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Abstract

A formal method for syematically integrating general-purpo softw modules into
efficient systems is presened. The integration is accomplished through adjustment of
abutract itrfae and - of the underlying data representations. The method
povides the software designe with the ability to delay or revise design decimons in cases
where it is difficult to reach an a priori agreement on interfaces and/or data epresentations.

To demonsrawt the metx, the development of a text buffer for a simple interactive
text editr is given. For each basic operation on the text buffer, a natural and efficient choice
of data repentatim is made. This orpnizes tie operations into several "components,"
with each component containing those operations using the same data representation Me
components are then combined using formal pogram-manipuio methods to obtain an
efficient composite the1Pi a supports all of t operations.

This approach prvides meaningful support for later adaptation. Should a new editing
operation be added at a later time, the initial components can be reused in another com-
bining process, thereby obtaining a new composite at that works for all of the
operations including the new one. There ae also ramificadons for the application of formud
methods to lai -scale systems, a this method can be applied to the manipulaton of the
interfaces between modules in larger software systems.
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Chapter 1

Introduction

1.1 The Problem of Organizing Interfaces

The oranization of interfaces among system components is a key task in the construction
and management of larger-scale software systems. For many large systems, a principal
source of risk is in making the decisions concerning the placement of these interfaces [11]
- in other words, how the components are to be organized into an integrated software
system. Language features for modularity, including various type systems, provide a
means for component structure to be made more explicit, thus facilitating management of
systems interfaces [65].

I suggest that formal methods [19, 31] can be applied to support the development and
evolution of large-scale systems through the formal manipulation of the interfaces and
components. As a system architecture mamr and evolves, interfaces and components
will likely need to be adjusted in various ways, by moving or shifting computations across
interfaces, by introducing new interfaces to create new components, by combining similar
interfaces to merge components, and so on. Indeed, the architecture of large systems is
rarely determined fully in advance and, in any case, evolves rapidly as development ex-
perience is gained. Within maintenance activities, for example, 60 percent of the effort
is for enhancements [53]. Formal methods can provide a basis for the creation of soft-
ware Uos that support this kind of itrative refinement [4]. Such tools could potentially
reduce the risks, which are now very high, associated with the determination of overall
systems architecture in software development. The risks are high because of the need for
enhancement

Consider the importa problem of combining, or"integrating," modules that must share
data. The possibility of sharing means that interacting modules must agree not only on the
abstract interfaces, but also on the underlying data representations. Because architectures
evolve, this problem of integration usually persists for as long as the system is maintained.

Consider, for example, the development of an interactive display-editom A key sub-
problem is the implementation of operations on the text buffer. There am many possible
efrelenmtions for such buffers, for example a sequence of characters, a sequence of lines,

and on, and for each operatim, one representation may be more natural or appropriate

1



2 Chapter 1. Intoduction

than another Rather than having to decide in advance on some compromise, it would be
easier to collect into separate components the sets of individual editing operations that use,
in a straightforward implementation, the same "natural" representations. I am proposing an
approach that involves taking individual components, each using its own "natural represen-
tatim," and combining them via program tnsfation into a single, efficient, composite
implementation.

Performing this composition of components requires a way to mediate the interactions
among them. Program-transformation techniques [25, 67] can provide assistance in ac-
complishing this. Before discussing this, however, we first consider the strategies that are
currently available to the software designer.

1.2 Traditional Solutions

Modern programming languages such as Ada [10], Clu [54], Modula-2 [94], and Standard
ML [61] provide data abstraction and encapsulation constructs called packages, clusters, or
modules that enable one to define and enforce the boundarm separating the components of
a software system. Modularity facilitates reuse and analysis and, when properly structured
(either by design Or through evolution), isolates and localizes the revisions that occur as a
system is maintained, adapted, and reused [65]. In this paper, I refer to thes data abstrac-
tions as mo&des. Modules can be viewed as implementing a kind of (usually complex)
datatype definition. Like datype definitions, there are several aspects to modules. These
are the aburact interface, that is, the exported types and signatures of the operations; the
underlying repreamntaions for the data objects created and manipulated by the module; and
the pkmentations of the operations.

The integration of modules in a large-scale system is difficult. Modules that interact
must agree not only on the abstract interfaces, but also on data representations in the cases
where they share data. Also, as a softwa system evolves, the need to adapt existing
interfaces can arwi [66. Thus, this problem ofintegration persists for as long as the system
is maintained. Because the data repeentations affect the interactions among system
cI am motivated to use the term modul interface to refer collectively to a
module's abstract interface and associated data representations.

The Exiing Ch em In Sd re Developmt. Confronted with the problem of inte-
grating interfaces in largr-scale systems, the software designer has the following choices:

I. Make an a priori correct choice of abstract interface and data representation defini-
tions that wil sufce for all anticipa needs.
The UNIX system intgrates tools using streams as a common inrface and sequences
of chaacters as a common data reptesentati Traditional databas sysms also
devis common interfaces and da representations at the beginning of the design
proem However, it is often the cas that good dat rep entaion may be difficult
so desin a priori, especial1y when there is not much experience in the particular
application domain. Once built, systems also evolve as users desire additional
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functionaity which may not have been anticipated initially. Adapting components is
usually difficult once design decisions are made and, indeed, the cost of implementing

chan often becomes -nman e.-- For example, adding a tool in UNIX that uses
a complex internal data structure would involve introducing an expensive translation
between it and the common interface. These problems of risk have led software
designers toward iterative and evolutionary models of development [11], but little
advice is given onhow to get from one stage to the next.

2. Introdice functions for translating between representations in the situations where
the abstract interfaces agree but the data repre tations do not.

Separately designed modules that share data may be used together by writing trans-
lation functions that convert from one module's representation for data objects to
the other's. Howevez the efficiency cost in the overhead of mapping back and forth
among modules may not be acceptable.

Tike, for example, the case in which two modules have been separately designed for
matrix operations, one for computing inverses and another for computing determi-
nants. Let us assume that the modules agree on abstact interfaces, in which there
are operations to create a matrix and also to obtain the elements of a given matrix.
The modules differ, howev, on their data representations, perhaps for reasons of
efficiency. To use the modules toger it is necessary to writ translation functions
that map one matrix representation to the other. T'his can be done by obtaining the
elements of a matrix from one module and then creating a matrix with those elements
in the other module.

3. Use a very-high-level language with appropiate built-in high-level types.

In this case data mepesentatimwe not explicitly defined. Instead, design decisions
regarding dam representations are left to a compiler (eg., SETL [79]). This means,
however, that the performance of the implemetation and expressivenes of the
prormminglaguage a lmited by the estingcompier mchnology. Furthrore,
if a designer wants to develop a system using rich abstractions that will have exacting
performanc requirements, then it seems that the designer must be involved in defining
data representations.

4. Adapt or refine the abstract interfaces of existing modules by defining new modules
as extensions of the existing ono.

For example, objec-oriented techniques can be used to define new types (and hence
abstract interfece) in tem of existing ones [55]. Objects having the new type will
share mewing with objects of the existing type, typically by inheuiting its operations
and adding someth mome The new objects will also share implmentio by
directly musing the code for the existing objects. Unfortunately there is no formal
way to specalize that implementatio in the context of the new type in order to obtain
bener pesformanL
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13 FocUs of the Thesis
Each of thn traditional approaches addresses the problem of module interface integration
with varying degrees of success. I am interested in how program --ansormation might be
used to complement or enhance them.

1.3.1 Thesis

Progran Vagbnuadons can provde stmadc support for integrating general-pw pose
software modules into efjcient systems. This approach also provides support for later
adaptaton.

In particular I am explaring the use of transformation-based techniques to (1) provide a
systematic approah to adapting datatypes and modules, (2) remove the overhead of trans-
lation functions at runtime through program manipulaton, (3) optimize the performance of
datatypes using insight from the software developer, and (4) specialize impemtions to
obtain be= pe forman in programs with modules that reuse code through inhritance.
An evaluation of the utility of the techniques developed in this thesis is given in Cap 7.

1.3.2 Approach of the Thesis Research

I use progrm-transfamaton methods to integraw module inerfaces, yielding efficientimplementainA. Complex datatpe defions start as a c c of sew rat modules.
Then, translaton functions among the modules are introduced to reach preliminary (or
"baseline") agreement on data representations and module extensions defining now inter-
faces are used to reach ageement on abstract interfaces. The initial interfaces are then
integrated and optimized by using an extended form of datatype =formmaons. This
results in a single consistent and efficient implemenaion

1.3.3 A Model of "Module Interface" Integration
Let us now conside problem of designing and impl g a text buffer that manip-
ulates characu and lines for a text editor (This example will figure prominently in this
theds.) In a softwrengineering process, owe of the early design issues, and out with
the highest associated design risk, is the selection of the representaion for a major data
structure such as the buffer. After deciding on this representation (call it the buf fer), it
then nains to define the character and line operatios and finally the expot buffer
oro In the Standard ML [591 module system for example, the program for buffer
operations could be decomposed into two modules, on each for the character and line
operados. TM aim of m is to decompose programs into modules that can be
mmaul relatively of ech othe

St ML handles tpoblem of sharing of data psation by providing a
meaw form p ad mmaging this interactin though it module system [42]. In this
examp1 ft two modules for character and line operations would be combined by using
them aa mer a "funcr" (a parameI module) that declares (via a "sharing
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constraint" declaradion) that they share a common buffer dam strucr, and then exports
the buffer operations. he sharing declaration is necessary, since without it, there may be a
type conflict in the buff de operations module, since the buffer inherited trough the character
operations and the buffer inherted through the line operations would be intpreted. as two
distinct types.)

buftm-ops

buffer

his, uafortunately, usually difficult to make such a priori decisions on dam representations,
especially since new operatio might be added after the initial design and implementation
have long been completed.

An al ve appwoach is to define two separat modules, one for character opera-
tions and the other for line operations, each of which assumes its own specializud dam
reresentatn for the buffer.

e Ibu

At some point thes modules must be somehow integrated if we are to use both character
and line operatIons on the sume buflez The problem of sharing is now mor complex
since the modules might not use the identica data representation for buffer. Rather,
they may each defie their own data, epsesentations, which are essentially "views" [29] of
some "canonical" buffec As inicated earli, integration could be achimved by introducing
functions that transa between e represen ttions. (This would rely for consistency on
an external unifying smant-model)

I propose a new approwa Rather than mediating the repeseatio through trans-
lato functions at runtme (which lilely incurs a siificant pFormn penalty), thes
mappings are incorporad into a single buffer imp by deriWg a new common
(and edfficient) dt epresentation. Prog am ormation teiqus provide a means to
accomplish this by "synthesizing" a new data repesentation from the collection of special-
Ind oms. In essence, ft translation of interfaces is "shifted" to an earier point in the
com in (cr"copiled"). An mp is pmdin aper 3.

This appmach p ides meaningfu support for later adaptation For example , suppose
that at some futre time, the text buflet implementtion is to be used in a new application
say, a display edim Th display edie may impo new neqeets on the functinalty
of the buffSx In this co the buffer abstract intufa must be extended. Such extensions
could be acmplshed by using, for exmple, inheritance (in the object-rented sem) to
e ncundtheW es and add the nw fuc-nlty. Program-trans natiou hniques

povidea me=ns of fuily inorting such extensics In Chapter 4,1 sIkch out the inclusion
of a finishd on ba in a display edim deriving a new efient implementation of the
at bufer that takes advantap of te new context of the display edito.
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1.3.4 What is New

DM tnsformions have been used to implement dattp specificatious or to optimize
asting progrms. The apoch of this thesis is novel in that the research emxds data

t nr ion byintoducing tam m nchniqesfor modu inrh edesign. This
enables the applicato of trans on teciniques to the dvm and adaptation of
"largescale systems7 [20]. Small-scale systems that deal primarily with algorithm devel-
opment have been studied extensively. In this next step up I focus on data representations.
This thesis does not addres all issues of large-scale system design, but rather makes a
conriion i einex ig the umt chniqs by applying program transformation to the
inogratin f module interfaces. A study of the derivation of an interactive display-editor
is shown that illustrates the hard problems of module interface integrtion that occur in
software development. A framework for describing the trnsfomadm techniques is then
established.

Solving this integration problem not only enhances existing aproahes, but also may
lead to new possibilities in designing systems. For instance, absta datatypes are good
for iWin lin s from change, but not for promoting enhancement and adaptation [30].
This thesis research could lead to a new way of thnking about module construction where
we imagine building more flexible system that share data.

This thesis sugests a paradigm for datatype iplemention by "componexs" Some-
times it is difficult to design types or anticipate future needs Instead of introducing a type
and anticipating all necessary operators, the operations am designed as we discover the
need for them in the program using the datatype. The epresentations aem selected based
on the needed operations. Tis thesis also suggests a paradigm of system implementation
by modules where we use tranfomation techniques to get better perfomance than simply
musing code The module an r o system provides a way to manipulate the modules
and to change d cohesiveness and the couplings of the module [65].

1.4 Structure of the Thesis

I introduce the module interface transormaion system In Campter 2. Plrsk background
infomation on data t 16omio is presented that decibes the progrs mad in devel-
opig data transformations. I continue the pegression with techiques for dataype and
modules. The t rnratio system is intoduced nformaly in two, parts. First: I enumer-
at a collectio of module afomatkin lm a e ueul for adjusting inmrfces and
daa rejlemtatlons. Then I denostrat how the rules ae used in differen strategies to
imp ent d MM by compoet and to increase the efficiency of module systems.

lnthe twochme tmhfollow, Ipumn an exmple that iscentue aroundthe derivatio
of itractive dioplayr-edir t demomstrm the derivation process and techniques. In
ChpM 3, 1 dms n edtor et buff to Illustrate the inagmton and adaptaion of
€mpamu to Implemen dmtypes. Then in Chapter 4, I add a display to the buffer to
l dur te bili of modues hom other modules and to show how to increase the
efficlency of tohe si 1
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I inT pret the results of de edit" derivation in Campter 5 with a discussion of the
ashenadves; in inagradtg do. module interfaces that are available to the software designer
at the design level and de implementation leveL Alo diws sd are the criteria that
the software deier might on to chose a seci alternatie, the cost of the various
.aaniv, die potential for scalins

Afer die example, I examine tie module interfc tn smaton system in Chapter 6
to esMabli a framework for describing the derivation process and teclhniques. Providing a
framework enhances the unde-standin of the arms used infomally, provides strctr to
aid the software designer in using dob approach and is an impotant step towards automating
the system. Many of the terms d ar introduced in d example, such as "component,"
"tnsladm function," and "are " e S n a precise meaning. The decision was
made o spit descripon tthe module tafot ion system into two chapters in order
to better motivate d sysm with an example before ping into the technical details.

In Oapter 7, I evaluate ft module tnomation system by comparing it to traditional
approaches and currentr-s-a-ch in software d e t, and then examine the applications
in wich do techniques would prove useful.

inally, in Chapter 8, 1 conclude the thesis with a summary and evaluation of the
cntibutions of the teis. This te has explored a module interface lansformation
system without mechanized support which makes it diffult to apply the tchniques to
lar sySems. Soluions to optimize the derivation process and to build an automated
system ar discussed.

Appendix A summarizes the notation used in the examples. Appendix B is a glossary
of common terminology. The remaining appendices include details about the derivation
and prod -ps
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Chapter 2

Module Interface Transformation
System

The general strategy for constructing systems using the module interfac trnformation
system is illustad in Figure 2.1. The process mart with the design of the top-level
aggregate specification. e software designer who wishes to design a complex system
is able to decompose the prblem into components that best mode that portion of the
problem. This aggmpte sefication is used in the Imegraton phase to produce an
aggregate definition. The aggregate defition is in a format upon which dam tanslations
can be performed to obta an executable prowe. Then additional transfomaioes such
as apose, incorporate, release, and shift can be performed to optimize the proaype, into an

S e I Later on the softwar dener may wish to itoduce additional
futioaty in the adapt phase. The design, Integre, and adqpt phues e supported
by the d o developed in Section 2.1. The prototpe and imlnent phases, ae
supported by the module -rn ion rues developed in Section 2.3. Thee phasm will
be elaborated a we progrm through this chaptm.

%e begin in Section 2.1 which demnsta how the module Fomations are used
in Werent stregis to implement daatypes by components and to increm the efficiency
of module systems. 7b give us the necessary bakground, Section 2.2 commis information
on data -ranrmationms that is necesary to understand the module transformaion rules.
Previous work on dam In tion follows a progssion of incresing support for larIge-
scale m . Initial tansfmations affected the dam reprtat ions of the parameters
of fbmctions later transfotion achniques wie apple to abstract datatypes. The pro-
pgPI mlo continues in Section 2.3 where I introduce appying tnrmtion techniques to
module systems, and enumer the tsformation methds on abstact interfaces and data

I(A framwa for describing the -asfomations is presented in Chap-
ar 6.) Section 2.4ties together the previou sections, where I describe how tes integration
meods md the module tmmation rules re sed in the software development pMce

9
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Figure 2.2: Buffer Definitim

2.1 Module Transformation in Software Development

We have briefly seen in Section 13.3 an approach to the derivation of an editor buffer that
is part ofthe development of an interactive text editor, and in Figure 2.1 a general su'ategy
for cructing systems using this approa. Using this strategy, the editor is designed as a
collection of sepaate modules, each of which implements subsets of the buffer operations
effiietly (Figure 2.2). There an three modules: ButI representing a buffer as a sequence
ofcharacters with an explicit index for the point where editing takes place; Buf 2 representing
a buffer as a pair of sequences, corpndpg to the character to the left and to the right
of the point of edidng; and Buf3 representing a buffer as a sequence of lines with an index
consistin of a ln and character position for the point of editing. C Upadb~ry maps are
introduced to establish a corzrsodec among the data representations. This collection
of modules is then integrated. Using an extended form of data ansfrmaons (developed
in the following sectons) yields an executable protolpe (ie., the first executable system);
furh specialization then yields a moe efficient I a tion.

he following two sections describe the techniques for integrating datatypes (Sec-
tion 2.1.1) and modules (Section 2.1.2). Each section includes a description of the method,
an example, and a pointer to how the method is used in the editor example in the following
two chapters. Th examples ar extracted. from the display-editor derivation in the two
chapters that follow. On ist reading it is best to skim through the example. The intention
here is to show the "structure" of the methodw Details about the notation, the display editor,
and the method will be learned when we rewturn to the examples in the editor derivation. We
also reur to these transfomi methods and see a moe formal definition in Chapter 6.

Naedm umd Natg C mmtlam Names of types and operations hve the name of
the fcpo 9 in which they were defined prepeaded in oler to reslve ambiguities. For
ounpl If the compouUs define a type buf then Bu but refers to the type defined
in the it j np To enhamce t readability of the examples, thes "qualified"
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names are abbreviated by omitting tit component name, and usig the component number
a a subscript with the type or opeatsion name. For example, buf 1 and move-NI ae
abbreviations for Buf 1 .buf and Isuf I .mwweqghtL The expression "local... lIn... mnd" i
used to separat the public operations (tha appear after t keyword, in) from the private
operations (tha appear after the keyword local) which are used by the public functions
but not imntemed for use elsewbere. It is advisable for t reader to look first at the public
functions and the at t private functons if additional details are desired.

2.1.1 Datatypes
The text bufe example suggests aparadigm for datatype implementation by "components."
The building blocks for the paradigm are components tha implement parts of a type.
Sometimes it is diffcul to design types or anticipate futue needs. Instead of intrucing
a type and anticipating all necessary operators, the operations are designed as we discover
the need for them in the program using the datt. Her, we use modules to implement
rcr M Inen

Interat- a Collecton of Cmoet

We say wha we mean by aggregating a number of components into a composite data.
sm==un by defining an aggregate spcfcto~First we must supplement our notation
(based on Standard PdL M42) with axioms to describe the properties of the data. aggregate.
Extendled ML [721 gives the developer this ability to add axioms to strucure and signatu.
Axiom ate expression of boolma type and ane built using the functions of first order logic.

For the purposes of this definition, we consider a systm consisting of two components
(which "rqpresent the same object), and consie the case where an operaio n sdefined
in the second component. The consistency relations mW4, ensure ft consistency among
thesecomponnts.1 A projection, p4oj1 of an aggregate data object yields an object of
a patcula component, and each such component object is related to other component
objects by a consistency relation. The following two axioms describe the properties of the
IgMOgOL

ado= pmlro(agg9)) - qOpprOjh(agg))

w&s=^oj(agg) mwi proj,(agg) -* proj2(op(agg)) map proj1(op(agg))

It first axiom, defines the behavior of dot operatio on dot aggregate datatype induced by
the second component opeation. 0Ph. Mhe remaining axiom ensures that after applying the
operation, all of the components remain consistent Ther is a set of such axioms for each
operation defined. Only one set is shown for distrative purposes.

Now thatwe have established whatis meant by aggregating a number of copoents, we
defie how t aggrgase is umplIenad. Given a collection of com rPonents and compati-
billymapsan qw dejWousis prodd atis amenabletomodule trnsomation
(FIg.. 23) Mes compatibls maps maq, respect Pfdt consistency reatons and defin
bow so make tcmoet consistent The function sMw use t coampastibility maps
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GIvTM* oh, msp2.

span(C2) 4= Agg(C,c2)wberec- map2.(c 2)

(SM(c2)) 4- span(op(c 2))

Figure 2.3: Aggregate Definition

to translate between the component and the data aggregate. The operatio op, on the data
aggregate can thus be defined using span in a form amenable to transformation. Since more
than one operadon may occur on the lefthand side of an expression-procedure definition,
there may be some confusion about which operation is being defined. Because of this, the
opera= being defined ar underlined to distinguish it from the others. This is but one
example of a definition given a certain set of translation functions. The general case is
treated in Section 6.1.

The StepsofIntegratio. The essential steps for implementing datatypes by components:

1. Specify the overall datatype interface. The names of the operations are listed with
their signatures.

2. Define the component implementations each of which implements some subset of the
overall interface. Collectively, all of the components implement the entire interface.

3. Define functions that translate from one component into another to establish the
conistency of the collection of data representations.

4. Coos the product of the component representations as an expedient represwntation.

5. Integtate the components to define the composite datatype. Each operation defined
in a component induces a coaepodisng operadon on the aggregate datatype. Each
aggregate dataype operaton is defined (in a form amenable transformation) in
tmns of the component where the operation was defined.

Exapl Suppose we are given two components that implement different buffer oper-
ations and a Madan that defines what it means for them to be consistent. The operations
movsug and Whw-dw are defined in de first component, Buf 1, makebu is defined
inthe WcMd compoOnet, Buf MW coiUWy relation is defined by mp. Using the
axioms for do aggregat specification as our template, we combine these two components
imo a ioite dat stucture.
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511am proj1(maksWM - makebuf2
axio proj(b) MapI Pro 2(b) =* proj 1(makebu f m p? ro2(mawkebut
=Axim poj(mov9-rlghtb)) - move-Vtight(oj(b))
axiom pMo(b) map? proj2(b) -* proj(moe-Nhtb)) map? proj2(move-right~b))
axiomshow-charb) - show-cha 1 rj 1 ~(b))

Using an algorithm that preserves the propeties of the axiomns, an aggrgate definition is
produced from the aXIOMS. This algorithm is explained in Section 6.1.4.

S&trutue Buf : DL? tac
ibUCtM rBUf 1, BUf2
tIMebuf =Buf of (int xch* xch* Xch*)

SPNfl(uf2(1,r)) 4- Buf(p, r,1, r) wherBuf1 (p,t) =MaP2. 1 (BUf2(l,r))

uflspwfluf(p, t, 1,r)) 4- BUf 10{P I P2 1, f t 1 02 )
whereBUfl(P2, 12) - M8Ip- 1 (BUf2Q,r))

In
makebuf 4- span(makebuf 2)

ur~KT2 -~) 4- mfoverghN(unspan(b))
show-charb) 4- show-char1(unspanb))

eud

Notice how the definitions for mfadeuft, move-tiht and show-cha ane in the form of data,
transorm procedure frm the template in Figur 2.3. The notation I vj I v2 ) used in the
definition of uMWpe denotes alterative ways of computing the same value. It is necessary
in this case to presere the consisteny between the data s==ctwe of the two components
that compie the data. aggt. Sometimes unspa is used instead of spa &epending
upon what mraslation functions ae available.

