element of a sequence). The value may be produced

48 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Byffer

Structure Buf,,, : BUF = struct
typebuf = Buf of ((int X ch®) x (int X int*®))
makebuf < Buf(©0,([],0,[]D

move-right(b as But(p,t,i,al)) <«
Hp>#themd
else Buf(p + 1, ¢, (fnip(t(p)) then i+ 1 else i), nl)

show-char(But(p,t,i,al)) <

if p = 0 then (sp)
dsetlp-1)
next-ine(b as Buf(p,t,i,al)) <«
Q@+ @] —alli—11)) > $tthen b
else Buf(p+(nl(i) —nlli-1)), ¢, i+ 1, n))

end

Figure 3.6: Buffer Implementation

from any of the three representations; these three alternatives are denoted {wy | 2 | v },
where v, is ¢ [p — 1] and s0 on. This extension could be casily implemented by selecting the
first alternative so that the prototype could be executed. Multiple ways to compute a value
are kept in order to avoid losing information that may be useful in later transformation or
analysis steps. In the next-line operation, the positions of the surrounding newlines are used
to advance to the next line for the Buf; component (the function nipos takes a sequence of
lines and returns a sequence of newline positions).

Notice that the character index for the Buf; component has been transformed to use
information from the Buf; component, where it is easier to compute newline information.
The representation of each component is available to update any other component rep-
resentation. How they are used provides the motivation for the final representation that
follows.

3.1.6 Aggregate Implementation

It is readily apparent that this prototype is not the most efficient implementation becanse of
the redundancy in the data and the operations. The following observations are made: (1) It
is not necessary to keep the three alternatives for show-char, so one of them is selected — as
the developer, we choose 4p - 1], and make a commitment to using the Buf; component. (2)
The data elemeats of the Buf; component, / and 7, are not used in any operations to compute
the data elements of the Buf; component, £0r p, 30 they are removed. (3) The data elements
of the Bufs component, &5 and lp, are used to provide newline information for computing
p in next-ine. They are saved in this specialized context by shifting (via transformations)
the time that the newline positions are computed from access to generation time. A new
data representation is defined from this process of making commitments. This process can

32. Adapting the Byffer 49

be conceptualized as a mapping from the prototype representation to a new represeatation;
the map function encapsulates the insights provided by the user such as constraints on the
merged operations and the implementation (eg., efficiency) considerations.

With these observations in mind, a specialized implementation (Figure 3.6) is derived
using data transformation techniques to obtain a representation that caches newline positions
(Figure 3.1, implement step). This aggregate implementation is a refinement of the
prototype, providing an “efficient” implementation of the datatype. For brevity, the steps
again have been omitted. Performance is improved by eliminating the computation for the
Buf; component, and computing newline information directly rather than maintaining a
sequence of lines and mapping it into newline positions when needed. The former is an
instance of releasing components from the datatype, while the latter is an instance of shifting
computation from access to generation time, techniques that are described in [48, 76]. A
part of the derivation that illustrates shifting computation is shown in Appendix D.

The new specialized representation is a sequence of characters with an index for the
point of editing and a sequence of newline positions with an index tracking which line
contains the point of editing. The makebuf operation now generates an empty buffer and
newline cache. The move-right operation updates the newline index when crossing over a
line (the predicate nip returns true when its argument is a newline). The next-line operation
uses the newline cache to move more efficiently.

The constraints have been refined into the implementations of the operations by taking
care of error handling for boundary conditions (to satisfy the constraints). They are satisfied
in the move-right operation, for example, by returning the original buffer if an attempt is
made to move the point of editing past the boundary.

3.2 Adapting the Buffer

At this point, the initial buffer has been successfully implemented. However, it often
happens that users desire additional functionality. This section presents a mechanism for
introducing change to the system (Figure 3.1, adapt step). Components for pages, regions,
and s-expressions are introduced to adapt the core system consisting of the components
Buf}, Bufj, and Bufj (see Figure 3.7). The display component, Buf g, is added in the
following chapter. The component, Buf;, serves as a useful intermediate for relating the
component for s-expressions to the existing system. Compatibility maps are represented
by arrows. For example, an arrow from Buf; to Buf; represents the compatibility map
that takes an object of type Buf; and produces an object of type Buf;. Although Buf. is
not shown in the figure, it does not mean that we must start all over again. We see in the
examples that follow how the existing work is supplemented when adapting the buffer.

The components are chosen for their properties. The page component is similar to
the original components and offers another view of the buffer. The region component
introduces something new, the concept of a “mark.” The s-expression component contains
less information about the buffer than the original componeats, the compatibility map from
the core to it is many-to-one. The goal of this exercise is to learn how the method handles
adaptation and scaling, by adding components under a variety of conditions.

50 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edis Byffer

DR
OO CH =
i) (e

Figure 3.7: Buffer Components

3.2.1 Pages

The buffer is first extended to operate on pages in order to learn how the system is adapted
by adding a similar kind of component, what alternatives are available, and the cost of
adding a new component.

A page is a region of text delineated by a special page marker, typically the “control-L”
character. We extend the buffer signature by adding the following operations:

baciovard-page : buf — buf
forward-page: buf — buf
what-page: buf — int

These operations allow movement to the previous or following page, and provide informa-
tion on which page the point of editing is on. For these operations, we view the buffer as a
sequence of pages with an index pointing to the current page.

Component Buf, : BUF = struct
type page = (ch - ‘L’
typebuf = Buf of (int x page*)

backward-page(But(pi,ip)) < Buf(pi—1, #)
forward-page(But(pi,ip)) < Buf(pi+1,)
what-page(But(pl,p)) <« pi

The page separators are implicit; of course, an alternative represeatation is possible that
keeps the page separator at the end of each page. The choice is up to the designer.

Recall that the original system was defined using an annotated signature that specifies
bow to integrate the original three components (Figure 3.2). This is then enriched to include
the component for pages by adding these axioms:

sxloss proj, (forward-pege2)) = forward-page, (proj, ()

sxiom proj; (%) E proj,(b) => proj;(Torward-page(d)) proj, (forward-page(b))
axiom proj;(») proj,() => proj(forward-page(d)) proj, (forward-page(b))
axiom projy(b) ml,(b) = proj,(forward-page(s)) proj, (forward-page(b))

32. Adapting the Byffer 51

The first axiom specifies the behavior of the forward-page operation on the data aggregate
in terms of the page component where it was defined. The remaining axioms ensure that
the system remains consistent after the operation is performed.

Additionally, the axioms for the original operations must be extended to ensure consis-
tency of the new component when an old operation is applied. For example, the axioms for
move-tight are extended with,

axiom proj,(») map] proj,(8) == proj(move-righkb)) map{ proj,(move-right(s)).

How do we integrate this component with our previously developed buffer? We consider
two alternatives: (1) Merging with the original system. We could start over by integrating
all of the components again, and developing a new prototype and implementation. We will
see that much of the implementations for the operations of the existing components can be
reused. (2) Translating into the original system. We could choose the representation of
the original system and then we would only need to integrate the new component without
modifying the operations of the existing system.

Merging with the Original System. In order to merge the new component with the
original system, first we must define the relationship between the component and the
original buffer, since the component is a new view of the buffer. This is accomplished by
defining a compatibility map that translates between the new component and one of the
previously defined componeats. Here we choose Buf;, where the buffer was represented
as an index marking the point of editing, and a sequence of characters.

mep,_,(Bufi(p,f)) < Buf,(npages(t(.p — 11), chars2pages(r))

We map Buf; into Buf, by counting the number of page markers preceding the text index
(the auxiliary function, npages, returns the number of page markers in the text) to get
the index for the page in which the point of editing occurs, and by parsing the text into a
sequence of pages (using chars2pages). We must then go through the process of integrating
the components to obtain a prototype. We can reuse the implementations for the operations
of the existing componeats directly.

Additionally, we must derive a new implementation for each page operation in each of
the existing components, Buf;, Bufz, and Bufs. We start by extending the definitions of
Figure 3.4. For example, the definition for forward-page follows.

loeal
unspan(Bufy,(p,1,p,p)) <+ {M-.,(B“fx(h 9 | Buf,(pi, ?)}
unspan’(But’(p, 8,41, (Ip,cp), 13,94, 1p)) <
ml"'({, |’3 'h}a{‘ | & | ‘3}:"9?)
where Bufi(p2,8) = map, ,(Bufy(l, 1)
- and Bufi(py,h) = M..n(ﬂufs((lﬁ-?), 1)

mm”mﬁw,‘,ﬂ,v)» <
forward-page, (Unepan(But x,(p, ¢, pi, 1))

MW(UJJ-'. (lp.cp).t5,p8,9))) <«
forward-page, . (unepen’(But’'(p, 1, I, r, {ip,cp), s, pi, 1p)))

52 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Buffer

The intermediate definition for forward-page, ,, (appearing after the keyword in) is novel,
since it defines how the newly introduced component relates to an established one, namely,
Buf;. The definition for forward-page that follows it is similar to the previous definitions
for the operations of Buf;, but with the addition of the Buf, component. For example,
compare this definition with the one in Figure 3.4.

We must also derive a new implementation for each operation of the existing components
in the new page component. For example, the move-right operation (defined in Figure 3.4)
must be extended to define the operation on the new aggregate that includes the new page
component in terms of the old aggregate. This is done by simply adding a new definition.

local

span(But(p,1,l,r, (ip,cp),ts)) < But'(p,t, 1, r, (ip,cp), ts, pi, 1p)
" where Buf,(pi,ip) = map,_,(Bufi(p, 1))

move-fight'(spen(But(p,s,1,r, (ip,cp), 1)) <«

oad Wmmﬂf@, L1, (’P»‘-‘P), ”)»

We are able to reuse all of the old definitions of the core system directly. We are able to
reuse parts of the derivation as well, having only to derive new implementations based on
the above definitions. These steps are similar to those done in the core system, and yield
an executable prototype. For the implemeatation step, we might choose to specialize the
pages in a similar manner as we specialized lines, keeping a sequence of page positions and
an index pointing to the current page.

Transiating into the Original System. When translating the new component into the
original system, the data structure and operations remain unchanged in the prototyping
step. It is only necessary to derive a new implementation for each page operation into the
original system. For example, the definition for forward-page follows.

local
unspen(Bufy(p,y) < Map,_,(Bufi(p,)
unsper’(But'(p,1,1,7,(lp,cp),15)) <«
hi{pipiplh{tials)
where Buf(p2,2) = map,_,(Bufay(l, 7))
“ and Bufy(py,55) = map,_,(Bufs({lp,cp), &)

unepan(lorward-pege, (Buf1(p,)) < forward-page,(unspan(But; (v, 1))

Wb.%n (lp.cp)t9)) <«
(unspar’(But’(p, ¢, I, 7, (ip,cp), 1))

Compare this definition for translating with the one given previously for merging.
There are the same number of definitions, but the new page component is not included
in the aggregate. Also notice that a new definition is not needed for any of the existing
operstions, such as move-right, because the aggregate representation does not change. For
the implementation step, the aggregate can be specialized as before.

32. Adapting the Buyffer 53

322 Regions
The example is now extended to provide operations that manipulate regions. Recall thar
the previous example introduced a new view of the text buffer which is computed via a
compatibility map from one of the previous components. A region, however, introduces a
new data construct, “mark,” that cannot be so computed. This section identifies how this
new data construct interacts with the other componeats.

A region is a portion of the text delineated by the point of editing and a special marker,
called the mark.

got-mark: buf — buf
exchange: buf — buf
delete-region: buf — buf

The operations allow one to set the mark to the current value of point, exchange the values
of mark and point, and to delete the text between mark and point. For these operations, we
view the buffer as simply consisting of a point, a mark, and the text.

Compoaest Buf, : BUF = struct
typebuf = Buf of (int x int x ch®)

set-mark(But(p,m,f)) < Buf(p,p,1)

exchange(But(p,m,f)) <« Buf(m,p,?)

delete-region(Buf(p,m.f)) < let(i,)=ifp <mthemp,melsem,pin
Buf(i, i, t(.i—1] @tj.])

end

The initialization of the mark is handled by the maksbuf operation as a result of the region
component being integrated with the existing system.

A compatibility map between this component on regions and one of the existing ones
is easy to define. We choose Buf; since its ficlds are a subset of Buf,.

M—q(ﬁufr‘hm 0) < Bﬂf](’, ‘)
The integration is simple. For example, the definition for set-mark follows.

local
span(But,(p,m,0) <
B\lflxv‘ﬁla "’p’ m, o
where Buf (p/,f) = map,_,(Buf.p, m, 1))

unspan(But'(p,s,l,7, ip,cp),1s,p,m,0)) <«
Buthﬂ({’ l’z Ih}v {‘ |] ' ‘3}:’»”1‘)
where Buf1(p2,0) = map,_,(Bufa(l,r))
aad Bufi(ps,s) = Map,_,(Buts((ip,cp), 1))

set-marls . (span(d)) <« span(set-mark.(b))
dmmmb» < set-mark x(unspan(b))

54 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Buffer

Since p and ¢ are identical to the componeats of Buf,, they can “share™ the same data rep-
resentation. The first definition then simplifies, since set-mark; ., is identical to set-mark,.
This is a special case where (part of) the compatibility map is the identity function. The
second definition also simplifies since the only change is in adding the mark. The additional
data, m, is added without affecting any of the existing componeats since it is “orthogonal” to
the other data elements, unlike the previous page component which was a different “view”
of the buffer.

‘This also simplifies the changes to the existing operations. For example, the move-right
operation can be extended to define the operation on the new aggregate that includes the
new region componeat in terms of the old aggregate. This is done by simply adding a new
definition. However, this definition simplifies to the original definition with an added field
that is simply passed along.

local
mufwit’l"’ (b’ m)’u’p"’ 0) g
But/({p | p L{tleh 1, (%p,cp), 13)
n Mmgl(?t‘) = whlmf'@’ m, ‘»

-‘umt(mv_o-rlyﬂ(b)) < move-right(unspan())

The point of this example is, there is a mechanism for introducing change without
modifying the original system. Even if we only want to add an operation to an existing
component, we introduce an additional component, though it may have an identical repre-
sentation to an existing one. This preserves the integrity of the existing system and also
records the adaptation. Transformation techniques allow one to optimize the aggregate by
sharing representations.

3.2.3 S-Expressions
The example is now extended to provide operations to manipulate s-expressions, nested
parenthesized expressions. This is an interesting example of adapting the data aggregate
because the compatibility map between the aggregate and the new component is not one-
to-one, since information about white space is lost when parsing from text to s-expressions.
Here an operation for moving over a single s-expression is shown.

move-sexp: buf — buf

The representation of the component, Buf,, consists of a pair of sequences of s-
expressions, to the left and right of the point of editing. Furthermore the left sequence
is reversed 50 that both sequences can be reasoned about identically (eg., as stacks).

Component Buf, : BUF = struct
typebuf = Buf of (sexp® x sexp®)
move-sexp(But(is,7s)) < Buf(l(ls), (hd(is)) @ r3)
end

32. Adapting the Byffer 55

The semantics of s-expressions is seasitive to the context in which the point of editing
appears. An alternative semantics could be to parse from the beginning of the text. However,
when inside a nested s-expression, move-sexp is only applicable to s-expressions at that
level of nesting, s0 information about s-expressions in the enclosing nesting levels is not
needed. If operations to ascend and descend nesting levels were to be defined, then a
different representation for the type would be required.

This component is linked to the core system through an intermediate component Buf;
(for convenience) that has no operations. The componeat represents the buffer as a pair
of sequences of characters to the left and right of the point of editing. Like Buf,, the left
sequence is is reversed so that both sequences can be reasoned about identically.

Component Buf; : BUF = struct
type buf = Buf of (ch* x ch®)
ead
The text is parsed into a sequence of s-expressions, starting from the point of editing, and
proceeding in both directions.

local
parse < M[].[}
| cons(a,x).#a € [|'a"..2", ‘0"..9"[] thea cons({sexp), parse(parse-an(x)))
else if 2 = ‘(" then CONS({sexp), parse(parse-sexp(x)))
else ifa = °) them []
else parse(x)
parse-an < Ma[].[]

| cons(a,x).ifa € [|'s’..'2’, 0’..*9’|] them parse-an(x) else cons(a, x)
parse-sexp < M[].earor
| cons(a,x) .ifa =) themx
else if a = ‘(" them parse-sexp(parse-sexp(x))
h elise parse-sexp(x)

map,_ (Bufy(m,n)) < Buf.parse(m), parse(n))
end

The operation parse produces a sequence of s-expression tokens from text. This is easy to
define using the ML notation for defining a function using patterns, fapaz. exp | par.exp. If
the argument is the empty list then the empty list is returned. If the argument is a nonempty
list then it is parsed depending on whether it is an alphanumeric symbol or an embedded
s-expression. This is a many-to-one function since information about white space and
the text of the atomic symbols is lost. It makes use of two auxiliary functions, parse-an
which skips over the current alphanumeric symbol and parse-sexp which skips over nested
s-expressions.

The component Buf; in turn is linked to Buf;, they are similar in representing the buffer
as a pair of sequences of characters except that the left sequence of one is the reverse of the
other.

map;_a(Buf(m,n)) < Bufrevim), n)

56 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Buffer

The s-expression component is now integrated with the buffer. We examine here the
first and most important stage—translating into Buf; which “bridges” the gap between
s-expressions and text. Starting with the standard data transformation form,

map,_,(move-sexp(Bufi(m,x))) < move-sexp,(map,_,(Buf(m,),

and assuming we have a definition for unparse, we are able to use simple syntactic manipu-
lations (such as folding or unfolding or rewriting equals for equals using domain knowledge
about sequences) to get the expression into the form:

move-sexp(Buf;(m,n)) < letxsat(x@1tisexp(m)) = min

Buf;(lisexp(m), rev(x) @ n)

tisexp(x) < unparse(ti(parse(x)))
For notational convenience, we introduce “x sat eg.” where the variable, x satisfies the
equation (cf. unification in Prolog).

This definition is not yet complete, since we did not say how to compute unparse. Even
if we did know how to compute unparse, we would not be guaranteed of getting back the
original text. However, we do not want a general definition for unparse, only one where it
appears in the particular context of tisexp above.

Deriving tisexp. A functional definition is derived for tisexp using expression proce-
dures. We examine the case when we apply the definition to a non-empty list. First compose
parse with tl and simplify.

tiparse(cons(a,x))) < ifac(|'a’..'z’,°0'..°9’[] themn parse(parse-an(x))

else if a = ‘(" then parse(parse-sexp(x))
elseifa="°) them []

else ti(parse(x))
Next compose the expression with unparse and simplify, using the simplification rule
unparse(parse(x)) = x. We justify this rule by having unparse consult an “oracle,” for
instance, a global variable where parse has copied its argument. Later we see that we no
longer need either of these operations, so we do not need to actually use the oracle.

unparse(ti(pparse(cons(a,x)))) < ifa€(|'s’..’z’,“0..°9’]] themn parse-an(x)
else if g = ‘(" them parse-sexp(x)
elseifa=")" themn []

else unparse(ti(parse(x)))

Abstract unparse(ti(parse(x))) into tisexp(x).

tisexp(cons(a,x)) <« ifa€(|'s’..'2’,'0"..°9"[] them parse-an(x)
else if a = °(’ then parse-sexp(x)
eseifa="‘) then[]

else tisexp(x)

It is never actually necessary to compute unparse.

Since the s-expression component does not have complete information, it must be
transiated. However, we could have chosen to cache the s-expression positions as we did
the newline positions, but this would be much more complicated. So we chose a quick

integration process for the purposes of this example, trading off this optimization.

33. Summary

3.3 Summary

Putting everything together from the three examples, the process of merging the three
additional components with the original system yields the new prototype in Figure 3.8.

The data structure contains the fields from the original tuple of the first three compo-
nents augmented with all the fields from the page component, only the mark field from the
region component (since the other fields are duplicates), and no fields from the s-expression
component (since we decided on an expedient integration). The operations of the original
system have been modified to operate on the new data representation. Alternative imple-
mentations of the operations of the new components have been derived for the aggregate.
The results of this example are interpreted in Chapter 5 after we complete the example by
adding a display in the following chapter.

58 Chapter 3. Integrating Module Interfaces: Deriving and Manipulating an Edit Buffer

Structure Buf ., ¢ BUF = struct

type buf = Buf of
(int xch* — point of editing and text in the buffer
x ch® x ch* — characters 10 the left and right of point
x (intx int) ~— the line and character position of point
X line® — lines in the buffer
X intxpage® — current page and pages in the buffer
X int) — position of the mark

makebuf < Buf(o, []’ [], []» (0’0)$ [], 0: [L 0)

move-right(But(p,t,l,7, ip,cp), ts,pi,tp,m)) <
letlp’,cp) = if(cp=#is[ip))thenip+1,0elselp,cp+1,
pi' = iftp] =L’ thenpi+1dsepiin
Buf(p+1, ¢, | @ [Md(D)], (), (%p',cp’), ts, PV, tp, m)

show-char(Buf(p,t,1,7, (lp,cp).1s,pi,tp,m)) <
{tlp — 1) | last()) | (if (cp = 0) then ‘nl’ else ts{Ip] [cp — 11) }

next-line(But(p,s,1,r, (’P, CP),‘S,F‘,W, m) <«
letd = (nipos(ss))ip] — (nipos(ts)) Lip — 11,
d = npages(tip-(p+d)))in
Buf(p+d, t, I@r[.d], ri(d+1).], {lp+1,cp), ts, pi+ d', tp, m)

forward-page(Buf(p,t,1,r, (Ip,cp), ts,pi,tp,m)) <«
letd = (pagepos(ip))[pil — (pagepos(p)) [pi—11,
d = numni¢(p(p+d))in
Buf(p+d, t, l@r([.d], ri(d+1).], (lp+d,cp), ts, pi+ 1, tp, m)

set-mark(But(p,s,1,7, (Ip,cp), ts,pi, tp,m)) <
Buf(p, t, I, r, (Ip,cp), ts, pi, tp, p)
move-sexp(Buf(p,,l,r, (ip,cp), ts.pi,tp,m)) <=
let x sat x @ Usexp(rev()) = rev()),
! = tisexp(rev()),” = rev(x)@r,
P = #,
Iy = Ip+numni¢(pp’l),
pi’ = pi+npages(t(p.p’]l)in
Buf(p’, 8, I', P, (Ip’,cp), ts, p¥', tp, m)

Figure 3.8: Adapted Buffer Prototype

Chapter 4

Reuse and Customization: Deriving an
Interactive Display-Editor

In the previous chapter we constructed a buffer from components and then added additional
components to adapt the buffer. We saw that components can implement parts of a datatype
and that the transformation methods enabled us to integrate the parts into an aggregate
data structure and to perform further optimizations. Now we change our focus to the
module level and use the buffer as a part of a larger display-editor system. We see how
transformation techniques are applied to hierarchically structured module systems, where
modules are defined in terms of other modules. The buffer datatype that has been previously
developed is reused and customized in the context of a larger interactive display-editor.
Transformations are used for adapting data representations and abstract interfaces, and for

The display editor is built in a series of stages. First we go through the exercise of
adding a screen for displaying the buffer to the user. Then we generalize the system to
allow multiple buffers. Finally, we introduce windows to display more than one buffer on
the screen at a time. This module hierarchy is summarized at the end of the chapter in
Figure 4.2,

These modules were chosen for their properties. The screen module is introduced
independent of the buffer and displays some “displayable object.” We then define a display
view for the buffer as the screen’s displayable object, and integrate it with the original
buffer prototype. Once integration is achieved, additional optimization techniques are
applied to take advantage of the close correspondence between the buffer and the screen.
The multiple-buffers module demonstrates how module interfaces are adapted by creating
a new module that includes the old one, and then propagating the operations using data
transformation techniques. The multiple-windows module also demonstrates how module
interfaces are adapted. In addition to the method used in the multiple-buffers module,
a more synthetic approach is taken where the desired interface is exposed from existing
information.

39

60 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

4.1 Single-Buffer Single-Window Display

This section begins by extending the text-buffer example to provide output of the bufferon a
simple screen. First the data structures are introduced and then transformations are presented
to integrate them. The first data structure introduced is the screen that displays a portion of
a “display plane,” some planer representation of a displayable object. The display plane is
then designed, and defines how such an object is represented on a screen. The definition
of “object” is left open at this time, as long as an object meets the requirements of the
display plane, it can be shown on the screen. Finally a display-editor structure is designed
as the tuple of the buffer and the screen and an origin which pins the screen to the buffer;
this definition is influenced by [88]. The buffer must then be defined as the displayable
object in the screen by creating a new buffer component that meets the requirements of the
display plane. The first transformation then integrates this new component with the original
buffer. This is done using techniques developed in the previous chapter. Then subsequent
transformations optimize the display editor by more closely “coupling” the buffer and the
screen.

4.1.1 Defining the Display Editor

A screen is a bounded portion of some displayable object and a cursor position that points
at some portion of the object. Let us call the displayable representation of the object a
“display plane.” We then define the screen as a bounded portion of the unbounded display
plane and a cursor position identifying the point of editing. This enables us to use the screen
to0 display a variety of objects.

Sigaature SCREEN = sig
type screen
type origin
disp-to-screen: origin x disp — screen
policy: origin x disp — origin
end

The operation disp-to-screen creates a screen from a portion of the display plane. The
portion of the display pla: e to show in the screen is marked by the origin, which effectively
pins the screen to the bufter. The operation policy picks an origin for the display plane.

Before defining the implementation of the screen, we define the display plane. A display
plane provides a two dimensional representation of an object that is a useful concept for
mapping different kinds of objects into a screen. We use a simple definition where the
contents of the two dimensional representation are characters.

Signature DISP =sig
typedisp

content: disp — planepos —ch
current: disp — planepos

end

4.1. Single-Byffer Single-Window Display 61

The content operation takes a display plane and returns a function that given a display plane
position, returns the character at that position, and the current operation returns the display
plane position of the point of editing. We defer the implementation of the display plane at
this time, until a later time when we have an object to display.

The Screen is represented by a cursor position and the “appearance” of the object
that is displayed. The appearance is a function that maps a position in the screen into the
corresponding character in the display. Associated with the screen is some internal state,
height and width that denote the height in lines and width in characters of the physical
screen. The area bounded by height and width is screensurface.

Structure Screen : SCREEN = struct

type screen = Screen of cursor x (cursor — ch)
typecursor=nxn
typeorigin=nxn

val height = 20
val width = 80
val screensurface = 1..height x 1..width
project(r,cXi,j) <« (r+i,c+j)
origins(d) < {(r,c) | current(d) € project(r,c)[|screensurface(]}
disp-to-screen(o,d) < letp = content(d) o project(o)
and ¢ sat current(d) = project(o)c)
and spaces = (Mi,j: N .‘sp’) in
Screen(c, (spaces ® p)\screensurface)
policy(o,d) < ifo € origins(d) them o else (x | x € 0Origins(d))
comstraint Screen(c,a) => ¢ € screensurface
comstraint Screen(c,a) => domain(g) = screensurface

end
The screen operations are defined in terms of the local operations project and origins.

project: origin — cursor — planepos
origins : disp — P(origin)

The project operation projects the cursor position relative to the origin to yield a display
plane position. The operation origins computes a set of possible boxes of the size of the
screen (represented by the top-left coordinates) that contain the point of editing in the
display plane (P(origin) is the set of all origins).

The disp-to-screen operation computes a screen based on the origin and the display
plane. Notice the equational nature of the computation for the cursor ¢, where it is
computed such that it satisfies (sat) an equation. The appearance is constructed using
content to convert the display plane into a function that takes a display plane position
and returns the character at that position. In the appearance function, the display plane
is first projected with the origin to yield the display-plane position. This establishes the
top and left boundaries of the screen. Then the resulting display plane is restricted to the
screensurface to establish the bottom and right boundaries of the screen. (The domain

62 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

buf

origin

screen

- am v oo o Ao o = o

Figure 4.1: The Display Editor

restriction operator, \ maps a function f, and a subset of elements, S, to a function which
agrees with f on the set S and is elsewhere undefined.) Spaces are filled into places in the
screen that do not correspond to displayable text. (The functional overriding operator, ®
maps a pair of functions to one that agrees with the first, everywhere except on the domain
of the second.) The policy operation returns an appropriate origin. It uses the old value if
possible to minimize screen update, otherwise a new one is picked (eg., such that point is
in the middle of the screen).

A display editor is now constructed in terms of the buffer (developed in the previous
chapter), the screen and the origin.

Signature DED = sig
type ded

ded-make: ded
ded-0p: (buf — buf) — ded — ded

end

The display-editor data representation is defined as a tuple consisting of the buffer,
origin, and screen (see Figure 4.1). The origin pins the screen to the buffer and is the
position of the top-left corner of the screen relative to the buffer.

Structure DEd : DED = struct

stracture Buf = Buf, Screen = Screen
type ded = DEd of (buf x origin x screen)
ded-make() < letd = makebufand o’ = (0, 0) in
let & = disp-to-screen(o’, v’) in
DE4(Y, o', &)
ded-op(cXDEd(b,0,5)) <« etV =c(d)in
let o’ = policy(o, &) in
let & = disp-to-screen(o’, &) in
DEA(Y, o', ¥)
comstraint DEd(b,0,5) => s = disp-to-screen(o, b)
ead

4.1. Single-Byffer Single-Window Display 63

The ded-op command applies the buffer operations (delete, insert, move-right, move-left,
and next-iine) to the buffer and updates the screen and origin appropriately. The invariant
between the buffer and the origin/and screen is recorded. It can be easily checked that each
operation defined on the display editor preserves this invariant.

This definition of the screesl is not quite correct, however. We are not able to apply
disp-to-screen or policy to an gbject of type buf, it requires an object of type disp. In
order for this definition to be correct, we must make the connection between the text buffer
and the display plane. /

4.12 Defining Buffer as a Displayable Object

Using the methodology developed in the previous chapter, we define a new buffer compo-
nent that is a displayable object, that is, it implements the two operations necessary for it
to be displayed on the screen. The representation of this view of the buffer consists of a
sequence of lines above the point of editing, the sequence of characters to the left of point
(on the line point is on), the sequence of characters to the right of point, and the sequence
of lines below point. The lines operation returns the contents of the display plane as a
single sequence of lines (of arbitrary length). The point of editing in the display plane is
expressed as a line and character position. It can be thought of as a two-dimensional view
of the buffer.

Comipoment Buf 4, : DISP = struct
typedisp = Buf of (Line® x ch® x ch® x 1line"®)
typeplanepos=n X n

local
fines(Buf(a,ld,rd,b)) <« a@d@rd@b

contentidXr,c) < lines(d)(rllc]
current(Buf(a,ld,rd,b)) <« (1+#a, #id)
end

end

The representation for the new component, Bu£ 4,,, must be reconciled with the previous
buffer representation; this new display view must be merged with the original buffer before
we are able to use it. A compatibility map between this display view and one of the previous
representations is needed to relate this new type with the previous prototype buffer. Here it is
natural to choose Buf; as the component to relate the display with, because the compatibility
map is easily written.

Map,, .,(Bufay(a,i,rd,b)) <« Bufa(lines-to-chars(a @ [id)), lines-to-chars(ird] @ b))

There are a number of ways to accomplish the integration (see Section 3.2.1). One way

is to merge the new display component with the components of the original system. This
involves rederiving all the buffer operations to include the new Buf£ 4, representation. This
rederivation is not as difficult as the original derivation since the type is being adapted and

64 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

much of the derivation structure can be reused. Another way is to keep the previous buffer
representation, Buf ., and translate the display operations into this representation. Since
Buf &,y is similar to Buf; this way is chosen for the sake of expediency.

The operations to be transformed are lines, content, and current. Looking at the context
of where the operations are used, it is observed that lines oaly occurs within the context of
the definition of content. Rather than computing the entire set of lines within the buffer
and then taking only one character, we combine these operations to obtain an optimized
version that accesses the character directly; we do this by transforming content, instead of
lines. We get the following implementations:

content(Bufi(p,s,i,a))r,c) < tnllrl+c]
curent(Bufi(p,s,i,al)) <« (i, p—nlli-1])

Since the lines operation is no longer referenced, it is released from the module. With
these new implementations a single representation for buffer is again derived and this
prototype is used with the simple display.

4.1.3 Caching the Screen

Now that we have integrated the display editor, we turn our atteation to optimizations.
Rather than update the entire screen after each buffer operation as the prototype just defined
does, we seek to incrementally update the screen. This is accomplished by specializing the
buffer and screen operations in the context of the display editor. Here they are specialized
for optimizing the screen performance. One virtual model of a screen is a matrix cache;
this cache is updated from the display-editor data structure. Special built-in low-level
operations update the physical screen of the terminal from the cache. Operations for
updating a character or line in the cache, and for efficient scrolling are provided. (These
and other hardware capabilities are recorded for machines using the UNIX operating system
in the terminal capability data base, “termcap™).

In the display editor, there is, in effect, a narrow communication band between the
buffer and the screen. We want to increase the amount of communication between the
buffer and the screen. Rather than performing a buffer operation (which may be highly
localized) and then mapping the entire buffer to the screen (a global operation), we wish
to localize the changes to the screen whenever possible (utilizing the capabilities of the
terminal to improve performance).

Incremental Update of the Screen. 'We express the optimization of incrementally updat-
ing the screen in terms of the data transformation scheme. We can think of the buffer and
screen as different “views,” where the disp-to-screen operation is the compatibility map
that maps buffers into screens. Then our task is to transform a buffer operation, move-right,
for example, from operating on buffers to operating on screens.

A new implementation for the move-right operation is derived by first specializing
ded-op for this command.

4.1. Single-Byffer Single-Window Display 65

move-right(d) <« ded-op(move-right(d)

Unfolding ded-op yields:
move-right (DEA(d,0,5)) < let &’ = move-right(d) in
let o/ = policy(o, V') in
let ¢ = disp-to-screen(o’, v) in
DEY, o/, §)

The focus of this example is on specializing the screen. Here the screen appearance is
computed by disp-to-screen each time the move-right command is invoked. The argument
s, the old value of the screen is never used. But we know that if the cursor does not move
off the screen, then the new appearance of the screen is exactly the same as the old value
80 it need not be recomputed. In order to express the updated screen in terms of its old
value, we look at the definition for updating the screen. The old value is defined in terms
of content(b) while the new value is defined in terms of content(move-right(b)). So, if
we are able to reason about content(move-right(b)) and express it in terms of content(b),
then we can reuse the old value of the screen.

The steps to accomplish this follow. The portion of move-right’ where &’ is defined is
shown where disp-to-screen is unfolded.

¥ = let p = content(d) o project(o”)
and ¢ sat current(d’) = project(o’)(c)

and spaces = (M,j: N .'sp’) in
Screen(c, (spaces & p)\screensurface)

The cursor ¢ will always change while the appearance may stay the same in some cases so
again the attention is focused on the appearance, a partial definition of which follows.

content(®) o project(o’)
The definitions of b’ and o’ are expanded.
content(move-right(b)) o project(policy(o, &)

Reasoning about the definition of move-right within the context of content reveals that the
conteats of the buffer does not change.

content(d) o projeci(policy(o, ¥))

The definition of policy is next unfolded to reveal a conditional expression which is brought
to the outside of the expression.

if o € origins(lY) then content(b) o project(o) else content(d) o project(o”)

This reveals the expression “content(b) o project(o)” which is exactly the value of the old
screen appearance. The value of the screen is cached and used in this case.

66 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

if o € origins(Y) thea s else content(d) o project(o”)

By reasoning about content(move-righi(b)), we find that under certain conditions, no
change is necessary to the appearance of the screen 30 that we save the expense of updating
it. A similar argument holds for move-left and next-iine.

New implementations for the insert and delete operations can also be derived (but are
not shown here) by specializing ded-op for this command. Unlike move-right the content of
the screen will change, but the change is highly localized, with much of the screen remaining
the same. For example, when a character that is not a newline is inserted, everything above
and below the current line remains the same. Only the current line need be updated. When
anewline is inserted, everything above the current line stays the same, while the lines below
the current line are scrolled down by one. These observations are made in reasoning about
content(insert(c,b)). By judicious manipulation, an implementation for the operation can
be derived that utilizes the terminal capabilities such as inserting a character into a line and
scrolling.

Screen Performance. The decisions regarding the terminal optimizations are based on the
degrees of change to the screen. The types of changes that occur are, of course, dependent
on the particular data structure. It is beneficial to look at how the data representation is
organized. For the screen, the data structure is defined in terms of lines and characters. To
assess what has changed, we need to be able to decompose the data structure in various
ways 0 we can determine whether some piece in the updated structure is the same as some
piece in the original structure. To accomplish this, we observe each data structure using its
accessor functions. For the screen example, this includes functions to return a single line
or some subset of lines.

How is change introduced into the screen? We start with the simplified definition for
the new screea, content(op(b)). It is a function of the old display-editor buffer and observed
under some context, content. What changes can we observe? Using formal manipulation,
we would “ideally” like to decompose the operation, op, into smaller pieces that are either
accessor functions or terminal capability functions. The accessor functions do not change
the portions of the screen to which they are applied. The terminal capability functions do
change the portions of the screen to which they are applied, but do so efficiently by using the
specialized capabilities of the terminal. When it is not possible to decompose the operation
in such a manner, the operation must perform parts of the computation to update the screen,
or update the entire screen.

When must we update the entire screen and when can we make more local changes?
When manipulating the operations for the display editor above, we focused on two local
changes and one global change. The local changes consist of “overriding” and “offsetting”
for which there exists terminal capability functions such as character insertion and scrolling.
Overriding changes the screen a character or a line at a time. Offsetting shifts the characters
or lines over by some amount. When inserting a non newline character, the characters to
the right of the point of editing on the current line are shifted to the right and the character is
inserted into the space that is opened up. The global change that we noted was updating the
origin. In this case, updating the entire screen is warranted because there may be very little

42. Multiple-Byffers Single-Window Display 67

in the screen that remains the same. We made no distinction for when the origin changes
a small amount (less than the screen height) and a great amount. We could later specialize
the former case to scroll when applicable.

4.2 Multiple-Buffers Single-Window Display

This section extends the example by adding the ability to use more than one buffer in order
to learn how to adapt module interfaces by creating a new module that includes an old
one, and then propagating the operations using data-transformation techniques. First a new
datatype for multiple buffers is introduced and the definition of display editor is extended
to make use of this new functionality. Then transformations for integrating the multiple-
buffers datatype into the display editor, and for propagating the old editor definition into
the new one are presented.

4.2.1 Defining a Multiple-Buffer Editor

Basic operations for a multiple-buffer editor include adding a new buffer, selecting one of
the buffers for display on the screen, and deleting a buffer from the buffer list.

Signature MBUF = sig
type mbuf

make-mbew: mbuf

make-buffer: str x mbuf — mbuf
select-buffer: str x mbuf — mbuf
kill-buffer: mbuf — mbuf

end

Let us look to the previous definition of the simple display-editor for guidance in
developing a new representation.
type ded = DEd of (buf x origin x screen)

Since we are dealing with more than one buffer, we would like to: bundle together the
buffer and the origin; add a name field to identify the buffer; generalize the single entry to
a list of entries; and keep the selected buffer “cached” separately from the list.

The representation we come up with is a buffer list where each entry consists of the
buffer name, the actual buffer, and the origin (that pins the screen to the buffer). The current
buffer (displayed on the screen) is separate from the list.

type mbuf = Mbhuf of (str x buf x origin)® x str x buf x origin

This representation was chosen to simplify the presentation. Other representations are
possible. For example, only the name of the current buffer could be kept separate, and then
the actual buffer and origin would be looked up in the buffer list.

The operations are easily implemented using “generic” association-list operations. We
use the buffer name as the key to insert, select, or remove items. We now construct a
multiple-buffer display-editor.

68 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

Signature DED-MBSW = sig
type ded-mbsw
make-ded-mbsw: ded-mbsw
ded-op: (buf — buf)— ded-mbsw — ded-mbsw
make-buffer : str x ded-mbsw — ded-mbsw
soloct-buffer: str x ded-mbsw — ded-mbsw
kilkbuffer: ded-mbsw — ded-mbsw

ead

The representation for the multiple-buffer display-editor combines the buffer list with the
screen.

type ded-mbsw = Ded-Mbsw of mbuf x screen

The implementations of the operations for the multiple-buffer display-editor are derived
from Mbuf and DEd. The relationship between these modules is expressed in terms of
a translation function and the familiar integration techniques are applied to obtain new
implementations of operations based on the imported modules.

4.2.2 Integrating the Buffer-List Operations

The buffer-list ions defined in Mbuf induce corresponding operations in the multiple-
buffer display-editor that are defined as data transform . The relationship between
the Mbuf module and the Ded-Mbsw module that includes it is expressed as:

span: mbuf — ded-mbsw
span(Mbuf(®*,n,b,0)) < Ded-Mbsw(Mbuf(d®, a, b, 0), 3)
. where s = disp-to-screen(o’, b)

The operations defined in Mbuf are then reimplemented in Ded-Mbsw. For example,
the new definition for select-buffer is:

select-byffer'(n, span(Mbut(b®,n,b,0))) < span(select-buffer(x, Mout(b*, n, b, 0)))
After a number of transformation steps, we obtain:

select-buffer'(n,Ded-Mbsw(bl,s)) <« Ded-Mbsw(bl, s)
where bl as Mbuf(b*, n, b, 0) = select-buffer(n, bl),
¢ = disp-to-screen(o, b)

In this simple case of module inclusion, the operations in Ded-Mbsw call the operations

in Mbufr and then update the screen accordingly. We could continue to specialize the
operations so that the screen is incrementally updated as was done in the previous example.

4.2.3 Integrating the Buffer Operations

The buffer operations from DEd (eg., delets, insert, move-right) induce corresponding opera-
tions in the multiple-buffer display-editor that can be defined as data transform procedures.
The relationship between the DEd module and the Ded-Mbsw module that includes it is
expressed as:

42. Multiple-Byffers Single-Window Display 69

unspan: ded-mbsw — ded
unspan(Ded-Mbsw(Mbuf(b*,n,b,0),5)) < DEA(Db, o, s)

The fundamental operations on the buffer must be reimplemented in Ded-Mbsw. They
are expressed in terms of the translation function and the definitions defined for the simple
display-editor, DEd. Intuitively, the new implementations simply operates on the “cached”
portion of the buffer list. The new definition for ded-op is:

unspan(ded-op(c, Ded-Mbsw(Mbuf(b*,n,b,0),s))) <
DEd.ded-op(c, unspan(Ded-Mbsw(Mbuf(b®, n, b, 0), s)))

First we unfold unspan,

unspan(ded-op(c, Ded-Mbsw(Mbuf(b*,5,0,0),5))) <
DEd.ded-0p(c, DEA(b, o, $))

and then unfold ded-op.

unspan(ded-op(c, Ded-MbswMbuf(b*,1,,0),5))) <=
let = c(b) in
let o’ = policy(o, V) in
let ¢ = disp-to-screen(o’, &) in
DE4(Y, ¢, o)

Recognizing the body of unspan, we fold it,

unspan(ded-op(c, Ded-Mbsw(Mbu£(6°,1,5,0),5))) <
letd =c(b)in
let o’ = policy(o, V') in
let &’ = disp-to-screen(o’, V) in
unspan(Ded-Mbsw(Mbuf(b*, n, ¥, o), &)

and then take a solution.

ded-op(c, Ded-Mbsw(Mbuf(b*,n,b,0),5)) <
let = c(b) im

let o’ = policy(o, V) in
let ¢ = disp-to-screen(o’, v) in
Ded-Mbsw(Mbuf(b*, a, ¥, o), ¥)

The new implementation for ded-op simply operates on the selected buffer in the buffer
list. Rather than choosing the general definition for ded-op, we could have chosen instead
the specialized versions of the operations that optimize the screen updates.

We can think of this development process as a means to adapt interfaces. We wanted
to change the interface of the simple display-editor DE4 to include operations for dealing
with multiple buffers. We adapt the interface by defining a new component, Ded-Mbsw
and express the relationship between it and DEd with a translation function. Then we
reimplement the operations in DEd into Ded-Mbsw using the data transformation technique.
The technique provides a systematic way to propagate change.

70 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

4.3 Multiple-Buffers Multiple-Windows Display

This section extends the example by adding the ability to display more than one buffer
on the screen at one time to demonstrate how to adapt module interfaces by exposing
underlying representations. This involves introducing the concept of a window on the
screen. Rather than introducing a new datatype, as was done in previous sections, the
expose transformation is used to reveal the window object from the previous definition for
the screen. Once the buffer and screen are decoupled, operations for multiple windows are
introduced. Then the display editor is extended to include this new functionality and the
previous versions propagated as was done in the previous section.

43.1 Defining the Multiple-Window Editor

Basic operations for a multiple-window editor include deleting a window from the screen,
enlarging a window (by a line), moving the focus of attention (marked by the cursor) to
another window, shrinking a window (by a line), and splitting a window into two smaller
halves.
Signature MWIN = sig
typemwin

make-mbmw: mwin

delete-window: mwin — mwin

enlarge-window : mwin — mwin

other-window: mwin — mwin

shrink-window: mwin —mwin

split-window: mwin — mwin

end

We build on our previous work to construct a new definition. But where does the notion
of window come from? Is it a new concept that must be introduced into the system, or is
it somewhere hidden in the previous definition waiting to be uncovered? In the previous
definition, there is an operation for mapping a display into a screen. We would like to
expose more details of this operation by showing how the display could instead be mapped
into a window, which is then mapped into the screen.

4.3.2 Exposing the Window

The goal of this process is to introduce a new datatype for windows. We start off with
a function for mapping a display plane into a screen. We add the screen surface as
an extra parameter rather than accessing it = a state variable. The idea is to reveal
the underlying data representation of the data abstraction, expressing it in terms of a
tuple of other representations. (The details of the expose transformation are explained in
Section 6.2.3.)

This transformation is possible if we are able to write a function that spans these
representations. The Unspan function maps a tuple representing a window and a new kind
of screen into the original data representation for the screen.

4.3. Multiple-Buffers Multiple-Windows Display 71

disp-to-screen(orig,b,ss) <«
let p = content(b) o project(orig)
and ¢ sat current(b) = project(o)c)
and spaces = (Mi,j: N .‘sp’) in
Screen(c, (spaces © p)\ss)

Using the expose transformation, we seek to get all instances of the data abstraction to
be of the form data abs o Unspan,

Unspan: (cursor x appearance) X (cursor x appearance) — (cursor X appearance)

antiproj: origin — cursor — planepos
antiproj(r,c)i.)) < (i—r,j-c¢)

disp-to-screen(orig,b,ss) <«

let p = content(b) o project(orig)
and ¢ sat current(b) = project(o)(c)
and spaces = (Ai,j: N . ‘sp’)
and orig’ = (0,0)
and p’ = spaces © p _
and p" = p’ o antiproj(orig’)
and ¢ = project(c)orig’) in
Screen(Unspan((c, p'\ss), (¢, p"\ss)))

Replace data abs o Unspan with unspan o (Window, Screen’). This moves the boundary of
the type inward, revealing two new abstractions in the process.

disp-to-screen(orig,b,ss) <

let p = content(b) o project(orig)
and c sat current(b) = project(o)(c)
and spaces = (M\i,j: N .‘sp”)
and orig’ = (0,0)
and p’ = spaces ® p)
and p"' = p’ o antiproj(orig”")
and ¢’ = project(c)Xorig’) in
unspan(Window(c, p'\ss), Screen’(c’, p”\ss))

Excise unspan and then split disp-to-screen into two separate functions.

disp-to-screen(orig,b,ss) < window-to-screen(disp-to-window(b, orig, ss), (0,0}, ss)
disp-to-window(b,orig,ws) <
let p = content(d) o project(orig)
and ¢ sat current(b) = project(o)(c)
and spaces = (M\i,j: N . ‘sp’) in
wWindow(c, (spaces D p\ws))
window-to-screen(orig,w,ss) <
let p = w.appearance o antiproj(orig)
and ¢ = project(w.cursor)orig) in
Screen’(c, p\ss)

72 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

4.3.3 Building the Display Editor

Now that the notion of windows has been revealed, we define the multiple-buffer multiple-
window display-editor. The representation consists of the buffer information from the
previous section on multiple-buffers single-window displays, plus a window list where each
entry consists of the window name, the actual window, the name of the buffer associated
with the window and an origin that pins the window to the screen. The selected window is
separate from the window list.

typemwin =Mwin of (str x window x str x (n X n))* x (str x window X str x (n x n))

This representation was chosen to simplify the presentation. As with multiple buffers, other
representations are possible. For example, only the name of the current window could be
kept separate, and then the actual window and origin would have to be looked up in the
window list.

We now construct a multiple-buffer multiple-window display-editor.

Signature DED-MBMW = sig
type ded-mbmw
make-ded-mbmw: ded-mbmw
ded-op: (buf — buf) — ded-mbmw — ded-mbmw
make-buffer: str x ded-mbmw — ded-mbmw
select-buffer: str x ded-mbmw — ded-mbmw
kill-buffer: ded-mbmw — ded-mbmw

delete-window : ded-mbmw -+ ded-mbmw
enlarge-window : ded-mbmw — ded-mbmw
other-window: ded-mbmw — ded-mbmw
shrink-window : ded-mbmw — ded-mbmw
split-window : ded-mbmw — ded~mbmw

end

The representation for the display editor combines the buffer list, the window list, and a
new notion of screen.

type ded—-mbmw = Ded-Mbmw of mbuf x mwin x screen’

We can propagate the operations as was done in the previous section. The implemen-
tations of the operations for the display editor are derived from Mwin and the preceding
multiple-buffer display-editor. The relationship between these modules and the display
editor can be expressed in terms of a translation function and the familiar integration tech-
niques can be applied to obtain new implementations of operations based on the imported
modaules.

44. Summary 73

4.3.4 Integrating the Window-List Operations

The window-list operations defined in Mwin induce corresponding operations in the display
editor that are defined as data transform procedures. The relationship between the Mwin
module and the Ded-Mbmw module that includes it is expressed as:

span: mwin — ded-mbmw
span(Mwin(w*,wa,w,bn,wo)) <
let 5 = window-to-screen(we, w) o mapwin(window-to-screen, w*) in
Ded-Mbmw(Mbuf(®®, n, b, 0), Mwin(w*, wn, w, bn, wo), 5)

The mapwin operation recurses through the window list, applying window-to-screen to
each entry in order to update the screen. The operations defined in Mwin can then be
reimplemented in Ded-Mbmw. They could simply call the old operation and then update the

screen appropriately.

4.3.5 Integrating the Buffer Operations

The buffer operations defined in the preceding multiple-buffer display-editor induce corre-
sponding operations in the display editor that can be defined as data transform procedures.
The relationship between the Ded-Mbsw module and the Ded-Mbmw module that includes
it is expressed as:

unspan: ded-mbmw -+ ded-mbsw
unspan(Ded-Mbmw(Mbu£(d*,n,b,0),Mwin(w*,wn,w,bn,wo),s)) <
let w = { w | disp-to-window(o,b) },
& = window-to-screen((0,0), w’) in
Ded~Mbsw(Mbuf(®*, {n | bn }, b, 0), s)

The operations on the buffer must be reimplemented in Ded-Mbmw. As before, the new
implementation operates on the “cached” portion of the buffer list. In addition, it updates
the appropriate window, and then the entire screen.

4.4 Summary

The module structure of the evolving display-editor is shown in Figure 4.2. Module
inclusion is represcuted by solid lines between two modules. The module above is included
in the module below. Translation functions are represented by arrows. Derivations are
represented by dashed lines. They are numbered and refer to the items in the enumerated
list below. Different kinds of adaptation include:

1. Adding Components. When a screen was added, the buffer did not have the necessary
operations to interface with the display; two additional operations were needed. They
were added by creating a new component for them, Bufg,, and then integrating the
component into the original system, Buf., using the techniques for adaptation
discussed in Section 3.2.

74 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

f screen’)

-
-
-
-~ window
-
- —
- — —
4 - - e —-—
- — - -
/ —
screen
-
1
buf
ded mbuf
2 [}
& ed-mbsw (mwin)
—~ - |
-~ — 3
ded-mbs ed~-mbmw,

Figure 4.2: Module Hierarchy

44. Summary 75

2. Incorporating substructure. The buffer and screen communicate through a narrow
uni-directional channel. This is accomplished by the disp-to-screen function that
converts an entire buffer into a screen. It is possible to incorporate the modules for
the buffer and the screen into the display-editor module, ded, in order to widen the
channel of communication. This allows local changes in the buffer to be reflected in
the screen using a form of incremental update. The channel of communication could
also become bi-directional so that changes in the screen are reflected in the buffer.

3. Extending Modules. A series of display editors were built that progressed from having
a single buffer and a single screen, ded, to multiple buffers and a single window,
ded-mbsw, to one with multiple buffers and multiple windows displayed in a screen,
ded-mbmw. As we progressed through the series of display editors, the interface for
the previous editor was adapted by creating a new module that includes the old one,
and then the operations were propagated using data transformation techniques.

4. Exposing Information. Sometimes the changes to the interface are hidden within
the existing system. Instead of adding something new, a more synthetic approach
is taken where the desired interface is exposed from existing information. When
constructing ded-mbmw the concept of a window emerged between .he abstractions
for the display and the screen.

76 Chapter 4. Reuse and Customization: Deriving an Interactive Display-Editor

Chapter 5

Interpreting the Results of the Editor
Derivation

The module interface transformation system presents an overall methodology to guide the
software development process, but there are still many choices to be made by the software
developer. A particular line of development was chosen in the editor example, but at certain
points, other choices available to the software developer were indicated. In this chapter, the
range of choices are classified at the design (Section 5.1) and implementation (Section 5.2)
levels of integration. These choices are evaluated in terms of the costs they incur during
the transformation process, the range of choices available at the lower levels, and the
performance of the resulting implementation. The software designer will have to weigh
these factors and make tradeoffs between them. Section 5.3 discusses the implications of
this approach to scaling.

5.1 Integration Design Alternatives

The choices available to the software designer for integrating the collection of com-
ponents into an aggregate are dependent on the properties of the components and the
relationships among them. Recall that a component consists of a data structure and a
collection of operations; they are related by consistency relations implemented as compat-
ibility maps or translation functions. Components are used for constructing datatypes or
objects. Now consider the integration process. The inputs to the process are the collection
of components and translation functions with certain properties, and the choices made by
the: software developer. In Figure 5.1 we chart the integration choices made by the software
developer in terms of the effects they have on the outcome, (i.e., the data aggregate). Two
useful measures are the level of abstraction of the data representation for the data aggregate
and the time of evaluation of the translation functions and component operations in the data
aggregate

Choices for the data representation appear on the “abstraction” axis. Starting at the
top and moving downwards, first a single component representation is chosen, then the
union of all representations, and finally the product of the representations. Below that

78

Chapter 5. Interpreting the Results of the Editor Derivation

Eveluation Time
Figure 5.1: Module Interface Integration Designs.