U110g the Iflarmtim. Thi integration procss is usefu for integating collections
of components to implement datatypes. A detaled example is shown in Section 3. 1.

Adding a New Component

At adapt the syM by inroducing a new component, C3, which defines the operaion, x.
The aggegat specification for the new system is defined by splmnig the prvious
deintion for the aggrgat specification with a collection of axioms defining the operations
induced from t new component The first axiom defines the behavior of the opertion on
the aggrgat damatype, in terms of the new component. The following three axioms ensue
tha afr applying the operation all of the components we kept consistent. The last two
axioms mw extesions to the previously defined axioms for op. They ensure that the newly
inuoduced component is kept consistent after applying an operation in the existing system.
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Glv"m op2, maP . 1, 3, mPa2-s I I CI
io~ I C I

unspagg2 x3(C2, C)) 4
{rmap_(c2) I C3 Ispan(agg2 x3(cs, as)) II

A g'(c,, c2, C) wh CI = ma._, (c2) I --C3 ,
SpaY(Agg(cl, c2)) - 1 1 1 1

Agg'(cc2,cO) whMN c3Mq=ha_ 3 (c 2 ) 'I

ux6pW(n (A9g2x3 (C, C))) o4=
Xs(UflWPafAgg 2 x3(C2, 03)) r---------p

K(SPWflAgg2x3(C2, CO)) 4- C2 UP

span x3(C2, C3))

Vp(Spa(Agg(C1,c2) CO --
8pan'(op(gg(cj, c)))

end
3

Figure 24: Merging with the Original System

xiom Proj(x(agg)) = xs(pr%(agg))
=om (agg) M- proj(agg) .= prj(x(agg)) a proj,(x(agg))
aom p (agg) 4proI(agg) prohj(x(agg)) rnp projl(x(agg))
axm prOj3(agg) AprOj2(agg) ~ pOi3(x(agg)) p rOj(X(agg))

axim proj5(agg) M4prOJI(agg) proj,(opxagg)) inap Proj1 (opwagg))
aim proj(agg) MBApt pJ 2(agg) , pr J3(Op(agg)) Ma proh(op(agg))

Ther is some flexibility in how to integrate the new component to produce the aggregate
definition. Here, we consider four alternative methods of component adaptation. These
definitions all satisfy the axioms. We have the choices to "merge" or "translate" the
new component with the components in the oiginal system or with the data aggregate
implementation.

Merging with the Origla System. We could merg the new component with the com-
ponents in the original system (see Figure 2.4). The first two public definitions (after
the keyword In) incrementally build a definition for the new operation (using the method
introduced in Figure 2.3). The first definition "spans" the rePentation from the new
component to an intermediate aggregate consisting of the second and third component,

2xs. The next definition"spans" the repesentation from this intermediate aggregate to
the new data aggregate consisting of ail three components. Two steps are necessary in this
case because of the translation functions available. Since we are not given a function that
translams from the third component to the first component directly, we must first merp the
third component with the second component, and then with the first component. Compare
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Giycolh, alp,.,, X3, MRl.3 I r -
_~fi jII C21

unl(MX(gg2(C2)) 4-- map.(c) 1-
SPlWA (c2)) 4-- Ag(¢cj,c2)where CI mp_.(C2) C1I

Is L- --
unspn~fl(Agg2 (cD))) 4-- X3(unspan(Agg 2 (c2)))
K(span(Agg 2( 2))) - SPan(X2(c2))

Md

Figure 2.5: Translating into the Original System

thewe two definitioms with the definition of integrating the existing system in Figure 2.3. The
diagram to the top-right in the figure illustrates the process. The labeled nodes represent
the components which are connected by directed arcs that represent the compatibility maps.
The solid box encloses the component where the operation of interest is defined, in this
cat, component c3 where x3 is defined. Dashed boxes represen the derived operations
on the intermediate and final aggregate (there is one for each of the two definitions). Ex-
amine them sting at the inner-most box and proceeding outward. First X2x3 is derived
(correspmding to the first definition) and then x.

We also add the last definitio to extend the previous definitions for the operations in
the existing system. We start with the definitio of op defined in the aggregate consisting
of ci and c2 (solid box in the bottom-right diagram); then we derive op' to include C3 (outer
dashed box).

~f~liadn Into the Original System. An alternative to merging is translating the new
component into the existing system (Figure 2.5). Only the operations of the new component
need to be defined, since the existng system does not change. As with merging, the two
public definition incrementally build a definition for the new operation. The first definition
"spans" the repeetatio from the new component to the existing component, rather than
the intm ediate aggrgate in Figure 2.4, since we are translating and not merging. The
next definition "spans" the rpsentation from the second component to the data aggregate
of the existng system. There is no third definitim, as was the case in merging, because the
existing opeations do not have to be modified since the aggregate representation remains
the same.

Merging wi the Iplemmtlm. Rather than starting with the original definidons
of the existing sysem, at times it may be beneficial to treat the implementation of the
agpegate as a component, and merp the aggregate and new component directly. Recall
that the process of obtaining an implemenat from the aggregate definition involves
applying hansformations to the definitm to obtain a prooype, and then specializing the
jmoype to obtain an mpIThis s-ealization,, process can be characte-r- d as
a rnmlation function, map,-., that maps prototypes into Impimentations. For the sake
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GIvm x3, maPi 3
109d

wunPafl(Aqg.x 3(i2- c3)) 4- f maP4,. 3(i 2) I c3
SParUXggeAx(ia,C2)) t Aggixix(i,,i2, C3)whee i, Ma...,(i 2)
Sa,'(A9gg(i,,i2 )) 4- Agg'(iI,i2,c.,)whe 0,,3Smap.,(i2)

I3
UAaOQmx,(A9,(gx3(i2.,))) '0- x,(UIB A(jx3(i,.C)))

o(8a (Agg(ij,i))) 4- SPa'(op(g(i, Ci)))

md

Figure 2.6: Merging with the Implementation

of cortness, let us say that the speci lization process takes the two components of the
prototype aggregate, and specializes the first component and keeps the second component
intact.

M8p,._Agg(I,c2)) 4 A9gg (c), c2)

Pahaps we can define a translation function, map,..,, for the relationship between
the two components in the implmentaion in terms of the compatibility map, map....
(which expresses the relationship between the components in the prototype), and the trans-
lation function, map , (which expresses the relationship between the prootype and the
implementaion). Then, if we define the relationship between the new component and the
implementatio as the translation function, map 1 ,2e4 , we obtain a definition for the adapted
system (Figure 2.6). Notice the similarities between this definition and the previous one in
Figure 2.4. We have substituted mapj,_.4 for maP2., which "promotes" the specialization
filter (ie., f in map-._) to the time the integration is performed so that we may be spared
doing extra work only to elimlint it later in the derivation.

We are able to treat the implementation of the aggregate as a component only under
certain conditions though. When there are no in tPedencJes among the aggregate, then
it is simple to treat the aggregate as a component, since there are no "internal" translation
functions to be concerned with. When the translation functions are many-to-one, it may
not always be possible

TIazulatIng It the Jmpleuaedtlom An alternative to merging is tanslating the new
compent into the existing system (Figure 2.7). Only the operations of the new component
need to be defined, since the exiting system does not change. The same comparison made
between merging and translating on the original system applies to merging and translating
on the implement

The Steps of Adaptatim. Adaptaim, adding a new component, is similar to the orig-
inal pmblem of designing and implmenting the initial system, since both tasks can be
concepalmzed as d task of integsing component.
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GIvem: x, nmP ..3

end p~tj(2)4-M632
5PWi(&ggS(i2)) 4- Aggxj(iI, i2)"f iI=ere urni

In
urlp4'2r46(A9g(iz))) 4- Xs(Ut"PWflAgg,.(i2)))

Figure 2.7: Translating into the Implemenaton

The steps for adapting a datatype by adding a new component:

1. Extend the overall datatype interface. The names of the new operations and type
informadon e added to the signature.

2. Define the component implementaton, using a data epr taon most suitable for
th operations.

3. Write a single waslation function between this component and another in the existing
system.

4. Choose the product of the new component sepresentation and component represen-
tation of the existing system as an expedient presentation. Or, as an alternative
chokce, keep thexqresnation of the existing system.

5. Integrate the new componen by adding new definiions for the operations defined in
the new component, and by extending the definitions for the operations in the existing
system to update the new component. (If the representation of the existing rsem is
chosen, then the operations of the existing system do not have to be redefined.) Each
aggregate dautype operation can be defined (in a form amenable to tansfomaton)
in terms of the component where th operation was defined.

Example. We use the merging wih the origin asystem approach in this example. Recall
that the buffer system in the example of the previous section was defined using axioms
that specified how to integrate the original two component. This definition is enriched to
include a new component for pages by adding fse axioms:

aiM p^OCord-p(b)) - Bufpforard-pgepJ(b))

mis. prc 1(b) n pro4(b) projiftwardpage(b)) ,,, p (Iorard-pqe(b))
axis.Prr4(b) mqlw prr(b) prr4(jfowaMd-Mgeb)) maps poj(toadpage~b))

The first aiom specifis t behavior of the forward page operation on the data aggregate
in terms of the page component where it was defined. The remaining axioms ensure that
the sytm remains consistent after the operation is performed.
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A&Itinalythe axiom for the original operations must be exted to easum consis-
tency of th w comonent when an old operation is applied. For example the axioms for
move-riht would be extended with,

axiomproJj(b) mapI proj,(b) -* prj 1(move-rlgb)) msp, proj(moverlhb)).

In order to produce an aggregte definition, a cmaiitymap that respects apko must be
provided. In the c-matbiit map that follows, the new page component is computed from
the original Buf I component using the auxiliay functions npes to count the number of
pages in the sequence, of chaacers; to the left of the cursor (where s [-0 is the subsequence,
of s from the beginning to J), and chars~a to pars the sequece, of characters into a
sequence of pages

nmq_.PBuj~pt))4- Buf,(tr5OesE4p-1)]),Chr~a~)

We obtain a new definition for each page operation in the new data aggregate (using an
extension of the algorithm that interaed, the original system in the previous example). For
example, the definition for foward-p follows.

unpel(Buf'(p, 1111r~pi, IP)) 4- DufI xp({P I PI ), {' t 1 2 ), Pi, tP)
wher DUf 1(p, 02) - fflapj(Buf2Q, r))

In
ungpn~towa.~~, P(b)) 4- forward-pmg,(Unspmn(b))
unhpn'~or-ard~~4) forwd-pvQe, p(unpn(b))

Notice, how this take two steps. First we obtain a definition for forward-pae for the
intermediat aggregate Buf1 I x, and then for the new a ggt consisting of the product of

We also, obtain a new diefinition foreach operation of the existing components in the new
aggregate. For example, the move-rgh operation must be extended to defin the operation
an the new aggate that includes the new pg component in terms of the old aggregat.
This is done by simply adding a new definition.

h0ed
aprOAfl'u(,:,r)) *- Buf'(p, t, 1, r, PC 10)

whereBufpWp,sp) - Map..(Bufj(p, a))

A~~p(=b)) 4- spanm-rghtb))
md

Notice how the definiticia for fowi-eeand move-right compare with the template
in Rpmu 2.4. Wet may substitute span for unspan or vice-versa depending on what
compa-tibility maps areavailable.
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Usn the aThis adaptation process is useful for adapting datatypes andintroducing new funcmait. A detailed example is shown in Section 3.2.

2.1.2 Lager-Scale System
This next example of using the text buffer as part of a display editor sugsts a paradigm of
system imPeenaton by module where we use t orWmaon techniques to pt better
performance than simply rmusing code. The building blocks for this paradigm include
objects and modules (we [33] and [90] and other [91, [58], [87]). Largr-scal systems
can be built using module hierarchies (ie., modules that import other modules). The
module t m tion system provides a way to manipulate these building blocks and to
changete coevene and the couplings of the modues. Initial experience suggests
t echniques dem tra for the integration of components are applicable to module
systems as well

Adapting Module Interfaces

New modules can be defined in rms of existng modules to adapt abstract interfaces.
This is accomplied by defining a module that imports an existing module, using some
of the existin fnctions, and perhaps adding additimal functions. This is different from
adaptation by adding a new component because in addition to adding new functions, we
can dee or modify th as welL

We are able to build a system using a hierarchy of modules wher data among the
module may be sbaed. Operations from the imported module can be "popagad" into
the importing module We say what is meant by extending a module by using axioms
to define a spec ion. The single axiom below defines the behavior of the propagated
operaion op' in the importing module in ms of the imported module operation op.

=m proj(op'(a)) - opGroj(a))

Now we define how this specificatiom is impl Given the imported module and
a function mapping between the dam in the import and importing module, map,, new
definitions for the operadons a defined.

locad
SPn(c) 4 Agg(e, s)

wb. e = mp...(c)
sad s-f(c)

oPWKC)) 4-= Iwxmop(c))

The importing module, JM, starts with the imported module, M, and adds something extra,
pehaps a aw data Meld or additional opertons. In this example M' uses the dm from
M and adds a new Ueldthat is compued usn f. The fctimon sa uses the mapping
eutI#on to tramlna between M and AP so that op' is defined using span as a data transfrm
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MWe steps of Aaato.The stup for adapting module interfaces using module exten-
sions is simila to the process for integrating components:

1. Spiecify the module interfac. The names of the operations are listed with their

2. Define the imleetain.Tis is done by applying this same mtolgyto define
a new module, or by using or adapting a module fromn a reusable library of software

3. Chioose a rersentation, possibly including other modules as sbrcusand
defining the data, representation in terms of the datatypes contained in these modules.

4. ~ ~ ~ ~ ~ ~ ~ - -n the imlmnaio ntrs fteTere may be a correspon-
dence (eg.. data invariance) between: (1) two imported modules, or (2) a module and
the module it imports. This corresp ondence is expressed as a tranldation function.

aumple. We defin a multiple-buffeor display-editor using a module that defines the
screen and a module that defines "generic" association list (Alist) operations to manage
the stat of the buffers The display editor inheris the state from t Alist module and
adds somethin~g mre, the stan of the sceen. Each operation in the Alist module induces
a co nrrePning operation in the dsply editoi

The Alist module has an operation selec for selecting data in a lis given a key. We
use it to look up a buffer object given its name. This new buffer operation selec-buffer
satisfies the axiom:

azim s. W0(l-buIW5, q)) - select, pr~a))

An Alist is represented a a list ofpairs (of kys and data.), where t beginning of the list
is cached. The selected data is moved to the begining of the list in this cached position.
The relationship between the Alist moule& and the display-editor module, Ded-lNbsw,
tha includes it can be expressed as a translation function.

$pWl(AiSt(r,k,d)) 4- Ded-Wnsi(Alist(r, k, a), 4)
whir dl a poLcyAd), s - dkqp-to-sren(o', d)

Notice bow Ded-Hbsv uses the stat from the Alist module and adds tie st of the
Men, L. The scren is coPuted r- from information, contained in the Alist such as the
cr Pt buafe and origin. The operations for the multiple-buffer display-eitor are then
defined in mms of the Alist operations.

7'ei W defiti n e d in the Alist module are then impe ntdin the context of
the display-editor mdulie. For example, instead of seect-uffe having to call se1lec, a new
definition for slect-bif is derived that operates on the stt of the buafes directy. Not
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only does this incease, Iprfonce by eliminating the invocation of select, but it enables
the possibility of further transformations that could specialfrt the screen in the context of
the buffer state (a,., incremental update).

Keep in mind that this example deosrtsa partcula set of design decisions. Mhe
software developer has in many cases, a range of altenatves to choose from to produce a
variety of solutions.

Using the Trauuforumtlom Ibis tranforation provides a controlled mnethodlology for
propagating chang and increasing the efficiency of module system by tighter ODUpling.
See (Ozapter 4 for a detailed example.

2.2 Data Transformation
Early data trnsoraton methods focused on the relationship between abstrac programs
and their' H~mni o ar.kw [46] presented a method for proving the correctness of a

Given an abstrac progra ton an ANt=c domain D, the Concrete Progra on the
coincrpee domain D' is a correct * ipementation of f if the followingdiagramcommutes

f
D D

I1Ab b

That is (where if is an element of domain DI),

t(Absd')) - Abs(I(d')).()

Mwn abstaction fwcio Abs map the concrete items into the abstrac objects which they
reptesemt This approach has been adopted by VDM M7 where Abs is called a"retrieve

An Altenative approac is, to dative the concrete rersntatin using program trans-
formation [12J rathe than invent the concrete rersna and then prove it correct.
7Uh PquItation - fmaction Rep maps the absbiact object into a concrete representation.
This diretio is chosen to simplify the derivation but hi only applicable when an injectve

repesetatonfiuction can be defined (though it does nom necessarily have to be unique).
f

D D

___j PAP
(spD) D's((4 2
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While the above equation may not immediately sugest an in mny cns
transoations can be applied to obtain an executabe definition for I'. Darlington [17]
shows how a concrete program Is derived from an abstract pmrorm using proram trans-
formados, thrby ensuring that the implementation iis conr given an abstra program
f on an abstract domain D and a tagt domain D', the concrete proa f' and the mapin
Rep can be derived. Of courie it is not enough to uasom oly one function all
functions that operan on objects in the domain must be transfamed This can be more
easily accomplished by using datatypes to g p the functions that opmt on an object

Not only can 1nf mo bapplied t get from abstct concr pogrms, they
can am be applied to cowe programs (or datatypes) themselves. Wile [91] develops
this idea by considering the -n-, li along data paths in programs and outlining a
set of intfmally described operations on dauatypes. The incd opvaons for delaying
or advancing cmpuion and operations for changing type signatures based on the "thmy
operationsr of Burstall and (ogen [13].

J.ring and Scherlis (49,76 develop and generalize these ideas even furtr to obtain a
framework that permits pogrammers to talm generalk-purpose, abstract datatype defintions
(which might come from a muse library) and, usin type transormations, obtain types
talored so the application. Descibed in wr of the above diagram, a given datatype
D with ins associamed operations, for example, f, can be adapted to yield, the specialized
datatype D' with is associaed operations, f'. The mapping Rep is also derived usig the
conex in which the datatype a pers

2.3 Module Transformalon Rules

Sc[lis (76] uses four strategies caled incovporm. release, epse, and shift for Vans-
forming abstract Wnerfhs and data rersna ion.Tese =m techniques for atjusting
interfaces and data reptesentanons within a give sysem. The sA t strategy is a data-
repesenu don -r amation that has a direct effec on program permance. Depending
on the relative frequencies of operations, computation is moved between generation time
(whesr Infmadm can be cached) and access dime (when infaraon can be computed on
demand). Ma uuorpmw and mklee strategies transfrm abstrea interfaces by moving
abstraction boundaries (i.., internal progrm interfaces as defined by type signatures) to

cilitate impovements in the efficiency of the type, rp1Pvetions. The co. strategy
truans both data represent and abm inmrfacM. The innaml srumm of dat
objects is rvealed, moving th abstraction boundary of th type "inward," cemating new
abstract type names to move ftm more abstrac raept entons to mome con -
tatios. An example of the tafomadon of a data re aton is given in Section 3.1.5
(wid dmils in Appendix C).

Themodule tranation rules desmcribed in this section sa with Scherlis' frame-
wor The intention is to have a small canonical set of tranformatis supplemented with
knowldp about tde domain of the data structure t m used to simplify the datatype
Each of the owing subsecto describes a modW tamati rule and includes
an Informal descrpton of the tan ation method, an example, and a pointer to how
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do method is used in the edtor examp. The infomal descripion and example show
t end resul of t trains Formation strategy, but not t intermediat steps 11e intent is

iD present an overview of the tnfominsto quickly reach Section 2.4 where they awe
used in constructing software, systems. Different languages are used in the examples to

demontrat thatte- trasfomations an not restricted to, a given language but to languages
that support module system in general. After t editor example is presented, we return to
these trnsomation methods in Chapter 6 whene we wee t steps involved in applying the

transfomtion and a mom formal definition.
When first reading this section, it is sufficient to examine t inrouty proise, the

example, and t pointer to how Ut method is used in t extended example. After reading
teextended example, t reader may wish to return to, this section to look at the descriptions

to learn more of t details.

Nota"o and Naming C-vntos lbe interface of t datatype is represented by the
type name and t signatures of t operatins Here is a template, where t italicized
variables are tobe filled in.

If : 40
end

Mlw interface of t datatype d consists of t functions (represented by) f with t type t.
One or more instances of a; pattr is denotd using f{.. ..

The imeetation of t datatype is represented by t typ name, t data. represen-
tation and Ut implementat ions of t operaions.

Rupso
W"h

{f (v) 4- )
40d

The 1 oft edatatype dconsists oftedat rpesnto-n a, and t imple-
mentations ofibt functions f with formal parameers v, and bodies b. Function definition
is denoted by 4=. When dealing with abstract davaypes (as opposed to modules), Rep and
Abe we used to manage abstracton boundaries as in t original ML [35]. Rep reveals
t usiderying darn smrutue of an abstraion, Abs creates an abstraction Rep apeain

on t rightuad side of a procedure definition has the same effect as Abs appearing on the
lefthand side, revealing t underlying data structur of an abstraction.

A repres entatire selection at t operations are shown in t descri- ptons. For our
purpoases *a operations ar categriued in termns of whether they produce an instanc of
do tOpe, olPrate on t type, or revea same information abou t type. lTse, am called

ge~uua etenuions, and observes which an given t names, gen, ext Ob. The
of terlds is signiffied as a paturn, using 0, E, orO0 for thee

isest all we atm (4eg.. st e)) 4z Abs(E&))). Although these catgories
a psieasid to t ones used in deftning algebraic sPec kifiain of abmorat datatypes,
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the reason to use them here is to demonstrate the applicability of the tasomtoa
te-kM

Mwe typewriter font is used for datatype ans, sane-sorif font for function names,
and kaiafor varibl names. The product typ constructor x binds mome tightly than the
function type constructor .

2.3.1 'franslate
Using the wamlteW trnfraton, the software develope can change the representation
of adatatypeandor movercmatio -* aloing the data paths of a program. This change in
repmm nans is expressed by a function that map from the original representation into
the new one. Tha utanformation provides a mechanical means (with guidance from the
use) to reimplement the operations of this datatyp on the alternative data repesentation.
The meaning of the abstract dataype, however, remains the same.

Ezeuple. A simple buffer datatype has operatons to create a new instance of the buffer,
insert a characezm and show the chaacter at the point of editing. Standard ML [60] notation
is used to represent this datatype; the abstract interface is denoted by an ML signature.