5.1. Integration Design Alternatives 79

(but not shown) could be a more generalized representation. Recall that each component
operation induces an aggregate operation. One choice, then, is to use one of the component
representations as the aggregate representation. The aggregate operations induced from
the component operations must be defined to operate on this chosen representation. A
second choice is to use all component representations in the aggregate representation.
The aggregate representation could be the disjoint union or the product of the component
representations. The induced operations on the aggregate must ensure the consistency of
all of the component representations. If the representations of some of the components are
identical then the data can be shared. Operations access the shared data representation.

Components and aggregates appear on the “evaluation time” axis. Starting at the right
and moving to the left, the components at first become specialized by incorporating the
translation functions, and then themselves become incorporated into the aggregate. Since
cach component operation induces an aggregate operation; for any operation defined on
a component, a new aggregate operation can be defined that is derived or translated. A
new operation may be derived that operates directly on the new representation. This
is accomplished by defining the new operation in terms of the old as a data transform
procedure and applying transformations to obtain an executable implementation. As an
alternative, the new operation may be translated by defining it in terms of the old operation
and translation functions. For example, the new operation could use translation functions
to first translate the data, apply the component operation, and then translate back.

The choices made in integrating the components affect how the translation functions
are used in the aggregate: (1) The translation functions are maintained and the aggregate
operations dynamically evaluated. In this case the aggregate operations are translated. (2)
Translation functions are partially compiled into the new implementations of the operations,
but there is still some dynamic update. (3) The translation functions are compiled into the
new implementations of the operations. In this case the aggregate operations are derived.

For the sake of concreteness, imagine three components, each defining a separate
operation on different data representations. The operations and data representations are
shaded to distinguish them. Consider the case where the operation of the middle component
induces an operation on the aggregate. The numbers in Figure 5.1 correspond to the items
discussed below where we pinpoint some of the choices:

1. Incremental merging. The translation functions and the component operation are ma-

nipulated to derive an operation on the aggregate that exploits the interdependencies
among the component representations. This was the choice for the buffer prototype
seen in Figure 3.5.

0P, . (span(c2)) < $panN(op,(ca))
unspan(op(Agg(c1,c2,C3))) < 0P, (UNSpan(Agg(ci, c2, c3))

The aggregate operation is defined as a data transform procedure where translation

functions use compatibility maps and exploit the interdependencies among the com-
ponent representations. Refer to Figure 5.1 at the module labeled (1). Start at the left

Chapter 5. Interpreting the Results of the Editor Derivation

of the module and follow the arrows to observe how the data representation is used.
In this case the aggregate operations act directly on the aggregate data representation.
The representation is first accessed by an operation and then is updated with the new
result.

. Product of the operations on the union of the data representations. Alternative
implementations of the component operation are derived for the other components.
Then, depending on the current type of the aggregate, the appropriate operation on
that type is selected. This alternative was not actually implemented in the buffer
example, but could have been by defining the aggregate operation, op, in terms of
the current type of the component.

op(agg) < casetypeof(agg) is
c1.T them Op, (agg)
c2.T then 0p,(agg)
c3.T them Op,(agg)

Refer to Figure 5.1 at the module labeled (2). Again start at the left to follow how
the data representation is used. The data is accessed by the appropriate component
that matches its current type. The component performs the appropriate operation to
update the representation with the new result.

. Product of the operations on the product of the data representations. As with the
product of the operations on the union of the representations, alternative implemen-
tations of the component operation are derived for the other components. But, since
the data representation is now the product, all of these alternatives must be selected
to update the corresponding part of the aggregate. This choice was discussed as a
possibility for the buffer prototype, seen in Figure 3.3.

OP(Agg(c1,¢2,¢3)) < Agg(c}, &5, c3)
wherec; = op(c1)
andc; = 0Opy(c2)
andc; = 0ps(cs)

Refer to Figure 5.1 at the module labeled (3). The data aggregate representation,
which is the product of the component representations, is projected, each component
accessing the piece that corresponds to its own data representation. This is used by
each component operation and the results are combined to yield a new aggregate
result. In this example, the operation of the middie component is given. The
alternative implementations of the component operation are defined as data transform
procedures for the top and bottom components.

. Translating on a component representation. One component is chosen for the data
representation of the aggregate. For the sake of concreteness, consider using the
first component data representation. The aggregate operation is implemented using
the compatibility maps to translate to the component where the operation is defined,
performing the operation, and then translating back.

52. Integration Implementation Alternatives 81

op(agg) < map,_,(op,(Mmap,_,(agg)))

5. Translating on the union of the data representations. Depending on the current data
representation of the aggregate, it must be translated to the component where the
operation is defined before the operation is performed. There is no need to translate
back, because ihe aggregate is the union of all components. This alternative was
not actually implemented in the buffer example, but could have been by defining the
aggregate operation, op, in terms of the current type of the component.

op(agg) < casetypeof(agg)is
c1.T then op,(Map, _,(agg))
c2.T then Op,(agg)
c3.T then Op,(Map,_,(agg))

6. Translating on the product of the data representations. This choice for implementing
the aggregate is inspired directly by the aggregate definition seen in Figure 3.2.
'With compatibility maps implementing the consistency relations, then the aggregate
operation is defined by extracting the component representation from the product,
performing the operation, and then using the compatibility maps to update all portions
of the product.

op(agg) < proj; (0P, (Proj,(agg)))

The projection extracts the appropriate component; the inverse of the projection is
defined in terms of the compatibility maps to produce the aggregate.

The choice for Buf,vw, is at (1) in Figure 5.1 but alternatives (3) and (6) were also
considered in the discussion. Merging the pages and regions components also are at (1).
Translating the pages, s-expressions, and display components are at a position higher up at
the top-left in the diagram.

The integration alternatives of merging or translating with the components of the original
system or the implementation can also be seen in this diagram. Translating is near the top
and to the right, where only one of the component representations is chosen. This requires
the implementations for the operations on the other components be translated. Moving
downwards and to the left shows the alternatives for merging. At the bottom left, since all
of the component data representations appear in the aggregate, and the translation functions
have been incorporated into the operation definitions, there is no other alternative than to
ensure that each operation updates the aggregate. There are a continuous set of choices, the
alternatives are not restricted to the discrete set shown in the figure, which highlight some
of the interesting choices.

5.2 Integration Implementation Alternatives
It is desirable that the software developer understand the costs associated with the various

alternatives. This section first discusses the cost measures available for making this analysis
and then looks at the choices and costs made in the display-editor derivation.

82 Chapter 5. Interpreting the Results of the Editor Derivation

5.2.1 Cost Measures

What criteria about the cost of integration is available to make the various decisions to
implement the aggregate? One way to measure the cost of integrating a collection of
components is to count the number of data transform procedures that must be defined
(which is proportional to the number of data transformation steps applied). The number of
definitions that must be added for each component with »n operations is:

n operations X m merges/operation

Considering the collection of components and compatibility maps that connect them as a
graph, “merges” is the sum of the length of the paths between the component being merged
and the other components. Duplicate paths are factored out. For example, referring to
Figure 3.7, this is 2 for Buf; since it must reach Buf through Buf;.

The cost of adding a component to an existing system of integrated components is
also measured in the the number of data transform procedures that are defined. Given a
core system with m components and / operations and a new component with n operations,
then merging with the original components may add up to m (data transform procedure)
definitions for each new operation. The number of components, m, serves as an upper
bound on the number of merges required. In addition, there are / definitions to update the
existing system, giving a total of n X m + [definitions. Translating into the original system
adds up to m definitions for cach new operation, the original system remains unchanged.

The number of definitions is directly proportional to the number to transformation steps
necessary to implement a functional prototype. Based on experience, there are on the order
of 10 derivation steps necessary to transform a data transform procedure into a functional
definition. Approximately 10 percent of these steps are insight steps. (See Appendices C
and D for examples.) More experience clearly is needed to infer the number of steps for
general problems. Itis useful to make this distinction between the insight (or “eureka™) steps
and the others because the former require manual assistance from the software developer
whereas most of the steps of the latter can be automated. It is difficult to quantify the effort
required by the software developer in absolute terms. Thus the scenarios below discuss
the relative costs. Although there may be more steps in some cases, the effort required by
the software developer may be less than the other alternatives with fewer steps because the
problem is broken into smaller conceptual pieces that are easier to reason about. Often, the
amount of work by the software developer is greater initially (especially in a new problem
domain), but as the derivation progresses, more information is gathered that can be reused;
thus the cost is amortized over the duration of the derivation. The cost of integrating the
component depends on the integration alternative.

Merging with the Original System. In merging with the original system, new implemen-
tations are derived for operations of the new component (requiring n x m definitions). New
implementations must also be derived for the / operations of the existing components. The
existing derivations for the old implementations of the operations can be reused directly.
The derivation structure for the new operations may be similar to that of the old operations

52. Integration Implementation Alternatives 83

so that insights may be reused as well. The specialization step requires transforming the
sum of all the operations, / + », and may reuse information about specializing the original
system.

There are more steps involved in merging the new component with the original system
than in the other alternatives, but they may be simpler, requiring less user insight, since
more information is available. Since there is more information, more optimization choices
are available. The representation of the specialized aggregate may be different from the
original system. For example, in the buffer implementation, we kept Buf; and deleted
Buf2, but we may wish to reverse the decision if the new component is used frequently and
is more efficient in Buf,.

Translating into the Original System. In translating the new component into the original
system, new implementations are derived for operations of the new component (requiring
n X m definitions). Since the original system does not change, new implementations do
not have to be derived for the operations of the existing components. The specialization
step requires transforming the sum of the operations, but since the original system does not
change, the information about specializing the original system can be reused directly. The
cost, a, is incurred in specializing the operations of the new component.

Merging with the Implementation. When merging the new component with the imple-
mentation instead of the original system, then the number of components, m, is no longer
a useful measure for the upper bound of merges required because many of the components
may be specialized or eliminated in the aggregate implementation. Therefore, f(m) is
used instead to indicate the affect of the specialization step. In the buffer implementation
example, f reduced m about 50 percent because the prototype aggregate consisted of Buf,
Buf?, and Buf, and the implementation step deletes Buf; and simplifies Bufs so that there
is less work in merging with the aggregate.

There are fewer steps involved in merging with the implementation than in the alterna-
tives discussed above, however, they may be more complex since the “natural” representa-
tion of the component may have been specialized in the aggregate so that it is more efficient
but less easy to manipulate during integration. Still, the new component is available for
optimization. When the most “natural” representation for the new operations is the new
component, the specialized aggregate may not prove to be that great of a hindrance. There
are fewer choices available to the software designer because of the more specialized data
representation and operations than in the alternatives discussed above. But the greater
number of choices in the other alternatives may lead to unnecessary steps where the results
are eliminated later in the process. For example, merging the Buf, component only to
eliminate it in the specialization step.

Some of the information in the derivation of the original system can be reused. What is
new is the relationship between the new component and one existing component. Once that
is “bridged,” computing the relationship of the new component to the rest of the system can
make use of previous derivation (i.¢., insight steps, merging process, and interrelationships).

84 Chapter 5. Interpreting the Results of the Editor Derivation

Translating into the Implementation. When translating the new component into the
implementation, new implementations of the operations of the new component need only
be derived (requiring n x f (m) definitions). There are no changes needed to the existing
system. This method has the fewest steps of all of the alternatives, but they have the potential
to be the most complex since the software designer has the least flexibility (because there
is less information available) and the operations must be translated into one and only one
representation. There is only one choice for the data representation, keeping the existing
data aggregate representation. As with the other alternatives, there is the potential for some
reuse of the existing derivation structure.

5.2.2 Integrating Components

Choices. As the software designer, we made particular choices in defining the prototype
edit-buffer. For the pages component, we set up definitions to either merge the pages
component with the original system or to translate it into the original system. Since
the regions component adds new information, it must be merged. Since there are no
dependencies between the mark ard the existing system it is easy to add the component at
cither level of original components or implementation. Since the s-expression component
does not have complete information, it must be translated. However, we could have chosen
to cache the s-expression positions as we did the newline positions, but this would be
much more complicated. So we chose a quick integration process for the purposes of this
example, trading off this optimization.

Cost. Recall that the c:iginal buffer system consisted of three components and seven
operations. Derivations were done at the aggregation level (transforming the aggregate into
a prototype) and on the implementation level (transforming the prototype into an efficient
implementation). The cost is measured in the number of data transform procedures that
must be defined in order to integrate the collection of components. At the aggregation level
there are 14 definitions.

noperations mmerges nxm
Buf,; 3 2 6
Buf; 3 2 6
Buf; 1 2 2
Total 14

At the implementation level there are 7 definitions. Using on the order of 10 derivations
steps for each definition, the total number of steps is approximately 210, with 20 insights.
The insights are used for translating between the domains of the data representations. They
are often shared so there are in fact fewer novel insight steps that the developer must come
up with.

Adapting the buffer by adding a component for pages introduced one new component
with three operations. The original system had three components with seven operations.
This yields 16 definitions that are transformed to obtain the integrated prototype.

5.3. Scaling 85

Buf, 3
Buf 3
Buf, 3
Buf; 1
Total 16

Translating, on the other hand, yields 9 definitions that are transformed to obtain the
integrated prototype because the existing operations for Bufy, Bufz, and Bufj are not
affected.

52.3 Integrating Modules

Choices. Similar choices between merging and translating using the original system or
derived implementation exist at the module level as at the component level. As the software
designer, we made particular choices in defining the prototype display-editor. For the display
component, we chose to transiate the component into the existing buffer implementation.
When adding multiple buffers and multiple windows we chose to translate the list and buffer
components into the display editor in order to propagate the operations into the module that
imports them.

Cost. The cost of using this approach at the module level is similar to the cost at the
component level and can be measured in the number of data transform procedures that must
be defined in order to integrate the collection of modules. In the example of screen caching,
we are in effect defining alternative implementations for the buffer operations in the screen
compoanent, 30 the cost is that of transforming a data transform procedure into a functional
definition. Integrating the list operations or a simpler display-editor into a more complex
display-editor that adds additional functionality are simplified forms of the data transform
procedure. Since the aggregate representation includes the component representation, the
new aggregate operation simply uses the old component operation to update the appropriate
fields.

53 Scaling

The benefits to scaling occur primarily at the integration design level. Complexity is
managed through abstraction, modularization, and step-wise transformation. The focus
of the software designer is on the design domain. These design decisions are translated
into changes throughout the system at the integration implementation level to integrate
and optimize the system. The formal manipulations at this level are generally carried out
within local contexts. However, in order to claim that this method truly scales, automated
assistance is needed at the integration implementation level in carrying out all of the steps.
Most of these are mechanical steps that could be performed with automated support.

86 Chapter 5. Interpreting the Results of the Editor Derivation

53.1 Components

How does the methodology scale as the number of components increases? The examples
of adding pages, regions, and s-expressions adapt the system by adding more definitions
to the set that constitute the existing system, and then applies the derivation process all
over again. Only a single connection is needed between the new component and one of
the existing components or the data aggregate. This facilitates adaptation, since, when a
new component is added, it is not required to define every possible connection to all of
the existing subcomponents. It should be sufficient to define a single connection between
the new component and the aggregate. Only a single compatibility map is needed (and
not its inverse). This aids the software-developer when the inverse is difficult to define or
the compatibility map is not one-to-one. Of course, the other interconnections are derived
during the integration process, but here is where support from automation and reuse can be
provided. Also, since we are dealing with datatypes, it is highly likely that there will be a
limited number of componeats that make up the datatype.

Can the existing system be considered a component as one way to scale up? This pos-
sibility was mentioned briefly when we discussed merging or translating a new component
with the implementation (Section 2.1.1 and Section 5.2.1). We can treat the aggregate as a
component when there are no interdependencies among the fields of the aggregate. When
there are interdependencies, then these must be taken into account to preserve the internal

consistency of the aggregate.

53.2 Modules

How does the methodology scale as the levels of module hierarchies increases? The benefits
of scaling come from using a module system, in effect “scaling down.” Modules help us to
scale down by limiting the focus to one module at a time and its interconnections. Perhaps,
just as the number of components will be limited since they comprise a datatype, the number
of modules may be limited if they comprise idioms of a higher-level of abstraction [80].

Chapter 6

A Framework for the Module
Transformation System

Now that we have seen an example that demonstrates the derivation process and techniques,
we return to the module transformation system introduced in Chapter 2 and examine a more
rigorous description of the process. Section 6.1 describes the steps involved in using module
transformations in software development. Terms used in the example such as “component,”
“consistency relation,” “aggregate definition,” “prototype,” and “implementation” are given
a precise meaning and the process of obtaining efficient implementations from a collection
of components is formalized. Section 6.2 describes the module transformation rules and
demonstrates the steps in applying them. The findings are summarized in Section 6.3 which
describes what was added to the framework and why. Providing a framework enhances the
understanding of the terms used informally, provides structure to aid the software designer
in using the approach and is an important step towards automating the system.

6.1 Module Transformation in Software Development

This section provides a more rigorous explanation of the software development strategy
described in Section 2.4 and demoastrated in Section 3.1. The first three phases of the
using a simple theory based on algebraic specification that provides a precise meaning to
constructing an aggregate specification in terms of components. Once a precise meaning of
the specification is given, it is manipulated in the subsequent aggregate integration phase
of the process ©© produce an aggregate definition. Reflecting on how the specification is
manipulated gives insight into constructing an algorithm that automates the process. The
final two phases of aggregate implementation and optimization refine the definition using
the module transformation rules in Section 6.2.

As stated earlier, a notation based on Standard ML modules [60] is used to represent
datatype definitions. In addition to representing datatype definitions, the notation needs
t0 also express the other structures in the transformation process. These notations are
introduced as they are needed and summarized at the end of the chapter in Section 6.3.

88 Chapter 6. A Framework for the Module Transformation System

6.1.1 Program Design

To start with, we need a method for defining the datatype of interest, for example, the text
buffer. Algebraic specifications are especially appropriate because abstract datatypes are
treated as algebras. Treating datatypes as algebras is useful for: (1) proving properties
about the datatype such as consistency; (2) showing the correctness of an implementation
with respect to a specification; and (3) using logic to rewrite (or simplify) equations by
substituting an expression with an equivalent one. This does not mean that the software
designer must always start with a formal specification. In actual engineering practice, the
software designer might use a high-level prototype rather than writing a specification. We
in fact followed this approach in the development of the interactive display-editor, since the
focus of the software development method is on integrating software components which
takes place at the system design level. In this chapter, we start with a specification to
motivate the method and to enable us to give a precise meaning to the combination of
software components into an aggregate datatype.

6.1.2 Program Composition

The first subset of operations to be considered is the constructor set [37], which has the
property that all instances of the datatype (i.e., all terms in the algebra) are generated by
using only constructor set operations. We start by defining the abstract interface. An
abstract interface is simply a signature. We use a syntax similar to the Standard ML
signature declaration to specify abstract interfaces. For example, in the datatype buf,
the operations createbuf, ins, and point constitute a constructor set.

MM¢’“
type but
createbuf: buf
ing: chxbuf —buf
point: buf — buf

end

This gives an operation for creating the buffer, adding a new character into the buffer,
and setting the focus of editing. A constructor set is used to define what I call the core
component.

Using the framework and terminology of algebraic specification of abstract datatypes [32],
an S-sorted signature, X, is defined for the text buffer operations (where sorts correspond to
types). The signature consists of the names and functionalities of operations over the sorts
in the sort set S. Given this signature, the semantics of the text buffer operations is defined
by writing an algebraic specification (S, X', E), where X is the S-sorted signature and E is
a set of L-equations.

Definition 1. A core component specification is an algebraic specification
(Seems Dooms Eoom). Sowm is the sort of interest, L., is a signature of a
constructor set of operations, and E, is empty.

6.1. Module Transformation in Software Development 89

Notice that a core component specification, since it specifies only constructors, generally
does not have any equations. This is a rather “loose” specification of a buffer since it does
not express how the buffer is initialized or the relationship between the focus of editing
and the text. Such design decisions are deferred to a later time when the core component
is used as the basis for defining other components. The core component is not meant to be
implemented, its purpose being to provide a notion of “equivalence,” that is, what it means
for other components to be views or alternative implementations of the same datatype.

Once a core component is specified, we obtain other components by supplementing the
care component specification with additional operations.

Definition 2. A component specification is an “enrichment” of a core compo-
nent specification.

As described in [37], an enrichment of a specification is obtained by adding new operations
along with “axioms” that define the behavior of each new operation. This is always a
“strict” extension: (1) it is non-empty; (2) since Eq. is empty, there is no change to the
properties of the existing operations; (3) none of the existing operations are taken away.

For example, we enrich the buffer core componeat by introducing the new operations,
move-left, move-right, and show-char to obtain functionality for moving the cursor to the
left or to the right, and for showing the character at the cursor position. The signatures
of the operations are listed first, followed by axioms that define the meaning of the new
operations in terms of the core component operations.

Signature BUF, =sig
stracture B: BUF,

move-eft: Bbuf — Bbuf

move-right: B.buf — Bbuf

ghow-char: Bbuf —ch

axiom move-lefis.insert(c,b)) = move-lefi(d)

axiom move-lefi(B.point(d)) = b

axiom move-righi(b) = B.point(d)

axiom show-char(B.ins(c,b)) = show-char(d)

axiom show-char(B.point(.ins(c,0))) = ¢

axiom show-char(B.point(B_point(B.inseri(c,)))) = show-char(s.point(b))
ead

Definition 3. A component implementation is an implementation of a compo-
nent specification. Let P be a specification. Then the particular way that the
implementation / satisfies P is described by the “view,”v: P = I.

As in [33], a view consists of a mapping from the sorts of P to the sorts of /, and a mapping

from the operations of P to the operations of /.

For example, we provide an implementation for the BUF; component specification,
defining buf as a data structure consisting of an integer (representing the cursor or point of
editing) and a sequence of characters (representing the text). The operations are defined on

90 Chapter 6. A Framework for the Module Transformation System

this data structure. We use a notation similar to the Standard ML st ructure declaration
except that we call it a component because, unlike a structure, not all of the operations
of the signature need be implemented.

Component Buf, : BUF = struct
type but = Buf of (int x ch®)
move-lefi(But(p.f)) < Buf(p~-1,)

move-figh(Buf(p,f)) < Buf(p+l,))
show-charn(Buf(p,f)) <« tlp-1}

constraint But(p,f) => 0<p<#
ead
The view shown below defines how the implementation Buf satisfies the specification
BUF.. We extend the notation to include a definition for views taken from OBJ3 [33] and
adapted to ML syntax. First the sort in the core buffer is mapped into the corresponding sort
in the component. Thea each of the operations in the core is mapped into the corresponding
operations in the component.
view V; from BUF, to Buf, is
sortbuf to0 Buf(int x ch*)
varsc: c¢h
opcreatebuf to Buf(0, [))

opins(c,.) to letBuf(p,”)=_imBuf(p, t[.(p—1)] @ [c] @¢([p..])
oppoint(_) to letBuf(p,f)= _imBuf(p+1, o)

eadv

The subsequence of the sequence s from the first to the #* element is denoted s[..i]; the
subsequence of the sequence s from the #* to the last element is denoted s[i.]. The
placeholder for the sort of interest (in this case but) is denoted . This next view defines
how the implementation Buf; satisfies the specification BUF,.

view V, from Buf, to Buf; Is
sortbuf to Buf(ch® x ch®)
varsc: ch

opcreatebuf ¢ Buf(l, [D
oping(c,.) to letBut(,r)=_mBut(, [c] @r)
oppoint() to letBuf(l,”) = _in But(/ @ [hd(r)], tKr))

endv

The consistency relation provides a correspondence between the data objects manipu-
lated in one implementation with those in another.

Definition 4. Let P and Q be component specifications that are earichments of
s0me common core component specification C. Let I (with view vy) and J (with
view v;) be implementations of P and Q respectively. Then there is a component
consistency relation between the terms in the alternative implementations:
() map] v/ (r), where ¢is a X-term in the core component.

6.1. Module Transformation in Software Development 91

Figure 6.1: Projections of the Aggregate.

The views V) and V; specify this consistency relation between the Buf,; and Buf; compo-
neats (defined in Section 3.1).

In the figure below, we sec how all of the pieces fit together. The intersection of the
specifications for BUF; and BUF is the core specification BUF,.. The consistency relation is
defined implicitly in terms of the views V; and V,.

CHACDED)

Vi M\i

Buf;

Buf,

The consistency relations provide a notion of consistency for the aggregate data objects.

6.1.3 Component Aggregation

Suppose we have a specification P, a core component co, and a collection of component
implementations c;,...,c,, Where 2, U --- U X, = Zp (i.e., every operation of P is
implemented in some component). Further, for each pair c;,¢j, with 1 < i, j < nand
i # j, we have that X, N X, = X, (i.e., each component defines distinct subsets of the
operations). Then an aggregate is formed from the collection of components to provide a
refinement of specification P.

Definition 5. An aggregate specification refines P by specifying an aggregate
dmmmnﬁmemmmwdﬁomthedanmmomofﬂwmpmu
C1,...,Cs. This aggregate representation has the following properties:

o There are projection functions, proj;, which map an aggregate data object
to an object of component ¢;. See Figure 6.1 where n = 3.

o Every operation op; in component ¢; induces a corresponding operation
op on the aggregate, a. The operation op satisfies the following equations:

AT T TR

e e e T e /s 7

22 Chapter 6. A Framework for the Module Transformation System

ca op; c2

agg agg

C3 C3

Figure 6.2: Aggregate Operation Definition.

proj{op(@)) = op(Proj,(a))

Vk€({1,...,n}\) proj(a) map} projyla) ==
proj(op(a)) Map} Prof,(op(a))

See Figure 6.2 where n = 3, i = 2, and j = 2. Each operation might
actually have arguments other than the data object.

Notice that an aggregate specification, while it is based on componeat implementations, does
not quite constitute an implementation of the specification P, due to the use of consistency
relations. Thus, we say that an aggregate is a refinement of P.

Continuing our example and taking move-right to illustrate the point, recall the axioms
for the move-right operation in the text buffer example.

axiom proj; (move-right(®)) = move-right, (Proj, ()

axiom proj, (b) proj;() => proj;(move-righi(d)) proj;(move-right(b))
axiom proj,(b) projy(d) == proj(move-righk(b)) proj,(move-right(b))
axiom projy(b) proj,(») => proj;(move-righk(d)) proj, (move-right(b))

The projection proj, maps the aggregate to Buf,. The definition of move-right on the
aggregase is defined in terms of the operation, move-right,, which operates on the component
Buf;. The remaining axioms ensure consistency.

6.14 Aggregate Integration

As an intermediate step towards obtaining an implementation of the specification P, the
axioms that define the aggregate specification are manipulated (eg., using rewrite rules) to
obtain expression procedures for spanning data represeatations.

Definition 6. An aggregate definition is s refinement of an aggregate speci-
fication. The data represeatation is defined as the product of the component
data representations and the operations are defined in terms of the component
operations as data transform procedures.

6.1. Module Transformation in Software Development 93

'We saw these procedures in the buffer definition in Figure 3.4 and extract the definition
for move-right below.

local
unspan (But(p,1,1,7,(lp,cp),18)) <«
Buti{plpIm;ml{tinlns)
where Bufi(pz,12) = mMap,_,(Bufz(l,)
" and Bufi(py,4) = map,_,(Bufs({lp,cp), 13))

dme(_m_wﬂllt(b» < move-right, (unspan, (b))

Indeed, this process can be automated. An algorithm for generating an aggregate definition
from a collection of components and “compatibility maps” is given later in this section.
The definitions for the operations of the aggregate are in the form of “data transform
procedures.”
Definition 7. A compatibility map is a function that respects the consistency
relation. Ittranslates one component representation into another representation.