U4PaWIM MW Sig
typebut

valmafkebuf: but
vaiWisedt: ch *buf - >buf
val sho*wca: but - > oh

-Me imleenato of the datatype is dente by an ML structure. A buffer with a data
structure that represent the buffer as a pair of equences of characters is append),

Suwonr But : BUY = uhud
tIM buf = But of (ch List. o h List)

vatmakebuf - Buf(li, nio)
Eh CIsU(I~r)) - But (Iht (C), r)
turn how-chuBufQ,r)) - IsatQ

md

and a function that translats this data irepeetto into a new one consisting of an index

and a sequence of characters

IpW'%uf(L,r)) - sufO(I), I*@r)

are transformed. (aftr several tafrmaition steps). The new data structure repesen= the
bufe a an in to the point of editing and text.
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S&tmr But : BUW a ruct
tMp but - But uft(int * oh List)

yal makahu = Buf(O, nil)
th flSwtc,Buf(p,t)) - Buf(p+ 1, subseqt,o,p - 1)@ stc) @subsoqQ,p,lIen(t)))
thu showa(Buf(p,t)) - nth-tnQ, p -1)

A diffren example with the steps included is shown in Appendix C

Duerpt~u.VW illustate fth trasfomaton process withi a general dtype. The ab-
strac inteface for the general datatype, Dtype, contaning a reprsen tative collection of
operations fdflow

INWMiv Dtye Is
9611: Dtyp.
ect: Dtyp. --+ Dtype
Ots: Dtype
md

The operations we defined on a datatype, witharpresentation a. For example, xt ta=e an
instance, of the datatype as an argument, reveals t underlying data rersnainof the
abscraction (represented by a), performs some operations on it (represented by the pattern
E), before returmag the result us a new abstacion

Ripuntype Is

gen 4-Abs(G)
wd(be(a)) 4- Abs(Ra)

obs(Abs(a)) 4- 0(a)
mi

Mwe function q=u that map the given datatype into the new representation is provided.
below. The iranslaton of the data repese-ntation is performed by S. The new absmratio
boundary, Abe', i primed to distinguish it from the old, but they serve the same purpose,
that is, to ew that the underlying data representation remain hidden outside of the type.
The span function is special thim since it is can manipulate these abstrcton boundaries.

S: a --* a

Applying the nwwla trnforation produces now mlenda oft prtis
defined on tedatarese tationda. The stepsare sonin Figure 2.8. Typicaliythe

tnformiation proeeds whom- (1) the bodies of the old operation and span function
- ezpand* (2) domain keowledge abou the dat wepesentation is applied to Simplify

the body.- (3) an inht suep is applid to'"bridi te old and new epentios(4)
wlrdtloWa IhpIlcaIo seep an applid and (5) the span function is abstracted frmthe
body of the operaton More informtion is provided in Secton 6.2-1.
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f'(pWXnA)) 4-- WWm(A))f'(span(A)) 4: Wa))
f(san(A)) 4= SD(A))
f(span(A)) 4: 3(A)

f(qwKnA)) 4- , M())
f(span(A)) 4- r(span(A))f (A) 4=F

Figure 2.8: Trnsformaion Steps

ReW Dtype i a'

gen 4: Ats'(Gj
Sx(AWs'(a)) 4: Abe' Ca))
OW(AbS'(a)) 4- O'(a)

md

Thus. given the initial datatqp, a function that maps the old representation into the new
repesentation, and some insight from the software developer to guide the ts ion,
the new dataype is pmduced. The datype consists of the new implemention of the
operations. represented by 0', E', ', that operate on the new representation.

Using the '1faNsfIudan The translate transformation is used for optimization or
integrmio and implementatio Used as an alentve to shift, computation can be moved
along dam paths to increase the efficiency of the program. For example, if a data structure
is accessed frequently but modified infrequently, then the program may be made more
efficient by shifting the computation on the data structure from when it is accessed to when
it is modified. Used to change the representation of a datatype, a collection of "views" can
be integrated, or a high-level datatype definition can be implemented in a more concrete
domain. For example, this ransfomation is an important step in implementing datatypes
by compments and is used in deriving an aggregate data smucue for a text buffer in
Section 3.1.5.

2.32 Shift
Using theshU ansformatim omputatio - is moved along the data paths of a program to
incrmw the efcien of the progrm (eg., moving computain on a data structur from
when it is accessed to when it is geneased). This may change the data representation of a
datypu but the meaning of the absuact datatype remains the same.

xaxmp. HI san exampleof the aenfmationofadata representation. The compu-
atlon of the ngth of a nqun is shifted from access time to creation time by using the
sWf In mation. The datatype for the natural numbers contains the operatons zero and
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wdone. An additional operation count, for converting a natural number into an integer is
added.

HEre the Clu [54] language is used for the example. The abstract interface and
implmenttionare defined together in a Oni cluster. The keyword cvt denotes the abstract

dattp being defined. Operations defined on a type are referenced typeSop, for example,
the cons operation on lists is denoted Wscons.

Ndef =CM* dis
zero, add-one, count
rep - int List;

zero - prec() retdo (OWt)

min zero;
add-one - pre(s : cvt) return (cvt);

return(Ilstscons(i, s));
mi add-one;,
COunt -pro~: cyt) reurn (int);

mdn Count

The representation chosen is a sequence of I's. Zero is represented by the empty sequence,
adding one by concatenatng 1 onto the sequence, and the count is obtained by taking the
length If Count is accessed frequently, then the computatio of counting the number of
elements in the sequence may be shifted to creation time in the generator functions zero
and add-one.

After several transfration steps (which have been omitted for the sake of brevity),
the following is obtained:

Ndftf dint rk
zeo, add-one, Count
rep m int;

zero - proco retur (at);
return(O)

"i zero;
add-oneu-proc~n: cut).deur (avt);

a :-aX1;
retum(s);

ad ad-w
Count - prec(A : at) reun (int);

return(n);
ad cout

In the new impemnttion h computation is shiftd away from count so that Count simply
looks up the value of the number directy. Thus, the trnfrainallows one to get from

onere'eenatonto anotrin acontrolled manner.
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Description. The abstract interface of the datatype that follows has an operation that
generates the datatype, and an operation that returns some information about the datatype.

Inteface Dtype IS
gOn: Dtype
obe : Dtype-i ,
end

The observer operation obs that returns some information about the datatype prforms some
computtin, represented by its body 0.

Repa Dtype is
wbh

gn 4 A(G)
obs(Abs(a)) 4= 0(a)

tud

Using the sh transformation, the work is moved to the operation that generates the

datatype, so that getting information about the datatype is now a simple lookup.

Repa Dtype ig P

gen 4- Abs'(0(G))
oWsAbS(a)) 4- a

end

Soase Of the expressiveness of the geneao may be lost since it is filtered out by 0 but this
does not matter since other types can only access this type through the observer operations.

Using the Transfwmaflon. This trAnsformation is used to optimize datatypes. It is
frequently used after the other tansormations that affect the abstract interfaces. Once
operations re grouped into the desired context then a shaft is typically done to specialize
the result This transformation is used after the aggregate data stucture is derived to
specialize the buffer operations in this new context (see Section 3.1.6).

2.3.3 Expose

The transfom mation is a "synthetic" approach to revealing the underlying data struc-
ture of an existing datatype. This has the effect of moving the boundary of the type "inward."

he data representation of the datatype changes but the meaning of the abstract datatype
remains the same.

Exmple. Here is a datatype for valuations which is a table of mappings from the variables
in a lwpam to their values. This datatype has operations to create a new instance of a
valuatinn, lookup a variable to obtain its value, and to enter a new variable-value mapping.
Moduh 3 [141 notation is used to represent this datatype. The abstract interface is specified
by a Modula-3 interface definition.
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KIEFACE Viii;

TYPE T;

PROCEDURE NuIt~rO: T
PROCEDURE Lookup(v: T; i: Id): Value;
PROCEDUREBAdjo~nv: T;L1: id; x: value): T;

END Vii.

The imlmnainis specified by a Modula-3 module definition. The initial represen-
tation is a collection of variable, value pairs

MODULE Vii;

TYPE T - LMS OF RECORD 1: Id; v: value END
PROCEDURE NuWMifO: T -

BEGIN RETURN nil END Nu"~;
PROCEDURE Lookup(v: T; i: Id): Value-

VA~p: T;
BEMI

p.*- ainsoc(v, &0; RET URN tI~p)
END Lookup;

PROCEDUREMAJoWnY: T.;L: Id;zX: Value): Tm
BEGIN RETURN cofls(cofliz), v) END Adjoin;

BEGN
END vin.

An alternative way to implement tis datatype is to store the value in memory with the
variable associated with the memory "location."

MODULE Vhn
TYPE Liv - RECORD i: Id; 1: Loc END,
TYPE State - RECORD 1: Loc; v: Value ENW,
TYPE T - RECORD e: LIS OF Env, s: LIS OF State END;
PROCEDURE NuIMno: T

VAR s: T;
BEGIWN

ice -- nil; ti - nil; RETURN t
END NuN~n;

PROCEDURE LOOk~p(v: T,t : Id): Value-
VAR p: Lxiv;
BEGIN

p *a aSSOOve, 0); RETURN t1(aM0oovs,ti))
END kW

PROCEDURE Adjo*nv: T 1: 1d; x: Value): Tm
VARI1: Loc; t: T.
BEGIN

h-gwdOO;t :-wOons(ons(l, i), q); ts- cOns(on(L,), s); RETURN t
END Ao

BEAMN
END Vii.
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This underlying location is "exposed- in the transformation process of the initial imple-
mentatiM to explicitly reveal the mapping of variables to locations, and locations to values.
In an optimizing compile the mapping of variables to locations could be done at compile-
time, while now only the look up of the value at the location would be done at runtime. The
function eknocO generates a new location in memory.

One slight modification to Modula-3 is made to enhance the clarity of the example. A
liS constructor "LIM OF a" is introduced. Modula-3 does not have a list constructor, but
this could be implmned using,

TY'M T = REF RECORD d: Data; ink: T END;,

Descripliom. The abstract interface for a representative collection of operations on the
datatype follows.

JMkrf&Ce Dtype Is
gn : >type
Gt: Dtype - Dtype
obs: Dtyp -.
end

The operations are defined on the data rresetation a.

Rap. Vtype is a

gen 4-AWG)
*xI(a) t-- Abs(6(Rep~a)))
obs(a) 4- O(ep(a))

ad

Applying the gwose trnsformaio reveals the underlying da structure, the tuple
(al x ... x a.) and produces new implementatons of the operations.

tPm VtYp, k (a x ... X an)

OWm 4- (Ab ,...,bsn)(Cn
WI(q) (Ab( ,...,AbI)(r((R p,..., Re.)(a)))
ow a) € 0 O((Pqh,..., Rep(q))

smd

The collection of abstraction fmcton (sb, , ... , Ab), is applied to an n-tuple to create
an n-tuple of abstrations The collection of representation functions is similarly defined.

Using the Trai rn. The eose transformation is useful for adapting a datatype
to tak advantage of special hardware or for revealing sme information about the datatype
that could be parially evaluated at compile-time. This tasformation is used to decouple
the buffer from the screen when introducing multiple windows to the editor example in
Caapter4.
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2.3.4 Incorporte

The incorporate tinomation is useful for specializing modules in the context they appear
by moving external functions or sub -Com nnw into a module. This changes the interface
but does not interfere with the existing system because the --nsorat- is only applied
if dependencies (eg., dataflow) within the program ate preserved.

Exaple& Hene is one step in the example that is shown in Section 2.3.6. A simple
abstract datatype is used in a programming language interpreter for storing the bodies of
subroutine definitions. The function MkFdsf is used to create a subroutine definition given
its body (an expression) and formal parameter names. The funcion Body and Vars select
the comrpon ents. Ada [10] packags are used to specify the abstract interface.

Packagr rk
ypeFdf k private

fumed.. MkdufE: 1 zp, V: 13 varList).o ret def;
fuom. Body(F: In rdef) deozr Exp;
fMoed. Vars(: In Fdef).reur VarList;

end FD3V,
toned.. Foode(: In Fdef) etur Codetype;

The external function Foods creates the code necessary to execute the subroutine at runtime.
It is inorporte into the datatype as a prelude to furtherspcaiaon

Packag FDWE is

fon Mkdef(ff: k3 Ep, V: In VarList).o ret def;
fumd. Body(F: In rdef) razp;
fued.. Vars(: In Fdef) reunVarList;
fumed.. Fcoe(: In Fdef).reur Codetyp.

Dacridan.External functions ae made public functions of a type that has the same
external scope. Likewise, imported modules are made susrcurs bTere is a potential
naming conflict with private functions (which would have to be renamed) but not with the
public functions because they are in the same scope. Public functions of a type can be made
priv=t if there are no references to tm in the external scope.

Imtufum Dtype il
giN: Mtyp
ad: Dtype0 -+ Dtype

ObG: Dtype --o a

fun: 0 -*'r
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Applying the orporate tnsform on includes the exten function into the inteface
of the dawatye.

natf Dtype is
ge: Dtype
eXt : Dtype -- Dtype
o0s: Dtype -* a

fun: -+y
4nd

Using the Trm 'isforato. Mw incorporate transformation is often used as a prelude
to speializati Operations or modules could be grouped together for example, and then
adiditional trnsformations applied to tak advantage of the close coupling (eg., to unfold
calls to functions in the type). This transfmation is used in Section 4.1.3 to group the
buffer and the screen to get better performance.

2.3.5 Reease

The release transformation is useful for removing unwanted code after a specializadon
step. It can be considered the opposite of incorporate because it moves functions or
subomponents outside of a module.

Ezample Hen is another step of the example that is shown in Section 2.3.6. After Foode
(which calls Body and Vam) is incorporawd into the datatype, it is determined that the are
no external references to Body and Vars. Ada [10] packages e used to specify the abstract
interface.

type Fdsf is prvat
f med. ke: I nEzp, V: In VarList) retur Fdef;

fumd. Bo : b rdof) .ur Zzp
fu Im Vars(F: I. Fdof) returm VarList;

fmd.. Fode(F: In Fdef) rou Codetype

ad FD=F

The functions Body and Vs ane released from the datatype since they ae no longer used.

Pafta rWd k
tpe rdef k p

hoed=. MHOJ(W: ft Zxp, V: Ia VarList) retr Fdef;
0 1 Fods: k rdef) returm Codetype;

ad rD31,
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Desriptlma. Private functions in a type are made public assuming no name conflicts are
introduced into the external spe. Public functims that do not contain any instances of
Rep or Abe for the defined type can be made external, provided that all private fuctons
called by any of the public functions are made public. Likewise, sub can be made
a separate module and then imported.

IJatuba Dtype is
Oen: Dtype

xt: Dtype -- Dtype
obs: Dtype-e
fun: #-*7
md

Applying the re transformation removes the function from the datatype.

Iftwrhm Dtype Is
"n l: Dtype
Ot: Dtype -, Dtype
os: Dtype --+a
md

fun: --

Uungl the Traudbrnmtlaa. The release wm is typically used as a prelude to
specialization, or to remove operations dtat are no longer useful after a specialization. This
Irasormation is ued in Section 3.1.6 to remove redundant information from the buffer
agg&egate once final design decisios are made.

2.3.6 Strategies for Using the Module Transformation Rules

lhe transfomations are typically used togede for example, to move boundaries as a pre-
lude to spealizaton or shifting. Here is an example taken from Jorring and Scherlis [48],
of one such tranformation on a data representation that has a direa effect on program
pefan"nceL A simple abstract dataty is used in a programming language interpreter for
storing the bodies of subroutine definitions.

lnewba rdf k
MkFdsf: Uxp x Var* -. Fdef
Body: ref- zzp
V&s: rdef -* Vat*
Md

The function WH is used to create a subroutine definition given its body (an expression)
and formal I@pameter names. Te funcions Body and Vans selec the compoents When
a subroudne definiton is enc unrPd by the inwpw MkHef is called to creat the
coageupoumngt object.rdef a PI re -,sent& as pairs.
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Rhprdf is rp x Var*

MkFd9f(, V) 4-- Abs(con(E, V))
Body(D) 4- hd(Rep(D))

aud

Subroutine calls are caried out by the function Apply. When the subroutine F with
the actual parameters rO is encused, the name of the subroutine is looked up in the
pogrm evironmentPExv to obtain the Fdef consisting of the subroutine body and formal
paameter am Mt function Apply has two phas It constructs the runtime. code needed
ftr executing the subroutine in the first phase. Then it applies the actual paraeters to the
code within the program evrn ntin the second phase.

Appi(,V,Pffx) *- ItDrnfnd(Erv,,F)b
It co&e w Phl (Body(D), MkEnv(Vars(D))) ia

PhOAs2cod, V, PF-M,)

Obwevation Mae lirst phase could be carie out less frequently if it were done, at the
time that subroutine are defined rather than when the ar called. This is acomlshed by:
abstracting Phase int o function Foods, icorpraftg Foods into the typ signature,
shoinag P1e from Foods to MkFdsf, and relearing Body and, Vars; from the datatype

-they are no longer referenced.

Rip. Fdsf is Codetyp.

mkFds(E,v*) -* Abs'[Phm1(e, MkEnv(V*))J
Food(D) 4- Rgp[DJ

md

Apply(,V*,PExw) 4- IeD-fid(Exw,P)Im
let co&e = Feods(D) b.

Phass2code, V, PEWu)

In the new imlmentation, two things are happening:- context outside of the, type is
i.;ncororaed1 into the type that is the boundary is widened; and computation is shifted from

when subroutines are called to when they are defined, that is, internal data. refinement. The
trans-or1aton allows the sofwar developer to get from one representation to anothe in a

conutOed mnf

2.4 Strategies in Constructing Systems Using this Approach
Mhe tdae methods of integrating cow;ponents- , addinga new cm;1,Ponent, and adapting
modue, Inwefaces describe in Section 2.1 inpot of a similar integration process. The
ad result of each Proes is a caflection of da= trasform procedures. Mwe module
tra nmaio rules described in Section 2.3 cn timm be applied to them wo yield efficent

MAWPutting the rules and the insegration processes togethm, a process for
constructigsymisusithis ~wapahis deined.
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The essential steps for' imlmning datatpes or modules by components:

1. Specify th iteface. The names of the operations are listed with their signature.

2. Define the component 2--uwttm-each of which implements some subset of
the interface Collectively, all of the components implement t entire interfac.

3. Establish any data invarlances among the components by defining functons that trans-
lat from one component into another to establish the consistency of the collecton
of data representations.

4. aoeas an "expedient" rpreetto the product of the component representa-
dions.

5. Integrate the components to define the datatype or module. Each operation. defined in
a component induces a co-sonigoperation on the aggmegte datatype or module.
Each operation definition is put into a format amenable to trnfomti-

6. Implement the datatype or module. Since the definitions ate data trafrm pro-
ceurs this is done by applying tra norations. The epressio poedures are

Imnre Into functonaldefinitions. When adapting the systemit may be possible
to reuse some of the information from the drivation of the integraton of the original

7. Uncover an effiient tepresentation by eliminating unnecessary redundancy and spe-
cializing data in thecontextthat it appear in.

8Implement an efficient implementation by tansation.

FIgure2.1(sen at the beginning ofthis chapte) isan abstrat view of this process. The
Iprocstartns with the design of them-lobvel aggtogae specification (steps 1, 2 and 3). The
sowe delwwho wishe to design a complex systm is able to decompose the prob-
1mm into component that bent model that portdon of the problem. The components may be
obtained frm a library or pratotyped. by the desine using adata rersnainthat most-bml mode the subproblem. Consistency relations establish corsndce among the
data rPesu.stlons. This definition is used in th aiadonsphase to produce an aggegat
defintio (soeps 4 and U) Obtaining the aggegmt definition from the aggregate specifica-
tiIs a echanical; ace thatcabe expressd a n algrithm (seSection6.1.4) one

.uaty ump (which =eseM the consistency relations) are povided. The aggregate
definiton is in a foma -non which dat translations (Section 2.3.1) can be performed to
obteain m csble pomge (sup 6). Then additional trasfomaton such as CVos,
ieceuoyoon releas, and sW( (Section 2.3) an performed, to optimize the prototype into
a ufficimat A f i -atop (suep 7 and 8). Lowe on the software designer my wish to

inrdc aidiual fan Pdomality in the adapt phase



Chapter 3

Integrating Module Interfaces: Deriving
and Manipulating an Edit Buffer

In order to dmonstrate the techniques for integrating module interfaces by program-
transformations we now go through an exrcise in the develome of a simple interactive
text edi- We work through the derivation of the text-buffer implementatio in Section 3.1.
Then we introduce addiional functioality in Section 3.2 to examine how the text buffer
is adxatL Important concepts (such a "compoet") ae finally intardced. herm with
their name in ks. A lossary of these erms is available in Appendix B. All such names
in ialfcs are precisely deined in Chapter 6.

Datatype deinitions ae reptesented as modules writen in a notation based on an
extended form of Stadard ML [60]. The exmsions add notation that is described as it
is inuoduce in the examples. Although the decision was made to base the notation on
Standad ML, a shown in the previo chapter, the anormation tciquare language
independn and can be apled to other lnp s with modules such as Ada, Clu, and
Modula 3. Stadard ML also has some hij-lvel abstmcton mechanisms to facilitate
the deign of daatypes and that allow one to focus on the module structure and overall
architecm of the sysem rather than getting lost in the details (which, although mqtan
at later stages in design and develoixent, obscure the system structure that one is focusing
on).

Other notatios to consie r pcfcto languages that support the design. of larg
pmorms such as Larch (381 and Z [84]. Indeed the style of developing systems in the
lainguags has infuenced the style of the editoa-dezivation ;Presenation H Eoweve, sinc

iations deal with a hiher lelof absction, it is necessary to us a language in
which absM infaces and dam leresenttion can be defined and anipWa The
decision was made to use Sandard ML because it has an elegant module facility and fully
defined sematics [61). Maovum Bxended ML adds a useul extension to the language,
the abilty o add a oms. This Sive the softwre desig a wide-spctrum language to
I ewneP P Mgbllv seii catom that can be refined to an iPementabf subset. See,
for amjier Sannella, and 'briecki [721, whene a methodology for softwedelom t
is dvelopedusingMLmodles exene with axioms.

37
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3.1 Deriving the Buffer
In this derivation the ed"o is designed initially as a collectioin of separate conmponents.

Thm coflectio of components is integrad, by derng now module interfaces, resulting in
an executable prototype. Then efficiency transfomtions are applied. The entire process
is depicted in Figure, 3.1, which is referred to in the example as the steps are elaborated.

3.1.1 Program Design
We are now ready to design the, dattype of t text buffer. We start by defining the
abstract interface of the datatype. An abstrac interface is simply a signature. We use a
Standard ML-llke signature declaration to specify abstra interfaces.

l7U following specification defines an abstract interface for the daWAtyp buf and the
seven buffer operations: makebuf, delete, knert, move-left, mnoveiht, show-cha, and
n.d4ine.

SWUIMat W - 113

type buf
nmakebu: buf
deete: buf -buf
IWsr: ch xbuf - buf
move-left: buf -.buf
move-rigt: buf -- buf
show-cha: buf - ch
next-lin: buf --# buf

md

The next stepikstDdesignde dataructure of the an buffer. Our goal is toarrive at a
single data rep-eentation that supports the efficient imlmnainof all of the operations.
Since designing a data reprsentationthatis satisfactoryforallofteoperatiomaybe
difficult, we begin by implementing subsets of the operations - each subset comprising a
oponent - and then tryto intgat them laow.

3.1.2 Program Composition
The move operation are conenenl implemented by using a representation that is a
sequenc ot characters with an explicit index for the point wherm editing takes place. The
point ofediting is moved left by decremn-in teindexuad movdfrtbyinceetn
ft Index. The charac at t Point of ediin is retrivd by looking up the character in
te a IDthe left of doinx CM 0n element of asequencs is denoted s (n.) The

P. H- 4fl -- W -- shown below is based on this representation.I The notation used
for the, ;omont definition is similar so the Standard IML structure declaration. It is
called a component because, unlike a structure, not all of Ut operation in the sigature.
mod o be Imlmne.The declaratio imlmet te operations in aerms of ft domain
of buiger and cbuacme sequences (2 being the sequence type construtor).
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A71-

.- . - .9
- m9dhAYfl

Figure 3.1: Deiving a Buffer
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COMaONps Buf1 SUP = uvra
tIMebuf - ufof (int x ch*)

mWOe-WeS~UfAD, ) 4- BUtAp-1,1)
FflVOrlHt(uf(P,t)) 4- Buf(p+1, t)
Shoarauf(p,t)) 4- tqp-ij

aimtraltuf(p,t) -*05p#

Abstraction of the underlying dataype irepresentation is maintained using the datatype
Constructor Buf . Used on the lefthand side of the operatio definition, the text-buffer
repeenaIon- is "revealed. Only Opertons defined within the datatype can use the
datatype constructor in this man=e Used on the righthand side of the Operation definition,
the reprsentationi is "hidden." This provides an abstraction boundary wher operations
defined. outside of the componen are not allowed access to the data rersentation.