Depending on the consistency relation, it may not be possible to implement compatibility
maps in both directions, but normally it is straightforward to implement one of them. When
a compatibility map exists from component ¢; to ¢j, we say that ¢; can be reached from c;, or
that c; can reach ¢;. Here we extract the compatibility map from Buf; to Buf; (Figure 3.4).

map,_,(Bufy(,7)) < Bufy(#, @1

We define alternative implementations on data representations with “data transform
procedures,” in terms of the original implementations and “translation functions.”
Definition 8. A translation function is a function that translates one data
representation into another representation.
The spanning functions, spen, and its inverse, unspan, and compatibility maps are all
examples of translation functions.

Definition 9. A data transform procedure defines an alternative implementa-
tion and may take one of two forms:

1. Given a program { using a data representation D and an injective function,
spean, that translates clements of the data representation D to elements of
the data representation D’, we define f' as:

fopan(d)) < span(i(d)

(with universal closure over occurrences.)

94 Chapter 6. A Framework for the Module Transformation System

NODES = the set of all the components.
MAPS = the set of all the compatibility maps.
foreach ¢ that is a component
letC= {c}, N=NODES - Cin
foreach op that is an operation defined in the component ¢
whileN # 0
C' = CU{f }; “output data transform using span”; C=C'; N=N - {f}
3j€C,f €N, map,_; E MAPS =>
C' = CU{f }; “output data transform using unspan™; C=C’; N=N - {f}

Figure 6.3: Generating Aggregate Definitions

2. If, instead, there is a surjective function, unspan, that translates elements
of the data representation D’ to elements of the data representation D, we
define f as:

unspan(f(d)) < Kunspan(d))

Notice the similarity with Definitions 1 and 2 preseated in Section 2.2 (where the
domains are now datatypes). This form of definition is called an “expression procedure”
in [74, 75] since an expression appears on the lefthand side of the procedure definition.
These two definitions give meaning to f' only when it is applied to the result of span, or
when unspan is applied to its result. We rely on applying syntactic transformations to
obtain a functional definition for the program f' on the data representation D’. The span
function must be injective. Otherwise f may not be able to distinguish distinct values that
f could. The unspan function must be surjective. Otherwise there could be some values
defined on f but not on f’; therefore, f would not be a valid implementation of f because
it could not handle all values that f could. Data transform procedures are used to explain
the module transformation rules that affect data representations, (i.e., shift, translate, and
expose).

Now we examine the algorithm for generating an aggregate definition and see how it
preserves the properties of the axioms.

An Algorithm for Generating Definitions

The algorithm for generating definitions in Figure 6.3 is based on directed graph con-
nectivity where nodes of the graph are merged with the application of the integration
transformations. Consider the collection of components and compatibility maps as a di-
arcs. Each operation of every component is considered in turn with the goal of produc-
ing the corresponding aggregate operation. The node representing the component under
consideration constitutes the core. All nodes that are connected to some node within the
core (via an arc) coastitute the frontier. The nodes in the frontier are “coalesced” with

6.1. Module Transformation in Software Development 95

the core by expanding the core to include the nodes in the frontier and by producing the
aggregate operation definition using a variant of the data transformation technique. This is
done separately for nodes in the frontier that can be reached from a node in the core, and for
nodes in the frontier that can reach a node in the core, since different data transformation
definitions are required. Then a new frontier is defined based on the expanded core and
the process of coalescing connected nodes is repeated until all of the nodes comprise the
core. Then the whole process is repeated until all the operations of all the components
are reimplemented in the data aggregate. Here we see the process for makebuf defined in
component Buf,. The aggregate operation definitions that are produced are shown below
the graph as it is coalesced.

w
[—)
l
W

makebuf; .2 < span(makebuf;) unspan(makebuf) < makebut;xa

span(Bufy(l,r)) <« unspan(Buf(p,t,L,r, {Ip,cp),15)) <=
Buflxl@’ 4 l! ') Bufle({p I P }a {l ' h }’ lv ')
where Buf(p,f) = where Bufi(p3,83) =
m@z.x(B\lfz(‘s f» m—l(suf3((lpJQ)' IS»

The data transform templates (shown below) are used to generate the “code” for the
aggregate definition operations. The fixed “code” in the templates is in bold face. Place-
bolders (eg., op, to be filled in with the operation name) are in iralics. Once instantiated,
the templates produce the data transform procedure definitions. The auxiliary function I
takes a set and returns a literal tag composed from its elements. This is used as a unique
and descriptive subscript for the intermediate aggregates that are built as the nodes of the
graph are coalesced. The function € takes a set and builds a literal parameter list out of the
elements. This is used to create unique variable names for the parameters of the aggregate.

local
pa(AgE 1 (P(C))) < AgBpcn(#(C))
- wheref = map, ()

e."l’l’mc")(lllll(‘ll:;«:,(’(f—')))) < spa(oprc (AR) (#(C)))

Data Transform Template - Span.

When an arc (and thus a compatibility map) exists from a node in the core to a node in
the frontier, then span is used to0 map the data representation of an aggregate consisting of

96 Chapter 6. A Framework for the Module Transformation System

the nodes of the core into an aggregate consisting of the nodes of the core and the froutier.
The span function uses the compatibility maps to define how the data representations of
the nodes in the frontier are generated from the data representation of a node in the core.

Jocal

unspan(Ageycn(¥(C))) << Agp@®CU\{Jj | f }D)
" wheref = map,_(f)
“qunm(wm(ﬂc')))) < opnc(enspan(AggcH(P(C)))

Data Transform Template - Unspan.

When an arc (and thus a compatibility map) exists from a node in the frontier to a
node in the core, then unspan is used in the definition to map the data representation of an
aggregate consisting of the nodes of the core and the frontier into an aggregate consisting
of the nodes of the core. (We call it unspan, since it spans in the opposite direction of
how we are building the aggregate, that is, from core to core and frontier) The unspan
function uses the compatibility maps to define how the data representations of the nodes of
the core are generated from a data representation of a node in the frontier, using the notation
{1 | c2 }to denote that a value is computed in more than one way. We use B[x\exp] to
mean, replace all occurrences of x in B with exp. The notation needs to be supplemented
in this manner becanse multiple ways to compute a value must be maintained to ensure
consistency among the components.

A number of simplifying assumptions have been made for this presentation. Only one
component in the frontier is merged at a time. This result can be generalized to merge
a collection of nodes in the frontier with the core. The definition in Figure 3.4 uses this
approach where span, coalesces Buf; and Bufj together with Buf;. This algorithm treats
the aggregate data structure as the product of the components, maintaining the component
abstractions. In Figure 3.4 the abstractions are lifted; the data structure is the product of the
fields of the components.

A Development of the Aggregate Definition

In order to show that the aggregate definition satisfies the aggregate specification, we start
with the specification and use a constructive approach in developing the aggregate definition.
The running example consists of three arbitrary componeats (which “represent” the same
object), and we consider the case where the operation is defined in the second component.
Three components are enough to consider all of the various integration possibilities. The
aggregate specification is defined using axioms in Figure 6.4.

The first three axioms declare that there are consistency relations among the components.
The next axiom defines the behavior of the operation on the aggregate datatype in terms of
the second component. The remaining three axioms ensure that after applying the operation,
all of the components remain consistent. There is such a set of axioms for each operation
defined; for illustrative purposes only one set is shown.

6.1. Module Transformation in Software Development 97

proj,: agg—oci
prop: agg—c:
proiy: agg —cs

: e x¢ —bool
: ¢3 Xcz3—bool
: ey X¢cy —bool

axiom proj;(c) proj,(c)

axiom projy(c) proj(c)

axiom projy(c) projy(c)

axiom proj,(0p(agg)) = 0P, (Projx(agg))

axiom proj,(agg) proj(agg) => proj,(0p(agg)) ! proj; (0p(agg))
axiom projs(agg) proj;(agg) == proj(0p(agg)) m proj,(0p(agg))
axiom proj;(agg) proj,(agg) => proj;(Op(agg)) map; proj;(op(agg))

Figure 6.4: Aggregate Specification

For any aggregate definition of the datatype that we define, we must ensure that it
satisfies these axioms (that comprise the aggregate specification). We start with a very
simple definition (Figure 6.5) that assumes we have functional mappings in either direction
between any two components. Then we generalize the result a little more to make it easier
for the designer to define the datatype. In Figure 6.6 we relax the restriction that requires
compatibility maps in either direction between any two components, to requiring a single
compatibility map in one direction. In Figures 6.7, 6.8, and 6.9 we relax the restriction that
requires any two componeats to be directly connected to simply requiring a connection,
possibly through some number of intermediate components. We will sce that care must be
taken when dealing with many-to-one compatibility maps. Finally we produce a definition
(seen in Figure 6.10) that allows us to exploit the interdependencies among the components
for optimization purposes. This is the definition that is used in the algorithm.

We take a constructive approach by showing how to transform the axioms into the
definition. Each section introduces a definition. The proof details on how it satisfies each
of the axioms are contained in Appendix E.

Product of the Representations. We start off, for the sake of expediency, by defining the
representation of the data aggregate as the product of the component representations,

type agg =Aggofc; x c2 X ¢3
and the operations as:

op(agg) <« Pprojj (op/Proj(agg)))

This definition is dependent on the ability to define the consistency relations as a pair
of functions mapping from one representation to another and vice versa. The consistency

98 Chapter 6. A Framework for the Module Transformation System

Given: Op,, Mmap,_,;, Map,_;, Map,_,,
map!-.l’ m—d' maps-.z c2

Jocal \
proj;(Agg(ci,c2,c3)) & ¢ c1

h proj;'(x) <« Agg(map,.,(x), x, map,_3(x)

dop(ags» < proj;* (op;(Pro(agg)))

Figure 6.5: A Simple Definition

relation x map) y is defined using a pair of compatibility maps as x = map,_;(y) and
y = map,_(x). This requires that each compatibility map has an inverse since the aggregate
must be able to be generated from any component. Then, taking the projection is simply
extracting the appropriate field, for example, proj,(Agg(c:, ¢z, ¢3)) = c2. Taking the inverse
projection is simple as well, since the aggregate is easily generated from any component
since there are mappings defined from any component to all the others.

We start with the axiom defining the behavior of the aggregate operation and apply
transformations to obtain a functional definition for op.

pro,(0p(agg)) = OP,(Prolx(agg))

We take the inverse projection of each side, (we must show that proj; ! is injective)
proj; ' (prol;(0p(agg))) = Proj; " (0P, (Prol(agg)))

and then simpufy(wemmshowma:bro];' is a left inverse of proj,).
op(agg)) = Proj; (0P (Proj;(agg)))

Grouping all the definitions together we get the definition shown in Figure 6.5. The
components and the compatibility maps that are given are depicted to the right of the
definitions (in the figure). Components are depicted as nodes labeled with the name of the
component. Compatibility maps are depicted as directed arcs.

Reimplementing the Operations. We would like to relax the restriction that requires
compatibility maps in both directions between any two components, to merely requiring
a single compatibility map in one direction. There are two cases to consider, for either
function that is removed. The consistency relation x map) y is defined using one or the
other compatibility map as x = map,_(y) or y = map,_;(x). Recall that it is possible
to define a new implementation of an operation given a compatibility map. When the
function translates from the old representation to the new we call it “span” (since it spans
representations). We have the following definition for op’:

Op(PEN() < SPAN(OP(D)

6.1. Module Transformation in Software Development 9

Given: w)! m-ol’ maps-.z

local
op;(Map;_.i(c2)) < map,_,(0p,(c2)) c2
Map;_.a0py(cs)) < Opy(Mapy_(cs))

In
°P(Mg(cx,cz, c3» <

C1

Agg(cy, ci’ c3) C3
wherec; = Opy(ci1)
asdc; = Opy(ca)

andc; = Opy(cs)

Figure 6.6: Product of the Operations

When the function translates from the new representation to the old, we call it “unspan.”
'We have the following definition for op’:

unspan(op’(x)) < op(unspan(x))

One way to implement the aggregate is to use as a representation an a-tuple of the
representations of the various components. Then, the operations are defined over this #-
tuple. Consider, for example, a component ¢; in which the operation op; is defined. We
develop corresponding implementations of this operation for the other components by using
data transform procedures.

local
o opy(map,_.(c)) < map;,_(0p(c)

09(599(---,':[,0&,---» < Aqg(-..,q', cklv--')
wherec/ = 0p(c)
aadc' = OPycy)
ead

Here, data transform procedures allow us to define op, as an alternative implementation
of op; on the data representation of ¢;. To do this, we depend on a compatibility map,
map;_,, from ¢;’s representation into ¢;’s represeatation. If we had the inverse instead,
we use the other form of the data transform procedure. The compatibility map, map;_,,

Using this approach in our example, if we are given the operation op,, and compatibility
maps between the second component and each of the other components, we derive new
implementations of the operation for the other components using the data transform defini-
tions. Then we define the operation on the aggregate in terms of the component operations,
where each component operation updates the appropriate subcomponents of the aggregate
(sce Figure 6.6).

The definition for op; demonstrates the use of a span function since map,_,, translates
from the old representation to the new representation in this case. The definition for

100 Chapter 6. A Framework for the Module Transformation System

op; demounstrates the use of an unspan function since map,_,, translates from the new
represeatation to the old representation in this case. Unlike the previous definition, where the
defining component was translated into each of the other components, here we are actually
defining operations for each of the other components. If the appropriate compatibility map
is available, then we have a choice between translation and deriving a new operation. To
compute the new value of c;, for example, we know how to translate between c; and ¢;
and can define c] as map,_,,(0pa(c2)). Alternately, we can derive a new operation, op,, to
compute the new value of c} using op,(c1). Since there is no compatibility map from c; to
cs we have no choice, but must derive a new function op, to compute the value for cj.

In this simplified presentation, we cannot get the result shown in the buffer example,
where the cursor in Buf) is computed in terms of the sequences of lines in Bufs, since
components cannot interact. We see later how to obtain this result (seen in Figure 6.10).
But first we deal with the restriction that this definition is only applicable when all the
components are directly connected. We would like a definition that is also applicable when
componeats are indirectly connected, through some number of intermediate components.

Showing Transitivity. We would like to relax the restriction that requires any two com-
ponceats to be directly connected by a compatibility map, to simply requiring a connection,
possibly through some number of intermediate compoaents. We must be careful to exclude
intermediates that lose information. For example, the translation from a component that
represented a buffer as text into a component that represented the buffer as s-expressions
loses information about whitespace and newline positions. These were automatically ex-
cluded in the previous definitions because we could not write the required compatibility
maps. Now that we are not required to write mappings in all cases, we must be careful. We
can allow many-to-one mappings on the fringe of the component graph, but not within it
where they might act as an intermediate.

Say we are given a direct compatibility map between c3 and c; which we use to define
0P, an alternative implementation of op, for component c3. We would like to replace this
compatibility map by a compatibility map between c; and some intermediate, say, ¢, and a
compatibility map between this intermediate and c; in the context of defining op;. There are
four cases to consider depending on which way the compatibility maps are defined. These
cases can be iterated for arbitrary path lengths. In all cases, we derive the new operation,
0P, by first obtaining an intermediate operation, op,, for the intermediate component.

1. Given the translations g : c; — ¢; and A : ¢; — c3, we define the relation between
c3 and c; as: k(g(b)) = c, and define op, as:

opy(g(c)) <+ (0P (c2))
opy(Mc)) <= Mopy(er)

Recall the example from Figure 6.6. If we did not have the direct connection between
cs and c;, Map,_;, but rather map, _ 5, then op, must be defined indirectly in terms
of op,;, which in turn must be related back to op, where the operation is originally
defined (see Figure 6.7).

6.1. Module Transformation in Software Development 101

Givea: op,, map,_;, Map,_,
local
op(Map,_,(c2)) <« mMap;_,(0p;(c2)) c2
Py (Map,_y(c) = Map (o (c)
in
OP(AGg(c,ca,cx) <= “

MQ(C{, cis c;) C:
wherec, = 0p(c1)

andc; = Opy(c2)
andc; = Opy(cs)

Figure 6.7: Transitivity — Case 1

2. Given the translations g : c¢; — ¢z and A : c3 — c), we define the relation between
c3 and c; as: g(h(c)) = b, and define op, as:

80p(c1)) <« opy(g(c))
Mopy(cs)) <« op,(Acs))

This is similar to Case 1.

3. Given the translations g : c2 — ¢; and A : c3 — ¢, we define the relation between
c3 and c; as: g(c2) = h(c3), and define op, as:

opsca) <« 2(0Py(ca)
MOpy(c) & Opy(en).

Recall the example from Figure 6.6. If we did not have map;_,, but rather map,_,,,
then op; must be defined in terms of op,, which in turn must be related back to op,
where the operation is originally defined (see Figure 6.8).

Our system must remain consistent, 30 we consider the possibility when the inter-
mediate component loses information. In this case our equation does not express
our intention of consistency. Take for example, the s-expression component. We
easily define compatibility maps from Buf; t0 Buf, and from Buf; to Buf,. Each
two compatibility maps to obtain one that translates between Buf, and Buf;. We
must add the constraint that the compatibility maps be injective. (We do not have
to introduce this constraint to the other cases because we are not able to define the

required compatibility maps.)
4. Given the transiations g : c; — c; and A : c; — c3, we define the relation between
cs and c2 as: I x: ¢1.8(x) = ¢ and A(x) = c3, and define op; as:

80p(c1)) <« opy(g(cy))
opyih(c)) <« Aop,(c1)).

102

Chapter 6. A Framework for the Module Transformation System

Given: 0p,, map,_,,, map,_.,
local

opy(map,_;(c2)) <« map,_,(0p,(c2)) c2
" mapy..;(0Py(c2)) < opy(Mmap,_,;(cs))

Mcl 1C2, c’» <«

<1

agg(cy, ¢, ©3) c
wherec, = opy(c1)
sadc; = Op)(c2)

sadcy; = Opy(cs)

Figure 6.8: Transitivity — Case 3

Gives: 0p,, map,_.,, Mmap, _s
local
map;_(0py(c1)) < opy(Mmap;_,(c1)) c2
- o0ps(Map;_s(c1)) < map;,_(0p,(c1))
op(Agg(c1,C2,03)) <= °

Agg(ct, ©2y ©3)
wherec; = Opy(c1)

andc; = 0p)(ca2)
andcy = Opy(cs)

Figure 6.9: Transitivity — Case 4

Here we have a different set of mapping functions, but again op, must be defined
in terms of op,, which in turn must be related back to op, where the operation is
originally defined. This results in a new definition of op (see Figure 6.9).

Incrementally Building the Aggregate. A more flexible approach is to arrange for all of
the component represeatations 0 be available for the operation definitions in order to take
advantage of any interrelationships among the various representations. Then we eliminate
the restrictions seen in Figure 6.6 where component fields that make up the aggregate
representation could not interact. Going back to this previous aggregate definition, instead
of actually deriving implementations for the component operations, represented by op,, the
data transform procedure itself is symbolically manipulated to yield a new definition for
the aggregate.

6.1. Module Transformation in Software Development 103

local
mcf) A M""cl: Chyee)
. where ...; = MaP_,(c) ...

-‘Q('P"‘(cl)) < span(op(c))

This is accomplished by, in effect, unfolding the compoanent operation definitions within
the body of the aggregate operation. The abstraction boundaries of the components are
lifted to facilitate improvements in the efficiency of the aggregate data representation and
operations. The span function is abstracted from the definition for notational convenience,
and to put the definition in the proper form for manipulation as a data transform procedure. If
we had the inverse compatibility map available, then the unspan form of the data transform
procedure is used instead.

We think of this process operationally as incrementally building the aggregate, repeat-
edly merging adjacent components until the single aggregate is left. The definitions of the
operations and spanning functions are obtained mechanically by considering the order in
which the components must be “merged.” The basic idea is to consider the buffer definition
as a graph, where the components are nodes and the compatibility maps are directed arcs.
The operations for each component must be reimplemented to operate on the new aggregate
representation. This is done in stages. Starting at the node representing the component
where the operations are defined, all connected nodes are merged into a new “coalesced”
node using a variant to the data transformation techniques. This coalescing of connected
nodes is repeated until the graph collapses into a single node.

Returning to our example (see Figure 6.10), we start with the given definition for op,.
We merge the second component (where the operation is defined) with the adjacent first
component to obtain an intermediate operation 0p,,;. Then we merge this intermediate
aggregate with the now adjacent third component to obtain the operation op on the aggregate
data structure. Notice that span and unspan are being introduced explicitly for the first
time. In the previous sections, the compatibility maps served implicitly in that capacity.
However, the expressions here are more complex so that span and unspan functions must
be introduced in order to get the expressions into a form that we know how to manipulate.

These are precisely the span and unspan definitions used in the algorithm presented at the
beginning of this section. They satisfy the properties given in Definition 9. By construction,
the span function is guaranteed to be injective. Since the component argument appears in
Also by construction, the unspan function is guaranteed to be surjective. Since the fields in
the aggregate result are a subset of the fields in the aggregate argument, then every element
of the result is in the image of unspan.

6.1.5 Aggregate Implementation

Continuing the implementation of the specification P, the dats transform procedures from
the aggregate definition are transformed into functional definitions to yield an aggregate

prosotype.

Sy

104 Chapter 6. A Framework for the Module Transformation System

Given: 0p;, Map,_,;, Map,_,
local
span(cy) <
wcl’ c))wherec; = m—l(cﬁ)

unspan(argg(ci,c2,cs)) <«
Agg({ ci | map,_,(cs) }, c2)

op a(8pan(ca) <
Span(op,(c2))

unSpaN(op(Agg(c1,c2,%3)) <«
0P x2(UNBpaN(agg(ci, c2, c3)))

Figure 6.10: Incremental Merging

Definition 10. An aggregate prototype is a refinement of the aggregate defini-
tion where the data transform procedures have been transformed into functional
definitions to produce the first executable system.

We saw an example of a prototype buffer in Figure 3.5.

6.1.6 Optimization

The functional definitions of the aggregate prototype are further refined for optimization
purposes to yield an aggregate implementation.

Definition 11. An aggregate implementation is a refinement of the prototype
providing an “efficient” implemeatation of the datatype.

Efficiency is measured in terms of the developers needs, and involves, for example, tradeoffs
between the amount of space the program uses and the time required to run the program.
We saw an example of an optimized buffer in Figure 3.6.

6.2 Module Transformation Rules

This section provides a more rigorous explanation of the module transformation rules:
transiaze, shift, expose, incorporate, and release. They were initially presented in Sec-
tion 2.3; the reader may want to refer back to that section to review the notation and naming
conventions. Each subsection includes a description of the module transformation rule and
the seops in applying the transformation. Strictly speaking, the transformation is a single
stiep. The surrounding steps to put the program into the proper form is the transformation
swrosegy.

62. Module Transformation Rules 105

6.2.1 Translate

The transiate transformation is used to change the represeatation of a datatype and/or
move computation along the data paths of a program. This change in representations
is expressed by a function that maps from the original representation into the new one.
The transformation provides a mechanical means to reimplement the operations of this
datatype on the alternative data representation. The meaning of the abstract datatype,
however, remains the same. This transformation differs from shift [76] in its use in the
integration of components; shift is used to optimize within a single component, rranslate
is used to integrate between components. Rather than “synthesizing” the function within a
component that is used to transform the original program into a more efficient one, translate
uses an “analytic” approach. The function is introduced at the system level between two
distinct components in order to integrate them. In addition, when shift requires an inverse
translation function that is difficult to define, transiate could be used as an alternative.
With the emphasis on integrating datatypes, this transformation differs from work done
by Darlington [17, 18] on synthesizing implementations from algebraic specifications.
Harrison and Khoshnevison [43] have developed an automated system for implementing
datatypes for a limited language where they synthesize the inverse mapping function.

In order to understand the transiate transformation, we examine a representative selec-
tion of operations for the datatype, that produce an instance of the type, operate on the type,
and reveal some information about the type. (Of course there may be additional parameters
besides the type of interest.)

Sigaature DTYPE = sig

type dtype
gen : dtype
oxt: dtype — dtype
obs : dtype — v

oad
Given a spanning function:

Ut -a
UNSpPaN : Dtype’.dtype — Dtype.dtype
unspan(Dtype’.Abs(a)) < Dtype.Abs(U(a))

Replace:
Structure Dtype : DTYPE = struct
typedtype = Abs of
gen < Abe(G)
xiAbs(a)) <« Abs(E(a))

106 Chapter 6. A Framework for the Module Transformation System

By:

Structure Dtype’ : DTYPE = struct
type dtype = Abs of o
< Dtypegen

unspan(gen)
unspan(exi(a)) < Dtype.exiunspan(a))
obs@) < Dtype.obs(unspan(a))

Using the notion of correctness relation [46, 78], we can ensure that unspan is a valid
abstraction function. An abstraction function is a surjective strong-homomorphism from
the representation, B, to the abstraction, A. We construct an abstraction function,

We impose the requirement that it be surjective. (A requirement that must be ensured by the
software designer.) Then we can show that A is a strong partial homomorphism, considering
each operator in turn.

Aatype(Bgen) = Agen
RatypePext() = Agxt(hat ype)
Bope™ = Agpe (Rt ypel®)

In our transformation, where we treat Dtype’ as B and Dtype as A, these equations are
satisfied by constructor, Ayt ype = UNSPaN. A similar argument holds when we have span
(a representation function) instead.

Applying the transformation. This transformation is the important step in a series of
sieps that produce the new implementation of the datatype. The data representation and
the implementation of the operations change, but the meaning of the datatype remains the
same. The high-level steps of the transformation are: (1) define the new implementations
a8 data transform procedures; (2) unfold all old definitions; (3) “bridge” the old and new
representations; and (4) fold the spanning function. Preliminary work was done in an Ergo
Seminar on Inferential Programming by Elliott [24).

The operations are defined on the datatype with representation «. For example, obs
takes an instance of the datatype as an argument, reveals the underlying data representation
of the abstraction (represented by a) and returns the result of performing some operation
o it (represented by the pattern 0).

Structure Dtype : DTYPE = struct
gpedtype = Abs of o
oM « AbNG)
AAAbNE)) <= Abs(Ee))
RAbS(s)) <= Of)
od

0.2. Module Transformation Rules 107

The function span maps the given datatype representation into the new representation.
From now on, Dtype.Abs and Dt ype’.Abs are abbreviated as Abs and Abs'.

span(Abs(a)) <« Abs'(S(a))
The new implementations of the operations are defined in terms of the original imple-
mentations on « (as data transform procedures). Strictly speaking, this is the translate
transformation.
Structure Dtype’ : DTYPE = struct
type dtype = Abs of o’

gen < span(Dtype.gen)
axi(span(Abe(a))) < span(Dtype.ext(A))
gbe(span(Abe(a))) < Dtype.obs(A)

span(Abs(a)) < AbS'(S(a))
ead

The old operation definitions are mechanically “unfolded,” that is, the names of the opera-
tions are replaced by their bodies.
Structare Dtype’ : DTYPE = struct
type dtype = Abs of o/
gen < span(Abs(G))

exi(span(Abe(@))) <« span(Abe(E(a)))
cha(span(Abs(@))) <« O(a)

span(Abe(@)) < Abs'(S(a))
ad

The span function on the righthand side is likewise mechanically “unfolded.”
Structure Dtype’ : DTYPE = struct
type dtype = Abs of o’
gen <« AbE'(S(G)

exi(span(Abs(a))) < Abe'(S(E(a)))
gbe(span(Abe(a))) <« 0(d)

span(Abe(a)) <« Abs'(S(a)
od

If the inverse of span could be obtained, then deriving new implementations of the
operations is casier. Simply map the new datatype into the old representation, perform
the operation, and then map the datatype back into the new representation. Obtaining the
inverse may not be practical since the spanning function may not always be one-to-one, and,
even if it were, there may be no easy way to obtain it. Rather than coming up with the inverse
explicitly, it is sometimes possible t0 use syntactic manipulations and simplifications to in
effect, “invert” the spanning function. This is accomplished by simplifying the expressions
90 mastch the new representation expressed in the spanning function. This is where insights
about the domain from the developer are needed.