Constrants are axims that contain additional information such as invariants of a
dataype epessed. in firs order logic (where free vaiables are universally quantified and

Sis logical implication). The constrnt

Buf(p,t) 0:5p:5<#f

is an abrvainfor

Vb: buf ,Vp: int, Vt: chI b =Buf(p, t).0:5p :5 t.

Extended ML [72] gives the developer this ability to add axioms to structU (and, siga-
tine). Constraints may be used as enabling conditions to provide additional context for

trnformaions (aee Appendix CQ. Contrints may also, be refined in the ipeetto
so that they are satisfie by each operatio (See Sectio 3.1.6).

In the example, the aiom consrans the index to remain within the boundaries of the
Nex (Os denots the cadinality of the sequenc s). The result of moving the index beyond
the boundary is undefined at this stag in the design. LOtW on AS the componen is refined.

imanJI'MMIC-moren commitments about enog handling can be made to ewem that
each operatiocannoviolatete xim FOrexMPle, the move Operations couldretur the
bufe unchangd, if an attempt is made to move out of the buffer bounday. An alterative
is I O Otnnerrovalueor Rag so thabe fom the tatminal could be emitted or the
sree ftahd.& This would necessitate adapting the abstract: interface which is discussed in
the foMowing chapseL

This component definition provides simple and natural definiin for the tre opera-
tio= shown. Implementig insertion and deletion of chaacter in this Buf1 r epesePntation,
on *Other hand, reqire an inconv-nient (and henc errw6pron) manipulation of sub-
SeqwnMM withi the UM A more convenient re-reentaton for these new operatons is
a psir of choace sequaees, rPesetng the charater So the left and to the right of the
paint Of edWting ls Iindex for the Point Of editing is left implicit. A character is deleted
by removig the last elemient from the left sequence. A charater is inserted by appendig
it 106 t I~ squen11ce, 10 [C. MMer is no constraint on this component, though delete is
umpsclMe when at the beginning of the buaffms
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CMipmM~ But 2 : Bur

typebuf - uf of(ch* xch*)

mawkebu 4- Buf(aj, ID
d9teWBufQ@ [cL r)) *- BufI, r)
IlWtXC,BUf(1,r)) IV BUNO (1@[J,6

swd

Although the makebuf operation is included in this component, it could have just as easily
been defined in the firs component as makebuf 4- Buf(O, []D.

Thie next-Ins operation moves the point of editing to the following line with the character
Position in the line remaining the same. This is difficult to imiplement using either of
t&a previous ---u-since it requires maching for newlines and computing the
distance between, the point of editing and the preceding newline. For this operation, then,
a new component, Bufs, is introduced where the text is a sequence of lines (where a line
is a sequence of chaacer not containing a newline) and the point of editing is a line
and character position Then the point of editing is moved to the next line simply by

incrmeningthe line position by one.

CeMPOmut But3 :5 B=i -shuc
tOp lino - (ch - W
type buf - But of ((int x int) x line*)

flbx-lrlS(uf(QIp,cp),t)) 4- Buf((lp+ 1,qp), Li)

aialWSqUf(Ip'CP)us) O5JP<#ts
min@ItBuf(Ip'cp)tS) O5CP S[(I3

"d

The newlines are implict, giving a more compact representation. Of course, if one so
chooses, an alternative rereentation can be used that keep a newline character at the end
of each line. The first invariant constrains the line pointe to remain within. the boundaries
of the buffer The second invariant constrain the characwe index to remain within the line
that it is on. As in the definition for But 1, the result of moving the point of editing beyond
the boundiary is undefined at this stage in the design Not only does this happen. when
vying to move past the last character of a line, or past the last line of the buffer but also,
when trying to use next-In to move from one line to the next that is shorter Thfis invariant
can be refined at a lat stage in the softwarem development, for example, by moving to the
wan character position within the line if possible, but moving to the end of the line if the
following line is shorteL

3.1.3 Aggrego PAe Desig
Qileciv*l, these three components implement all of the operation of the abstract inter-
face fot flu. Howeve, in order to use all of t operations itchngeably, an "agreement"
#aSong the variou dat e snain must be reached. These data representations we
essaflny "vkews [29] or pro~jections of somn aggrega buffe= One way to reach agree-
meat is 00 &efine consistncy reAiOn amIong the comnn n -, of the forn I nmipi J. An
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aggregate specfiatn specifies a datatype constructed from a collection of components
and consistency relations, and has the following properties: there are projection functions,
which map the aggregate data object to an object of a particular component; and every
component operation induces a corsning operation in the aggregate that maintains the
conist of the componts. Th aggregate specification encapsulates the complexities
that were avoided by not defining the operations in all of the components.

Using this definition in our example, then, an aggregate text-buffer is defined in terms of
the components Bufl, Buf 2, and Buf 3, along with the consistency relations that specify the
agreement among these components (Figure 3.1, design step). A projection of an aggregate
buffer dam object yields an object of a particular component, and each such component
object is related to other component objects by consistency relations (which is formally
defined in Section 6.1.2). Intuitively, these relations provide a notion of consistency for the
aggregate data objects.

buf 1
P41

buf >buf

buf

In order to avoid ambiguity, names of types and operations are prepended with the name of
the component in which it was defined. For example, each of the components define a type
buf so Buff 1buf refers to the type defined in the first component To enhanc the readability
of the examples, these "qualified" names are abbreviated by omitting the component name,
and using the component number as a subscript with the type or operation name. For
example, buf I and move-igt ae abbreviations for Buf .buf and Buf r.mov -r L

The effect of an operation on a text buffer is defined in terms of the corzesponding
component operation. I the aggregate, the operation must ensure that the projections of
the buffer remain consistent. This is expresed in the following commutative diagram.

buf I  move-right, buf 1

buf move-right buf

buf buf

bufF buf 3

The rdelAs depicted in this diaga can be specified via axiom on the operations in
the various mpoent Such axioms are written along with the abstract interface of the
datatype (e., adding axioms the abstract interface for the buffer shown in Section 3.1.1).
Doing so nsults in an annoed abstract irfwe specification that includes a specifica-
tio cof camPon integration. As an example, the axioms for move-riht are shown in
Fure 3.
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axio rj 1(moverlht(b)) = moV9-rigt 1 (pOhq(b))
axi"pro"(b) MaJ proJ(b) -* prj(move-gh b)) Map proh(move-flht(b))
adim prol,(b) M801 prOJ,(b) proj (mcveqrlh~b)) MaPj prOj,(mmv-Nlht(b))
axiom proj(b) ma projt(b) proj3(move-hghb)) map proj,(move-ht(b))

Figure 3.2: Buffer Aggregate Specification for Move-Right

3.1.4 Aggregate Integration

An aggregate dejudon is a datatype that refines the aggrgate s cation. The data
repesentation is defined as the product of the component data representations and the
operatio an defined in terms of the component operations as "data transform procedures"
(Figure 3.1, integrate step).

Data transiorm procedures define alternative implementations on data reentations
in a way similar to the data transormation definitions presented in Section 2.2. They may
take one of two forms:

1. Given a program f using a data representation D and a function, span, that translates
elements of the data representation D to elements of the data representation D', we
define f as:

f(span(d)) 4 span(f(d))

2. If, instead, there is a function, unspan, that translates elements of the data represen-
tation D' to elements of the data representation D, we define f as:

unspan(t()) 4 f(unsMPn())

This style of procedure definition is called an "expression procedure" by Scherlis [74].
While the expression procedure definition for f may not suggest an implementation, syn-
tactic transformations can be applied to obtain a functional definition for the program f
on the data representation D'. We saw examples of transorming data representations in
Chapte 2 in the sections on the trnsat=e, shift, and ewse transformations. We will see
in Chapter 6 how they are explained in terms of data tranform procedures. Since more
than one operation may occur on the lefthand side of an expression procedure definitio
te may be some confusion about which operation is being defined. Because of this, the
operaim being defined is underlined to distinguish it from the others.

Following this approach, a Prelim y defnition of move-rght on the aggregate is
obtained (Figure 3.3). Recall that move-right is defined in component Buf 1. Alternative
versim of move-riht for the other compoets (i.e., move-iht2 and move-right3) are
defined as data transorm procedures in term of the Buf I definition once "compatibility
maps" (ie., api..j which serves as unspn) between the components have been defined.
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mI~h1 (ffVIpJt(b)) -A- Move-rih 1 (MV.(b))
MapS. 1(MOyS-ft(b)) 4- mto-right (na,.b))

or l uAVt,L,r, (Pq), La)) 4=
Dufp, e, r, P9, (w, c), tr)

whwe uf,e) move-rvt(Buf(p, t))
3d BufaQ(1, j) - move-fht(Buf(l, r))

WaBuf 3(p, P'),t) = move-tht(suf 3((I,cp), u))

Figure 3.3: Preliminary Definition of Move-Right

A compatibility map is a function that respects the consstency relation. It translates
n component rep ton into another representatio Depending on the consistency

relation, it may not be possible to implement compatibility maps in both directions, but
normally it will be straightforward to implement one of them.

Th alternative versions of move-right ar defined by dam transform procedures where
the compatibility maps serve as the sn or unspan functions. The dame nion of
the aggregate is the product of the component repreentatims. The move-rht operation
on the data aggregate is defined as th pro&t of the component operations, where each
component operation updates the appropriate fields of the agggamt nopion.

This definition is easy to construct, but is constrained, however. The implemntations
of Move-righ for the othar components, move-riht2 and move-ft 3 , only make use of cir
"own" represtati os , that is, Buf2 and Buf3, respectively. Thus we are not able to take
full advantage of any inships among the various representations when deriving
an implemetation.

A more general approach is to arrange for all of the component representations to be
available for the operation definitions in order to take advantage of any intrlationships
among the various representations. Going back to the preliminary definition of the aggre-
gat instead of actually deriving implemenations for the component operations, the data
transfmm procedure itself can be symbolically manipulated to yield a new definition for
the aggrgate.

The buffer definition shown in Figure 3.4 uses this approach; hee, the buffer operations
(after the keyword In) are again defined by data transorm procedues. In taking advantage
of this added generality, the operations are defined in Frams of the aggregate buffer repro-
sentation, or some portion of this representatio Then implemention of the operations
are derived with all component represenu ions available. To map between the components
and the various aggregates, "span" and "unspan" functions are used (after the keyword
local in the figure)-t- i also has the effect of putting things into a form suitable for data
transformation. Th constraints on the aggegate (at the bottom of the figure) are obtained
from the constraints on the compnents.

The translation functions, spn and unsmn, for the data transform procedures are
defined in trms of the compatbility maps. A span function is a mapping from one
component into the aggregate of all reachable components (i.e., connected by compatibility
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Ibuiere Buf : Bur = shbet

SUirmCh" Ure, BUf2, BUf 3
"y buf - Buf of (int x ch* x ch* x chi X (int x int) x line*)

m'Ap,Bufs(Q'p,cp), U)) 4-
BUfI(#s*0fl6-o-OhrQ(p - ) )+ cp, IHne-tO-Harss))

where Iknmto-hars(s) = If mlulo) thm [ ]
ek [ds)]@'m] Iie-ohasts)

span(Buf 20, )

whereBUfI(P,t - MnP.1 (BUf 2 Q, r))

BUfI X20{P I A ),{ I 03), 1, )
wwcBUfI(ps, i) - Map,..(SUf3((lp,qi), is))

unw(Buf(p, t, s, (4', cp), is)) 4-
BUfI({PI P2 I P3 bft 0t2 IA s)

wher BUfl(p2, 2) -MO,,. 1 Au 2 , ')
amifluf(psOt) fMap,..(AUfg(Q4P,CP), iS))

ma~kOWuf 1 2  4- Span(MakObuW
unhpen(0MaW 4-- Makebt 1 X2

unspm.(!yth(b)) 4- mWve-rfght1(unhpan(b))
Show-charb) 4- Show-char1(unpan(b))

ON"(IX3Mn4()) 4- apadQWWsxtils(b))

-d

Figuze 3.4 Buffer Definitio
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maps). An wnspan function is a mapping from some aggregate of components into the
component that is reached by all of dem.

The definitions of the operations and spanning functions ane not ad hoc- they are
obtained mechanically by considering the order in which the components must be "merged."
The basic idea is to consider the buffer definition as a graph, where the components at nodes
and the cnpatibility maps ate directed acs. The operations for each component must be

plementedtooperaeonthe aggregate. Thisis done in a seriesof stages. Starting at the
node representing the component where the operations are defined, all connected nodes we
merged into a new "coalesced" node using a variant of the data transformation techniques.
This "coalescing" of connected nodes is repeated until the graph collapses into a single
node. (See Section 6.1.4 for more details.)

In the definition shown in Figure 3.4, But implements the abstract interface BUF using
the components Buft, Buf2, and But3. A representative sample of operations is shown.
Defining te makebuf operation for the aggregate requires two stages because the But 2
coMpnent, in which it is defined, is not directly connected to all the other components. It
is connected directly to Buft via a copatib map, but indirectly to Buf3. In the fint
stage, an ine reI definition of makeb is defined, makebfxz, on an intermediate
aggregate, Buftl2, (thereprentation is the product of the BufI and Buf2 representeons).
In the second stage, the final operation on the aggregate buffe is defined by mergig this

-Iermediate definition with the Buft componenL Since the Buft component is directly
connected to all other components, new implementations for the operations defined in this
component (eg., move-rg and showch) ae defined in a single step.

Te components ae kept consistent through the compatibility maps map_.1 and
nep1 It is not necessary that all translations among components be given; it is suf-
ficient that the components a connoctd possibly through some number of intermediate
comP-nnts. Component Buf2 is mapped into component Buft by making the point of
editing explicit (which is the number of characters to the left of the point, #0, and by
appending the left and right sequence of characters togethe Component Buf3 is mapped
ntocomponentBut I by converthig the line and character indices into a character index and

by converting the sequence of lines into a sequence of character Te auxiliary function
irnee-ocha tak a sequence of lines, adds a newline to the end of each one and appends

them to make a sequence of character. (The notatims [a] denotes the subsequence of
s fnum the begming of s to i inclusive.) The trnslation functions ae easily defined in
terms of the co patibili y maps. In the definitioms of uflParib and unspmn, a value that is
computedinmanethanonewayisdenoed{vi I ... I v,},where vrepresentsthevalue
derived from component a. Multiple ways to compute a value are maintained to ensure
consis---y among the componnts.

3.LS Agsre te Prot

Next, a protMype (Fgre 3.5) is derived (Figure 3.1, prototype step) where the ex on
procedures definin d buffer operations ae transformed into functional definitions. This
results in an aggregate provmye, which is a refinement of the aggregate definition. r
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S&EudWO Duff,*: BSUF NOUdm
typebuf =Buf of (tx Ch* x ch* x Ch x (intx int) X lino')

makebuf 4- u(,1,1, 1 0 )

ldwff i(cp1) lthg m p+I,Ohep, cp+iu
Duf(p + , t, 1@I Pdr)), ti(r), W, p'q), ts)

ahow-chwuf(,a,r,(lP,),s)) #-

et d - (hos())CLp] - (lposQ~)) Lp -1 I I
Buf(p+d, t, lIOC.d], rC(d+ 1)..], (Ip+1I,cp), ti)

* inaltfuf(p,41,r(IpIcp),t) O5p:5#1

Ciw altBUf(p,t,l,r, Qp,cp),ts) 0 : cp<#tSalp

md

Figur 3.5: Buffer Prototype

brVilty. the steps have been omitted. ('Th steps for trnfomn 6 move-right are shown
in Appendix C) As with other data trnfrations, they consist of a number of purely
mechanicalstp ada fewinsigt tp tatrequir iput from tdesign Itisnotwatuly
necessay to derive traslation functions that ar computable. Insted, the tranfmation
process makes use of them in syntactic mnpltosto obtain computable functions for
the buffer operations.

lypically, the trasfrmaIon proceeds where: (1) the bodies of the old operation
and spa function are expanded; (2) domain knowledg about the data, reprsentation is
aplied to simplify the body; (3) an insight step is appied Mo -bridge the old and now
sepmeentations (4) additionsal simlfcto steps are applied; and. (5) the span function is
abstracted from the body of the operation. The insights required by the user are knowledge
of the, properties of the domain and the underlying semati model, and, knowledge, of using
traditional transformations. For example, --raUnsfomng Move-righ requires knowledge
about the buffer domai that adding a charater to the buffer changes the point of editing,
anld knowledge about the underlying model of sequences that a sequence is equivalent to
the list formd. by the first element apended to the rest of the sequence. The traditional

trnsormation of case analysis is used to capture the constraints on the buffer domain.
In the prototype, the daa rpesentation is simply the product of the data, repesentations

of the compo; nnenuts. All components are updated simultaneously. Trhe makebuf operation
genmts eah coponet reresetatio. The move-right operation increments the index

approfriately foreach comnent (the fkunctons hd and I return the firstelement and the rest
of a sequenc). The ShOwtw operaio returns the character at the point of eitg in the
buffer (the function Inst returns the last element ofa sequence). The value may be produced
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Sbmuew Butiw: BUF - shmet
IMp but = But oft((int x cb*) x (int x int*))

flukebu 4- iBuf(O,[D,0, 1JD

dw Buf(p+ 1, t, 0Ifflp~t E])themi+ 1 ebO, no)

If, -0 d=e (sp)
dhet(p - 11

flbx-Ifle(b -Buf(p, t,j)) 4-

ebs&(p+(alI -ali1])>* ,i+1 ml

ad

Figur 3.6: Buffer kmlmntto

from any oftetdtto d s dewtreealftativesre denoted v I v2 v.1
whene v, is t Ep -1] and moo hI exteansion could be easily implemented by selecting the
first alternative so that the prototype could be executed. Multiple ways to compute a value
are kept in order to avoid losing informatio that may be usefu in latewrnfomto or
analysis steps. In the next-Ins opeation, thepositionsf othe surroundingnewlines areused.
to advance to the next lin for the Buf I component (the functio rdpos takes a sequence, of
lines and returns a sequence of nwine, position).

Noticie tha th caracter index for t BufI component has bee tranformed to use
inormaIO from the BUf3 Component, wher it is easie to compute eWlIne information
The 1 pres entation of each component is avaible to update any other componen rep-
resentation How they are used provides t motivation forthe final reprp-eetto that

3.L6 Aggregate Implementation

Itis readily apparent thatthis prototypeis notthe most efficient imleentation becauseof
the redundancy in the data and the operations The following observations are made: (1) It
is not necessary to keep the thre alrnaive for show-cha, so one of them is selected - as
the develope, we choosp p- 11, and make aco-mitment to using the Buf I componet. (2)
The data, elements of the Buf2 component I and r, are not used in any operations to compute
the data elents of the Buft acomponent, torp, to they are removed. (3) The data elements
of t sufs component, a and Ip, ame used to provide newline, information for computing
p in next-In. They we saved. in this specalized context by sMhing (via tranFormations)
thed himetat the nmew positons am compoted from access to generation time. A new
data eOpMenato is defined from this process of malking commitments. This process can
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be c nce rptualized, a a mapping from the prototyper1 eetta o Walnew rpeetto
t map function encapsulats the insights poided by the user such a constait on the-ege operations and the iumetto e. fiiny

With thes observations in mind, a speciallzed (Fgure 3.6) is derived
using data -rnlormation techniques to obtaina .rpeetto that caches newline positions
(Figur 3.1, Ifnont step). This qpwrgate bu~aumdnis a refinement of the

pmoype prvidng n "ftinC mp f the datatpe. For brevity, the steps
aanhave been omitted. Peforanc imipui by eliminating the computation for the

But 2 component, and computing newlin information directly rather than maintaining a
sequenc of lines and mapping it into newline, positions when needed The former is an
instance Cfm~1easing components frm the datatype, while the lattris an instance of shifting

copuatonfrm messtopgneatio tme, tchniquestaredescibed in [48, 76]. A
part of the derivation that ilustrate shifting computation is Shown in Appendix D.

The new specialized repentaio is a sequene of characters with an index for the
point of editing and a sequenc of newlin positions with an index trackng which line
contains the point of editing. The miubd genais ow erats es pybfe
newline cache. The fmo-rigiw operation updats the newline index when crossing over a
line, (t predicate nip retarns tue when its aruetis a newline). The next-Ine operation
uses the newline, cache to move more; efficiently.

The constraints have been refined int dre implementations of the operations by taking
care Cf erorhandling for boundary conditions (to satisy the constraints). They aresatisfied
in the mov.-rlgt operation for example, by returning the origina bufe if an attempt is
made to move the point of editing past the boundary

32 AdpIng- the Buffer
At this point the hniia bufe has been successfully implemented. Howevz it often
happens tha users deshre additional fucinai- Thi section~ presents a mechanis for
introdug change to the systm (Fgure 3.1, adWg step).n, Cm Pnents for pages regions,
and w-xrssosae introduced to adapt the can system. consisting of the components
BUf 1 , But.~ and BUt3 (see F~gur 3.7). The display component, Bufgp, is added in the
following choa.Ma Th cmt, -But , serve a a useful intermiediate for relating the
component for s-usin to the exising systm.U Copai-- t map are, represented,
by arows. Foem pe an arow from Buft to But I represents th omaiblt map
that tales an object of typ suf2 and produces an object of type Buf 1 . Althogh Bufavi is
notuhiown int*aeflgu it does not mean that we must start aU over apn. Weuweein the
examples that follow how the existing work is supplemented when adapting the 1bufSP I

1Ma components =e chosen for thei properties. The page component is similar to
the, oigina components and ofcr anohe view of t bufMP The region component
unduces something new, the concept of a "mark." The s-express=o component coins

less informationsabutthe bfe hnteoiia opnettecmaiiiympfo
the cor to it is many-to-on. 113 goal of this exercise is to learn how the method handlies
adapsation and scalig by adding components under a variety of conditions.



50 Cbqpur 3. IANt Modul lntfac: De ng and M p an FdU ltB er

Figure 3.7: Buffer Components

31 Pages

Te buffer is fAmt extemded to operae on pes in order to learn how the system is adapted
by adding a similar kind of compont what alternatives are available, and the cost of
adding a new compont.

A pap is a region of t delineated by a special page marl= typically the "conrol-L"
charcter.t uend the buffer signature by adding the folowing opeations:

baclwapqe: bu f- but
bw: buf --. but
what-pqe: but - int

Thes operations alow movement to the prevous or following pW, and provide informa-
don on which pag the pint of editin is on. For thee operations, we view the buffer as a
sequence of pages with an index pointing to the current pap.

Campomut Bt: Bur - umht
ts pag. a (ch - 'L'r
13" buf = Buf uf(int x pae')

bsowdpq(sut~pq)) 4- Su(d+1, q,)
wh"-Du Ot¢p,V)) 4= pi

-4

The pap sepwao are inplic of come, an alernative rep Ftsenttion is possible that
keeps tftepa separar at the end of each pai Tecoceis uptothe deigner.

Rca Ul the original syrsm was defined using an annotaed signature wta specifi s
how to ntgrase the original the cop nt (Figur 3.2). ThIs is then enriched to include
t cmPnat for pages by adding these adomw

ashp%1w e) - bwI Iql, I(b

=Aim P'J 3 0) protb) a* ^ wao,(or wi~~ab)) R pro^OrWud-qeb))
ad= j0)m4pr4b pmr~a dimpdpuje m) Prr4orww'd-pw)
as= proj,0 ) prq4h)h r wJwwdjxigab)) m prr(boward-page(b))



32. Adalng the B&I~r5

The first xiom specifies the behavior of the fowa-pq operatim on the dam aggreg
in tms of the pae component whem it was defined. The remaining axiors ensure that
theyem remains consi after the operation is perfmned.

Additionally, the aioms for the riinal opesaos must be extended to MeSre consis-
tncy of the new component when an old operation is applied. For example, the axioms for
movs0 we extended with,

amd ^(b) m: pr4(,) -* prqh(ov-V b)) mqup prOj,(Moehb)).

How do we integrate this compmet with ourprevioulydevelopedbuffer? Weconsider
two alternaives: (1) Mergig **h the ogin salymn We could start ove by integrating
all o the components sain, and developing a new prototype and implemWentation we will
me that much of the i for the opations of the existing components can be
reused. (2) Tradng io de orgLwal sy At could choose the representatiof
the original system and then we would only need to integrate the new component without
modifying th operatons of the existing " m

Merging with the Originlt System. In order to merge the new component with the
oriinal system. first we must define the relationship between the component and the
odgnal buffer, since the component is a new view of the buffer. This is accomplished by
definin a compatblaty mp that transhs between the new component and one of the
previously defined componeit Here we choose Buff, where the buffer was represented
as an index making the point of editiag, and a sequence of characters.

nw _.,(pu * 4,O Bufporq6(tC.p - 1]), charpesQ))

We map Buj into Bufp by counting the number of page mard preceding the text index
(the awiliary function, npq ag returns the number of pap markers in the text) to get
the index for the pag in which the point of editing occurs, and by parsing the text into a
sequence of pages (using c n2p@as). We must then p through the process of integrating
the components to obtain a priootype. We can reuse the implementions for the operations
of the eisting components directly.

Additionally, we must derive a new implementation for each page operation in each of
the existing cmoet BufjI But2, and Btfs. We start by exending the definitions of
Figure 3.4. For exmple the definition for m"Wu e folows.

UumPS(Sufi,(p,,t,pI,9)) = { mnp1...,(Du ,, 1)) I Buf,(pI, up) }

md Dfa,1,) - mITla, 1 (f(Q,q), U))
li

w aUW{d-pI.oaupt, fi 4,-- , , P', 9)))

fo .,,Wu@pW1( "uf'(p, s, 1, r, { ,,p), p,#,u p)))
-d
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The -ntermediate definition for fIrwad-pae 1 x, (appearing after the beyword In) is novel,
-= it defines how the newly introdced component relates to an estaIshed one, namely,

3ufi. Mwe definition for taeward-pope that follows it is simila to the previou definitions
for toe operations of Bufti, but with the addition of the Bufp component. For example
come this definition, with the one in Figure 3.4.

V&~ must also derive anew fmlmn atofreach oprtofthe existing components
in the new pape cmponent. For example, the move-rght operation (defined in Fgue 3.4)
must be extended to define the operation on the new aggregate that includes the new page
component in terms of the old aggregate. This is done by simply adding a new definition.

ed

Wemnoabtoemseallofftod dflntooftheorae sysemdrecy. Weare able to
reuse pats of the derivatio as well, having only to derive, new implementtions based on
t above definitions. These steps are simiar to thos don in t core system, and yield

an eecuue prwqW.ft d i II =e ste p, we migh choose to, specialize the
pages in a simglu manne as we specialized lines, keeping a sequenc of page positions and
an index pointg to the curren page.

A'--ui Int the OrIgInal Sysem When translating the new component into, the
original system, the. data structure and operations remain unchanged in therwtppr!oypI
stp. It is only necessay to derive a new impleenaion for each page operation into, the
origina system. For example, the, definition for forwad-paes follows.

10ed
UIMpWI(Dfz(p,*) 4- Map 1 4(Bufi(p, 0)

DUf,({P I P2 I PS), It z I Uts0))
where uflop2,US) - mp1 (uf(1, r))

MOA(i3uf~,U) -Mq... 1 (aUfs(QIPI4), as))

IND

Camp= fti definitio for translating with t one gliven previously for mrig
Them #n ft same number of defintions, but t new page component is not included
in t aggregate Also, notice tha a new definitio is not needed for any of t eisting
operations, such a move-right because the aggega represenudton does not change. For
the 11neui step, t aggate can be specialized as before.



32. Adapdag dhe Diafer 53

3.2.2 Regions
The example is now extended to provide operations that manipulate regions. Recall tha
the previous example introduced a new view of the text buffer which is computed via a
compatbility map from one of the previous componens A region, however, introduces a
now data construct, "mark," that cannot be so computed. This section identifies how this
new data consruct interacts with the other components.

A region is a parton of the text delineated by the point of editing and a special marker,
called the nurkt

Mt-Mark: buf -- buf
exhane: buf -. buf

delte-egW: buf -.-obuf

The operaons allow oe to set the matk to the current value of point, exchange the values
of mark and point, and to delete the text between mark and point. For thes operations, we
view the buffer a simply consisting of a point, a mark, and the text.

CsmpiNmt Buf,: BUT a srua

type buf - Buf ef(int x int x ch*)

st-M ABf(p, s, )) 4= BufAp, p, )
------ vesuf(o,,m,0) 4 suf(s, p, 0

d9Wt-r gIO(uf(p,n,O) 4= ht(iJ)=Ifp <nthm p,nmdem,pin
BufiQ, i, t..-(- 11 tr-j.])

md

The intzalminon of the mark is handled by the makebf operation as a result of the region
component being integrated with do existing system.

A compatibility map between this component on regions and one of the existing ones
is easy to defie. We choose Buf 1 since its fields are a subset of BUfr.

M8P,. Bu ,4,M,) 4-- BufOP, 9)

The integration is simple. For example, the definition for set-mwk follows.

pSfl(Duf,(p,,,O) =
ufix,(p', ', p, 6 )

whossufjV,') - m (,(p, u, 5))

Sufnx,(P I P, 2 p), 1, 0 ), ,M, 0
WhineBufi( z,h) = map.. 1(Buf (l,r))

d ufI(ft,0S) = nPIf (SUfA(1,,p), s))

§MhMp ,x,(qWk ,)) = set- nsp())ure ,ltlIM )4 - set-nW ,(Unrdp ,))
and
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Silnce p and tare identical to the components of Bul, they can "share" the sam data rq-
resentaon. 1he first definition then simplifies, sinc set-mark1 x is identical to st-ak.
This is a spd cae where (part of) the coiptibility map is the identity funtin The
second definitim as simplifies since th only cnge is in adding the mar Th additional
dat, am, is added without affecting ay of h existing components sin it is "orftgona" to
the ote data elments, unlike the previous page component which was a different "view"
of the buffeL

This also simplifies the changes to the existing operations. For example, the move-Mht
operatim can be extended to define the opeatio on the new agregate that includes the
new region component in terms of the old aggregat. This is done by simply adding a new
definition. However, this definition simplifies to the original definition with an added field
that is simply passed along.

ufipwpuf(p,t,1,r,(p,cp),u,p,m,O) -
Bufl({p I p }, { I t), 1, r, (1p,cp), iu)

"bee ufo,) = map,.(auf(p, M, t))
Is

unsp dW(b)) mo-rKun n(b))
md

The point of this example is, there is a mechanism for introducing change without
modifying the oginal system Even if we only want to add an operation to an existing
componft, we intrduce an additional component, though it may have an identical repre-
smentation to an existing on. This preserves the inegrity of the existing system and also
records th adaptation ma chniques allow one to optimize the aggregate by
sharng premmaomn

3.23 S-Exprculos
The example is now extended to prvid operaions to manipulate s-expressions, nested
Ipnhi zed eI This is an intresting example of adapting the data aggegate
becaue t cmpibili map between the aggrem and the new component is not one-
KHone since infosuaion about white space is lost when parsing fom text to s-expressions.
Her an operat for moving over a single s-expression is shown.

movM4Ne9: bur - bur

The r etton of the component, Bu,, consists of a pair of sequences of s-
epsio, to ft left and right of th point of editing. Fthemre the lft sequence
is ;v so that both s can be reasoned about idntically (eg., as stacrks).

Cumipa. Duf,: uY= huut

tebuf = Buf ei(sep" x sep')
INSA,r)) €= fUDOu), [h)1@rg)
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Mwe semantics of s-expression is sensitive to the context in which the point of editing
appears. An alternative semantics could be to parse from the beginning of the text. However,
when insde a nested s-expressio n ve-ssx is only applicable to s-expressions at that
level of nesting, so information about s-expressions in the enclosing nesting levels is not
needed. Nf operations to ascend and descend nesting levels were to be defined, then a
different representation for the type would be required.

Ibhis component is linked to the core system through an intermediate component Buff
(for P n venience) tha has no operations. lT component represents the buffter as a pair
of sequences of characters to the left and right of the point of editing. Like Bufs, the left
sequence is is reversed so that both sequences can be reasoned about identically.

CAmpomat Bufj : BSW a ubumct
typ buf - Buf of (W x ch*)

ad

Mae text is parsed into a sequence of s-expressions, starting from the point of editing, and
proceeding in both directions.

local
Pams 4- f~[J.[J

I oWfS4,x) . Mae [4Ea'..', O'..'' tb oons((buxp), asaren4)
oh. IN - 'C tdm cons(sez), 9Ow4)*)

skiff. m)'hm []I
elm -aso

parse-an 4- r l[1. 11
I Cnaaz) . ifa 4 (ITa'.', VO..49'0] the parse-an(x) else cons(a, x)

pars-eex 4- ka[J.Orr
I oonsa,).Ifa=')' thesx

eke Ifa = 'C thm parse-seXpOprSO-SeXp~))
doe pam4)

IN
m~apufa(n, a)) 4- Buf,(para(m), parsex))

ad

The operation puss produces a sequence of s-expression tokens fton text Ibis is easy to
define using the ?AL notstion for defining a function using patterns, fImpat. eW pat. e;4. Nf
the arguet is the empty list then the empty list is returned Nf the argument is a nonempty
lis then it is parsed depending on whether it is an alpanueri symbol or an embedded
s-expression, ibis is a many-too-one function since information about white space and
the anx of the atomic symbols is lost. It makes use of two auxiliary functions, parse-an
which skips over the current alhnmrcsymbol and parse-sexp which skips over nested

The component Buf, in turn is linked to, Buf2, they are simila in representing the buffer
as a pair of sequences of charaicters except that the left sequence of one is the reverse of the

mvv,..(ufA~m, )) 4- suf 2(OV(m), x)
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The s-expression component is now integrated with the buffer. We examine here the
first and most important stag-aanslatg into Bufi which "bride" the gap between
s-expresubn and text. Starting with the standard data transformation form,

map;.D,( 2 ufi(,x))) 4= move-sex,(map,.,(Bufim, n))),

and assuming we have a definition for unparse, we are able to use simple syntactic manipu-
lations (such as folding or unfolding or rewriting equals for equals using domain knowledge
about sequences) to get the expression into the form:

nv e ,(Dufi(m,n)) 4= Iezmt(z*t*xWm)) = mi
BufjAtSXm), revX) *A)

twep*) 4- unpas0~ars*)))

For notional convenience, we introduce "x sat eq." where the variable, x satisfies the
equation (cf. unification in Prolog).

This definition is not yet complete, since we did not say how to compute unparse. Even
if we did know how to compute unpars, we would not be guaranteed of getting back the
original text. However, we do not want a general definition for unparse, only one where it
appears in the particular context of tlsexp above.

Deriving tlsxp. A functional definition is derived for tlsexp using expression proce-
dms. We examine the case when we apply the definition to a non-empty list. First compose
parn with U and simplify.

tio(~.scofa,x))) 4- fa ['a'..'z', 'O'..'9'] parse e-an(x))
hwa '(' th m d m,Par sexPz))

eew Ia -')'dm [ ]
oe Uarse(z))

Next compose the expression with unpame and simplify, using the simplification rule
unper noa o)) = x. We justify this rule by having wtpars consult an "oracle," for
insmtnce, a global variable where parse has copied its argument. Later we see that we no
longer need either of these operations, so we do not need to actually use the oracle.

unpars(Ufpere(onsa,x)))) If. e [I'a'..'z', '-'.' thm pare-an x)

ese a = 'C thm parse-sexp()

Absract ))) into sx~z).

tlmp(con(a,z)) 4= Iae[l'a'..'z',o'..'9'Dtbmpase-rnx)
da Ifa a *( thm parse-sexp(x)

d Ia -')' thdm [ ]

It is neves actualy necessary to compute unparse.
Since the s-expreson component does not have complete information, it must be

uvnslawd. However, we could have chosen to cache the s-expression positions as we did
do newline posidons, but this would be much more complicated. So we chose a quick
integration procesi for the purposes of this example, trading off this optimization.
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3.3 Summary
Putting everything together from the three examples, the process of merging the three
additional components with the original system yields the new prototype in Figure 3.8.

The data snuctmre contains the fields from the original tuple of the first three compo-
nents augmented with all the fields from the page component, only the mark field from the
region component (since the other fields are duplicates), and no fields from the s-expression
component (since we decided on an expedient integration). The operations of the original
system have been modified to operate on the new data representation. Alternative imple-
mentations of the operations of the new components have been derived for the aggregate.
The results of this example are interpreted in Chapter 5 after we complete the example by
adding a display in the following chapter.
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Strcur Buff.,.: Bur = Struc
typebuf =Buf of

(iit xch* - point o f ing and IeM in the buff&r
x ch* x ch* - cbacters toteleft andrilgk of point
x (intx int) - t line and ciwacter position of POin
x line* -ine intbutler
x int xpage* currnt page and pages in t buffer
x int) - poi offtemark

rnaebu ,. Buf(0,(,,(, (0, 0), (10, (,0)

lIp',wp = lf(cPw *U[lp])then4,+ ,Oelse4,,cp+ 1,
pi' - Vt:Ipj='L'tmpa+idaepiiu
Buf (p + 1, t, I1@O[hdr)], 0I(r), (Wp,cp'), ts, p1', ti', m)

{ t vp-1II jIastQI Of(q - 0) tem 'm'de s[1p) Ecp -11)}1
next-fiflb(Buf(p, t,1, r, (4,, c),ts,pi S, in)) 4-

Ietd -(npOs~d))[lpJ -(lnOSts))(4,-1J,
d= qXKMS(p..+d)])lu

Buf(p+d,t, 1@r[.J, r[(d+1)..], (Ip+l,cp), ts, p1+t,tp,m)

Wcd = (PagepoSp))(pi] -(paepos~p))(pi-11,
d= numnlQ~p4p+d)])ln

Buf(p, t, 1, r, (IpIcp), 1, A1 Wi, p)

Ietxuatx@tIsxp(rvQ)) =rev(L),
I' W iexp(revQl)),r' rev(x) @r,

V, = 4+numnQ~p..p'),
pi = pi+npages(p..pj)i.

Bufvp, t, 1', r', (4,cp), is, pi', ii, in)

end

Figure 3.8: Adapted Buffer Prototype



Chapter 4

Reuse and Customization: Deriving an
Interactive Display-Editor

In the prewous chapter we constructed a buffer from components and then added additional
components to adapt the buffer. We saw that components can implement parts of a datatype
and that the transformation methods enabled us to integrate the parts into an aggregate
data structure and to perform further optimizatios. Now we change our focus to the
module level and use the buffer as a part of a larger display-editor system. We see how
transformation techniques are applied to herarchically structured module systems, where
modules are defined in terms of other modules. The buffer datatype that has been previously
developed is reused and customized in the context of a larger interactive display-editor.
Transformations are used for adapting data representations and abstract interfaces, and for
optirnizations.

The display editor is built in a series of stages. Funst we go through the exercise of
adding a screen for displaying the buffer to the user. Then we generalize the system to
allow multiple buffers. Finally, we introduce windows to display mome than one buffer on
the screen at a time. This module hierarchy is summarized at the end of the chapter in
Figure 4.2.

These modules were chosen for their properties. The screen module is introduced
independent of the buffer and displays some "displayable object" We then define a display
view for the buffer as the screen's displayable object, and integrate it with the original
buffer prototype. Once integration is achieved, additional optimization techniques are
applied to take advantage of the close correspondence between the buffer and the screen.
The multiple-buffers module demonstrates how module interfaces are adapted by creating
a new module that includes the old one, and then propagating the operations using data
transformation techniques. The multiple-windows module also demonstrates how module
interfaces are adapted. In addition to the method used in the multiple-buffers module,
a more synthetic approach is taken where the desired interface is exposed from existing
information.

59
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4.1 Single-Buffer Single-Window Display
This section begins by extending the text-buffer example to provide output of the buffer on a
simple screen. Fir the data suctures are introduced and then transformations are presented
to inmtegrate them. The first data structure introduced is the screen that displays a portio of
a "display plane," some planer representation of a displayable object. The display plane is
then designed, and defines how such an object is represented on a screen. The definition
of "object" is left open at this time, as long as an object meets the equments of the
display plane, it can be shown on the screen Finally a diplay-editor structm is designed
as the tuple of the buffer and the screen and an origin which pins the screen to the buffer;,
this definition is influenced by [88]. The buffer must then be defined as the displayable
object in the screen by creating a new buffer component that meets the requirements of the
display plane. The first tranformation then integrates this new component with the original
buffer This is done using techniques developed in the previous chapter. Then subsequent
transfo ions optimize the display editor by more closely "coupling" the buffer and the
screen.

4.1.1 Defining the Display Editor

A screen is a bounded portion of some displayable object and a cursor position that points
at some partion of the object. Let us call the displayable representation of the object a
"display plane." We then define the screen as a bounded portion of the unbounded display
plane and a cursm position identifying the point of editing. This enables us to use the screen
to display a variety of object.

Si__w SC~rMI a ig
tMp screen
Op origin

dlup-t.-crMn: origin x disp -* screen
policy: origin x disp - origin

The opeamim csp-to-wreen creates a screen hom a portion of the display plane. The
portion of the display pla me to show in the screen is marked by the origin, which effectively
pins the screen to the buflez The operation pocy picks an origin for the display plane.

Before defining the implementation of the screen, we define the display plane. A display
plane provides a two dimensional representation of an object that is a useful concept for
mapping different kinds of objects into a screen. We use a simple definition where the
contents of the two dimensional epesentaion are characters.

SigmDISP -g
typdisp
COnW: disp - planepos -+ ch
currnt: disp -. planepos
eud
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The content operation takes a display plane and returns a function that given a display plane
position, returns the character at that position, and the current operation returns the display
plane position of the point of editing. We defer the implementation of the display plane at
this time, until a later time when we have an object to display.

The Screen is represented by a cursor position and the "appearance" of the object
that is displayed. The appearance is a function that maps a position in the screen into the
colesponding character in the display. Associated with the screen is some internal state,
height and width that denote the height in lines and width in characters of the physical
screen. The area bounded by height and wkth is screensurface.

Sbictr screen: SCREEN = Uct
type screen = Screen of cursor X (cursor -* ch)
IM cursor = n x n
type origin = n x n
val height = 20
VWh W= 80
ascnsunf = ..hefght x 1..wkdth

projectr, cXQ) 4-- (r+L1, c +J)
orglns(d) 4= {(r,c) I current(d) E project(r,c)[Iscreensurfacel]}
dhsp-to-screen(o,d) 4 kp = ontpnd) pojeco)

aW st current(d) = project(oXc)
ad *acs - (L,j: N. 'sp') in

screen(c, (p= ep)\screensudace)
pollc(o,d) 4 I o E orgins(d) thm o s (x I X E ongins(d))

a2maat Screen(c,a) = cE 6 screemrf a
csin'alt Screen(c,a) = domakna) = scrensurtace

and

The screen operations are defined in terms of the local operations project and origins.

poe: origin -- cursor - planepos
oigins: disp-e+P(origin)

The proje operation projects the cursor position relative to the origin to yield a display
plane position. The operation odgins computes a set of possible boxes of the size of the
sreen (represented by the top-left coordinates) that contain the point of editing in the
display plane (P(origin) is the set of all origins).

The d1sp-to-screen operation computes a screen based on the origin and the display
plane. Notice the equational nature of the computation for the cursor c, where it is
computed such that it satisfies (sat) an equation. The appearance is constructed using
content to convert the display plane into a function that takes a display plane position
and returns the character at that position. In the appearance function, the display plane
is first projected with the origin to yield the display-plane position. This establishes the
top and left boundaries of the screen. Then the resulting display plane is restricted to the

e f.ace to establish the bottom and right boundaries of the screen. (The domain
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buf

origin

Figure, 4.1: The Display Editor

restriction. operator, \ maps a function f, and a subset of elements, S, to a function which
agrees with f on the set S and is elsewhere undefined.) Space are filled into places in the
screen that do not correspond to displayable text (The functional overriding operator, ED
maps a pair of functions to one that agrees with the first, everywhere except on the domain
of the second.) The policy operation returns an appropriate origin. It uses the old value if
possible to minimiz screen update, otherwise a new one is pickted (eg., such that point is
in the middl of the screen).

A display editor is now constructed in terms of the buffer (developed in the previous
chapter), the screen and the origin.

Signature DED = sig
type ded

ded-make: dod
ded-op: (buf -buf) --+ded --+ ded

end

Mwe display-editor data representation is defined as a tuple consisting of the buffer,
origin, and scree (see Figure 4.1). The origin pins the screen to the buffer and is the
position of the top-left corner of the screen. relative to the buffer.

Structur Did : DiD a liruc
IbuctMr Buf - Buf , Screen - Screen
typ ded =Did of (buf x origin x screen)

de-mkbO 4= let b'=-makebufmid o=-(0,0) In
let s' - dlsp-O-screon(o, Y') in

Did(b', o', a')
ded-op(Cx(id(b, o, s)) 4-- Iet b'-c(b) in

let i -disp-o-ecreeno', Y) in
Di(', o', f')

Cea&Wt Did(b, 0, a) a=dksp-to-scro, b)
smd
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The ded-op command applies the: bufe operation (delet, kansmve-riht moveleft
and next-lin) to the buffer and updates the screen and origin appropriately. The invariant
between the buffer and the origin and screen is recorded. It can be easily checked that each
operation defined on the display edtor preserves this invariant.

This definition of the scre is not quite correct however. We are =o able to apply
dsp-to,-sreen or polcy to an 0hbjct of type buf , it requires an object of type disp. In
order for this definition to be c~rrect, we must make the connection between the text buffer
and the display plume

4.1.2 Defining Buffer as a Displayable Object

using the mtolgydeveloped in the previous chapter, we define a new buffer compo-
nent that is a displayable object, that is, it implements t two operations necessary for it
to be displayead on t screen. The representation of this view of the buffer consists of a
sequence of lHnes above the point of editing, the sequence of characters to the eft of point
(on the line point is on), the sequence of characters to t right of point and the sequence
of lines beow point. The lne operation returns the contents of the display plane as a
singl sequence of line (of arbitrary length). The point of editing in the display plane is
expressed as a line and character position. It can be thought of as a two-dimensional view
of the buffer.

CeuPOMMu Buf~,: DISP = S&Uct

typ diap - Buf of (line* x ch* x ch* x line*)
typeplanepos - fl x n

flnes(suf(a~ld,rd,b)) 4-- a@[Ldordjab
in

wftwit(d)(r, c) 4-- lnes(d)fr](cJ
current(suf(a,ld,rd,b)) 4- (1 +#a,#14d

ted

The repesentation for the new component Buf&*, must be reconciled, with the previous
buffer repesentation; this new display view must be merged with the original buffer before
we are able to use it. A compatbility map between this display view and one of the previous
representations is needed tolrelate this new type with the previous prototype buffer. Here it is
natural to choose BUf2 as the component to relat the display with, because the compatibility
map is easily written.