108 Chapter 6. A Framework for the Module Transformation System

Structure Dtype’ : DTYPE = struct
type dtype = Abs of o/
gen < Abs'(G)

exi(spar(Abs(@))) <= Abs'(E'(S(a))
obs(span(Abs(a))) <« 0'(S@)

span(Abs(a)) <« Abe'(S(a))
ead

Now that the expressions in the operations match the spanning function, we mechanically
“fold” span on the righthand side.
Structure Dtype’ : DTYPE = struct
type atype = AbS of o’

gen <« Abs'(G)
axi(span(Abs(a))) < Abs'(E'(Rep’(span(Abs(a)))))
obs(span(Abs(a))) < O’(Rep’(span(Abs(a))))

span(Abs(a)) <+ Ab&'(S(a))
end

Since all instances of the datatype appear in the context of span(Abs(g)) which is the new
datatype, it is renamed.
Structure Dtype’ : DTYPE = struct
type dtype = Abs of o
gen < Abg'(G)

oxi(Abs'(a)) <« AbS'(E'(a))
obe(Abs’'(@)) <« O0'(a)

New implementations of the operations (represented by G’, E’, and (%) have been derived
that operate on the new data structure, o/, directly.

6.2.2 Shift

The shift transformation is used to move computation along the data paths of a program to
increase the efficiency of the program (eg., moving computation on a data structure from
when it is accessed t0 whea it is generated). This may change the data representation of
a datatype but the meaning of the abstract datatype remains the same. The idea of a shift
transformation was presented by Jgrring and Scherlis [49, 76].

Sigaature DTYPE = sig

type atype
08N : dtype
obs: atype — v

62. Module Transformation Rules 109

Replace:
Structure Dtype : DTYPE = *fruct
typedtypo-Auda

< Abs(G)
MAbe(a)) < Rep’(ﬁpan(ﬁbs(a)))

span(Dtype.Abs(@)) <« Dtype’.AbS(0(a))
end

By:
Structure Dtype’ : DTYPE = struct
type dtype = Abs of o’

gen < span(Abs(G))

obs(Abs(@)) <« Rep/(Abs(a))

span(Dtype.Abg(a)) < Dtype’.AbS(0(a))
end

Shift is a special case of transiate. 'We demonstrate this by using transiate to effect
the shift from the original definition of the operations in Dtype to the new definitions in
Dtype'

< Abs(G)

mkbli(a)) < Rep/(span(Abs(a)))
Jerring and Scherlis perform the actual shift by replacing Abs with span o Abs, and span
by the identity function. Instead, we introduce a step for defining new definitions for the
operations using the transiate transformation to define alternative implementations.

gen < span(Dtype.gen)

ohe(span(Abs(a))) < Dtype.0bs(Abs(a))
Then we mechanically “unfold” the definitions of the operations on the righthand side. This
puts the generator in the desired format, (i.e., replacing Abs by span o Abs). In the observer
function, the datatype is already in the context of span on the righthand side. This matches
the occurrence on the lefthand side introduced in the definition.

gen <« span(Abe(G))

obe(span(Abe(a))) <« Rep'(span(Abs(a)))
Since the datatype in obs appears only in the context of span it is renamed. This produces
the same result as Scherlis obtains in replacing span by the identity functiun.

gen < span(Abe(G))
oba(Abs(a)) < Rep/(Abs(a))

We then simplify, removing the abstractios: boundary in obs.

gen <« span(Abe(()
oha(Abe@)) < o

We now have the transformed program of Dt ype’ where span has been shifted from obe to
gen. A similar argument holds when shifting from gen to obs.

110 Chapter 6. A Framework for the Module Transformation System

Applying the transformation. The steps for transforming the operations follow for
“advancing” computation from the observer obs to the generator gen. It is also possible
to “delay” computation from a generator to an observer. The high-level steps of the
transformation are: (1) introduce the intended new boundary; (2) abstract the code segment
“between” the old representation and the new abstraction into a new function; (3) accomplish
the actual shift; and (4) simplify.
We start with the original definition,
Structure Dtype : DTYPE = struct
typedtype = Abs of
gen <« ADbs(G)
obs(Abs(@)) <+ O(a)
ead

and introduce an abstraction boundary in the observer function.

Structure Dtype : DTYPE = struct
typedtype-Absofa

< Abs(G)
QIE(ADG(G)) < Rep/(Abs'(0(a)))
ead

The next step is to advance computation by mechanically “folding” the new abstraction
into a span function. The span function takes the original abstract datatype and produces a
new abstraction.

Structure Dtype : DTYPE = struct
typedtype = Abs of o

gen < Abs(G)
gbe(Abs(@)) < Rep'(span(Abs(a)))
span(Abs(a)) <« AbE'(0(a))

ead

The datatype is now in the correct format to apply the shift transformation.

Structure Dtype’ : DTYPE = struct
medtypo-mdﬁ

< span(Abe(G))
mm(a» < a

span(Abs(a)) <+ Abs'(0())
od

We simplify by unfolding span in the generator.

62. Module Transformation Rules 111

Structure Dtype’ : DTYPE = struct
type dtype = Abs of §

gen <« Abs'(0(G)
Qs(AbS'(@)) <« a

end

We see that shifting under these conditions is a special case of the more general transiate
data transformation technique, where the new generator G’ is O(G), and the new observer
O is the identity function. Since the span function is uncovered from the observer function,
it simply drops out as we shift the computation over to the generator function.

6.2.3 Expose

The expose transformation is used to reveal the underlying type structure. This has the effect
of moving the boundary of the type “inward.” The expose transformation was presented by
Scherlis [76).
Given spanning functions:

S:T—=Tyx---xT,

Ut} x-- . xTy—=T
U=S§S"!

span(Dtype.Abg(a)) < Dtype’.AbS(S(a))
unspan(Dtype’.Abs(a)) < Dtype.Abs(U(a))
Replace:

Structure Dtype : DTYPE = struct
typedtype = Abs of

gen <« Abs(U(G)
ext(a) <« AbS(UE(S(Rep(a))))
obs(@) <« O(S(Rep(a)))

end

By:

Structure Dtype’ : DTYPE = struct
typedtype = Abs of o
gen <« unspan((Abei,...,Ab&.)(G)

ext@) < unspan((Abs,,...,Abs,)(E((Rep,,...,Rep,)(span(a)))))
obs(@) <« O((Rep,,...,Rep,)(span(a))

ead

The expose transformation replaces all instances of Abs o U by unspan o (Abs;,...,Abs,)
and all instances of S o Rep by (Rep,,...,Rep,) o span. The bodies of span and unspan
are represented by S and U.

112 Chapter 6. A Framework for the Module Transformation System

Expose can be thought of as a “strategy” composed of more basic steps. These steps are
explained in terms of the simpler transformation steps, introducing an abstraction boundary
and folding the definition for span or unspan. For example, starting with Abs o U, we
introduce an abstraction boundary to get Abs o U o (Rep;,...,Rep,) o (Abs;,...,Abs,).
But the first three composed operations is the definition of unspan, so folding obtains,
unspan o (Abs,,...,Abs,).

Here are the steps for replacing all instances of Abs o U by unspan o (Abs;,...,Abs,):

AbsoU
Abs o U o (Rep, ..., Rep,) o (AbS1,..., AbS,)
M°(mx,m,mﬂ

Here are the steps for replacing all instances of S o Rep by (Rep,,...,Rep,) o span:

SoRep
(Rep,,...,Rep,) o (Abs;,...,Abs,) o S o Rep
(Rep,,...,Rep,) o span

Applying the transformation. The high-level steps of this transformation are: (1) ma-

nipulate the type so that all instances of Rep appear in the context S o Rep and all instances

of Abs appear in the context Abs o U; (2) move the boundary of the type inward; and (3)
We start with the original definition,

Structure Dtype : DTYPE = struct
type dtype = Abs of
gen < AbS(G)
ext@) < Abs(E(Rep(a))
obs@) < O(Rep(a)
end

and manipulate the representation of the type so that all instances of Rep appear in the
context S o Rep and all instances of Abs appear in the context Abs o U. This is done using
simplification steps, the fold transformation, and insight from the software developer.

Sta—r 0y XX ap
Uta1 X" Xag =«
U=ns§-!
Structure Dtype : DTYPE = struct
type dtype = Abs of o
gen <« Abs(U(G))

2xia) < AbsUE'(S(Rep(a)))
abe@) <« O'(SRep(a))

od

62. Module Transformation Rules 113

The datatype is now in the correct format to apply the expose transformation; all instances
of § o Rep are replaced by (Rep,,...,Rep,) o span and all instances of Abs o U are replaced
b}'m ° (ml’--uml)-
Structure Dtype : DTYPE = struct
type dtype = Abs of o
gen < unspan({(Abe,...,Abs.}(G"))

exi(a) < unspan((Abs,,...,Abs.}(E'((Rep,,..., Rep,)(span(a)))))
obs@) < O'((Rep,...,Rep,)(span(a)))

span(a) < (Absy,...,Abs,)(S(Rep(a))
unspan(a) < Abs(U((Rep,,...,Rep,)(a)))

end
This has the effect of moving the boundary of the type “inward.” In Schetrlis’ paper, the
next step is to use the release transformation to to excise the span and unspan portions
from the type. Here, we instead make use of the transiate transformation to derive a new
implementation for the type, revealing the underlying data structure, the tuple (a; x. .. X ay).
Structure Dtype’ : DTYPE = struct
typedtype=Absof (a1 X ... X ap)

gen < span(Dtype.gen)
exi(a) < span(Dtype.exi(unspan(a)))
obe(@) < Dtype.obs(unspan(a))

span(a) < (Absi,...,AbSs,)(S(Rep(a)))
unspan(a) < Abs(U((Rep,,...,Rep,)()))
ead
Next we mechanically “unfold” the old operation definitions. The collection of abstraction
functions, (Abs;,...,Abs,), is applied to an n-tuple to create an n-tuple of abstractions. The
collection of representation functions is similarly defined.
Structure Dtype’ : DTYPE = struct
typedtype = AbBof (o X ... X ap)
gen < span(unspan((Abe,,...,Abs.}G")))

exi(@) < span(unspan((Abs,,...,Abs,)(E'((Rep,,. .., Rep,)(span(unspan(a)))))))
gbe(@) < O'((Rep,,...,Rep,)(span(unspan(a))))

span(a) <« (Abs,,...,Abs,)(S(Rep(a)))
unspan(a) <« Abs(U((Rep,,...,Rep,)a))
end

Simplify, this is easy since span and unspan cancel out.
Structure Dtype’ : DTYPE = struct
typedtype s Abs of (o) X ... X o)

gen <& (Abs,...,AbS.)G)
axt(a) <« (Abs;,...,Abs.)(E'((Rep,,...,Rep,)a)
obe@) <« O'((Rep,,...,Rep,)a)

ead

114 Chapter 6. A Framework for the Module Transformation System

6.2.4 Incorporate

The incorporate transformation moves an external function (or module) into the public part
of a type, or a public function (or module) into the private part of a type. Declarations
in the incorporated structure must be evaluated in the defining environment and name
clashes avoided (cf. Standard ML semantics of the “open™ statement). There must be no
external references when moving a public structure into the private part of the type. This
transformation is used for specializing modules in the context they appear in by moving
external functions or subcomponents into a module. The incorporate transformation was
presented by Scherlis [76). Similar ideas were presented by Wile [91] based on Clear [13].
Similar applications to modules are found in the work on parameterization in OBJ [33] and
in Tracz’s thesis [89] where incorporate is an instance of “removal of horizontal structure —
inheritance hierarchy flattening.” Any module that imports another module can be reduced
to a single module with the same functionality.

Since we do not need to access the internal structure of the datatype, we use a general
function f (where {_}* denotes multiple instances) rather than gen, ext, and obs.
Replace:

Signature DTYPE =sig
{f:1}

end
Structure Dt ype : DTYPE = struct

(1) « »op
ead
gV):s & e

Signature DTYPE = sig

8:s

{f ¥

end
Structure Dtype : DTYPE = struct

) <« e

{16y « »)y

ead

This is a one step process, so unlike the other transformations, there is no section for
applying the transformation.

6.2.5 Release

‘The release transformation moves a function (or module) out of the public or private part of
a type, (provided the function definition does not contain any references to the abstraction
functions for the type). Naming conflicts must also be handled (eg., by renaming). The
release transformation was presented by Scherlis [76).

63. Limitations and Benefits of the Semantic Model 115

Replace:
Signature DTYPE = sig

g:s
{f:y
ead
Structure Dtype : DTYPE = struct
) <« e
{ro7)y < oy
end

By:

Signature DTYPE = sig
{f:e}
end
Structure Dtype : DTYPE = struct
{17y « b}
ead
g0"):s &= e

This is a one step process, so unlike the other transformations, there is no section for
applying the transformation.

6.3 Limitations and Benefits of the Semantic Model

The framework for the module transformation system described in this chapter uses: (1)
an algebraic model to explain the meaning of integration; (2) a notion of a correctness
relation to explain the meaning of transformations on data representations; and (3) theories
to explain the meaning of transformations on abstract interfaces. The motivation for
developing a framework is to enhance the understanding of the terms used informally, to
provide structure for aiding the software developer in using this approach, and to provide
insight into automating the process. Therefore the emphasis of this chapter has been on
developing encugh of a framework to understand the process rather than developing all the
details of the semantic model.

The dependency of using Standard ML in this framework is on the module system,
rather than on the language itself. Required extensions to the notation to express the
transformation process include: axioms [72], views [33], expression procedures [74], and
a means t0 express alternative solutions. Axioms are needed to enrich the expressive
power of Standard ML so that the properties of the aggregate specification can be defined.
Views enable the software designer to express how the components are related through
consistency relations. Expression procedures provide the notation needed to express the
initial definition of the aggregate upon which module transformation rules can be applied.
Ahernative solutions are used to maintain the internal consistency of the aggregate.

116 Chapter 6. A Framework for the Module Transformation System

The benefits of this semantic model come from its simplicity and the insights it provides
for amomation. This semantic model could be enriched in a number of ways. The
integration process described in Section 6.1 implements consistency relations in terms of
translation functions. Higher-level abstractions of consistency that could provide a better
model for explaining the design and manipulation of module interconnections are discussed
in Section 8.2.4. An outline of the module transformation rules was provided in Section 6.2;
this description would benefit from a richer model for interfaces, exports, imports, and a
more abstract notion of equivalence (see Section 8.2.3). More details on how the module
transformation system compares to related areas of work are discussed in Chapter 7.

Chapter 7
Related Work

Section 7.1 begins with an evaluation of the module interface transformation system (re-
ferred to as MTS in the discussion that follows) by comparing it to traditional approaches
in software engineering to determine how well the approach addresses the problems of
integrating module interfaces raised in the beginning of the thesis (Section 1.2). Then, the
following four sections evaluate the utility of the MTS techniques by comparing them to
several related areas of work: building systems from software components (Section 7.2);
defining and managing representations (Section 7.3); data design and refinement (Sec-
tion 7.4); and adapting interfaces (Section 7.5). Some of the related methods have similar
motivations or shared techniques while others are complementary approaches. Data trans-
formation techniques that this research builds upon were discussed in Section 2.2 and
Section 6.2. Finally application domains for these technigues are discussed in Section 7.6.

7.1 Traditional Solutions — Revisited

The demonstrated MTS approach addresses the problems of integrating module interfaces
(raised earlier in Section 1.2) in the subsections that follow. The areas of related work are
grouped according to these four points which categorize when agreement on interfaces in
the design must be reached, and is evaluated with respect to: scalability, expressiveness,
appropriateness of representations, interface agreement, adaptability, correctness, perfor-
mance, and automation. All of these criteria are not considered in each of the sections that
follow; rather, the important points are raised as appropriate.

Bullding Systems from Software Components. Rather than requiring an g priori agree-
ment on data representations, complex datatypes are defined as a collection of separate
modules that are systematically merged using formal methods to derive the module inter-
faces and efficient representations.

When good data representations are difficult to design, especially when there is not much
experience in the particular application domain, the system designer can define a complex
datatype as a collection of separate modules. These modules are systematically merged
using formal methods. The methods also facilitate adaptation, in line with evolutionary

117

[

118 Chapter 7. Related Work

models of development, since the process of adding a new component is similar to the
process of merging the original components.

In Section 7.2, specification languages, module languages, and domain languages are
evaluated with respect to expressivencss and scalability to determine how well they support
building systems from collections of modules or software components.

Defining and Managing Representations. Rather than mediating representations through
insermediate translation functions, new module interfaces are derived that interact directly.

This has been the primary focus of this research. Translation functions provide a
notion of consistency among the components and transformations are applied to derive
between all components were relaxed to allow for indirect connections (via an intermediate
component) and connections in one direction only.

In Section 7.3, techniques for defining and managing representations are evaluated with
respect to0 appropriateness of representations, interface agreement, and adaptability.

Deata Design and Refinement. Rather than leaving data design decisions to a compiler
when using very-high-level languages, the software designer is involved in defining and
organizing module interfaces.

The decision was made to involve the software designer by giving input to an interactive
system in order to allow for rich abstractions for user-defined types. Once formalized it may
be possible to more fully automate the approach; this has been left to future research. See,
for example, an automation-based software development paradigm presented by Balzer [4]).
Harrison and Khoshnevison [43] have an automated system for implementing datatypes;
they use an approach similar to MTS in requiring the designer to specify an abstraction
function (essentially a translation function), but use a restrictive language to automatically
synthesize the inverse mapping function t0 define the implementation. Simplifications can
then be applied to derive functions that operate on the new data structure directly.

In Section 7.4, frameworks and programming eavironments are evaluated with respect
%o correctaess, performance, and automation, to determine how well they support the process
of data design and refinement.

AdaptingInterfaces. Rather than requiring a priori agreement on abstract interfaces, new
types may be defined as exteasions of existing ones (eg., using object-oriented techniques
such as inheritance) and new module interfaces derived.

The contribution in this area is in developing a complementary approach that builds on
using modules and inheritance t0 adapt abstract interfaces and then applies derivations to
specialize the implementation of the inherited module in the context of the new module.
This approach has many similarities with mediating representations through translation
functions and can make use of the experience leamed from this earlier effort.

In Section 7.5, object-oriensed techniques and transformation systems that support
evolution are evaluated with respect so interface agreement and adaptability by means of
modifying existing inserfaces.

7.2. Building Systems from Software Components 119

7.2 Building Systems from Software Components

In this section, specification languages, module languages, and domain languages are
evaluated with respect to expressiveness and scalability, to determine how they support
building systems from software components. Evaluating scalability raises the question,
what techniques are available for managing larger programs? This is a major source of
motivation for this investigation of transformations and module interfaces. Evaluating
expressivencss raises the question, to what degree are the conceptual properties of the
problem reflected in the syntax of the language? Module facilities enable more explicit
representation of systems architecture and, through information hiding, enable components
%0 be designed and developed separately. The challenge is to develop module mechanisms
and formal methods approaches that can exploit modularity, and to develop formal methods
approaches that support aggregation and integration of components for performance.

Even though the MTS approach is focused at the system design level, which requires
a “programming language” in order to manipulate data representations, specification lan-
guages [92] give us insights into the structuring of large programs. Larch [38] and Z [84]
are representative of recent developments in specification languages for specifying large
programs.

‘The trait is the basic module of specification in Larch. A trait introduces operators and
specifies their properties (via algebraic specifications). Sometimes the operators correspond
to an abstract datatype; sometimes they do not since it may be desirable to specify properties
that do not quite constitute a type. Traits can be combined to form richer traits, and a library
of abstract interfaces has been constructed to aid the software designer. Components in
MTS, like traits, describe a collection of operations that may not constitute a datatype.

The schema is the basic module of specification in Z. A schema introduces domains
and operators and specifies their properties (via set theory). Schemas can be combined in
various ways to build larger programs as defined by the schema calculus. For example,
Suffrin [88] uses Z 10 develop a display editor. Z is a model-oriented specification language
where one defines a system’s behavior by constructing a model of the system in terms of
mathematical structures such as tuples and sequences. Trying to develop a more extensive
editor from this definition provided the motivation for introducing components that are
views of some common datatype since it is difficult to create an initial model of the buffer
that lends itself to specifying all of the various operations. Coastraints in MTS, like Z
invariants, were introduced to describe properties of the datatype that are not restricted to
a particular operation.

Although these specification languages have similar goals in connecting software com-

poneants, they are descriptive. They may describe what it means for components to be
hemhedhmnothowninomm This thesis is addressing the latter problem and
is focused at the program design level where module interfaces and data representations
are manipulsted. Since specifications deal with a higher level of abstraction, it is necessary
10 use a programming language in which abstract interfaces and data representations can

be defined and manipulased. However, these specification languages motivated adding
components and constraints 1 the notation and influenced the style of the editor derivation.

120 Chapter 7. Related Work

From the many programming languages, Standard ML [61] was chosen because it has
an elegant module facility and a fully defined semantics. Moreover, Extended ML [72]
adds a useful extension to the language, the ability to add axioms, and gives a precise
meaning to decomposing, refining, and composing programs. This gives the software
designer a wide-spectrum language to represent higher-level specifications that can be
refined to an implementable subset. Although the decision was made to base the notation
on Standard ML, the transformation techniques are language independent and can be applied
to other languages with modules such as Ada, Clu, and Modula 3.

Goguen [33] has studied the issue of component integration for large-scale systems,
and proposes a module interconnection language (LIL) with a program methodology for
composing software components that facilitates reuse. Goguen introduces three seman-
tic concepts: (1) theories, which, like Larch traits and the MTS definition of component
specifications, associate semantic descriptions with software components; (2) views, which
describe implementation alternatives for software interfaces; and (3) horizontal composi-
tion, which describes structural alternatives for a given level of an abstract machine. The
MTS notation was adapted to include a construct for views to enable the software designer
to express how the components are related through coansistency relations. Traditional trans-
formation techniques deal with verzical composition, which refines programs to a lower
level of abstract machine. The MTS transformation techniques for integravion is an exam-
ple of horizontal composition that is necessary for structuring large-scale programs. LIL
is descriptive, and describes what the alternatives are, but is not constructive, offering no
guidance in implementing the alternatives. The techniques developed in this thesis de-
scribe how to use transformations to supplement the horizontal composition methods using
a constructive approach.

Tracz develops a system called LILEANNA [89] based on LIL using Ada as the program-
ming language extsended with ANNA [56], a specification language for Ada that allows the
insertion of annotations. Tracz provides a model of module composition, fully defines the
composition mechanism (in LIL) by allowing horizontal, vertical, and generic instantiation
in module expressions, and discusses the relationship between the various types of module
structuring. This provides a framework for describing changes to modules and may give in-
sight into new transformations and the structures needed for automation. The requirements
for composing modules in LILEANNA makes the underlying assumption that modules that
share data have the same data representations. The MTS methods provide complementary
techniques for integrating multipie data representations.

The Draco [62] system aids the software designer in constructing software systems
from reusable software parts. The software designer uses a domain language for describing
programs in each problem area. The objects and operations in a domain language represent
analysis information about a problem domain [26]. There is one software component for
each object and operation in the domain. Objects and operations from one domain language
are implesnented by being modeled by the objects and operations of other domain languages.
Bventaally, the developing program is modeled in a conventional executable (programming)
language. Programs are constructed from the objects and operations of a suitable domain.
The use of a domein language aids the software developer in expressing the problem in the

:

7.3. Defining and Managing Representations 121

language; however, support is lacking in structuring objects and operations into datatypes
or objects (in the object-oriented sense). For example, an operation and an object that it
manipulates are refined separately (since each one is represented as a separate component);
furthermore, the refinements must agree on the underlying representation of the object. The
MTS methodology, on the other hand, provides a systematic means to reach agreement of
the representation of the object and to derive new implementations of operations defined
on the object.

Draco transformations represent optimizations at the domain language level; Draco re-
notions of transformations and refinements. The MTS methodology similarly makes a dis-
tinction between using transformations within and between domain levels. The techniques
for integration, in effect, stay within the same domain. In contrast, rather than source-to-
source transformations which consist of a lefthand side that is replaced by a righthand side,
MTS uses transformations to derive and manipulate module interfaces. The subsequent
refinement steps make choices to implement the program in a more specialized domain.
Refinement in Draco is an interactive process where the systems designer is involved in
making decisions. For large systems, there are far too many decisions for the systems de-
signer to make. Draco provides two mechanisms for dealing with this complexity: domains
and tactics. The systems designer need only work in one domain at a time which limits
the scope of what to think about. Tactics limit the number of decisions that must be made.
Even with these mechanisms, as systems are built and adapted, a Draco system may become
increasingly difficult to maintain. The software developer using MTS for refinement, on
the other hand, uses a small set of well-defined transformations for adjusting interfaces and
data representations.

7.3 Defining and Managing Representations

In this section, techniques used for defining and managing representations are evaluated
with respect to the criteria for appropriateness of representations, interface agreement, and
adaptability. Evaluating the appropriateness of representations raises the question, how
do chosen data representations reflect the requirements of each component? As a system
evolves, compromises are inevitably made to data representations in order to meet diverse
needs; often expedient solutions are developed from which a later retreat is required.
Evaluating interface agreement raises the question, when must agreement on interfaces in
the design of software be reached? Delaying design decisions when a priori agreement
cannot be reached may make the design process easier initially but additional work is usually
required 10 integrate the components later. Evaluating adaptability raises the question, how
easy is it t0 incorporase new components into the system?

The views approach of Garlan {29] has motivations similar to the MTS approach; rather
than having to decide in advance on some compromise representation, separate components
on imserfaces to occur later in the design process. Unlike the MTS approach, however,
merging is restricted to a small number of fixed datatypes, thus yielding a greater degree of

122 Chapter 7. Related Work

automation at the expense of expressiveness, power, and flexibility. The programming with
views approach of the Gandalf group [39) extends Garlan’s work to support the integration
of programs (tools) that access and manipulate a shared data representation. The description
of the shared data representation is factored into the individual tools; each tool defines its
own view of the data structure it uses. These views are later integrated by describing
how information is shared between tools and what invariants must be maintained between
different views of the same data. This supports the merging of arbitrary abstract datatypes
(that are connected via “compatibility maps™), but is less antomatic since it requires all
operations to be rewritten by hand for a merged type.

The MTS techniques for deriving module interfaces require a single compatibility map
to interconnect any two components. This facilitates the design level of integration, but
requires additional work at the implementation level of integration where the developer
must provide some guidance. The integration of the components is resolved at compile-
time under MTS but at runtime under Gandalf. A static approach permits optimizations to
be performed as well, and alleviates the additional overhead required to handle integration
during runtime. It is important to keep in mind that the MTS techniques were designed
to handle a slightly different problem (which permits this static approach), building a
datatype from a collection of pieces and not maintaining separate views in the merged type.
However, these techniques may provide a basis for formalizing the process of merging in
programming with views (see programming with views in Section 7.6 for more detaiis).

Whenever a change is made to a component, this may affect other components that in
some way depend on it. The techniques for manipulating module interfaces isolate change
in the new component and then propagate change to other interdependent components
through the process of integration. Research in databases has similar motivations for
introducing and propagating change. Balzer [2] provides a language for making structural
changes to the description of a knowledge representation system. He also provides tools
for mapping those changes into corresponding transformations on the existing data. The
change is immediately propagated. An alternative to propagating the change immediately
is to use versions so that, for example, types of objects stored in a database can be changed
without having to modify existing data or tools [81].