M8lP,.i(8UfdW(a, W,rd, b)) 4- BufzOIUStOchrSa@ [Id), Iinos-Ch [Arsfd b))

Theae ate a number of ways to accompls the integration (see Section 3.1). One way
is to merg the new display component with the components of the original system. This
involves rederiving all the buffer operations to include the new Bufa, repesentation. This
rederivation is not as diffcult as the original derivation since the type is being adapted and
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much of the derivation structure can be reused. Another way is to keep th previous buffer
re-Presetation, Bu2 , and tiransate the disphy operations into this rern. since
Bufa isimilar to Buf2 this way is dsen for the sakef oexincy.

The operations to be trandmed are Ns, ontent, and *rent Looking at the comtxt
of where the operations are used, it is observed that Ilnes only occurs within the context of
the definition of content. Rather than computing the entire set of lines within the buffer
and then taking only oe character, we combine these operations to obtain an optimized
version that accesses the charactar directly we do this by transorming cntent, instead of
Ins.We get the following implemetation-:

=OrtinttBuft,tI,AV)Xr,c) 4= [lr)+c)
cWWWIBsuAP,t,XO) 4- (V"v-[IV-)

Since the in operatio is no longer referenced, it is releared from the module. With
these new implementaton a single repesentation for buffer is again derived and this
pis used with the smple display.

4.1.3 Caching the Screen

Now that we have integrated the display editor, we turn our attention toopio.
Rather than update the entire screen after each buffer operation as the prototypejust defined
does, we seek to incremeally update the screen. This is acomplished by specializing the
buffer and screen operations in the context of the display editor. Here they are specialized
for optimizing the screen performance. One virtual model of a screen is a matrix cache;
this cache is updated from the display-editor data structure. Special built-in low-level
operations update the physical screen of the terminal from the cache. Operations for
updating a character or line in the cache, and for efficient scrolling are provided. (These
and other hardware cpabilities are recorded for machines using the UNIX operating system
in the terminal cqbility data base, "termcap").

In the display editor, there is, in effect, a narrow communication band between the
buffer and the screen. We want to increase the amount of communication between the
buffer and the screen. Rather than performing a buffer operation (which may be highly
localized) and then mapping the entire buffer to the screen (a global operation), we wish
to localize the changes to the screen whenever possible (utilizing the capabilities of the
terminal to improve performance).

r Update of the Scruen. We express the opimization of incrementally updat-
ing the screen in trms of the data ansfomation scheme. We can think of the buffer and
screen as different "views," where the dlsp-to-screen operation is the compatibility map
that maps buffers into screens. Then our task is to tranform a buffer operation, move-right,
for example, from operating on buffers to operating on screens.

A new implementation for the move-riht operation is derived by first specializing
ded-p for this command.
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move-rlht(d) 4- do$-qpKm"v-ftgh)

Unfolding ded-op yieks:

MOV*-rg(DZd(b,o,s)) 4 Iab'-move-rtb)h
Ia#'ap oiCy(o, Y) I

kt s- dP4o-crmeo, Y) I
DZd(b', o', ')

The focus of this example is on specializing the screen. Here the screen appearance is
computed by depo-screen each time the move-right command is invoked. The argument
s, the old value of the screew is never used. But we know that if the cursor does not move
off the screen, then the new appearance of the screen is exactly the same as the old value
so it need not be recompued In order to express the updated screen in terms of its old
value, we look at the definition for updating the screen. The old value is defined in terms
of content(b) while the new value is defined in terms of content(move-rght(b)). So, if
we are able to reasm about content(move-dght(b)) and express it in terms of content(b),
then we can reuse the old value of the screen.

The steps to accomplish this follow. The portion of move-right' where s' is defined is
shown where dsp-to-sceen is unfolded.

i = gp a contnt() o project(ol
and c at currenb) - projsct(oXc)
md *cam (Ai: N. '') In

screen(C, (*a ep)\smrensurfaw)

The cursor c will always change while the appearance may stay the same in some cases so

again the attention is focused on the appearance, a partial definition of which follows.

ontent(b) o projeco')

The definitions of b1 and o' ae expanded.

conttmoverghKb)) o poject(icy(o, b))

Reasoning about the definition of move-right within the context of content reveals that the
contents of the buffer does not change.

contsnt(b) o popjsctoy(o, b'))

The definition of policy is next unfolded to reveal a conditional expression which is brought
to the outside of the expression.

It o E Orgif() m contentb) project(o) de contetb) a projct(o)

Ths reveals the expression "content(b) o project(o)" which is exactly the value of the old
screen appearance. The value of the screen is cached and used in this case.
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No C oelginsY) dhms j d oontentb) o projsct(o)

By reaing about contenKmove-lghi(b)), we find that undcertain conditions, no
chang is necessary to the appearance of the screen so that we save the expense of updating
it. A simil argument holds for move-left and next-In.

New implementations for the insert and delete operations can also be derived (but ae
not shown hee) by specializing dK-op for this command. Unlike move-right the content of
the screen will chan, but the chang is highly localized, with much of the screen
the same. For example, when a character that is not a newline is inserted, everything above
and below the current line remaims the same. Only the current line need be updated. When
a newline is inserted, everything above the current line stays the same, while the lines below
the current line an scrolled down by one. Tmhes observaions are made in reasoning about
contenk(lnsert(c,b)). By judicious manipulation, an implementation for the operation can
be derived that utilizes the terminal capabilities such as inserting a character into a line and
scrolling.

Screm ftrfanc The decision regarding the terminal optmizations ar based on the
degrees of change to the screen. The types of changes that occur are, of course, dependent
on the particular data smuctm. It is beneficial to look at how the data representation is
organized. For the screen the data structm is defined in terms of lines and characters. To
assess what has changed, we need to be able to decompoia the data structure in various
ways so we can determine whether some piece in the updated structure is the same as some
piece in the original structue. To accomplish this, we observe each data structure using its
accessor functions. For the screen example, this includes functions to return a single line
or some subset oflines.

How is change introduced into the screen? We start with the simplified definition for
the new screen contentlop(b)). It is a function of the old display-editor buffer and observed
under some contet content. What changes can we observe? Using formal manipulation,
we would "ideally" like to decompose the operation, op, into smaller pieces that are either
accessor functions or terminal capability functions. The accessor fanctions do not change
the partons of the screen to which they are applied. The terminal capability functions do
change the pridons of the screen to which they am applied, but do so efficiently by using the
specialimd capablities of the rminal. When it is not possible to decompose the operation
in such a manner, the operation must perform parts of the computation to update the screen,
or update the entire screen.

When must we update the entire sreen and when can we make more local changes?
When I a ting the operations for the display editor above, we focused on two local
changes and on global change The local changes consiut of "overrin and "offsettming"
for which there exists terminal capability functions such as character insertion and scrolling.
Overriding changes the screen a character or a line at a time. Offsetting shift the characters
or lines over by some amount. When inserting a non newline charcter, the characters to
the right ofthe point of editing on the curem lin we shifted to the right and the character is
inserted into the space that is opened up. The global change that we noted was updating the
origin. In this case, updating the entire screen is warranted because there may be very little
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in the scren that remains die same. We made no distinction for when the origin changes
a small amount (le than the screen height) and a great amount. We could later specialz
the frmer case to scroll when applicable.

4.2 Multiple-Buffers Single-Window Display

Tisection extends th example by adding the ability to use more than one buffer in order
to learn how to adapt module interfaces by creating a new module that includes an old
one, and then pompagating the operations using dam-transfonnation techniques. First a new
datatype for multiple buffers is introduced and the definition of display editWr is extended
to make use of this new f. Then trnsformaions for integradng the multiple-
buffers datatype into the display editor, and for propagating the old editor definition into
the new one are presemed.

4..1 Defining a Multiple-Buffer Editor

Basic operations for a multiple-buffer editor include adding a new buffer, selecting one of
the buffers for display on the screen, and deleting a buffer from the buffer list.

Siuare HBUF = .i
type mbuf

maks-nbsw: ubuf
make-buffe: str x mbuf - mbuf
sec-buffer: str x mbuf --* buf
kill-uff: nbuf --o mbuf

end

Let us look to the previous definition of the simple display-editor for guidance in
developing a new representation.

typed - DEdof(buf x origin x screen)

Since we are dealing with more than one buffer, we would like to: bundle together the
buffer and the o add a name field to identify the buffer, generalize the single entry to
a list of entries and keep the selected buffer "cached" separately from the list.

The rrmntation we come up with is a buffer list where each entry consists of the
buffer name, the actual buffer, and the origin (that pins the screen to the buffer). The current
buer (displayed on the screen) is separate from the list.

type mbuf - buf of(str x buf x origin)* x str x buf x origin

This representation was chosen to simplify te presenton. Od repsentations are
possible. For example, only the name of the current buffer could be kept sepaate, and then
the actual buffer and origin would be looked up in the buffer list.

The operations are easily implemented using "seeric" association-list operations. We
use the buffer name as the key to insert, select, or remove items. We now construct a
multiple-buffer display-editoc
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SlputM DED-NBSU = dg

type ded-sbaw

m k-ded-mibew: ded-obsw
ded-op: (buf --* buf) - ded-mbsw - ded-mbow
make-buffer: str x ded-abaw ded-abw
Select-buffer: str x ded-mbsv - ded-mbsw
kill-Xuffer: ded-mbsw - ded-mbw

ed

The representation for the multiple-buffer display-editor combines the buffer list with the
scram~

type ded--ibsw - Ded-Hbaw o(fmbuf x screen

impementations of the operations for the multiple-buffer display-editor are derived
from Hbuf and DEd. The relationsMp between these modules is expressed in terms of
a translation function and the familiar integration techniques are applied to obtain new
implementations of operations based on the imported modules.

4.2.2 Integrating the Buffer-List Operations
The buffer-list p defined in mbuf induce ccresponding operations in the multiple-
buffer display-editor that are defined as data tasfom procedures. The relationship between
the Mbuf module and the Ded-Mbsw module that includes it is expressed as:

spi : obuf --# ded-mbsw
span Mbuf(b,n,b,o)) 4= Ded-Hbsw(Muf(b, a, b, o), s)

what s = disp-tHsreno', b)
The operations defined in lbuf are then reimplemented in Ded-Mbsw. For example,

the new definition for seleA-buffer is:

tr',(,span(imbufQ',a,b,o))) 4= span(select-b ffer(n, mbufW, n, b, o)))

After a number of transformation steps, we obtain:

sect-buff er'(a,Ded-Mbsw(b,s)) 4= Ded-Mbsw(bP, s)
where bl l buf(b',,b,o) = select-buffer(n, bt),

s - dlsp-to-sceen(o, b)

In this simple case of module inclusion, the operations in Ded-Mbsw call the operations
in mbuf and then update the screen accordingly. We could continue to specialize
operations so that the screen is incrementally updated as was done in the previous example.

4.2.3 Integrating the Buffer Operations

The buffer operations from DEd (eg., deket, kner moi" ht) induce corresponding opera-
tions in the multiple-buffer display-editor that can be defined as data transform procedures.
The relatimship between the DEd module and the Ded-Mbsw module that includes it is
expressed as:
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unqpn : ded-mbsv -, ded
unspan(Ded-Mbsv(buf(b,n,b,o),s)) 4- DEd(b, o, s)

The fundamental operations on the buffer must be reimplemented in Ded-mbsw. They
are expressed in terms of the translation function and the definitions defined for the simple
display-edio, DEd. Intuitively, the new impemetations simply operates on the "cached"
portion of the buffer list. The new definition for ded-op is:

ufpafm(ded-op(c, Ded-m bsvObuf(b" , a, b, o),s))) 4
Dd.ded-op(c, unspan(DOd-HbsvQ4buf(b', n, b, o), s)))

Fim we unfold unspan,

unspanl(ed:2(c, Ded-mbsw(mbuf(b*,n,b,o),$))) 4=
Dzd.ded-op(c, D.d(b, o, s))

and then unfold dod-op.

unspan(dedo(c, Ded-Mbaw(buf(b*,n,b,o),s))) c=
Ietb' =c(b) In

hto c pONy(o, b')in
kt j'= dIs-to-sceen(o', Y) in

DEd(b', a', o')

Recognizing the body of unspan, we fold it,

unspan(dedl(c, Ded-i bs,(Zbuf(b',n,b,o),s))) €=
kt Y ac(b) In

iet o - pocy(o, b In
lets' disp-W-ScroKo', b') In

unspan(Ded-Mbsw(buf(b', n, b', o'), s'))

and then take a solution.

d..Opc, Ded-itb3sw(mbuf(b*,n,b,o),s)) 4=
et b' c(b) n
k o' Mpo lyo, b') I

let a= disp-to-screon(o', Y') I
Ded-Mbs3uWbUf(b', n, b', o'), f")

The new implementation for ded-op simply operates on the selected buffer in the buffer
list. Rather than choosing the general definition for ded-op, we could have chosen instead
the specialized versions of th operations that optimize the screen updates.

We can think of this development process as a means to adapt interfaces. We wanted
to change the interface of the simple display-editor DEd to include operations for dealing
with multiple buffers. We adapt the interface by defining a new component, Ded-Mbsw
and express the relationship between it and DEd with a translation function. Then we
reimplement the operation in DEd into Ded-lMbsw using the data transformation technique.
The technique provides a systematic way to propagate change.
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4.3 Multiple-Buffers Multiple-Windows Display

ThMs section extends the example by adding the ability to display mor than one buffer
on the screen at one time to demonstrate how to adapt module interfaces by exposing
underlying repr sentations. This involves introducing the concept of a window on the
screen. Rather than introducing a new datatype, as was done in previous sections, the

e tranormation is used to reveal the window object from the previous definition for
the screen. Once the buffer and screen are decoupled, operations for multiple windows are
itroduced. Then the display editor is extended to include this new functionality and the
previous versions propagated as was done in the previous section.

4.3.1 Defining the Multiple-Window Editor

Basic operations for a multiple-window editor include deleting a window from the screen,
enlarging a window (by a line), moving the focus of attention (marked by the cursor) to
another window, shrinking a window (by a line), and splitting a window into two smaller
halves.

Sigma e MIN = s

mak-mbmw: mvin
delet-window: mvin -* mwin
enlarge-wiow: mvin - mvin
ottw-wiow: mvin - Mvin
Shrik-windw: min - mvin
s it-Widow: mwin -- mwin

emd

We build on otr previous work to construct a new definition. But where does the notion
of window come from? Is it a new concept that must be introduced into the system, or is
it somewhere hidden in the previous definition waiting to be uncovered? In the previous
definition, there is an operation for mapping a display into a screen. We would like to
expose more details of this operation by showing how the display could instead be mapped
into a window, which is then mapped into the screen.

4.3.2 Exposing the Window

The goal of this process is to introduce a new damtype for windows. We start off with
a function for mapping a display plane into i screen. We add the screen surface as
an extra paameter rather than sccessing it e: a state variable. The idea is to reveal
the underlying data representation of the data abstraction, expressing it in terms of a
tuple of other representations. (The details of the expoe transformation are explained in
Section 62.3.)

This Uanformation is possible if we are able to write a function that spans these
representations. The Unpan function maps a tuple representing a window and a new kind
of screen into the original data representation for the screen.
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dIspto-screon(orig,b, ss)
hetp - content(b) o project(orig)

ad c sat current(b) - ProJoct~OMc
and spaces = (Aij: N. 'sp') in
Screen(c, (spaces $p)ss)

Using the elpose transformation, we seek to get all instances of the data abstraction to
be of the form data abs o Unspan.

Unspan: (cursor x appearance) x (cursor x appearance) -~(cursor x appearance)

antiproj: origin--+ cursor --+planepos
antproj(r, cXIJ) -c (i -r, j- c)

dispto-screen(orig,b, ss) 4=
let p = content(b) o project(orig)

and c sat Current(b) = project(o)(c)
and spaces = (Aj: N. 'sp')
and orig' = (0, 0)
mWdp' = spaces 9p
and p" - p' o antipiqj(oig'
and d' = project~cXorig') in
Screen(Unspai((c, p'\ss), (e, p"\ss))

Replace data abs o Unspan with unspan o (Window, Screen'). This moves the boundary of
the type inward, revealing two new abstractions in the process.

dispto-screon~orig~bss) 4--
Ietp = conteflt(b) o project(orig)

and c sat current(b) = Project(oXc)
and spaces = Qj,j :N -'sp')
mnd orig' = (0, 0)
and P'=saces (Dp
and p" p' o azfWpOj(orig'
and e' = roecworip' in
unspan(window(c, p'\ss), Screen'(d, p"\ss))

Excise unspan and then split disp-o-screen into two separate functions.

dIspto-screnorig, b, s) c- window-to-screen(disp-t-wifldow(b, orig, ss), (0,0), ss)
disp-to-window(b, org,ws) 4-

let p - contont~b) o pr"eW(org)
and c sat current(b) - projectoXc)
and spaces - (Aij : M. 'up') in
Windov(c, (spaces @p\ws))

Wndow-to-scrOe(orig, w, ) 4--
let p - w-appearwsce o antiprj(orig)

and c = projctKw-cursorXoris) in
Screen'(c, p\ss)
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4.3.3 Building the Display Editor

Now that the notion of windows has been revealed, we define the multiple-buffer multiple-
window display-editor. The Tepresentation consists of the buffer information from the
previous section on multiple-buffers single-window displays, plus a window list where each
entry consists of the window name, the actual window, the name of the buffer associated
with the window and an origin that pins the window to the screen. The selected window is
separate from the window list.

typemwin =Mwinaf(str x window x str x (n x n))* x (str x window x str x (n x n))

This representation was chosen to simplify the presentation. As with multiple buffers, other
representations are possible. For example, only the name of the current window could be
kept separate, and then the actual window and origin would have to be looked up in the
window list.

We now construct a multiple-buffer multiple-window display-editor.

Signture DEI)-MBt4 = Sig
type ded-mbmw

make-ded-mbrrm: ded-mbmw
ded-op: (buf - buf) -o ded-mbmw -* ded-mbmw
make-buffer: str x ded-mbmw -* ded-mbmw
select-buffer: str x ded-mbmw - ded-mbmw
kill-bffer: ded-mbmw - ded-mbmw

deletewndow: ded-mbmw -. ded-mbmw
enlarge-window: ded-mbow -- ded-mbmw
other-wndow: ded-mbmw -- ded-mbmw
shrink-widrow: ded-mbmaw - ded-mbmw
solt-window: ded-mbmw --- ded-mbmw

end

The representation for the display editor combines the buffer list, the window list, and a
new notion of screen.

type ded-mbmw = Ded-Mbmw ofmbuf x mwin x screen'

We can propagate the operations as was done in the previous section. The implemen-
tations of the operations for the display editor are derived from Mwin and the preceding
multiple-buffer display-edito The relationship between these modules and the display
editor can be expressed in terms of a translation function and the familiar integration tech-
niques can be applied to obtain new implementations of operations based on the imported
modules.
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4.3.4 Integrating the Window-List Operations

The window-list operations defined in Mwin induce corresponding operations in the display
editor that are defined as data transform procedures. The relationship between the Mwin
module and the Ded-Mbmw module that includes it is expressed as:

Span: mwin -. ded-mbm
spanQmwin(w*,wnw,bn,wo)) 4-

k s = wndow-to-cerKwo, w) o mapwrnwndow-to-scren, w*) in
Ded-fbmwQbuf(b*, n, b, o), Hwin(w, wi, w, bn, wo), 5)

The mapqin operation recurses through the window list, applying window-to-screen to
each entry in order to update the screen. The operations defined in Mwin can then be
reimplemented in Ded-Mbmw. They could simply call the old operation and then update the
screen appropriately.

4.3.5 Integrating the Buffer Operations

The buffer operations defined in the preceding multiple-buffer display-editor induce corre-
sponding operations in the display editor that can be defined as dam transform procedures.
The relationship between the Ded-Mbsw module and the Ded-Mbmw module that includes
it is expressed as:

unSPan : ded-mbtw -- ded-mbsw
ufspafDed-Mbmw(buf(b, n,b, o), Mwin(w*, wi, w, bni, wo), $) )

let w'= { w j diap-to-window(o,b) ),
s' = window-to-sceen((O, 0), w) in
Ded-mbsw(Hbuf(b', { I bn }, b, o), s)

The operations on the buffer must be reimplemented in Ded--bmw. As before, the new
implementation operates on the "cached" portion of the buffer list. In addition, it updates
the appropriate window, and then the entire screen.

4.4 Summary

The module structure of the evolving display-editor is shown in Figure 4.2. Module
inclusion is revresented by solid lines between two modules. The module above is included
in the module below. Translation functions are represented by arrows. Derivations are
represented by dashed lines. They are numbered and refer to the items in the enumerated
list below. Different kinds of adaptation include:

1. Adding Conponents. When a screen was added, the buffer did not have the necessary
operations to interface with the display; two additional operations were needed. They
were added by creating a new component for them, Buff,, and then integrating the
component into the original system, Bufi,#, using the techniques for adaptation

discussed in Section 32.
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2. Incorporating subsucr. The buffer and screen com Mnicate through a narrow
uni-directional channeL This is accomplished by the isp-to-sceen function that
converts an entire buffer into a screen. It is possible to incporate the modules for
the buffer and the screen into the display-editor module, ded, in order to widen the
channel of communication. This allows local changes in the buffer to be reflected in
the screen using a form of incremental update. The channel of communication could
also become bi-directional so that changes in the screen are reflected in the buffe

3. Fxending Modules. A series of display editors were built that progressed from having
a single buffer and a single screen, ded, to multiple buffers and a single window,
ded-mbsw, to one with multiple buffers and multiple windows displayed in a screen,
ded-mzmw. As we progressed through the series of display editors, the interface for
the previous editor was adapted by creating a new module that includes the old one,
and then the operations were propagated using data transformation techniques.

4. Exposmng Informanon. Sometimes the changes to the interface are hidden within
the existing system. Instead of adding something new, a more synthetic approach
is taken where the desired interface is exposed from existing information. When
constructing ded-mbmw the concept of a window emerged between ie abstractions
for the display and the screen.
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Chapter 5

Interpreting the Results of the Editor
Derivation

The module interface transomation system presents an overall methodology to guide the
software development process, but ther are still many choices to be made by the software
devloper. A particular line of development was chosen in the editor example, but at certain
points, other choices available to the software developer were indicated. In this chapter, the
range of choices are classified at the design (Section 5.1) and implementation (Section 5.2)
levels of integration. These choices are evaluated in terms of :he costs they incur during
the transormation process, the range of choices available at the lower levels, and the
perfoxmance of the resulting implementation. The software designer will have to weigh
these factors and make tradeoffs between them. Section 5.3 discusses the implications of
this approach to scaling.

5.1 Integration Design Alternatives

The choices available to the software designer for integrating the collection of com-
ponents into an aggregate are dependent on the properties of the components and the
elaionships among them. Recall that a component consists of a data structure and a

collection of operations; they are related by consistency relations implemented a compat-
ibility maps or translation functions. Components are used for constructng datatypes or
objects. Now consider the integration process. The inputs to the process are the collection
of components and traslation functions with certain properties, and the choices made by
the software developer. In Fgue 5.1 we chart the integration choices made by the software
developer in terms of the effects they have on the outcome, (i.e., the data aggregate). Two
useful measures are the level of abstraction of the data represntatiom for the data aggregate
and the time of evaluation of the translation functions and component operations in the data
agW tft

Cho"es for the data representation appear on the "abstraction" axis. Starting at the
top and moving downwards, first a single component reprsentation is chosen, then the
union of all repreentatioms, and finally the product of the representations. Below that

77
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(but not shown) could be a more generalized representation. Recall that each component
operation induces an aggregate operation. One choice, then, is to use one of th: component
representations as the aggregate repesentation. The aggregate operations inducel from
the component operations must be defined to operate on this chosen representation. A
second choice is to use all component representations in the aggregate representation.
The aggregate representation could be the disjoint union or the product of the component
repesentatons. The induced operations on the aggregate must ensure the consistency of
all of the component rpreentations. If the representations of some of the components are
identical then the data can be shared. Operations access the shared data representation.