The coexistence of old and new data and tools comes at the cost of the additional
overhead for maintaining and accessing multiple type versions, change is never propagated.
An intermediate approach is to propagate structural changes only when data is actually
accessed by a system configured for the new structures. TransformGen [85] was designed
to solve the problems of grammar evolution for structure-oriented eavironments. The
implementor makes structured changes to the grammar of a structure-oriented environment.
‘The output from TransformGen is a new grammar together with a transformer, which takes
instances of database trees built under the old grammar and automatically converts them to
instances of database trees that are legal under the new grammar. In MTS, the changes are
propagated immediately, however, since changes are isolated in the new componeat, the
original system (in effect, an earlier version) is still available.

74. Data Design and Refinemens 123

7.4 Data Design and Refinement

In this section, frameworks and programming environments are evaluated with respect to the
criteria for correctness, perfarmance, and automation, to determine how well they support
the process of data design and refinement. Evaluating correctness raises the question, how
can higher assurance of correctness be provided for larger systems, ox, rather, for aspects
of behavior of larger systems? Evaluating performance raises the question, what choices
arc available to the designer for improving the efficiency of a program? These might
include techniques that affect the frequency of execution of parts of the program and how
readily information is made available. Evaluating automation raises the question, what
clements of the process of producing efficient programs from high-level programs can be
mechanized? The main emphasis here should be on achieving productive interactions of
automated systems with developers and maintainers.

There are a number of formal frameworks for developing larger-scale programs by
transforming high-level specifications into executable code. Like the MTS approach, they
seek to extend transformation techniques to larger-scale systems, and similarly involve the
software designer in the design of data representations (usually in order to avoid limiting
the expressiveness of the specification language). The developers of CIP [5], for example,
advocate using algebraic specifications as the starting point for a top-down method of

program development. The developers of Extended ML [73] and VDM [7] use formal
vmﬁmonwmventnewmplemenmomandpmvethemmct. The MTS approach
differs from these in its support for the integration of separate components. This gives the
designer the flexibility to delay agreement on, as well as adapt, the interfaces of a (module)
system.

The Programmer’s Apprentice [70] provides assistance in the implementation, design,
and requirements phases of the programming task. A formal representation for programs
and programming concepts is provided by the Plan Calculus. A plan is a generalized
represeatation of a program and is represented as a graph structure consisting of boxes and
arrows. The boxes denote operations and tests; the arrows denote control and data flow.
The representation has a graphical notation and a formal semantics used for reasoning.
Relationships between plans (eg., specification and implementation) is represented by an
overiay. An overiay defines a mapping from the set of instances of the implementation plan
to a set of instances of the specification. It is a generalization of the abstraction function
in the abstract datatype methodology. Like overlay’s, MTS translation functions represent
relationships, but relationships between components within a given level of abstraction,
rather than relationships between different levels of abstraction.

The Design Appreatice (a subsystem of the Programmer’s Apprentice) is designed
where: (1) a task is expressed in a declarative (specification-like) input language; (2) the
system provides detection and explanation of errors made by the programmer, (complete-
ness and consistency); and (3) the system automatically selects reasonable implementation
choices. Information is embodied in “cliches” (combinations of program elements). Per-
haps the methods developed in this thesis could be used to build cliches in the first place.
Then the MTS methodology could use cliches as a method for reuse.

124 Chapter 7. Related Work

The MTS methodology allows the designer to choose the data representation and to
customize it in the context that it appears in, unlike other methods where representations
and optimizations are chosen from a predefined set. SETL [79] is an example of a very-
high-level language based on set-theoretic syntax and semantics. For the most part, the
SETL user is not involved in choosing data representations. Instead, they are automatically
chosen by a compiler for each abstract object, based on a catalog of optimizations. The
optimizer does not make any significant change to the algorithmic form of the program, it
being more concerned with the data representation that supports the specified algorithm.
Wide-spectrum languages such as Refine [82] give the software developer more control by
providing an interactive environment where the developer can apply optimizations based
on the usage and context of the data. The optimizations are drawn from a set of supplied
rules and templates. OBJ [34] can be considered an executable specification language. It
provides a notation for structuring algebraic specifications into hierarchies of parameterized
modules [28]. Rather than focusing on data representations, the OBJ system implements an
equational rewriting system.

The MTS techniques also have important differences with the transformation-based
approach of Hisgen [45], which seeks to optimize user-defined datatypes automatically by
using predefined type-specific transformation rules. The programmer writes pre-conditions
and post-conditions as well as transformations for each operation. Hisgen’s mechanism is
well suited to the development of customized types for use in a very-high-level language
system. The type-specific optimizations provided by a type designer can be applied auto-
matically by a compiler, but the type designer is responsible for their correctness. Instead
of anticipating the collection of transformations needed in advance, the software developer
using MTS has a small collection of well-defined transformations to use to customize the
datatype in the context that it appears in.

In program synthesis by Manna and Waldinger [57] programs are extracted from a
constructive-style proof. The proof serves as a high-level language. Recent developments
in this approach to manipulating proofs include program development through proof trans-
formation [68). While this provides a solution to the problem of designing the initial
program, there is still the need for a complementary process that optimizes the extracted
program by manipulating the data representations and the structure of the interfaces. Trans-
formation techniques could provide this capability [1].

7.5 Adapting Inte-faces

In this section, object-oriented techniques and transformation systems that support evolution
are cvaluated with respect to the criteria for adaptability by means of modifying existing
interfaces. Evaluating interface agreement raises the question, when must agreement on
interfaces in the design of software be reached? Delaying design decisions when a priori
agreement cannot be reached may make the design process casier initially but additional
work is usually required to integrate the components later. Evaluating adaptability raises
the question, how easy is it to modify existing interfaces and incorporate new components
into the system?

7.6. Applications for the Module Transformation System 125

Traditional object-oriented techniques [87] enable the development of customized ab-
stract interfaces based on existing types, but with representations and implementations
shared among the variants (eg., through inheritance). That is, in the object-oriented world,
a “specialized type” of one or more existing types may have a specialized abstract interface,
but the underlying implementation will fundamentally be determined (through inheritance)
by the existing type implementations. This can limit the efficiency of the implementation
and has led some languages to allow violations in abstraction boundaries by permitting
access to the representation of the ancestors of an inherited object [83]. A more controlled
approach is the “friends” declaration in C++ [86] where classes have special access to other
classes that are declared friends. The research presented in this thesis, however, may pro-
vide a means to obtain truly specialized implementations for the specialized types by means
of program transformations. The MTS techniques provide optimization and integration
of multiple representations to complement the object-oriented approach, which supports
flexible integration and enhancement but requires compatible interfaces.

Griswold’s work [36] on program restructuring as an sid to software maintenance
uses a transformational approach to address a different problem. He introduces a set of
automatable transformations to manipulate the structure of a system for supporting evolution
through manipulation of program structure. These transformations are applied locally to
effect a syntactic change; the system may make non-local changes to preserve data flow
dependence and control flow dependence. Griswold’s work focuses on the transformation
of the syntactic constructs of a block-structured language, whereas MTS is focused at the
module ~vel.

7.6 Applications for the Module Transformation System

Domains where this approach is useful include: the development and evolution of proto-
types; the reuse of software modules in libraries; programming with views; heterogeneous
systems; and type management for persistent objects.

Development and Evolution of Prototypes. In the development and evolution of pro-
totypes, a principal objective is achieving functionality in the easiest possible way. For a
complex type in a system (i.e., abstract datatype interface) with many operations associated
with it, it might be difficult to design a single representation that is suitable for prototyping
and exploratory development of all of the various operations of the abstract datatype. In
such cases, it might be easier to design a collection of separate representations that work for
various subsets of the full set of operations. Individual operations could thus be separately
prototyped using appropriate representations. The problem then is to assemble the various
operations and conflicting representations into a single type that can be merged into a larger
prototype system and possibly transformed into a high performance implementation.

Reusable "ibraries of Software Modules. These transformation techniques may also
enhance the ability to create and retain software objects for reuse [50] (eg., the Larch [38]

126 Chapter 7. Related Work

library of abstract interfaces). One factor that makes reuse hard to realize is that mul-
tiple developers of system components with shared abstract interfaces will evolve data
representations that conflict. The conflicts are not due to a failure to settle interfaces in
advance, but due to technical needs that motivates choices by separate implementors (eg.,
the context in which an operation is used, frequency of use, space/time tradeoffs desired,
or flexibility/efficiency tradeoffs desired). Because of this conflict, components cannot be
shared unless additional components are implemented that translate representations. The
cost of this translation is usually too high except in a prototype.

This research explores reuse through customization [23, 76], and provides a framework
for the adaptation of datatypes and the manipulation of interrelated modules. An instance of
this framework is a network of generalized and specialized versions of abstract data types
where the MTS technique builds and maintains the network.

Programming with Views The Janus system [39] supports the merging of abstract
datatypes. The techniques developed in this thesis may help formalize this process of
merging where transformations “compile” views into a canonical form and specialize them.
Janus provides four kinds of storage models: disjoint, derived, shared, and “anything goes.”

In the disjoint storage model the fields of a merged class are the disjoint union of the
fields of the component classes. This corresponds in some way to the process of “merging”
where the fields of a data aggregate are the cross product of the fields of the components.
As with disjoint union, all the fields from each original component appear separately on
the merged aggregate. The difference being that separate views are not maintained in the
aggregate. Each component contributes to the new single aggregate. It could be possible
to implement views on top of this.

In the derived storage mode! the fields from one of the original classes are not stored
explicitly. Instead their values are dynamically calculated when needed. This corresponds
to the process of “translating” where the fields from one component are not stored but
calculated from other fields in the aggregate. This could be done dynamically via a
translation function, or statically by deriving new implementations of the component based
on a new representation that is stored in the data aggregate.

In the shared storage model two fields from the original classes are stored as a single
field in the merged class. This is a special case of “translating™ where the fields from one
component are not stored but calculated from the other fields in the aggregate. Since the
data is identical, then the operations can be optimized to manipulate the shared data directly.

In the “anything goes” storage model the merged class contains fields that have no
direct correspondence with fields from any of the original classes. This corresponds to the
specialization step of deriving an efficient implementation from the prototype. It is also
possible that a more generalized implementation could be derived [21]. There is in fact
a correspondence which is recorded in the derivation in terms of the design decisions and
transformation steps taken to produce the new data aggregate.

Heterogeneous Systems. The draft report on a Common Prototyping System [3] identi-
fies requirements for a language and system that supports prototyping as a first step towards

7.6. Applications for the Module Transformation System 127

building beterogeneous systems. The report identifies the need for “multi-language in-
teroperability” where fragments of existing code are “composed” in a prototype. One
subproblem involves converting data items from one representation used in one language to
the representation used in the other. Hayes and Schlichting [44] have developed a solution
to this data represeatation problem in multiparadigm programming for a fixed set of stan-
dard datatypes. Perhaps data aggregation can provide a solution for user-defined datatypes
as well.

Type Management for Persistent Objects. How does one propagate the effects of chang-
ing a type to instances in a persistent store? A key subproblem is updating the library of
persistent objects [16]. One solution is to use a view-based model, and the MTS approach
could systematically develop the merged type representations. Another solution is to em-
nlamethenewbehauor,andmeMTSappmacheouldmdthepmcessofﬁndmgatype
representation that could support the functionality of emulation.

128

Chapter 7. Related Work

Chapter 8

Conclusions

The organization of interfaces among system components is a key task in the construction
and management of larger-scale software systems. Datatypes and modules that interact
must agree not only on the abstract interfaces, but also on data representations if their
implementations share data. As a software system evolves, the need to adapt existing
interfaces can arise. Thus, this problem of integration persists for as long as the system is
maintained.

This thesis has demonstrated that program transformations (semantics-based program
manipulation) provide systematic support for integrating general-purpose software modules
into efficient systems. This approach also provides support for adaptive and perfective
maintenance. Complex type definitions initially consist of a number of components that
are composed via translation functions and module extensions. The initial interfaces
are then integrated, resulting in complex composite interfaces, by using data aggregation
transformations.

8.1 Contributions

This thesis has three major contributions: (1) New transformation techniques for data
aggregation that enable the application of transformation techniques to the development
and adaptation of larger-scale systems. (2) A hand-conducted study of the derivation of
a display editor that illustrates a proof-of-concept for the methodology. (3) A framework
for describing data transformation techniques that enhances the understanding of the terms
used informally, provides structure to aid the software designer in using the approach and
is an important step towards automating the system.

Larger-Scale Systems. The first contribution, new transformation techniques for data
aggregation, enables the application of transformation techniques to the development and
adaptation of larger-scale systems. Figure 8.1 is an abstract view of this process for
constructing systems using the module interface transformation system, and corresponds
t0 the enumerated steps listed below. The process starts with the design of the top-level
aggregate specification (step 1). The software designer who wishes to design a complex

130

Chapter 8. Conclusions

Figure 8.1: Strategy for Constructing Systems

8.1. Contributions 131

system is able to decompose the problem into components that best model that portion
of the problem. The components may be obtained from a library of software assets of
standard interfaces or prototyped by the designer using a data representation that most
closely models the subproblem. Consistency relations establish correspondences among
the data representations. This aggregate specification is used in the integration phase
to produce an aggregate definition (step 2). Obtaining the aggregate definition from the
aggregate specification is a mechanical process once compatibility maps (which respect the
consistency relations) are provided. The aggregate definition is in a format upon which data
translations can be performed to obtain an executable prototype (step 3). Then additional
transformations such as expose, incorporate, release, and shift can be performed to optimize
the prototype into an efficient implementation (step 4). Later on the software designer may
wish to introduce additional functionality in the adapt phase.

The essential steps for implementing datatypes or modules by components:

1. Structure (compose) the system using modules. List the operations that constitute
the requirements for some system. Define the componeat implementations, each of
which implements some subset of the interface. Collectively, all of the components
implement the entire interface. Use module extensions to adapt the abstract interfaces.
Establish any data invariances among the components by defining functions that
translate from one component representation into another to establish the consistency
of the collection of data representations.

2. Integrate the components to define the datatype or module. Choose as an “expedient”
representation the product of the component representations. Each operation defined
in a component induces a corresponding operation on the composite datatype or
module. Each operation definition is put into a format amenable to transformation.

3. Derive the first executable prototype of the datatype or module. Since the definitions
are data transform procedures, this is done by applying transformations. The ex-
system, it may be possible to reuse some of the information from the derivation of
the integration of the original system.

4. Derive an efficient implementation by translation. Uncover an efficient represen-
tation by eliminating unnecessary redundancy and specializing data in the context
that it appears in. Derive efficient implementations of the operations on the new
representation using transformations.

Using these techniques suggests a paradigm for datatype implemeatation by “compo-
neats.” Sometimes it is difficult to design types or anticipate future needs. Instead of
introducing a type and anticipating all necessary operators, the operations are designed as
we discover the need for them in the program using the datatype. The representations are
selected based on the nceded operations. This thesis also suggests a paradigm of system
implementation by modules where we use transformation techniques to get better perfor-
mance than simply reusing code. The module transformation system provides a way to
manipulate the modules and to change the cobesiveness and the couplings of the modules.

132 Chapter 8. Conclusions

These paradigms provide benefits to scaling primarily at the design level. Complexity
is managed through abstraction, modularization, and step-wise transformation. The focus
of the software designer is on the design domain. These design decisions are translated
into changes throughout the system at the integration implementation level to integrate and
optimize the system. The formal manipulations at this level are generally carried out within
local contexts. Howevez, in order to claim that this method truly scales, then assistance
is needed at the integration implementation level in carrying out all of the steps. Most of
these are mechanical steps that could be performed with automated support.

More experience using the techniques may lead to interesting object-oriented appli-
requires compatible interfaces. These techniques provide optimization and integration of
multiple representations so the two techniques are complementary. This could be done
initially within the notation based on Standard ML, since objects with state can be defined
using ML functors, and a simple inheritance mechanism is supported.

Proof-of-Concept. The second contribution, a hand-conducted study of the derivation
of a display editor, illustrates a proof-of-concept for the methodology. This thesis shows
the hard problems of module interface integration that occur in software development and
introduces a methodology that complements or enhances existing methods for solving them.
The advantages of using this methodology include the ability 10 delay decisions, to have
the system infer some of the information for the implementation from the design, and to
reuse the insights and transformation steps from previous developments.

In order to demonstrate the techniques for integrating module interfaces by program-
transformations, a simple interactive display-editor was developed. First a text buffer was
implemented and then additional functionality was introduced to demonstrate how the text
buffer is adapted. The decision for the data representation of the buffer was delayed until
after the integration process. The components were simply connected (via compatibility
maps); the methodology provided a systematic means 10 infer the other connections when
they were needed. During adaptation, a single connection between the new component
connecting component from the existing system, the integration with the rest of the system
can make use of existing insights and transformation steps. By going through the exercise
of constructing a buffer from components and then adding additional components to adapt
the buffer, a lesson was learned that components can implement parts of a datatype and
that the transformation methods enable the integration of the parts into an aggregate data
structure.

Next the focus of the example changed to the module level and the buffer was used as
a part of a larger display-editor system. The lessons learned included how transformation
techniques can be applied 10 hierarchically structured module systems, where modules are
defined in terms of other modules. The buffer datatype that has been previously developed is
reused and customized in the context of a larger interactive display-editor. Transformations

are used for adapting data representations and abstract interfaces, and for optimizations.

8.1. Contributions 133

While using the module interface transformation system, the focus of the software
designer is on the design domain and away from the application of the technique (which
is the traditional transformation approach). At the design phase, the system is composed
the insights deal with reasoning about the domains in which the components are modeled.

Automating the technique is an important step to accomplish next, so that more expe-
rience in this and other domains can provide additional information about the applicability
of the techniques and the costs associated with using them.

Framework. The third contribution, a framework for describing data transformation
techniques, enhances the understanding of the terms used informally, provides structure to
aid the software designer in using the approach and is an important step towards automating
the system. A notation based on Standard ML [59] modules is used to represent the
components of a system. In addition to representing datatype definitions and modules, the
notation needs to also express the other structures in the transformation process. Required
extensions to the notation to express the transformation process include: axioms [72],
views [33), expression procedures [74], and a means to express alternative solutions.
Axioms are needed t0 enrich the expressive power of Standard ML so that the properties of
the aggregate specification can be defined. Views enable the software designer to express
bhow the components are related through coasistency relations. Expression procedures
provide the notation needed to express the initial definition of the aggregate upon which
module transformation rules can be applied. Alternative solutions are used to maintain the
internal consistency of the aggregase.

As progress is made in explaining the techniques in terms of a framework, it may be
possible to treat the derivation process as an object that can be formally manipulated and
to capture the insights from the software designer. This increases the potential for reusing
the previous derivations in integrating the existing system, when adapting the system by
adding a new component. This was done informally in the editor derivation, by reusing data
transform procedure definitions, the structure of the transformation steps, and some of the
insights provided by the software developer. See Baxter [6] and Cheatham [15] for formal
approaches. One way to manipulase or optimize the process would be to apply the techniques
0 the compatibility maps, for example, compile a lengthy sequence of compatibility maps
into a single compatibility map or produce the transitive closure to get connections between
all of the components starting with a collection of components that are simply connected.
It also may be possible 10 generate the inverse compatibility maps as well (when they
exist). Another optimization is to synthesize specialized compatibility maps between the
components and the refinement step (which can be viewed as a translation function from
the aggregate prototype t0 the aggregate implementsation). Of course, differing strategies
could be devised 10 obtain these new compatibility maps. Rather than obtaining them all at
once, it may be beneficial t0 generate them only when needed, or on demand.

The translation function need only respect the consistency relation, by translating one

134 Chapter 8. Conclusions

software developer provides insights to enable the construction of alternative implemen-
tations of a component. These insights, in effect, are a database of information about the
properties of the data and their interdependencies. Perhaps these interdependencies could
be formalized as partial translation functions (with information obtained from insight steps
and the properties of operations) that capture the insights provided by the software devel-
oper. As the database of information is built up, the translation function may eveatually
capture all of the interdependencies among the data to fully implement the consistency
relation. This provides a mechanism for reusing the insights from the software designer,
and in some cases, constructing the inverse translation function, which greatly simplifies
the transformation process.

The prototype and implementation stages may not have to be two distinct steps. Often
a great deal of work is done in the prototype stage only to be discarded later on. It may be
possible to use a form of filter promotion to prune out the derivations that are unlikely to be
fruitful, or, to use a form of lazy derivation, or derivation on demand so that the software
developer only expands enough of the derivation that is needed.

8.2 Turning the Method into a Software Reality

A formally-based methodology has been devised for systematically integrating software
components, through the mediation of abstract interfaces and underlying data representa-
tions. This provides for the ability to delay or revise design decisions when it is difficult to
reach an a priori agreement on interfaces or data representations. A proof-of-concept for
this methodology has been demonstrated by the derivation of an interactive display-editor.
However, this method is not yet a software reality: (1) Connections need to be established
with software process models. The methodology of the module transformation system
could help reduce the risk that a software system does not conform with the actual need, by
providing earlier validation within a software process model. The software process model
could provide more guidance to the software designer constructing software systems using
the module transformation system. (2) Automation is an important step in making progress
toward turning the concept into an engineering method. (3) A more formal model of the
transformation system would aid in the explanation and automation of the techniques. (4)
Integration is low-level; notions of consistency at a higher level of abstraction than trans-
lation functions may provide better models for explaining the design and manipulation of
module interconnections.

8.2.1 Software Process Models

Counnections need 0 be established with software process models. The methodology of
the module transformation system could help reduce the risk that a software system does
not conform with the actual need, by providing earlier validation within a software process
model. The software process model could provide more guidance to the software designer
coastructing software systems using the module transformation system.

8.2. Turning the Method into a Software Reality 135

requisements
vaikistion
analyels
/m
Implementution

Figure 8.2: An Abstract View of Traditional Software Development

Reducing the Risk of System Nonconformance with the Actual Need. Process models
have been developed to organize the stages of software development. The waterfall model
is the basis for most software development in government and industry. Development
is divided into stages (eg., requirements analysis, specification, coding, testing). There
is feedback between successive stages and a form of prototyping through the building
of an initial prototype in parallel with requirements analysis. While the waterfall model
may work well for problems that have a well defined domain, this traditional approach to
developing software (Figure 8.2) — requirements, analysis, specification, validation — does
not always yield the desired result becanse often all the requirements are not known in
advance, but require some experimentation. This is true whether the implementation is
designed separately and then verified or is derived using formal techniques. This entails
high risk because formalized requirements are not validated until very late.

In any software developmeant there are two important conceptual points. The point
of making a decision (eg., design decisions, data structure commitments) and the point
of learning the consequences (i.e., the validation of the earlier decision). The interval in
between is a measure of the risk involved. The longer the interval, the greater the risk that
based on the initial decision. The way to reduce risk is to try to bring the two points closer
togethez, either by delaying decisions (eg., abstracting function) or by advancing validation
(eg., building prototypes or reusing validated components). There are constraints on how
much the points can be shifted. Delaying decisions cannot be done indefinitely and too
much delay may produce over generalized results that are inefficient. Likewise advancing
validation is feasible only in the context of given resources.

‘The spiral model [8] creates a risk-driven approach to the software process. It accom-
modates the good features of other software models (eg., the waterfall, evolutionary, and
transform models) while avoiding many of their difficulties. Software process models can
be improved by developing more support for the incremental creation and adaptation of
systems (Figure 8.3) using formal methods (cf. inferential programming [77, 51]). Require-
ments can be used t0 produce prototypes that provide feedback for early and incremental

136 Chapter 8. Conclusions

Figure 8.3: Evolutionary Transformation

validation and hence reduce risk. Derivations are bi-directional — a prototype can be
refined towards an implementation or “generalized” towards a more formal specification
(see work by Dietzen and Scherlis [23] for some thoughts on generalization). Such a
method would support an incremental, evolutionary approach to prototyping and systems
development that is both adaptable and driven by risk requirements. It would also focus on
the szepwise attainment of appropriate levels of abstraction, function, and scale for complex
interfaces and complex systems.

This thesis research incorporates techniques from inferential programming with a nar-
rower focus on prototyping and a wider focus on scaling and adapting interfaces. The
rescarch assembles a set of techniques that supports: (1) creation of prototypes that in-
volve complex typed objects; (2) adaptation of these prototypes, including restructuring of
type signatures and addition of new representations for newly delineated operation subsets;
and (3) evolution of prototypes into efficient implementations, hence reuse of prototype
fragments through aggregation and customization.

Still, there are numerous issues to be addressed for such a model. What structure will
derivations take? How are derivations manipulated? Will a new high level language be
required? Before some of these broad issues can be addressed, it is useful to have some
practical experience with some examples. This thesis contributes by exploring a “vertical
slice” of the issues that is narrow and deep, in order to expose some of the research issues
and focus on the overall structure. It examines the relationships among requirements,
prototypes, and implementations. Therefore, some ad hoc decisions have been made
regarding derivation design structure and language, to provide a basis for mare detailed
future research in each of these areas of the model.

Guidance in Constructing Systems Using this Approach. Connections could also be
established with software process models to provide more guidance in constructing soft-
ware systems using the module transformation system. Software process models that
support prototyping and evolution, such as the Spiral Model {8], could provide guidance in
evaluating the choices made available by the approach developed in this thesis.

82. Twrning the Method into a Software Reality 137

The “slice” of the derivation model (Figure 8.3) that is developed in this thesis provides
an overall methodology to guide the software designer in the design and development
process (Figure 8.1), and criteria such as the cost of integration and implementation are
available to evaluate the consequences of making certain decisions (see Chapter 5).

The methodology provides a structure supporting development. It also records the
design decisions made during the integration process which are useful for later modification,
adaptation, and maintenance. Still, an “application theory” is missing, and must be applied
externally by the software designer. The application theory is not part of the methodology
because all of the information is not available in the module system itself. Many decisions
are based on the environment in which the system is to be used and the non-functional
requirements of the user. Such information is available from the software process model.
Within such a process model, this methodology provides a specific capability where the
software process model provides advice on how to proceed [93].

8.2.2 Automation

Automation is an important step in making progress toward turning the concept into an
engineering method. Chapter 5 provided an interpretation of the results of the editor
derivation. The benefits these techniques offer occur primarily at the design level. In
order to make this method accessible, assistance is needed at the implementation level in
carrying out all of the steps. Many of these are mechanical steps that can be performed
with automated support.

An initial project would demonstrate the implementation of a program derivation system
for a simple functional language (such as a subset of Standard ML) supplemented with
expression procedures. This program derivation system could be constructed using the
Ergo Support System [52]. Automated assistance is available in the form of tools that store
and display the programs and apply the selected transformations. As more information
is learned about this process, more of the information provided by the designer may be
shifted to the tools, for example, by building strategies out of transformation steps and
implementing them as metaprograms. Here are the relevant components for an initial
project:

Syntax Facility. Given a BNF-like grammar for the language, the syntax facility [22]
produces a parser, lexer, and unparser for translating the program into an abstract syntax

tree, manipulating the abstract syntax of the program, and displaying the program on a
screen.

Anaslysis Facllity. Given an attribute grammar based on the abstract syntax of the lan-
guage, the analysis facility [64] produces an analyzer to compute the attribute values of a
program. This is useful for doing data flow analysis [63], providing the transformations with
additional information about the context (eg., the incorporate and release transformations
need information about name conflicts and variable references).

138 Chapter 8. Conclusions

Interaction Facility. The interaction facility [27] uses the unparser to display the program
on a screen, and allows the user to highlight and manipulate the abstract syntax of the
program. This is essential for an interactive approach where the designer needs to point at
the program to offer hints. Other views of the process are also provided, such as displaying
the derivation as a tree structure.

‘The derivation is not necessarily a linear progression. Some form of hyper-text system
would be useful for navigating through the design choices. MellowCard provides a simple
mechanism to navigate through textual information, which is useful for recording the
design. There is a need to extend this mechanism to navigate through programs, proofs,
and derivations as structures in their own right.

Lambda Prolog. Some form of meta-language is necessary to represent the derivation
process, for example, to express the transformations. Lambda prolog [69] is one poten-
tial meta-language and has been used to express transformations [40, 41]. The use of
higher-order abstract syntax, where the bindings of variables are explicitly represented, is a
useful feature for expressing and manipulating the scopes of variables, and for expressing
abstraction and application transformations.

Persistent objects. The changes to the program and the recorded derivation (including
design decisions) need to be stored for later retrieval. A persistent object database [71] pro-
vides storage for these objects that persist beyond the lifetime of any particular application
of the derivation program.

8.2.3 Formal Models

A more formal model of the transformation system would aid in the explanation and
automation of the module transformation techniques. A framework for the derivation
system was presented in Chapter 6. Using a theory of data abstraction and the correctness
of modular programming (eg., Schoett [78]) could aid in the explanation and antomation
of the techniques.

To assert that the module transformation rules preserves the meaning of the datatype,
we must have a framework in which to define the meaning of datatypes and operations that
can be performed on them. One way to think about the meaning of programs is to use
Natural Semantics as used in the definition of Standard ML.. For example, B - P = M,
where, “against the background B, the phrase P evaluates to the meaning M™ [61]). When
a transformation transforms a program P into a program P, it is possible to check if they
evaluate to the same meaning within the same environment. See [47] for a discussion of
other frameworks.

Schoett presents a theoretical explanation for the correctness of programs obtained from
modular programming using data abstraction. He develops a theory of “cells” which are
used to represent the interfaces of modules, and are represented in “design graphs.” He uses
the model to give a formal definition of decomposition and composition, and of refinement
in terms of a correctness relation based on behavioral equivalence.

82. Turning the Method into a Software Reality 139

Composed Cell S’ Global Specification S

Composition Decomposition
Correctness relation
Cell =) Spec
M : M
Cell = Spec

Figure 8.4: Composability of Refinements

A key theorem is the composability of refinements (see Figure 8.4). Informally, the
theorem states: Let the collection of specifications, M, be a decomposition of the global
specification, S. Let the collection of implementations, M’, be a componentwise refinement
of M. Then, §', the composition of M, is a refinement of S. Informally, the proof of the
theorem of the composability of refinements consists of showing: (1) The union of the
signatures of M’, is a syntactic refinement of the signature of . (2) Whenever A is a base
(i.e., a background or environment) for S then: A is a base for &, there exists a result of §’
on A, and every result of §’ on A is result of S on A.

Schoett’s theory could be extended to allow hierarchical compositions and decomposi-
tions in order to show the correctness of transformations on abstract interfaces by moving
abstraction boundaries, such as the incorporate and release transformations defined in this
thesis. This could be accomplished by defining what it means to incorporate or release
cells in the cell theory. The input and output of the program transformation can then be
translated into a family of cells. To show the transformation is correct requires a proof that
the family of cells produced by the program transformation satisfies the definition of what
it means to incorporate or release cells in the cell theory. Schoett’s correctness relation
can be used to show the correctness of transformations on data representations, such as the
transiate, shift and expose transformations defined in this thesis. This is accomplished by
demonstrating that the span and unspan functions preserve certain properties to qualify as
a proper correctness relation.

Are there a complete set of module transformation rules; are the ones covered sufficient?
There are undoubtedly more which will be uncovered as additional experience in using the
methodology is applied to other domains. The ones necessary for the integration process
have been covered. It would be interesting to look at transforming design graphs and see
what module transformations or classes of transformations they suggest.

8.2.4 Integration is Low-Level

Integration is low-level; notions of consistency at a higher level of abstraction than trans-
lation functions may provide better models for explaining the design and manipulation of
module interconnections. In Chapter 6 the notion of a core component and component
specifications were introduced to provide a well-defined meaning to compatibility maps

140 Chapter 8. Conclusions

in terms of consistency relations. It was left unsaid how the component specifications fit
together to form the top-level specification. Addressing this issue could lead to an explana-
tion of views in specifications and higher-level abstractions for explaining the design and
manipulation of module interconnections.

Translation functions ensure the consistency among components in relation to each
other. Their meaning is defined in terms of the consistency relations and the core component.
But do we in fact always need to define the core component? We do not need to in the sense
that we do not always start with a specification to write a program. But if we want to reason
about its meaning, then we need some sort of specification. Once the core component
and views of the components are defined, it may be possible in certain cases to derive the
translation functions from the views using a syntax-directed translation scheme.

In section 2.2 we discussed the different approaches to looking at correctness diagrams,
first looking at verification and then asking whether it is possible to take a constructive
approach by using transformations. Sehavioral equivalence [78] handles the transition
between data specifications and representations in a more general way than abstraction
functions. Sannella and Tarlecki (73] develop a methodology for formal development of
programs based on this. Perhaps transiation functions can be generalized in the direction of
behavioral equivalence where transformations are applied to the consistency relations (eg.,
using real relations as in Prolog). Currently the method is restricted to using functional
implementations of these relations (i.e., compatibility maps).

Bibliography

[1] Penny Anderson. Program derivation by proof transformation (thesis proposai). Tech-
nical report, Carnegie Mellon University, School of Computer Science, 1990.

[2] Robert Balzer. Automated enhancement of knowledge representations. In Interna-
tional Joint Conference on Artifical Intelligence, pages 203-207. ACM, 1985.

[3] Robert Balzer, Frank Belz, Robert Dewar, David Fisher, Richard P. Gabriel, John
Guttag, Paul Hudak, and Mitchell Wand. Draft report on requirements for a common
prototyping system, November 1988.

[4] Robert Balzer, Thomas E. Cheatham, Jr., and Cordell Green. Software technology in
the 1990°s: Using a new paradigm. Computer, 16(11):39-45, November 1983.

[5] EL. Baner, B. Molier, H. Partsch, and P. Pepper. Formal program construction by
transformations — computer-aided, intuition-guided programming. JEEE Transac-
tions on Software Engineering, 1988.

[6] Ira D. Baxter. Transformational Maintenance by Reuse of Design Histories. PhD
thesis, University of California, Irvine, November 1990.

[7] D. Bjgmner and C.B. Jones. The Vienna Development Method: the Meta-Language,
volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

(8] Barry W. Boechm. A Spiral Model of software development and enhancement. Com-
puter, 21(5):61-72, May 1988.

[9] Grady Booch. Object-oriented development. /EEE Transactions on Software Engi-
neering, SE-12(2):211-221, February 1986.

[10] Grady Booch. Software Components with Ada: Structures, Tools, and Subsystems.
Benjamin/Cummings, Menlo Park, CA, 1987.

[11] Frederick P. Brooks, Jr. No silver bullet: Essence and accidents of software engineer-
ing. Computer, 20(4):10-19, April 1987.

{12] R. M. Burstall and John Darlington. A transformation system for developing recursive
programs. Journal of the Association for Computing Machinery, 24(1):44—67, January
1977.

141

142 BIBLIOGRAPHY

[13] R.M. Burstall and Joseph A. Goguen. Putting theories together to make specifications.
In Proceedings of Fifth International Joint Conference Artificial Intelligence, pages
1045-1058, 1977.

[14] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg
Nelson. Modula-3 report (revised). Technical Report 52, Digital Systems Research
Center, Palo Alto, CA 94301, November 1989.

[15] Thomas E. Cheatham, Jr. Reusability through program transformations. IEEE Trans-
actions on Software Engineering, SE-10(5):589-594, September 1984.

[16] Steward M. Clamen. Managing type evolution in the presence of persistent instances
(thesis proposal). Technical report, Carnegie Mellon University, School of Computer
Science, 1991.

[17) John Darlington. The design of efficient data representations, 1980.

[18] John Darlington. The synthesis of implementations for abstract data types. Technical
Report 80/4, Imperial College, Department of Computing and Control, 1980.

[19] Peter J. Denning. Beyond formalism. American Scientist, 79(1):8-10, January—
February 1991.

{20] Frank DeRemer and Hans H. Kron. Programming-in-the-large versus programming-
in-the-small. JEEE Transactions on Sofiware Engineering, SE-2(2):80-86, June 1976.

[21] Scott Dietzen. A Language for Higher-Order Explanation-Based Learning. PhD
thesis, School of Computer Science, Carnegie Mellon University, Summer 1991.

[22] Scott Dietzen, Mary Ann Pike, and Anne M. Rogers. A guide to the ERGO syntactic
processor. Ergo Report ERGO-90-035, Carnegie Mellon University, Pittsburgh, 1990.

[23] Scott Dietzen and William L. Scherlis. Analogy in program development. In J. C.
Boudreaux, B. W. Hamill, and R. Jernigan, editors, The Role of Language in Problem
Solving 2, pages 95-117. North-Holland, 1987. Also available as Ergo Report 86-013,
School of Computer Science, Carnegie Mellon University, Pittsburgh.

[24] Conal Elliott. An approach to ADT transformation. Technical report, Carnegie Mellon
University, Department of Computer Science, 1986.

[25] Martin S. Feather. A survey and classification of some program transformation ap-
proaches and techniques. In L.G.L.T. Meertens, editor, Proceedings of the IFIP
TC2/WG 2.1 Working Conference on Program Specification and Transformation, Bad
Toelz, FRG. North-Holland, November 1986.

[26]) Peter Freeman. A conceptual analysis of the Draco approach to constructing software
systems. IEEE Transactions on Sofiware Engineering, SE-13(7):830-844, July 1987.

BIBLIOGRAPHY 143

[27] Tim Freeman. Overriding methods considered harmful; or ADT-OBJ: Rationale and

user’s guide. Ergo Report 89-089, Carnegie Mellon University, Pittsburgh, December
1989.

[28] Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannand, and Jose Meseguer.
Principles of OBJ2. In Twelfth Annual ACM Symposium on Principles of Programming
Languages, pages 52-66. ACM, January 1985.

[29) David Garlan. Views for Tools in Imegrated Environments. PhD thesis, Carnegie
Mellon University, 1987. Available as Technical Report CMU-CS-87-147.

[30] David Garlan, Gail Kaiser, and David Notkin. On the criteria to be used in composing
tools into systems. Technical Report 88-08-09, University of Washington, Dept. of
Computer Science and Engincering, 1988.

[31] Susan L. Gerhart. Applications of formal methods: Developing virtuoso software.
IEEE Software, pages 7-10, September 1990.

[32] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An Initial Algebra Approach to the

Specification, Correctness, and Implementation of Abstract Data Types, volume IV,
pages 80-149. Prentice-Hall, 1978.

[33] Joseph A. Goguen. Reusing and interconnecting software components. Computer,
19(2):16-28, February 1986.

[34] Joseph A. Goguen and Joseph J. Tardo. An introduction to OBJ: A language for writing
and testing algebraic specifications. In Proceedings of Conference on Specifications
of Reliable Software, pages 170-189. Computer Society, 1979.

[35] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF.
Springer-Verlag LNCS 78, 1979.

[36] William G. Griswold and David Notkin. Program restructuring to aid software main-

tenance. Technical Report 90-08-05, University of Washington, Dept. of Computer
Science and Engineering, 1990.

[37) 1.V. Gutiag and J.J. Horning. The algebraic specification of abstract data types. Acta
Informatica, 10:27-52, 1978.

[38] J.V.Guttag, JJ. Homing, and J. M. Wing. Larch in five easy pieces. Technical Report S,
Digital Systems Research Center, Palo Alto, CA 94301, July 1985.

[39) A.N. Habermann, Charles Krueger, Benjamin Pierce, Barbara Staudt, and John Wenn.
Programming with views. Technical Report CMU-CS-87-177, Carnegie Mellon Uni-
versity, Computer Science Department, January 1988.

[40] John Hannan and Dale Miller. Enriching a meta-language with higher-order features.

In John Lloyd, editor, Proceedings of the Workshop on Meta-Programming in Logic
Programming, Bristol, England, June 1988. University of Bristol.

144 BIBLIOGRAPHY

{41] John Hannan and Dale Miller. Uses of higher-order unification for implementing
program transformers. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic
Programming: Proceedings of the Fifth International Conference and Symposium,
Volume 2, pages 942959, Cambridge, Massachusetts, August 1988. MIT Press.

{42] Robert Harper. Introduction to Standard ML. Technical Report ECS-LFCS-86-14,
University of Edinburgh, Department of Computer Science, November 1986.

[43]) P.G. Harrison and H. Khoshnevisan. The mechanical transformation of data types.
Technical report, Imperial College, Department of Computing, November 1987.

[44] Roger Hayes and Richard D. Schlichting. Facilitating mixed language programming
in distributed sytems. JEEE Transactions on Software Engineering, SE-13(12):1254—
1264, December 1987.

[45] Andy Hisgen. Optimization of User-Defined Abstract Data Types: A Program Trans-
Jormation Approach. PhD thesis, Carnegic Mellon University, September 198S5.
Available as Technical Report CMU-CS-85-166.

[46] C.AR. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271-281, 1972.

[47] C.AR. Hoare, LJ. Hayes, H. Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders, LH.
Sorensen, JM. Spivey, and B.A. Sufrin. Laws of programming. Convnunications of
the ACM, 30(2):672-686, August 1987.

[48] Ulrik Jarring and William L. Scherlis. Compilers and staging transformations. In
Thirteenth Symposium on Principles of Programming Languages, pages 86-96. ACM,
January 1986.

{49] Utlrik Jeering and William L. Schexlis. Deriving and using destructive data types. In
IFIP TC2 Working Conference on Program Specification and Transformation. North-
Holland, 1986.

[50] Charles W. Krueger. Models of reuse in software engineering. Technical Report CMU-
CS-89-188, Carnegie Mellon University, School of Computer Science, December
1989. To appear in Computing Surveys.

[51] Peter Lee, Frank Pfenning, Jobn Reynolds, Gene Rollins, and Dana Scott. Research
on semantically based program-design environments: The Ergo Project in 1988.
Technical Report CMU-CS-88-118, Camegie Mellon University, Pittsburgh, March
1988.

[52] Peter Lee, Frank Pfenning, Gene Rollins, and William Scherlis. The Ergo Support
System: An integrated set of tools for prototyping integrated eavironments. In Peter
Henderson, editor, Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environments, pages 25-34. ACM

BIBLIOGRAPHY 145

Press, November 1988. Also available as Ergo Report 88-054, School of Computer
Science, Carnegie Mellon University, Pittsburgh.
[53] B.Lientz and E. Swanson. Software Maintenance Management: A Study of the Main-

tenance of Computer Application Software in 487 Data Processing Organizations.
Addison-Wesley, Reading, MA, 1980.

[54) Barbara Liskov. Abstraction mechanisms in Clu. Comwnunications of the ACM,
20(8):564-576, August 1977.

[55] Barbara Liskov. Data abstraction and hierarchy. SIGPLAN Notices, 23(5):17-34, May
1988.

[(56] David Luckham and Friedrich W von Henke. An overview of Anna, a specification
language for Ada. IEEE Sofiware, 2(2):24-33, March 198S.

[57] Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.
ACM Transactions on Programming Languages and Systems, 2(1):92-121, 1980.

[58] Bertrand Meyer. Reusability: The case for object-oriented design. IEEE Sofiware,
4(2):50-64, March 1987.

[59] Robin Milner. The Standard ML core language. Polymorphism, 11(2), October
198S. Also Technical Report ECS-LFCS-86-2, University of Edinburgh, Edinburgh,
Scotland, March 1986.

[60] Robin Milner and Mads Tofte. Commentary on Standard ML. MIT Press, Cambridge,
Massachusetts, 1991.

[61] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, Cambridge, Massachusetts, 1990.

[62] James M. Neighbors. The Draco approach to constructing software from reusable com-

ponents. IEEE Transactions on Sofiware Engineering, SE-10(5):564-574, September
1984.

[63] Robert L. Nord. A framework for program fiow analysis. Ergo Report 87-038,
Camegie Mellon University, Pittsburgh, November 1987.

[64) Robert L. Nord and Frank Pfenning. The Ergo attribute system. In Peter Henderson,
editor, Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering Sympo-
sisan on Practical Software Development Environments, pages 110-120. ACM Press,
November 1988. Also available as Ergo Report 88-053, School of Computer Science,
Camegie Mellon University, Pittsburgh.

[65] David Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 14(1):221-227, January 1972.

146 BIBLIOGRAPHY

[66] David Parnas. Designing software for ease of extension and contraction. /EEE
Transactions on Software Engineering, SE-5(2):128-138, March 1979.

[67] H. Partsch and R. Steinbruggen. Program transformation systems. ACM Computing
Surveys, 15(3):85-94, February 1983.

[68]) Frank Pfenning. Program development through proof transformation. In Wilfried
Sieg, editor, Logic and Computation, Contemporary Mathematics. AMS, krovidence,
Rhode Island, 1988. Available as Ergo Report 88047, School of Computer Science,
Carnegie Mellon University, Pittsburgh.

[69] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings
of the SIGPLAN ’88 Symposiwm on Language Design and Implementation, Atlanta,
Georgia, pages 199-208. ACM Press, June 1988. Available as Ergo Report 88-036,
School of Computer Science, Carnegie Mellon University, Pittsburgh.

[70) Charles Rich and Richard C. Waters. The Programmer’s Apprentice: A research
overview. Computer, 21(11):10-25, November 1988.

[71] Gene Rollins. A platform for expermenting with persistent objects. Ergo Internal
Report ERGO-88-074, Carnegie Mellon University, January 1989.

{72] Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. In Twelfth Annual ACM Symposium on Principles of Programming
Languages, pages 67-77. ACM, January 1985.

[73] Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:
Foundations and methodology. Technical Report ECS-LECS-89-71, Laboratory for
Foundations of Computer Science, Department of Computer Science, University of
Edinburgh, The King's Buildings, Edinburgh EH9 3JZ, February 1989.

[74) William L. Scherlis. Expression Procedures and Program Derivation. PhD thesis,
Stanford University, August 1980. Available as Technical Report Stan-CS-80-818.

[75] William L. Scherlis. Program improvement by internal specialization. In Eighth
Symposium on Principles of Programming Languages, pages 41-49. ACM, ACM,
January 1981.

[76] William L. Scherlis. Abstract data types, specialization and program reuse. In Inter-
national Workshop on Advanced Programming Enviromments. Springer-Verlag LNCS
244, 1986.

[77] William L. Scherlis and Dana S. Scott. First steps towards inferential programming.
In RE.A. Mason, editor, Information Processing, pages 199-212. Elsevier Science
Publishers, 1983.

[78] Oliver Schoett. Data abstraction and the correctness of modular programming. Tech-
nical Report CST-42-87, University of Edinburgh, 1987.

BIBLIOGRAPHY 147

[79) BJ. Schonberg, J. Schwartz, and M. Sharir. An automatic technique for selection
of data representations in SETL programs. ACM Transactions on Programming
Languages and Systems, 3(2):126-143, February 1981.

[80) Mary Shaw. Larger scale systems require higher-level abstractions. In Fifth In-
ternational Workshop on Software Specification and Design, pages 143-146.
Computer Society Press, 1989. ACM SIGSOFT Software Engineering Notes, 14(3).

[81) Andrea H. Skarra and Stanely B. Zdonik. The management of changing types in an
object-oriented database. In Object-Oriented Programming Systems, Languages and
Applications Conference, pages 483-495. ACM, September 1986. SIGPLAN Notices
21(11).

[82] DouglasR. Smith, Gordon B. Kotik, and Stephen J. Westfold. Research on knowledge-
based software environments at Kestrel Institute. JIEEE Transactions on Software
Engineering, SE-11(11):1278-1295, November 1985.

[83] Alan Snyder. Encapsulation and inheritance in object-oricnted programming lan-
guages. In Object-Oriented Programming Systems, Languages and Applications
Conference, pages 3845, September 1986. SIGPLAN Notices 21(11).

[84) JM. Spivey. Understanding Z : A Specification Language and its Formal Semantics.
Cambridge University Press, 1988.

[85] Barbara Staudt, Charles Kruegger, and David Garlan. TransformGen: Automating
the maintenance of structured-oriented environments. Technical Report CMU-CS-
88-186, Carnegie Mellon University, Department of Computer Science, November
1988.

(86) Bjame Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[87] Bjarne Stroustrup. What is object-oriented programming? IEEE Sofiware, 5(3):10-
20, May 1988.

[88) Bernard Sufrin. Formal specification of a display editor. Technical Report Tech-
nical Monograph PRG-21, Oxford University Computing Laboratory, Programming
Research Group, June 1981.

[89]) William Joseph Tracz. Formal Specification of Parameterized Programs in
LILEANNA. PhD thesis, Stanford University, 1991. In Preparation.

[90] Anthony 1. Wasserman, Peter A. Pircher, and Robert J. Muller. The object-oriented
structured design notation for software design representation. Computer, pages 50-63,
March 1990.

[91] David S. Wile. Type transformations. /EEE Transactions on Software Engineering,
SE-7(1):32-39, January 1981.

148 BIBLIOGRAPHY

[92] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):8-
23, September 1990.

[{93] Jeannette M. Wing and Amy Moorman Zaremski. Unintrusive Ways to Integrate
Formal Specifications in Practice, volume 551 of Lecture Notes in Computer Science,
pages 545-569. Springer-Verlag, New York, 1991.

[94] Nikiaus Wirth. Programming in Modula-2. Springer-Verlag, Berlin, third edition,
198S.

Appendix A
Notation

Program notation. Examples use typewriter font for data types, lower-case greek
letters for type variables, sans-serif font for functions, and italics for variables. The
product type coastructor % binds more tightly than the function type constructor —.

Description

{x,y) Tuple constructor.
sxXt Product type constructor.
r List constructor.
P(0) Set type constructor.

= Logical implication.
Ai:T.e Lambda abstraction.
fog Function composition.
\ Domain restriction operator.
® Functional overriding operator.
Abs, Rep Create an abstraction, reveal the underlying representation.
Component.x | Qualified name of a type or operation in a component.
{ea1 | ... | ca} | Alternative solutions.
map) Consistency relation between components.
map,_,; Compatibility map from one component to another.
span, unspan Translation functions from one component to an aggregate.
v sat equation The variable satisfies the equation.

149

150 Appendix A. Notation

Domain operations. Common domain operations and constants that are used in the
definitions of the component operations and the compatibility maps.

Description

i [c] Create a sequence.

| @ Append.

cons(x, s) Add element x to the beginning of sequence s.

| front(s), last(s) | All but last element and last element of a sequence.
| hd(s), ti(s) First element and rest of a sequence.

nullQ Predlcatc,xsﬂnsequencempty?

! rev(s) Reverse a sequence.

{ ‘ol Newline character.

‘L Coatrol L character. "
‘sp’ Space character.

#s The cardinality of the sequence s.

5 [wi] Subsequence of s from the beginning to i.

t s(i.) Subsequence of s from i to the end.
b s [i.]] Subsequence of s from i to .
| s(i) The # element of the sequence s.
| (10 Set constructor.
lx€S Set membership.
| [Ix | PLxID) The set whose elements satisfy the predicate P.
‘; An clement that satisfies the predicate P.

componemopmonsmdthecompmblhtymaps.

Parse a sequence of characters into a sequence of pages.
Parse a sequences of lines into a sequence of characters.
Predicate, is the character a newline?

The newline positions in the sequence of characters s.
The number of newlines in the sequence of characters s.
mnmbacfpagesmtheaequenceofchancuu

Appendix B
Glossary

Abstract interface. The exported types and signatures of the operators in a module.

Aggregate definition. An aggregate definition is a refinement of the aggregate specifi-
cation. The data representation is defined as the product of the component data

representations and the operations are defined in terms of the component operations
as data transform procedures.

Aggregate implementation. An aggregate implementation is a refinement of the prototype
providing an “efficient” implementation of the datatype.
Aggregate prototype. An aggregate prototype is a refinement of the aggregate definition

where the data transform procedures have been transformed into functional definitions
to produce the first executable system.

Aggregate specification. An aggregate specification is a specification of a datatype con-
structed from a collection of components and consistency relations. Each operation
in a component induces a corresponding operation in the aggregate that maintains the
consistency of the components.

Compatibility map. A compatibility map is a function that respects the consistency rela-
tion. It translates one component representation into another representation.

Component. A component defines a collection of operations that may or may not constitute
a datatype.

Consistency relation. Given a collection of implementations for a common definition, a
consistency relation provides a correspondence between the data objects manipulated
in one implementation from those in another.

Data transform procedure. Data transform procedures define alternative implementa-
tions on data representations. They may take one of two forms:

151

152 | Appendix B. Glossary

1. Given a program f using a data representation D and a function, Span, that trans-
g’f‘ elemendeﬁn:s f?f the data representation D to elements of the data representation
, We as:

f(span(d)) <« span(f(d))
2. If, instead, there is a function, unspan, that translates elements of the data
representation D’ to elements of the data representation D, we define f' as:

unspan(f'(d)) < f(unspan(d))
Projection. Projection functions map an aggregate data object to a component object.

Span and Unspan. A span function is a mapping from one component into the aggregate
of all reachable components (i.e., connected by compatibility maps). An unspan
function is a mapping from some aggregate of components into the component that
can be reached by all of them.

Specialization. The specialization process optimizes a program to take advantage of the
context that it appears in. This is accomplished through transformations such as
expose, incorporate, release, shift, and transiate.

Translation function. A translation function is a function that translates one data repre-
sentation into another representation. The spanning functions, Span, and its inverse,
unspan, and compatibility maps are all examples of translation functions.

View. A view defines how an implementation satisfies a specification and consists of a
mapping from the sorts of a specification P to the sorts of an implementation /, and
a mapping from the operations of P to the operations of /.

Appendix C

Translating Representations

This section enumerates the ellided steps in Section 3.1.5 of deriving an implementation
for move-right on the aggregate data structure based on the component implementation of
move-right in Buf;. Recall the data structure for the buffer definition.

type buf = Buf of
(intxch® — point of editing and text in the buffer
x ch® xch* — characters to the left and right of point
x (intx int) — the line and character position of point
X line®) — lines in the buffer

We start with the definition of move-right from Figure 3.4.

unspan(move-right(Buf(p,s,l,r, (ip,cp),s))) <
Buf,.move-right(unspan(Buf(p, t, , r, {Ip,cp), ts)))

Recall that move-right was defined in the Buf; component. The translation function
translates the data aggregate into this component representation.

unspan(Buf(p,s,l,r,(Ip,cp),ts)) <«
Buf,.Buf({p | # | #(2c(s(-lp-11)+1+cp }, {1 | 1@ | 2c(ts) D

The compatibility maps have already been unfolded in unspan to simplify the presentation.
(I2c is an abbreviation for lines-to-chars.) Since the definition of unspan does not change,
it is not repeated below. There are three ways to accomplish the translation of the aggregate
into the Buf; component. Extract Buf; from the aggregate directly, or use one of the two
compatibility maps to translate Buf, or Buf (extracted from the aggregate) into Buf;. All
of the three choices must be included here to ensure consistency in the aggregate.