Components and aggregates appear on the "evaluation time" axis. Starting at the right
and moving to the left, the components at first become specialized by incorporating the
translation functions, and then themselves become incoporaed into the aggregate. Since
each component operation induces an aggregate operation; for any operation defined on
a component, a new aggregate operation can be defined that is derived or translated. A
new operation may be derived that operates directly on the new repsentation. This
is accomplished by defining the new operation in terms of the old as a data transform
procedure and applying transormations to obtain an executable implementation. As an
alternative, the new operation may be translated by defining it in terms of the old operation
and translation functions. For example, the new operation could use translation functions
to first translate the data, apply the component operation, and then translate bacL

The choices made in integrating the components affect how the translation functions
are used in the aggregate: (1) The translation functions an maintained and the aggregate
operations dynamically evaluated. In this case the aggregate operations are translated. (2)
Translation functions are partially compiled into the new implementation of the operations,
but there is still some dynamic update. (3) The translation functions are compiled into the
new implementations of the operations. In this case the aggregate operations are derived.

For the sake of concreteness, imagine three components, each defining a separate
operatio on different data representations. The operations and data representations are
shaded to distinguish them. Consider the case where the operation of the middle component
induces an operation on the aggregate. The numbers in Figure 5.1 correspond to the items
discussed below where we pinpoint some of the choices:

1. Incrmentdnmerging. The translation functions and the component operation are ma-
nipulated to derive an operation on the aggregate that exploits the interdepenencies
among the component repesentations. This was the choice for the buffer prototype
seen in Figure 3.5.

MpX2(qpenC2)) 4- == spa((2))

ufl8PU(P&qg(ci,c2, og))) -* op1x2(unspan~hgg(ci, C2, C)

The aggregate operation is defined as a dam transform procedu whe translation
funcmuse cmibility mp d exploit the 1----aum the com-
poment repesentations. Refer to Fimg 5.1 at the module labeled (1). Start at the left
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of the module and follow the arrows to observe how the data representation is used.
In this case the aggregate operations act directly on the aggregate data representation.
The representation is first accessed by an operation and then is updated with the new
result.

2. Product of the operations on the union of the data representations. Alternative
implementations of the component operation are derived for the other components.
Then, depending on the current type of the aggregate, the appropriate operation on
that type is selected. This alternative was not actually implemented in the buffer
example, but could have been by defining the aggregate operation, op, in terms of
the current type of the component

Wagg) 4= case typ Woagg) is
cl . them op, (agg)
C2 -T tM op(agg)
c3.T them op3(agg)

Refer to Figure 5.1 at the module labeled (2). Again start at the left to follow how
the data representation is used. The data is accessed by the appropriate component
that matches its current type. The component performs the appropriate operation to
update the representation with the new resulL

3. Product of the operations on the product of the data representations. As with the
product of the operations on the union of the Lepreseniations, alternative implemen-
tations of the component operation are derived for the other components. But, since
the data representation is now the product, all of these alternatives must be selected
to update the corresponding part of the aggregate. This choice was discussed as a
possibility for the buffer prototype, seen in Figure 3.3.

Op(Agg(c,,C2,C3)) 4= Agg(cl, 4, c;)whre - op1(c,)

Md 4 OPz(C2)
d 0; P3(ci)

Rfer to Figure 5.1 at the module labeled (3). The data aggregate representation,
which is the product of the component repesentations, is projected, each component
accesing the piece that corresponds to its own data representation. This is used by
each component operation and the results are combined to yield a new aggregate
result In this example, the operation of the middle component is given. The
alternative impmentation of the component operation are defined as data transform
procedures for the top and bottom compoens

4. Tuiading on a coWonent r sen n. One component is chosen for the data
teptesenaton of the aggregate. For the sake of concetes consider using the
fir component data leplemtton The aggregate operation is implemented uing
he mmp l mslate to tho component where the operation is defined,

IP - ng the operatin and then taslating back
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Op(agg) 0= Malhp. 1 (Op2(Map 1 ..I(agg)))

5. Translating on the union of the data representations. Depending on the current data
representation of the aggregate, it must be translated to the component where the
operation is defined before the operation is performed. There is no need to translate
back because ihe aggregate is the union of all components. This alternative was
not actually implemented in the buffer example, but could have been by defining the
aggregate operation, op, in terms of the current type of the component.

op(agg) = as typeof(agg) is
c1 T thm Op2(1alp1 (agg))
c2.T them Op2(agg)
C3.T the op2(ma 2(agg))

6. Translating on the product of the data representations. Tis choice for implementing
the aggregate is inspired directly by the aggregate defintion seen in Figure 3.2.
With compatibility maps implementing the consistency relations, then the aggregate
operation is defined by extracting the component representation from the product,
performing the operation, and then using the compatibility maps to update all portions
of the product

Op(agg) 4= prohj(OP2(pfOj(agg)))

The projection extracts the appropriate component; the inverse of the projection is
defined in terms of the compatibility maps to produce the aggregate.

The choice for Bufpwo is at (1) in Figure 5.1 but alternatives (3) and (6) were also
considered in the discussion. Merging the pages and regions components also are at (1).
Translating the pages, s-expressions, and display components are at a position higher up at
the top-left in the diagram.

The integration alternatives of merging or translating with the components of the original
system or the implementation can also be seen in this diagram. Translating is near the top
and to the right, where only one of the component representations is chosen. This requires
the implementations for the operations on the other components be translated. Moving
downwards and to the left shows the alternatives for merging. At the bottom left, since all
of the component data representations appear in the aggregate, and the translation functions
have been i o into the operation definitions, there is no other alternative than to
ensure that each operation updates the aggregate. There are a continuous set of choices, the
alternatives are not restricted to the discrete set shown in the figure, which highlight some
of the interesting choices.

5.2 Integration Implementation Alternatives

It is desirable tiat the sftware developer understand the costs associated with the various
aldraives. This section first discusses the cost measmres available for maling this analysis
and then looks at the choices and costs made in the display-editor derivation.
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5.2.1 Cost Measures

What criteria about the cost of integration is available to make the various decisions to
implement the aggregate? One way to measure the cost of integrating a collection of
components is to count the number of data transform procedures that must be defined
(which is proportional to the number of dat transformation steps applied). The number of
definitions that must be added for each component with n operations is:

n operations x m merges/operation

Considering the collection of components and compatibility maps that connect them as a
graph, "merges" is the sum of the length of the paths between the component being merged
and the other components. Duplicate paths are factored out. For example, refemng to
Figure 3.7, this is 2 for Buf2 since it must reach Buf3 through Bufr.

The cost of adding a component to an existing system of integrated components is
also measured in the the number of data transform procedures that are defined. Given a
core system with m components and 1 operations and a new component with n operations,
then merging with the original components may add up to m (data transform procedure)
definitions for each new operation. The number of components, m, serves as an upper
bound on the number of merges required. In addition, there are I definitions to update the
existing system, giving a total of n x m + I definitions. Translating into the original system
adds up to m definitions for each new operation, the original system remains unchanged.

The number of definitions is directly proportional to the number to transformation steps
necessary to implement a functional prototype. Baed on experience, there are on the order
of 10 derivation steps necessary to transform a dam transform procedure into a functional
definition. Approximately 10 percent of thew steps are insight steps. (See Appendices C
and D for examples.) Moe experience clearly is needed to infer the number of steps for
general problems. It is useful to make this distinction between the insight (or "eureka") steps
and the others because the former require manual assistnce from the software developer
whereas most of the steps of the latter can be automated. It is difficult to quantify the effort
required by the software developer in absolute terms. Thus the scenarios below discuss
the relative costs. Although there may be more steps in some cases the effort required by
the software developer may be less than the other alternatives with fewer steps because the
problem is broken into smler conceptual pieces that are easie to reason about. Often, the
amount of work by the software developer is greater initially (especially in a new problem
domain), but as the derivation progesses, more information is gathered that can be reused;
thus the cost is amortized over the duration of the derivation. The cost of integrating the
component depends on the integration alternative.

Merlgig with the Original System In merging with the original system, new implemen-
tations we derived for operations of the new component (requiring n x m definitions). New
# metaion must also be derived for the 1 operations of the existing components. The
existing derivations for the old implementation of the operations can be reused directly.
The derivation structum for the new operations may be similar to that of the old operations
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so that insights may be reused as well. The specialization step requires transforming the
sum of all the operations, 1 + n, and may reuse information about specializing the original
system.

There are more steps involved in merging the new component with the original system
than in the other alternatives, but they may be simpler, requiring less user insight, since
more information is available. Since there is more information, more optimization choices
are available. The representation of the specialized aggregate may be different from the
original system. For example, in the buffer implementation, we kept BufI and deleted
Buf2, but we may wish to reverse the decision if the new component is used frequently and
is more efficient in BUf2.

Translating into the Original System. In translating the new component into the original
system, new implementations are derived for operations of the new component (requiring
n x m definitions). Since the original system does not change, new implementations do
not have to be derived for the operations of the existing components. 'e specialization
step requires transf-rming the sum of the operations, but since the original system does not
change, the information about specializing the original system can be reused directly. The
cost, n, is incurred in specializing the operations of the new component.

Merging with the Implementation. When merging the new component with the imple-
mentation instead of the original system, then the number of components, m, is no longer
a useful measure for the upper bound of merges required because many of the components
may be specialized or eliminated in the aggregate implementation. Therefore, f (m) is
used instead to indicate the affect of the specialization step. In the buffer implementation
example, f reduced m about 50 percent because the prototype aggregate consisted of Buf1 ,
Buf 2, and Buf 3 and the implementation step deletes Buf 2 and simplifies Buf3 so that there
is less work in mergin th the aggregate.

There are fewer steps involved in merging with the implementation than in the alterna-
tives discussed above, however, they may be more complex since the "natural" representa-
tion of the component may have been specialized in the aggregate so that it is more efficient
but less easy to manipulate during integration. Still, the new component is available for
optimization. When the most "natural" representation for the new operations is the new
component, the specialized aggregate may not prove to be that great of a hindrance. There
are fewer choices available to the software designer because of the more specialized data
representation and operations than in the alternatives discussed above. But the greater
number of choices in the other alternatives may lead to unnecessary steps where the results
we eliminated later in the process. For example, merging the Buf 2 component only to
eliminate it in the specializaon step.

Some of the information in the derivation of the oiginal system can be reused. What is
new is the relationship between the new component and one existing component. Once that
is "kidged," computing the relationship of the new component to the rest of the sysem can
make use of previous derivation (ie., insight steps, merging process, and interrelationships).
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Translating into the Imp--m tation. When translating the new component into the
implementation, new implementations of the operations of the new component need only
be derived (requiring n x f (m) definitions). There are no changes needed to the existing
system. This method has the fewest steps of all of the alternatives, but they have the potential
to be the most complex since the software designer has the least flexibility (because there
is less information available) and the operations must be translated into one and only one
representation. There is only one choice for the data representation, keeping the existing
data aggregate representation. As with the other alternatives, there is the potential for some
reuse of the existing derivation structure.

5.2.2 Integrating Components

Choices. As the software designer, we made particular choices in defining the prototype
edit-buffe For the pages component, we set up definitions to either merge the pages
component with the original system or to translate it into the original system. Since
the regions component adds new information, it must be merged. Since there are no
dependencies between the mark a-d the existing system it is easy to add the component at
either level of original components or implementation. Since the s-expression component
does not have complete information, it must be translated. However, we could have chosen
to cache the s-expression positions as we did the newline positions, but this would be
much more complicated. So we chose a quick integration process for the purposes of this
example, trading off this optimization.

Cost. Recall that the wiginal buffer system consisted of three components and seven
operations. Derivations were done at the aggregation level (transforming the aggregate into
a prototype) and on the implementation level (transforming the prototype into an efficient
implementation). The cost is measured in the number of data transform procedures that
must be defined in order to integrate the collection of components. At the aggregation level
there are 14 definitions.

n operations m merges n x m
Buf1 3 2 6
Buf 2  3 2 6
Buf 3  1 2 2
Total 14

At the implementation level there are 7 definitions. Using on the order of 10 derivations
steps for each definition, the total number of steps is approximately 210, with 20 insights.
The insights are used for translating between the domains of the data representations. They
are often shared so there are in fact fewer novel insight steps that the developer must come
up with.

Adapting de buffer by adding a component for pages introduced one new component
with three operations. The original system had three components with seven operations.
Ths yields 16 definitions that we transformed to obtain the integrated prototype.
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noperations mmerges n xm
Buf, 3 3 9
Bufj 3 1 3
Buf 2  3 1 3
Buf 3  1 1 1
Total 16

Translating on the other hand, yields 9 definitions that are transfomed to obtain the
integrated Prototype because the existing operations for Bufr, Buf2, and Buf 3 are not
affecux&

5..3 Integrating Modules

ChOices. Similar choices between merging and trslating using the original system or
derived impl exist at the module level as at the component level. As the software
designer, we made paculachoices in defining the proty display-edito For thedisplay
compment, we chose to translate the compoent into the existing buffer implementatio.
When adding multiple buffes and multiple windows we chose to translate the list and buffer
comWPnnt into the display editor in order to propagate th operations into the module ta
imports them.

Cost. The cost of using this approach at the module level is similar to the cost at the
component level and can be measured in the number of data nform procedu that must
be defined in rder to integrate the collection of modules In the example of screen caching,
we ae in effect defining altenative implememations for the buffer operations in the screen
compoent, so he cost is that of -rnsoring a da transorm procedure into a functional
definitio Integting the list operations or a simpler display-editor into a more complex
display-editr that adds additional funtionality are simplified forms of the data transorm
procedure. Since the agg e represetion includes the component rqx ent-afion, the
new aggregate operation simply uses the old component operation to update the appropriate
fields.

5.3 Scaling

Te benefits to scaling occur primarily at the integration design level Complexity is
managed trgh abstractio m arization, and step-wis nsfoation The focus
of th software designer is on the design domain. These design decsons are taaslated
in changes doughout the system at the integratio implementation level to integrate
and optmie the system. The formal manipulations at this level am generally carried out
within local catex However, in order to claim that this method truly scals, atmated
assistance is needed at the integration implementati level in carrying out all of the steps.
Most of these are mechanical stps that could be perfomed with automated suppot
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5.3.1 Components

How does the m scale as the number of components increases? The examples
of adding paM rego and s-e s adapt the system by adding more definitns
to the set that constitute the existing system, and then applies the derivation procm all
ov again. Only a single connection is needed between the new component and one of
the existing components or the data aggregate. This fa litates adaptaion, since, when a
new component is added, it is not requred to define every possible connection to all of
the exsi-g .ent. It should be sufficet to define a single connection between
the new component and the aggregate. Only a single compatibility map is needed (and
not its inverse). This aids the software-developer when the inverse is difficult to define or
the compatibility map is not one-to-oe. Of coure, the other in ctio - are derived
during the itgration process, but hem is where support from automation and rouse can be
provided. Also, since we are dealing with datatyp*, it is highly likely that there will be a
limited number of components that make up the datatype.

Can the cisting system be considered a component a one way to scale up? This pos-
sibility was mentioned briefly when we discussed mging or translating a new component
with the implmentation (Section 2.1.1 and Section 5.2.1). We can treat the aggregate as a
component when ther are no int ndencies among the fields of the aggregate. When
there are int1depedencies, then these must be taken into account to preserve the internal
cmistmwy of the aggregate.

5.3.2 Modules

How does the methodolog scale as the levels of module hierarchies increases? The benefits
of scaling came frm using a module system, in effect "scaling down." Modules help us to
scale down by limiting the focus to one module at a time and its inte nections. Perhaps,
just as the number of components will be limited since they comprise a datatype, the number
of modules may be limited if they comprise idioms of a higher-level of abstraction [80].
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A Framework for the Module
Transformation System

Now that we have sen an example that dfmn the derivation proces and techniques,
we return t the module mation system introduced in Chapter 2 and examine a more
rigorousdescriptmonftheprocess. Section6.1 descibes the steps involved in using module
tsormations insoftwared Terms used in the example such as"component,"
"consis relation," "aggregat de&fition," oo " and "implementation" are given
a precise meaning and the process of obtaining eflicient implementations from a collection
of components is formalized. Section 6.2 describes the mod sf ation rules and
demnmstraes the sup in applying them. The f are smmaid in Section 6.3 which
decribes what was added t the framewor and why. Providing a framework enhances the
undmanding of the trms used informally, provides sactur to aid the software designer
in using the approach and is an important step towards automating the system.

6.1 Module Transformation in Software Development

This section prvides a mor rigorous explanation of ft software deveopme stratgy
descried, in Section 2.4 and dmonstate in Section 3.1. he first three phases of the
procm pogm design.pr am cmpoi and component aggrgation, are explained
using a simple thory based on algebraic secification that pide a prcise meaning to
conrucing an agggae pecificati in trms ofcomponents. Once a precis meaning of
the specifitiom is given, it is manipulated in the subsequent aggregate integration phase
of de proc to produce, awqase definition Reflecting on how th specification is
m ipue ges itnto construct an algoithm that autommes the proces. The
final two pham of aggga and optimization refine t definition using
the module

As staed adier, a naibased, on Standard ML modules [60] is used to represent
dattpe ddtons. In additon to rpesenting datatp definitions, the notation needs
to lso p t e do er strucaws in e t process. These notations are
introduced a they are needed and sumnrized at the end of the chatm in Section 6.3.
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6.1 Program Design

To start with, we need a method for defining the dattype of inrst for example, the txt
buffr Agebraic specifications we especialy appropriale becaus abstr datatypes 8
treated as ae s 7atng dataMtyp as algebra is use f. (1) proving prPets
about the datatype such as condstncy., (2) showing the cm ue of an implemenati
with respect to a speiflcation; and (3) using logic to mrte (or simplfy) equations by
sIutIng an expression with an equivalent one. This does not mean that the softwre
designer must always stm with a formal specification. In actual engineering rctice, t
softwa designer might use a high-level proeM raher than writing a specification We
in fact followed this approwh in the deve lopment of the intmct display-edio, since the
focus of the software d lo nt method is on integrating software components which
tke place at the syste dig level In thi chap, we strt with a specification t
motivate the method and to enable us to give a precise meaning to the combination of
softwa components into an agreat datatmype.

6.1.2 Program Composition

The first subs of operafio to be considered is he commrucaor set [37], which has the
propey that au instances; of th dam e (., al trims in th algebra) ae generM by
using oly consuc set oprations We start by defining the abstract interface. An
abtrc Lunfac is simply a signatur We use a syntax similar to the Standard ML
signature declarationt specify abstract inUfacs For example, in the danUype buf,
t operations omatuf, his, and point constitute a constructo set.

Sigutmwe - dg
tqpebuf

oMatbu: but
kh: ch x buf - buf
pot: buf ., buf

This gives an oweatio for ating t buf, adding a new chmaer into the buffer,
sad F -tig th focus of editing. A coustucwt set is used to define what I call the core

Usingo th eft okand. trmino~ogyof alebrac s pcifcation of abstract datatypes [32],
an S-uorted signature E. is defined for the text buffer operation (whome sorts; correpond to
typa). Th sinatu consh of the name and fuctionamlit Of operatio over the sorts
in de sort set S. Given dis signame, he semantic of the = buffte operations is defined
by wrting an dpbric specicaon (S, rE), where E is th S-sored signatm e and E is
a at ofE-quadas.

Dibil. L A coe o n is an ageba specifition
s... m, i...). Sm. ist r of intms ..,. is a signatmre of a

cmmy n t opeton mnd i.. is emp.



61. Module 7TMxrmado n n S*wwew DeveloJment 89

Notice ta a cor component spaton, since it specifies only cnc 1, gerally
does not have any equat . Thi is a rather "loose" specification of a buffer since it does
not expM how the buffer is initialized or the eljoship between the focus of editing
and the xt. Such design decisions are deferred to a latr time when the co component
is used as the basis for defining od comp Th ce component is not meant to be
implemented, its pWpoe. being to provide a nodon of "equivalence," that is, what it means
for other oonents to be views or almative imp em ons of the same daMtype.

Once a comompont is specified, we obtain other components by supplemeing t
co component specification with additional operations.

D.finitI A couqnent zpeficadon is an "enrichment" of a core compo-
nent specificaton

As described in [37], an enrichment of a specification is obtained by adding new operations
along with "axioms that defie the behavior of each new operation. This is always a
"Sri eXIteson (1) it is non-empty; (2) since B... is empty, them is no cange to the
properms of the existing opewon (3) none of the existing operations us taken away.

For example, we emich the buffer core compoent by introducing the nw opeatons,
move-t, mov-rigt and hw-cha to obtain f for moving the cursor to the
left or to the right, and for owing th chac at the cursor positon. Tih signatur
of the opmaims lismd first, folnowed by axioms that define the meaning of the new
operations in tms of th core component operations.

98tm M - dt

sUCItMw B : BUY
moveft: B.buf -. B.buf

move-righ: Bbuf .Bbuf

show-a: B.buf -- ch

aid. movee talnerc, b)) - mve-letb)
alm mor-eft(.pant(b)) = B ,

axhm*hOw(JNS(c,b)) am o-ca~ )
axls = Wvxcha*(B~pO -k(Bnsc,b))) - e
axle. shW&4-chrap*Oln olnO(Bnswlc, b)))) -* shovv-ctr(Bpokntb))

md

Def on 3. A orone - e aon is an implementatio of a compo-
ne e Lat P be a specificatim. Then the pardcar way that the
msa l sddePisdesrboedbytheview,v:P*=I.

As in [33]. a view consists of amU1404 fm the sorts of P to the sorts of 1, and a mapping
from the opmUtim Of P tohU opeadtons o L

For eAmple, we provide an for the BuF component specification
dAtng buf as adamrtn nsisting o an integPa (re senting the cursor or point of
edl ) and a eqe neP of chmacte (reprenatins tean). lt operations ar defined on
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disdauta uctume.'tuse anotationsimila to the Standard ML structure declaration
uxcq* d*at we call it a component because, unlik a structure not all of t operatons
of ie signature need be Implemented.

COMPO.ua But1 : MW = $arm
tIMebuf - uf of (int x cb*)

movsftluftp, t) 4- suf(p -1, j)

shWVN4hauf(,0) 4- Snp-I]
cmoinaitsuf(p,t) =*Op:~

Mi

The view shown below defines how die im mentation Buf I satisfies thespcfato
MMr.. V& extend the notation to include a definition for views taken from 0B13 [33] and
adapted to ML syntax First die amr in the core buffer is mapped into the corresponding sor

in th ecmponent Then each of the operations in the care is mapped into t corresponding
operations in the component.

VrW V, froM BU to Sufi b
suit buf to BufQint x ch*)

Yaluc: ch

opcreatmbu to Buf(O,[ID
ePkWsc,4) ao ktuf(,Om...Imsuf(p, 1jp- 1)] Q[cJOtEp.J)
maPPOknt(.) tO htBUf(p,Om.J1RUuf(V+I1)

MdvT

The sbeune of the sequence s from the first tothe P element is denoted s[-i]; the
subsequenc oft sequence s frm the fl to doelast element is denoted s[L]. The
Onceole for die smr of interest (in this case buf) is denoted - This next view defines
how the Implement-ain Buf2 satisfies the specification BUFc.

TkW V2 krum But, to DUt 2 is
sut buf to Buf(ch x oh")

valuc: oh

OP MOWu to 3ufl[J,[1D
GpbiiC,4 to khtBUf(1,)-.....hUf(L,[cl)
gpOP flt(. to tBUf(1,r)u...IBUf(1Wdr)1t(r))

ad&

The consistency relation provides a cr epondence betee the data objects manipu-
lated in ane' widhthoein anotm

-dum4.Let P adQbe component specificationsdtat areenrichments of
me cmmonwe cmponnt secifcatin C.1*1(wit view v,) andJ (with

viav.#b* nendosoP and Qrespectively. Then dweeis aecmponent
ceim-uhtwy it/adn between the - mi in the altative implementations:
fs(9) MW, vit), whore t is a E-tenn in the core component
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C2

C P >agg

C3

Figure 6.1: Projections of the Aggregate.