The aim of the transformations is to manipulate the operation to obtain a definition of
move-right that operates on the aggregate directly. Though the implementation of move-right
(and the other operations) will change, the meaning of the Buf type remains the same. First
the unspan operation is mechanically “unfolded” in the body of move-right.

unspan(move-right(Buf(p, t,l,r, (Ip,cp),15))) <«
Buf).move-fight(Buf,.But({p | #! | #Rc@s(p-11))+1+cp}, {t | 1@r | 2c(ts) }))

153

154 Appendix C. Translating Representations

Next, the component definition of move-right is mechanically “unfolded.”

unspary ht(Buf(po Lir, (lp! Cp), B)) <«
Buf) Buf({p+1 | #+1 | #Rc(ts[dp—~11)+1+cp)+1}, {t | 1@ | 2c(ts) })

We anticipate having to satisfy the constraint that the character index remain within the
current line by introducing case analysis for when the point of editing is at a line boundary
and the operation crosses the boundary. The point of editing is at the end of a line when
the character position is equal to the length of the current line, cp = #(ts[lp]). The true
branch of the conditional is specialized to set the value of cp to #(ts [/p]) and the resulting
expression is simplified.

unspan(move-right(Buf(p,¢,1,, (lp,cp),1s))) <

letlp’,cp’ =ifcp = #(ts[ip)) then lp,#(ts[lp]) + 1 else lp,cp + 1 in
Bufy.Buf({p+1 | #1+1 | #(2c(s(lp’—11))+1+cp' }, {t | I@r | 12¢(ts) })

Using unspan, we know how to map the aggregate to the Buf; component. If we could
obtain the inverse, then deriving a new implementation for operations on the aggregate
would be easier. We simply map the aggregate into the component, perform the component
operation, and then map the component back into the aggregate. Obtaining the inverse may
not be practical since the translation function may not always be one-to-one, and, even if
it were, there may be no casy way to derive it. Rather than coming up with the inverse
explicitly, it is sometimes possible to use syntactic manipulations and simplifications to in
effect, “invert” the translation function. This is accomplished by simplifying the expressions
to match the new representation expressed in the translation function.

Take for example, the inversion of /. The translation function and the preceding
definition of move-right are shown below where expressions not dependent on / are ellided.
The approach is to use simplification rules to manipulate the instances of / in move-right to
match the corresponding instances in the translation function.

unspan(Buf(p,t,l,r,(lp,cp),t5)) <
BufiBuf({... | # | ...}, {...|l1@r | ...}

unszn("';:&! Eht(auf(p, Ll,r, (lpr @):) <«
Bufy.Buf({... | #1+1 | ...}, {... | I@r | ...}

Using the simplification rule, #/ + 1 = #(/ @ [hd(r)]), we get #/+ 1 in the definition of
move-right to match #/ in the definition of unspan. This adds a new constraint that after
moving right, the new sequence to the left of the point will be the old sequence with the first
clement of the right sequence appended. Using the simplification rule, » == [(hd(r)] @ ti(r),
we get the other instance of / to meet this new constraint. This is where insights about the
domain from the developer are needed (in this and the following step).

unspan(move-right(Buf(p, t,1,r, (Ip,cp), ts))) <«
letlp’,cp’ = if cp = #(ts(ip]) them Ip, #(ts[ip)) + 1 else Ip,cp + 1 in
Bufi.Buf({p+1 | #(@ hd(n))) | #(2cis(.lp’ —11))+1+cp’ },
{t | 1@hd(N]I @) | 2c(ts) })

155

The motivation for the next step is to satisfy the restriction (from the constraint on the
component) that the character position remains within the current line. We use a version of
the simplification rule:

#(2c(ts [op — 11)) + 1 + #(ss [ip]) + 1 == #(12c(ss [.Jp1)) + 1

This rule states that the length of the preceding lines and the current line is equivalent to the
length of all lines preceding and including the current line. Instead of moving the character
position past the line boundary, we increment the line index and reset the character position
to the beginning of the next line.

unspan(move-fight(But(p, s, 1,7, (ip,cp), 15))) <
letip’,cp’ =ifcp = #(ts(ip)) then lp+ 1,0 else Ip,cp+ 1 in
Bufi.Buf({p+1 | #/ @ ()] | #(2c@s[dp’ —11)+1+cp' },
{t | l@hdM @t() | 2cis) })

Now that all instances of the old representation appear in the context of the new represen-
tation, unspan is mechanically “folded.”

unsparymove-right(Buf(p,,l,7, (ip,cp),15))) <«
letlp’,cp’ =ifcp=#(tsiipl)then lp+1,0else lp,cp+1in
unspan(Buf(p + 1, ¢, I @ [hd(n)}, t(»), (ip’,cp’), ts))

Choose the solution.
move-fight(Buf(p, 1,1,r, {Ip,cp),1s)) <«
letlp’,cp’ =ifcp = #(ts(ip)) them [p+ 1,0 else Ip,cp + 1 in
Buf(p+1, ¢, 1@ [(Md(M)], (), (ip’,cp’), 1)

A new implementation of move-right has been derived that operates on the aggregate data
structure directly.

156

Appendix C. Translating Representations

R

| Appgndix D
Shifting Computation

This section enumerates the ellided steps in Section 3.1.6 involved in shifting computation
of newline information in next-line (in the prototype) to the other operations that generate
the datatype, such as makebuf and move-right. In the new implementation, next-line is able
to look up the newline information it needs directly, while makebuf and move-right need to
do extra work to maintain this information.

Recall the data structure for the buffer prototype.

type buf = Buf of
(intxch® — point of editing and text in the buffer
x ch* x ch® — characters to the left and right of point
x {(intx int) — the line and character position of point
X line®) — lines in the buffer

We start with the definitions for the buffer operations from Figure 3.5. We have chosen
a solution for show-char and have defined span according to the observations made in
Section 3.1.6. The let statement in move-right has been unfolded in order to simplify the
presentation.

makebuf < Buf(0,], (1, [, (0,0), (D)

move-fight(Buf(p,,1,7, (lp,cp),15)) <«
Buf(p+1, 1, 1 @ [hd(r)], tr), if cp = #(ts(ip]) then Ip + 1 else Ip,
ifcp=#(s(ip)) them Oelsecp + 1, ts)

show-char(Buf(p,t,1,7,(Ip,cp),15)) <«
tip-1)

next-ine(Buf(p, 1,7, ip,cp),ts5)) <«
let d = (nipos(ts)) [ip] — (nipos(s)) [ip ~ 1] im
Buf(p+d, ¢, 1@r(.d]l, r(d+1.], (lp+1,cp), ts)

The translation function records the software developer’s requirements to optimize the
prototype.
span(b as Buf(p,t,l,r,(lp,cp),ts)) <« Buf'(p, ¢, iaslp, nlas nipos(s))

Since the definition of span does not change, it is not repeated in the definitions below.
New definitions for the operations are defined as data transform procedures.

157

158 Appendix D. Shifting Compuzation

makebuf < span(makebuf)
move-right (span(But(p,¢, .7, (ip,qp), 1)) <
span(move-right(Buf(p, ¢, J, r, (ip,cp), t5))
Wuf@,‘,l.'»(lp,cp):“))) <<
show-char(Buf(p, ¢, I, r, {ip,cp), 1s))
next-ine'(span(sut(p, 1,1, (ip,cp), 1)) <=
spar(next-line(But(p, ¢, I, r, (Ip,cp), ts)))

The buffer operation definitions are mechanically “unfolded.”

makebuf < span(Buf(0, [], [1, [1, (0,0), (1))

move-right'(sparBut(p, s, 1,7, (Ip,cp), 1)) <
spanBuf(p +1, ¢, 1 @ [hd(r)], U(r), if cp = #(ts[ip]) them [p + 1 else Ip,
ifcp = #(s(ip]) then O else cp + 1, 1s))

m[?.af.](span(auf(p,r,l,r, (lp.op) 1)) <«
tip —~

next-line’(span(Buf(p,t,l,r, (Ip,cp),15))) <«
span(let d = (nipos(ts)) [{p) — (nipos(ts)) [ip — 11 in
Buf(p+d, 1, 1@r[.d], rd+1.], (lp+1,cp), ts))

Next, span is mechanically “unfolded” on the righthand side.

mm < Buf'(O, []) 0, "W([D)

Me_-ﬂgﬂ(spamauf(p.t.l,r. {p,cp), 1)) <=
Buf'(p+1, ¢, if cp = #(ts(ip)) them Ip + 1 else Ip, NIpOS(ss))

Mli(spancsuf(n,t.l.r, (lp.cp), 1)) <«
tlp-1]

next-ine'(span(But(p,s, 1,7, (Ip,p), 1)) <
But’(p + ((nipos(ts)) lip] — (nipos(ts)) Lip — 11), ¢, Ip +1, NIPOS(zs))

Since the character position within the current line, ¢p, will no longer be computed,
all references to it must be transformed into an expression that uses data that will still be
computed (i.e., p, ¢, Ip, and nlpos(ss)). The expression p = #(ts ([p]) is transformed into
nip(t(p1) which states that checking to see if the character position is at the end of a line
is equivalent to checking if the current character is a newline. (The details are omitted for
the sake of brevity.) As in the previous derivation, the guiding motivation is to manipulate
the definition so that all instances of the old representation appear in the context of the new
representation.

makebuf <« Buf'(0, [1, 0, nipos(1))

nw_wﬂﬂ(m\(aut(p,t,lm (p.p)) <«
But'(p+1, ¢, ifnip(z(p]) thea Ip + 1 else Ip, NIPOS(ts)

m[t;mﬁi(m(suf@,:,z,r, (lp.cp), 1)) <«
tp-1

next-ine'(span(eut(p,s,L,r, (lp,p),1s))) <
Buf’'(p + ((nipos(ts)) Lip) — (nipos(s)) Lip — 11), 1, Ip + 1, nipos(ts))

159

Introduce a let abstraction.

makebuf < Butf'(0, (], 0, nipos([1)

(span(Buf(p,t,l,r,(ip,cp),ts))) <«
letp,t,i,al=p, ¢, Ip, nipO8(ts) in
Buf'(p+1, ¢, ifnip(t[pl) them i+ 1 else i, nl)

show-char'(span(Buf(p,t,1,7, (ip,cp),1s))) <=
letp,t,i,nl=p, ¢, Ip, nipos(ss) in
tip—11
next-line'(span(But(p,t,1,7, (ip,cp), 1)) <«
up"!i!nl'p’ ‘I lp’ nw‘s)h
Buf'(p+(nlli]l —nlli—-11),t,i+1, n)

Introduce an abstraction boundary, x == Rep(Abs(x)). Here, Buf’ is used for introducing
the abstraction boundary and Rep’ for uncovering the representation.

makebu’ <« Buf'(0, [], 0, nipos({ D)

(span(But(p,s,l,r,(lp,cp), 1)) <«
let p,1,i,nl = Rep'(Buf'(p, ¢, Ip, nipos(ts))) in
Buf'(p+1, ¢, ifnip(t(p)) them i + 1 else i, nl)
ghow-char'(span(Buf(p,1,1,r, (ip,cp), 1)) <«
let p,2,i,nl = Rep'(But'(p, ¢, Ip, Nipos(ts))) in
tp-11
next-line’(spar(But(p,t,l,r, (lp,cp), 1)) <«

let p,2,i,nl = Rep'(But'(p, ¢, Ip, Nipos(ts))) im
Buf'(p+ (lli) —mli—1]), ¢, i+1, nl)

Mechanically “fold” span on the righthand side.

makebuf < Buf'(0, [], 0, nipos((1)

(span(Buf(p,s,1,r,(lp,cp),t5))) <«
let p,¢,i,al = Rep’(span(d)) in
Buf'(p+1,t, ¥nip(t(p]) them i+ 1 else i, a))

show-char'(spar(Buf(p, 41,7, (ip,cp),15))) <
let p, 1,i,nl = Rep'(span(b)) in
tip—-1]
next-fing’(span(But(p,t,l,r, (Ip,cp),15))) <«

let p,1,i,nl = Rep’(span(b)) in
But'(p+(lli) —mlli—1]), ¢, i+1, nl)

Since all instances of the old representation appear in the context of the new representation,
span(b) is renamed to b’.

makebu?’ <« Buf’(0, [], 0, nipos(I))

move-right' () <«
letp,t,i,nl= Rep'()im
But'(p+1, ¢, ifnip(t(p]) them i + 1 else i, al)

160 Appendix D. Shifting Computation

showchar(y) <«
letp,t,i,nl= Rep’(b') in
tp-1)
next-ine'(y) <«

letp,t,i,nl= R”l(b’)h
Buf'(p+ il —nlli—-1)), 4, i+1, nl)

As an alternative, patterns are used on the lefthand side to destructure the datatype instead
of using Rep explicitly on the righthand side.

makebu’ <« Buf’(0,[],0,[))

move-right (But’(p,4,i,al)) <« Buf'(p+1, ¢, ifnip(t(p])theni+ 1elsei, nl)
show-char (But'(p,t,i,al)) <« tlp-1]

next-ine'(But’(p,t,i,nl)) <« Buf'(p+nallil —nlli—1],1,i+1,nl)

In the new implementation, the computation is shifted away from next-line so that next-line
simply looks up the position of the newlines surrounding the current line directly. The
transformation allows one to get from the prototype representation to this one in a controlled
manner.

Appendix E
Integrating Components—Proofs

This section contains the proofs for Section 6.1.4. Each section starts with an aggregate
definition and shows the details about how the definition satisfies the axioms comprising
the aggregate specification.

axiom proj(0p(agg)) = Op,(Proj(agg))

axiom proj,(agg) proj(agg) == proj(0p(agg)) proj; (0p(agg))
axiom projy(agg) projy(agg) => projs(op(agg)) proj;(0p(agg))
axiom proj,(agg) proj,(agg) = Proj(0p(agg)) proj; (0p(agg))

Product of the Representations

Here is a simple definition for the aggregate where the data structure is the product of the
component representations.

Givea: 0p,, map,_;, Map,_;, Map,_;, Map,_,, Map,_;, Map,_,
Jocal

proh(Agg(ci,c2,¢3)) < ¢
o proj; () < Agg(map,_,(x), x, Map,_;(x)

dop(agg) « proj; ! (0p,(Proj;(agq)))

'We need to ensure that the above definition satisfies the axioms that define the aggregate.

e Axiom 1. The first axiom holds because we derived the new definition from it.
However, we must justify the assumptions made during the transformation steps
about the inverse projection being injective and a left inverse of the projection. In so
doing, a definition for the inverse projection is obtained.

To show that proj; * (proj,(x)) = x, the proof goes as follows:

Proj; ' (Prok(Agg(ci,c2,c3)) = Agg(ci,ca,cs)
First unfold proj,,

161

162 Appendix E. Integrating Components—Proofs

projr'(ca) = Agg(ci,cz,ca)
and then unfold proj; .

Agg(Mmap,_(c2),c2,Map;_s(c2)) = Agg(ci,ca,cs)

The components are consistent by definition, so that c; and c3 can be expressed in
terms of c,, thatis, c; = map,_,,(cz) and c3 = mapz_,s(cz).

Agg(cs, c2, ¢3) = Agg(ci,©2,¢3)
o Axiom 2. Start with the axiom,

proj;(agg) map} proj(agg) => Pproj(op(agg)) Map} proj,(0p(agg))

and prove the consequent,
Proj,(0P(agg)) map; proj,(0p(agg))

by first unfolding the definition of op.
Proj,(proj; * (0P, (Proj;(agg))) map} Proj; (prof; ' (0P (Proj,(agg))))

Then simplify, using: proj,(proj; ' (x)) == x and proj, (pro;* (x)) == map, _, (x).
0p,(Projx(agg)) map; map,_.;(0p,(Proj;(agg)))

Factor out the common subexpression to make it more obvious.

x Mmap; map,_,(x) where x = 0p,(Proj;(agg))
This is true by definition of mapj.
. @ Axiom 3. Showing that the third axiom holds is similar to the proof for Axiom 2.

o Axiom4.
Start with the axiom,

Proj(agg) map proj(agg) => proj;(op(agg)) mapi Pproj;(op(agg))
and prove the consequent,
proj;(0p(agg)) map! proj, (0p(agg))

163

by first unfolding op.

projs(prof; ' (op;(Proj,(agg)))) map} proj; (prof; ' (0P, (Prolx(agg)))
Then fold the definitions of map,_,; and map,_,;,

map, _s(0P;(Proj;(agg))) Map} map,_;(0p,(Proj(agg)))
and factor out the common subexpression.

map,_,;(x) Map} map,_.(x) where x = 0p,(Proj,(aga))
Substitute map,_,,(map,_,;(x)) for map,_,,(x),

map,_;(x) map; map;_.,(Map,._.3(x)) where x = 0p,(Proj(agg))
and factor out the common subexpression.

y map}] map;_.,(y) where x = 0p,(proj;(agg)) and y = Map, _;(x)
This is true by definition of map).

Reimplementing the Operations

Given a definition of the operation in one component, we derive alternative implementations
for the other components using data transform definitions and then define the aggregate
operation in terms of these component operations.

Given: °p2a mapl-oh maps-z
local
opy(map,_;(c2)) <« map,_;(0py(c2))

" Map;_,(0P3(c3)) < Opy(Map,_y(ca))

OP(Agg(c:,c2,c3)) <« Agglcy, 3, ¢3)
wherec; = oOp(c1)
andc; = 0Op,(c2)
andc, = Opy(ca)
end

e Axiom 1. Start with the axiom,
Proj,(0p(Agg(cs,c2,03))) = OP,(Proj;(Agg(cs, c2,¢3))

and take the second projection on the righthand side.

164 Appendix E. Integrating Components—Proofs

proj(op(Agg(cr, c2,¢c3))) = OPy(c2)
Unfold op and take the second projection on the lefthand side.
opy(c2) = Opy(ca)
e Axiom 2. Start with the axiom:

proj;(Agg(c1, c2,¢3)) mapl proj,(Agg(cr,cz,¢3)) =>
proj;(0p(Agg(ci, c2,¢3))) map} proj;(op(agg(cr, cz2,c3))

To prove the consequent,
Proj,(0p(Agg(ci, 2, c3))) Map} proj;(Op(Agg(c:, 2, ¢3)))

define an implementation of the relation as a compatibility map that maps one com-
ponent into the other; thatis: x mapl y = y=map,_,(x).

Projy(0p(Agg(c1, 2, cs)))) = map,_(Prok(OP(Agg(ct, c2, cs))))
Unfold op and take the projection.
opi(c1) = map,_,(0py(c2))

Since the righthand side matches the body of op,, fold the (expression procedure)
definition of op,,

OPyer) = OPy(Map,_y(ca))
and then substitute c; for map,_,,(c2) which is given by the antecedent.
opy(c1) = opy(cr)
e Axiom 3. Start with the axiom:

proly(Agg(c1, c2,c3)) map3 proj(Agg(ci,c2,c3)) =>
Proj,(OP(Agg(c1, 2, ¢3))) Map3 Proj,(op(Agg(cs, c2,cs)))

As above, to prove the consequent,
Projs(0P(Agg(c1, @2, 0))) Mapd Projy(0p(Agg(ct, c2,¢3)))

165

define the relation in terms of a compatibility map; that is:
x map y = y=map;_,(x).

Prol,(OP(Agg(c1, c2,c3)) = Maps_,(Prok(oP(Aga(cs, 2, c3)))
Unfold op and take the projection.

OPy(c2) = Map,_,(O0Ps(cs))

Since the righthand side matches the definition of 0p,, unfold the (expression proce-
dure) definition of op;,

OP(c:) = OP,(MaP_y(c3)
and then substitute c; for map,_,,(c3) which is given by the antecedent.
opy(c2) = Opy(c2)
Axiom 4.
Start with the axiom:
projs(agg) map} proj,(agg) => Proj;(0p(agg)) map; proj;(0p(agg))
To prove the consequent,
proj;(0p(agg)) map} proj;(0p(agg))

first define the relation in terms of a compatibility map:
X map; y=Ey= mapz—ol(map3-02(x))'

Proj,(Op(agg)) = mMap;_,;(Map;_(Projy(0p(aga)))
Unfold op and take the projection.
opy(c1) = map,_,(Map,_,(0ps(cs))
Then unfold the (expression procedure) definition of op,,
opy(c1) = mMap,_,(0P,(Map;_y(cs)))
and fold the (expression procedure) definition of op,.
opi(c1) = Opy(Map,_.,(Map;_;(cs)))

Si‘npnfy' “Sing: i = mpZ—’l(maDS-oz(CS))’
op(c1) = op(c)

166 Appendix E. Integrating Components—Proofs

Showing Transitivity

Here we relax the restriction that requires any two components to be directly connected
by a compatibility map, to simply requiring a connection, possibly through some number
of intermediate components. In all of the cases, the proof for Axiom 1 in this section is
identical to the proof for Axiom 1 in the preceding section. We focus on Axiom 3 since it
is the interesting case where the consistency relation cannot be defined in terms of a single
compatibility map, and so an intermediate component must be used. The proofs for the
other axioms are similar to the ones in the preceding section since there are direct translation
functions in these cases.

Case 1.

Given: op,, map,_,,, map,_.,
local

opy(map,_(c2)) <« map,_.,(0pa(c2))
ops(Map,_s(c3)) <« map,_;(0p,(c3))

in

OP(AQQ(CI 1C2, c3» < Agg(c{] ci: C;)
wherec; = op,(c1)
andc; = Opy(ca)
andc; = Ops(ca)
end

Unlike the proof for Axiom 3 in the preceding section, to prove the consequent,

Projs (0P(Agg(c1, ¢2,€3))) Map; ProL(0P(Agg(ct, c2,¢3)))
we define the relation in terms of the composition of the compatibility maps. The compo-
w.ats are “related” if c; can be translated into ¢3 using the composition of the compatibility
maps.

Projs(OP(Agg(c1,C2,C3))) = Map,_3(Map, ., (Proj(op(Agg(cs, c2,ca))))
Unfold op and take the projection.

OPy(c3) = Map,_s(Map,_.,(0P;(c2)))
Fold the definition of op,,

Opy(cs) = MEP,_4(0Py(Map;_y(ca)))
and then fold the definition of Op;.

OPy(cs) = OPy(Map;_s(Map;_,(ca)))
Simplify using: c3 = map,_,(map,_,,(cz)) from the antecedent.

Opy(c3) = OPy(cs)

167

Case 2, Similar to Case 1.

Case 3.

Given: 0p,, map,_,,, map,_,,

local
op,(map,_;(c2)) < map,_,;(0p,(c2)
map;_,;(0py(c3)) <= opy(maps_,;(c3))

in
op(agg(ci,c2,c3)) <= Agg(cy, ¢, ¢3)
wherec] = opy(c1)
andc; = Opy(c2)
andc; = O0ps(ca)
end

To prove that this definition satisfies the axioms, we need only reconsider the proof for
Axiom 3 (since the others remain the same). Unlike the proof for Axiom 3 in the preceding
section, to prove the consequent,

Proj; (0p(Agg(c:, c2,¢3))) Map} proj(op(agg(c:, c2, c3)))

we define the relation in terms of a pair of compatibility maps. The components are “related”
if they both can be translated into some common form.

map,_.,(Proj,(0P(Agg(ct, c2,ca))) = Maps_,(Projs(OP(Agg(ci, 2, c3))))

Unfold op and take the projection.

map;_.,(0P(c2) = mMap;_.,(0ps(ca))

Fold the definition of Op, on the lefthand side, and unfold the definition of Op, on the
righthand side.

op,(map;_;(c2)) = Op,(Map,_,(cs))

Simplify, using: map,_;(cz) = map,_,;(cs) from the antecedent.

op,(map,_;(c3)) = op,(map,_,(c3))

168 Appendix E. Integrating Components—Proofs

Case 4.

Given: 0p,, Map,_,,, map, _,
local
map;_,(0py(c1)) < opy(map,_,(c1))

o ops(Mmap,_3(c1)) <« map,_,0p,(c1))

op(Agg(c1,c2,¢3)) <= Agg(ct, ¢, ¢3)

wherec; = op,(c1)
op;(c2)
0p;(cs3)

E
o

end
As for case 3, we need only consider the proof for Axiom 3.
Projs(0p(Agg(c1, c2,¢3))) mapi Proj(0p(agg(ci, c2, ¢3)))
We define the relation in terms of some intermediate,
3x. map; _,,(x) = Proj(0p(agg(ci, c2, 3))) AND map; _5(%) = proj;(OP(Agg(c1, c2,¢3)))
and take the appropriate projections.
Ix . map, _;(x) = 0p;(c2) AND map, _,3(x) = 0p;(c3)

The components are consistent by definition, thatis: map,_,,(c;) = czandmap,_,(c1) = ca.
The antecedent states that the ¢; component is indeed the same in each equation.

3x . map, _,,(x) = op;(Map, _,(c1)) AND map, _;(x) = 0py(Map, _5(c1))
Fold the body of op, and unfold the definition of 0p;.

3x. map; _,,(x) = map; _(0p; (1)) AND map, _,3(x) = map, _,3(0p; (1))
This is true when x is equal to op,(c)).

Incrementally building the aggregate.

This section demonstrates how the incremental definition shown below satisfies the defini-
tion presented in Figure 6.8. This approach is a verification presentation where the new
definition is “invented” and then the equivalence between the old and new definitions is
shown using the usual symbol manipulations of fold and unfold.

Given: 0p,, map,_,,, map;__,
Jocal
span(ca) < Aggfcy, co)wherec; = map,_,,(c2)
o unspan(agg(ci,ca2,c3)) < Aggi{c: | map;_. (cs) }, c2)
op(span(ca)) < span(op,(ca)
“qu(cx,cz,cs))) < op,(unspan(agg(ci, ¢z, ¢3))

169

The following insight is useful in coming up with the aggregate definition. In the
previous deﬁmnonofop,wesaw thaxuconmnzdlefolbwmgmbem

= 0py(c1) and ¢ = OPs(ca)....

Wecanmsformapairoffumﬁons,eachmingasingbvdm,inwuingbfmﬁwm-
turning a pair of values. That is, transform ¢}, ¢} = 0p;(c1),0p;(c2) into ¢}, c3 = 0p,(c1, c).
Notice that the components are now computed together (in a single function), so that, for
example, c; is available to compute the new value of c;, which the designer might use if it
increases efficiency. We can then repeat the process and combine the result with the third
component C3.
Here we start with the new definition and follow a nce of transformations that

demonstrate how it is equivalent to the old one (in Figure 6.

unspan(op(agg(ci,cz,c3))) < opj(unspan(agg(cs, 2, C3)))
Unfold unspan on the righthand side.

unspan(op(Agg(ci,cz,c3))) < Op;(Aggi{({ c1 | map,_(cs) },c2))
The components are consistent; that is: c; = map,_,;(c3) and c; = map,_,;(c2).

unspan(op(agg(cs,ca,c3))) < op(agg({c: | map,_(ca) },<2))
Fold span on the righthand side,

unspan(op(Agg(ci,c2,c3))) < Op;(span(ca))
unfold op;,

unspan(op(agg(ci,c2,c3))) < Agg(Map,._.;(0P;(c2)), 0p,(c2))
and then fold the definition of op,.

unspan(op(agg(ci, c2,¢3))) < Agg(0p,(Map,_,;(c2)), 0p,(c2))
The components are consistent; that is: c; = map,_,;(cs) and ¢; = map,_,;(c2).

unspan(op(agg(ci,c2,c3))) < Agg;(0p,(Map,_,(ca)), 0py(c2)

Introduce the equality, { x | x }. If x is valid, then both alternatives are valid ways to
compute the value.

unspan(op(Agg(ci,ca,c3))) < Aggi({ op,(map,_(c3)) | op,(map,_(cs)) },00:(c2)
The components are consistent; that is: ¢; = map,_,,(cs3).
unspan(opiaag(ci,cz,c3))) < Aggd{op,(c1) | op,(Map;_,(c3)) },0P:(c2))
Fold the definition of op;,
unspan(op(agg(c,c2,c3))) < Rgg({ opy(c1) | Map;_.,(0ps(cs)) },0P,(c2))
fold unspan,
unspan(op(Agg(ci,c2,¢3))) < unspan(agg(op,(ci),0p,(c2),0p;(cs)))
and then choose a solution.
Op(Agg(c1,c2,¢3)) << Agg(op,(c1),0P(c2),0P5(c3)