Mw views V, and V2 specify this Consistency relation between the Buf I and Buf2 compo-
newts (defined in Section 3.1).

In the figur below, we see how all of t piece fit togethmz The intersection of t
specificationsfor BluFndBtF 2 is thecore specification BuFCe COnsistency relation is

defined imp Mtyi terms of the view V1 and V2.

Mae consistency relations, provide a notion of consistency for the aggregate data objects.

6.1.3 Component Agreaton

Suppose we have a specification P, a core component co, and a collection of component
impenttinsC, ... ,. IA, wher E u*.u4S = EP (Ie., every operation of Pis

imlmewted in some component). Fihmi for each pai c8, q,, with 1 5 i,i n and
i 0 J, we have that E., nl Z., -4Se (ie., each component defines distinct subsets of the
operations). Then an aggregate is formed from the collection of components to provide a
refinement of spciiato P.

De~nitm 5. An aggregate pc(r ao refines P by specifying an aggregate
datarersnalncnautdh~ h daT rxesenttisothe components
Cl, ... ,c.. This aggregate reprentation has the following properties:

* There we projection functions. p4oj, which map an aggregate data object
to an object of comonnt - Ci. See Figur 6.1 where, n = 3.

* Every operation opi in cumponent ej induces; a mceponding operation
opon the aggregsate L heoperaionop satsfies thefollowing equations
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C2 O0P2 C

Figure 6.2: Aggregate Operaion Definition.

proj(p)) - opAV~a))

YkE({,...a}\?pOI, a)) spj proj1(a)

SeFre 6.2 whern- 3.1-Z2andj -2. Ewlihopraton might
actually have awuents other tha the data object.

Noticethat an agegate spcfcation, while itis baa don componenumpcmntIins does
not quite constiut an impleenttion of the specification P, due to the use of consistency
relations 7hus, we inay that an aggregate is a iusm of P.

Contnuin our example and takng nmove tgt to iliumte the point, recall the axoms
for the mfove-right operation in the text buffer example.

aiimpoj1(Mov.-rghtb)) - moAVe-iht, eIr(b))
adPrOj,) pah(b) proj(Ove-dgb)) Msp* PfO(Move-lgtb))
adpro(b) ^rj(b) proj(Mrwn-ftghb)) m4prOj,(Move-rlghb))
=J=er proj,(b) m p ro,(b) prcfimwv"Wghb)) msp poj1(move-rlht~b))

Mae projectio prc, m~aps the aggregate to Buf 1. Mwe definition of move-ight on the
awgate Is defd inems of teoperatin mve-right1,wbhhoperatesontecomponet
Buf 1. The remaining axtioms ensure consistency.

uams thd ln M i d agrpte spesaion an maniplatd (eg., using rewrite rules) to
obtin expression pocedus for spanning dam -reps esentations.

D~idam & An agree deuuklton is a refiement of an aggregate speci-
fication. lM. dw -1 Pi uearnu is defined as the product of the component
dat oesentati, * onsad t opatons ame defined in terms of the component
oprations a data, trnr Procedaus.
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%e saw these, procedure in the buffer definition in Figure 3.4 and extria th definition
for move-fght below.

BUfI({ P I A I P It I A2 1 03)
whM ftfl(0, - Mqh-j(BUf2aQ, )

and SUfl(P3,lg) - MI...(BUfs((Ip,qAP), tS))

unswann(2:!b)) 4= mOv"-^gt(Unspsn(b))
cud

Indeed, this process can be automated. An algorithm for generating an aggregate definition
from, a collection, of components and "compatibility maps" is given later in this section.
The definition for the operations of the aggregate are in the form of "data trnsfdorm
procedures.",

Deinia. 7. A coeipublllry map is a function that respects the consistency
relation. It tranlates one componentrepr esentation into anodherrepresentation.

Depending on the consistency relation, it may not be possible to implement compatibility
maps in both directions, but normally it is -rightforward. to implement one of them When
a copaii- t map exists from component ci to cj, we say that c, can be reached from c,, or
that ci can reach cj. Here we extac the cmailtymap from. BUf 2 to BUf I (Fgur 3.4).

We defn alternative 1mpeentations on data rpentios with "data tansform
procedures," in tePrms of the original ipentiosad"tanslation, functions."

DeftWOn &. A tranladon functon is a function that translates one data
representation into another represenitation.

Mwe spanning functions, spa, and its inverse, unspan and compatibility maps arm all
examples Of transation functions.

DAM= lo9. A data iraagbnn procedure defines an alternative implementa-
tion and may take one of two forms:

1. Given aprogoam fusinga data representtioD and an injective function,
spa n at translates elements of the data repesentation D to elements of
the darn rwpr etaio D', we define f' as:

IfOpU*o) 4- qxuloaw)

(with wtivem, closure, over ccurrencese.)



94 Chapter 6. A Frmewrk for die Module Transformation System

NODES = dw st ad l 313U docOqaMMa
MAPS = d Urs uof al&U the CGaqibitMqlL
fares& c doa is a coawnot

latC= 1c), N-NODES- Cis
fareawk op doat is a cpeatla dedfin t a e oqimn c

3j E C, f E N, map_ E MAPS
C' -CU if ); -fmut dtadm afts Vg-.a CC"; N N -If)I

3JEC,f EN, mp.j EMAPS
C' =C U if);ouqprndmuuuogmuaft unspm"; C =C;N =N -{If

Figure 6.3: Generating Aggregate Definitions

2. If, instead, there is a surjective funton, unspan, that tanslates elements
of the data eprsetio D' to elements of the data representation DA we
defin f' as:

w16pwo(r(d)) *: f(unapan~d))

Notice the himilarity with Definitions 1 and 2 presented, in Section 2.2 (where the
domains are now datatypes). TIs form of definition is called an "expression procedure
in (74, 751 si=c an exresion appears on t lefthand sie of the procedure definition.
These two definition give meaning totV only when it is applied to the result of span, or
when unsm is applied, to its result. We rely on applying syntactic transformations to
obtain a functional definition for the program f' on the data representation D'. The span
function must be injective, Othewise f' may not be able to distinguish distinct values tha
f could. The unspan function must be surjective. Othewise ther could be some values
defined on f but not on f'; therfor, f' would not be a valid impemnaIo of f because
it could no handle All values that f could. Data transform procedures are used to exlain
the module trasfomation rules that affect data reprsentations,1 (1*., shift, tranlate, and
expat4

Now we examine the dalgrthm for generating an aggregate definition and see how it
preserve the properties of the aios

An MArlthum for Gemeradag Delntuu

The algorithm for geneating definitions in Figure 6.3 is based on directed graph con-
nectivity where nodes of the graph are mergd with the application of the integration

MIansfomations onie the collection of components and compatibility maps as a di-
ree graph, whome the components are nodes and the cmpatibility maps are directed

arcs Each operation of every component is considered in turn with the goal of produc-
ing fte caffesP q ding aggreat operation. The node representing the component under
considratio constitutes the core. All nodes that are connected to some node within the
cue (via an arc) constitute the fronter. The nodes in the frontier are "coalesced with
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the core by expanding the core to include the nodes in the frontier and by producing the
aggregate operation definition. using a variant of the data trnfrmto teFchnique. This is
don separately for nodes in the frontier that can be reached from a node in the core, and for
nodes in the frontier that can reach a node in the coam since different data tasomto
definitions are required. Then a new frontier is defined based on the expanded core and
the process of coalescing connected nodes is repeated until all of the, nodes comprise the
core Then the whole process is repeated until all the operations of all the components

merinp- ene in the data aggregate Here we see the process for makebuf defined in
component BUE2. The aggregate operation definitions tha are produced are shown below
the graph as it is coalesced.

r .,rr----------

I 21 21 2

3 I 31 31

I1 Z vi 1 I 1

M...fWdm X2, 4J, I. nsa~f~b -- ---- Uf X

mparwbufA A *--spr mkeu 2  unispmn(mauf ) ~t makebuf 1 xls)

Buf I XAp, t, 1, P) BUfI X20{P I As 1, f 1 1 1 r)

The data transform templates (shown below) are used to gonerat the "code for the
aggregate definition operations. The fixed "code in the templates is in bold face. Place-
hoidens (eg., op, to be filled in with the operation. name) am in iialics. Once instantiated,
the templates produce the data, transform procedure, definitions. The auxiliary function. 1
takes a set and returns a literal tag composed from its elements. This is used as a unique
and descriptve subscript for the intermedate aggregates that are built as the nodes of the
graph ar coalesced. Mwe function # takes a set and builds a liteal paramete list out of the
elements. This is used to create unique, variable names for the parameter of the aggregate.

oed

Data Transform Template - Span.

When an arc (andthus acoa ;atibility map) exists frm anode in the con to anode in
the frnimn then p= is used to map the data repetato of an aggregate consisting of
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the nod= of the cote into an aggmg consisting of the nodes of the core and the rimtiez
The Wan function uses the compatbiity maps to defin how the data representations of
the nodes in the frotier are snerated from the data representation of a node in the core.

Ut pUA,(aUrcI((C))) - Ang(cOI{J I f ID)
whMf - Mp j.4)

In
uopn(opjc.)(Agg(c)('(C')))) 4- opJo()(=SU(AgIy(cc)((C'))))

Md

Data Transform Template - Unspan.

When an arc (and thus a compatibility map) exists from a node in the frontier to a
node in the core, then unspme is used in the definition to map the data representaion of an
aggregate consisting of the nodes of the core and the frtder into an aggregate consisting
of the nodes of the core. (We call it unspan, since it spans in the opposite direction of
how we are building the aggregate, that is, fom core to core and frontie) The unspan
function uses the compatibility maps to define how the daM representations of the nodes of
the cam ae generated from a data repesentain of a node in the frontier, using the notation
{ c1 I c2 } todenote that avalue is computedinmorethan one way. We use B[x\eW] to
mean, replace all occurrences of x in B with cp. The notation needs to be supplemented
in this manner becaus multiple ways to compute a value must be mintained to ensure

conistncyamong the comnentas.
A number of simplifying aumpo have been made for this presention. Only one

componm in the frmier is merged at a time. This result can be generalized to merge
a collectio of nodes in the frontier with the care. The definition in Figure 3.4 uses this
ap wh Where spW coalesces Buf2 and BUf3 together with Buf. This algorithm treats
the aggega data structure as the product of the compnnts, maintaining the component
absanctis. In Figure 3.4 the abstractions am lifted; the data structure is the product of the
fiekls of the components.

A Deyeopmmt of the Aggregate Deuitdou

In order to show that the aggregate definitio aisfes the agg tgat speu t
with th specification and use a constructive approach in developing the aggregate definition.
The running example consists of thre arbitrary components (which "represent" the same
object), and we conside the ue where de operation is defined in de second component.
The components we eoug to consider all of the various integration possibilities. Th
a ee specificaton is defined using axioms in Figu 6.4.

The first tee axioams declare that there are consistency relations among the componets.
The next axiom defines the behavior of the operain on the aggegate datatype in tms of
th second compont The remining three axioms enmure that afar applying the operation,
all of the c mneants remain consistent There is such a set of axioms for each operation
defined for illusrativt purposes only one set is shown.
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proj, : agg -- cl
proj2 : agg c2
proh : agg -cs
Man: c2 x cl - bool

: c3 x c2 - bool
: c3 x cl - bool

m pro,(c) mapi proj(c)

arem prOJ5(c) mJ proj(C)
aim pro(op(agg)) - oP(proJ2(agg))
adm pro6(agg) q proj(agg) = proO(Op(agg)) I pfojI(op(agg))
axim projs(agg) prOJ2(agg) = prOJ (O(agg)) proj2(op(agg))
axiom proJ(agg) prjl(agg) = proj3(op(agg)) prOj(Op(agg))

Figure 6.4: Aggregate Specification

For any aggregate definition of the datatype that we define, we must ensure that it
satisfies these axioms (that comprise the aglregate specification). We start with a very
simple definition (Figure 6.5) that assumes we have functional mappings in either direction
between any two components Then we generalize the result a little mor to maim it easier
for the designer to define the datatype. In Figure 6.6 we relax the restriction that requires
compatibility maps in either dirction between any two components, to requiring a single
compatibility map in one dieton. In Figures 6.7,6.8, and 6.9 we relax the restriction that
requires any two components to be directly connected to simply requiring a connection,
possibly through some number of intermediate components. We will see that care must be
taken when dealing with many-to-one compatibility maps. Finally we produce a definition
(seen in Figure 6.10) that allows us to exploit the in.erdependnces among the components
for optimization purposes. This is the definition that is used in the algorithm.

We take a constructive approach by showing how to transform the axioms into the
definition. Each section introduces a definition. The proof details on how it satisfies each
of the axioms are contained in Appendix E.

Product of the Repreuttim. We start off, for the sake of expediency, by defining the

representation of the data aggregate as the product of the component representations,

type agg -A9gocl x C2 x c3

and the operations as:

Op(agg) 4:= pi1j(op Oagg)))

This definition is dependent on the ability to define the consstency relations as a pair
of functions mapping from on repree tatim to another and vice versa. The consistency
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nMVP3.1 , qh-3, nv* 2 C 2

prol(Ag(c, C2, 3)) 4-- c2 cl
proW'(Z) 4== A99(nMM.(X), X, mOa-3..(X))
op(agg) 4= pro-'(op(proJ(ag9)))

Figure 6.5: A SimpleDefinition

relation x mapi y is defined using a pair of compatibility maps as x = mapj..(y) and
y = map .j(x). This requires that eah compatibility map has an inverse since the aggregate
must be able to be geerated from any component. Then, taking the projection is simply
exractg the appMpriate field, for example, prJ(Aqg(cI, C2, c)) = c2. Taking the invers
projecton is simple as well, since the aggreate is easily generated frm any component
since dere are mappings defined ftom any component to all the other

We start with the axiom defining de behavior of t aggregate operation and apply
asformions to obtain a funcdonal definition for op.

proj(op(agg)) - OPAYf1 2(ag))

We take the inverse projection of each side, (we must show that pro" j' is injective)

pWrqhj(pr6(p(ag9))) -PVWrOrjOfj2(a9g)))

and then simplify (we must show that pro - ' is a left inverse of Proj).

op(agg)) - pW-(pOgrqh(agg)))

Grouping all the definitions toeher we get the definition shown in Figure 6.. The
cmoes and the compatiblity maps that are given are depicted to the right of the
definitions (in the figure). Componens are depicted as nodes labeled with the name of the
Component Cmpaibil maps re depicted as directed as.

Rehnpemmtlng the O We would like to relax the resriction that requires
compatibilty maps in both directions between any two components, to merely requiring
a single c pit map in on direcion. Ther are two cases to consider, for either
function that is removed. The consistency relation x rnap y is defined using one or the
other compaibility map as x = map.(y) or y - mapj.x). Recall that it is possible
to define a new imp e of an operation given a compatibility map. When the
fanction translates from d old reprasentation to the new we call it "span" (since it spans
r ntati). We ha the following definition for op':

Vp(IMm ) 4-- $PmrKP)
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Givac opi, mw ., rneAp3 2

T2L(MflhPj(C2)) '0 M8Ih(opi(C 2 )) C

Mal3 2C&(S))4- op2 Map 3. 2(CO)
inOP(Agg(C, ,C2, 03) 4- C

AgqVC; 1C;,)r_
wbarc -' 0P1(CI) 03

ud4 cl OP2(c2)
ndc C; 0P3(Cg)

end

Figure 6.6: Product of the Operations

When the function u~aslates from the new representation to the old, we call it "unspan."
Ve have the following definitio for op':

unspWW(Wz) 4- op(uflepa())

One way toimplement the aggregate is to use as a represetation an n-tuple of the
representations of the various components. Then, t operations ae defined over this n-
tuple. Conider, for example, a component cj in which the operation op1 is defined& We
develop crrepondin rj -g *Ipleentations of this operation for the other conmponents by using
data transform procedures

13e

owberec mop(cj)

and C&' -OPk(Ck)

ad

Heredatarnsformprocedures alow us toddn 0 pk as analternativeimpeetto
of op1 on the da t epenato of cq. To do this, we depend on a compatibility map,
maj, from c1's representation into Ck's representation. Hf we had the inverse instead,
we use the other form of the data transform pocedur. The compatiilty map, map,4,
respects the consistency relation, m~j.

Using this approach in our example, if we are given the operation opi, and compatibility
map between the second component and each of the other cmoetwe derive now

. I --- -- -asof the operation for the other components using the data transorm defini-
dons. Then we define the operatio on the aggregate in terms of the component operations,
whene each component operation updates the appropriate subcmonensoh grgt
(see Figure 6.6).

lit defiidon for op dmnae the use of a spa function since mrn-, transates;
from the old repesentationm to the new representation in this case. The definition for
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op ds the use of an unxpan fUncdo duce mW-- 2  slates from the new
aewntatontoteoldamtioninthscae. Unhitbeprevousdefi o wherethe

definin component was translated into each of the other components, here we are actually
defining operations foreach offtheotherc cPnns a f Utheappropriate catiilt map
is available, then we have a choce between translation and deriVi-. a new operation. To
compute the new value of cl, for example, we know how to translate between c2 and ci
and can define c, as maj.(op(c2)). Alternay, we can derive a new operation, opI, to
comput the new value c c using op,(cO. Since there is no comp map from C2 to
c3 we have no choce, but must derive a new function op3 to compute the value for c;.

In this simplified peatio, we cannot pt the result shown in the buffer example,
where the cuimr in Bufi is comput d in trms of the sequences of lines in Buf3, since
components cannot interact. We ee later how to obtain this result (seen in Figure 6.10).
But first we dal with the restriction that this definition is only applicable when all the
COMPnents are directly connected. We would like a definitim that is also applicable when
components are indirectly connected, through some number of intermediate components.

Showng lranmdvlt We would lie to relax the resrictio that requires any two com-
ponens to be directly connected by a compatibility map, to simply requiring a connectio
possibly tough some number of intermediate components We must be careful to exclude
inmdams that lose infomatio For example, the translaton ftom a component that
represented a buffer as text into a component that represented the buffer as s-expressions
lows information about whispce and newline positions. The were automatically ex-
cluded in the prvious definitions because we could not write the required compatibility
maps. Now that we are not nqured. I wrift mappingsin all cases, we must be careful. We
can allow many-m-one mappings n the fring of the cmponent graph, but not within it
where they might act as an Intermediat.

Say we m given a direct compaity map between s and c2 which we use to define
ops, an altnative m entadon of ap, for component c3. We would lik to replace this
ompdilty map by a mpil t map between and some iimmediet, say, cl, anda

compatibitymapbetween this e ed d ci th cn of fiinng op3. TMere are
four cases to consider depending on which way c bility maps are defined. These
caes can be ieaed for aimy path lengs In all cans we derive the new operation,
op,, by firs obtaining an'intermediate operatioOpl, for the *nterediate component.

1. Given th vanslations g: c-, ci and h: ci - c3, we define the relation between
c3 and c2 as: hg(b)) = c, and define op3 as:

!!R(02)) 4M S(Opz,))

Recall the example ftom Figure 6.6. If we did not have the direct conection between
c3 and C2, mSP3-., but rather meta.., then op, must be defined indirectly in trms
ot oap, which in tun must be related bu* tooph where the operation is originally
deed (see Figr 6.7).
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GIVmGop 2 mapl MhIIMaPI-

!&(mllf. 1(o2)4-M Pz,.(oh2)) C2

OP(Agg(Cl, C2, CO) 4-

aad cl OPz(cz)
aMd c; opi(cs)

end

Figure 6.7: Tr~anhitivity - Case I

2. Given the traaton g: Cl --+ C2 and h : c3 -+ cl, we define the relation between
c3 andC2 as: g(h(c)) -band defineqp3 as:

S(LL~l))4- op2(g(c)

Tlis is Simiarto Caw 1.

3. Given the tanslation g : C2 --. cl and h : C3 -+ cl, we define the relation between
C3 and C2 M g(C2) - h(CA) and define o)3 as:

Recal the examp* from Figure 6.6. IN we did nm have mo3. but ratha er r.,,
then, must be defined in mmnof opl, which in turn must be related back to p2
where the operation is oliginally defined, (wee Figure 6.8).
Our systm must remain consissent, so we consder t possibiliy when the inte-
meiate componen Ione information In thfis case ou equation does no expmes
ou insention of consistency. Tabke for examplle, the s-expression component We
easily define c anpitibflt maps from Buf I to But. and fom, But 2 tD Buf,. Elah
com patibility map hoss informaton about whitspace We cannat combine these
two cm tiiiymap to obtan one that translates between But 1 and Buf2. We
most ad the constraint tha the copaiilt map be injective (We do not have
to introduce thi constraint to the other came because we ate not able to defin the- codrfmpWftMYmaps

4. GiVenthetanatlnsg: Cl -'C2 andh: c -+C3, we defie therelation between
c3 and c2or. 3 x: cl 4(x) ac2 and Ax) -c3, and deline cp, as:

Aft(C) 4* ap2mge))
n~kcD 4 h((ci)).
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GIVE op, m01p.,, mON-_
lo901

mou._(Cop ) 4: m(OP,(C 2 )) C2

1M C1
OpCIgg( C,,a, C)) =

Agg( C oC;) C

mkdcj OPj(oa)
d C ; OPS(cs)

emi

Figure 6.8: Transitivity- Ca 3

G oILO P, malh21 , ma-_
ibed

i13 ClOP(-&gg Icc) 4- ~~fm~.(l)

Akqg(cc &, COp),
AMeo C' OPjACI)>

mdc - opI(,2)

Figure 6.9:. Transitivity- Caw 4

Hn we have a diffamt at of man g functins, but again OP mut be defined
in zns o 01 , which in urn must be reload backto oP where the peraon is
oiginally defdne This result in a new definition of op (we Figure 6.9).

y Buding he AggrjMet A mon fle approach is to orrange for all of
Pe cmpqnent epeeatosto be available for tba operatio definitions in order to take

swooatp of amy inerltonships among the various representatons. Then we eliminate
de restrictions; seen in Fgu 6.6 where com ponent fields tat make up the aggregate
rpesntat-ion could am interct Going ba.k to this pevious aggpega definition, instead

Ifor tdo component op tons repesented by opk, the
data tndorm procedure itelf is symbolicaily mani;puatd to yield a new definition for
the sape.
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whw. ... c&a -mapj-.(c 1 )..

qySPu(cj)) 4- spmnl(op1(c))

* ~ ~ ~ u Tis aacmlshed by, in effect unfolding the component operation definitions within
the body of the aggae Operation. The absteaction boundaries of the components are

* l~f~d tfaciltat mpovemntsin th eficincyof te ggegte data epeei on and
Operations . The span function is abstcted ftom the definition for notational coeiece
and to put the definition in theproer or for nnv~das adata trnsormprocedur. Nf
we had the inverse rcnmpatibility map available, then the unhpan form of the data transform
procedure is used instead.

Ve think of this process or ainally asi Irm tly building the aggregate, repeat-
eCOY Merging adjacent components until. the single saregat is lefL The definition of the
opeations and spanning functions are obtained mechamically by considering the order in
which the components must be "maWd. The basic idea IS to consider the buffer definition
as a graph, whene the components are nodes and the owmpatibility amap are directed arcs
The operatios for each component: must be Aeiplented!tooperate on the new aggregate

repreentaion.Ths is done in stages. Starting at the node representing the component
wh60 the operations we defined, All connected nodes are mergd into a now "coalesced"
node using a variant to, the data tranformation techniqes This coalescing of connected
nodes is repeated until the graph collapses into, a single node.

Returning to our examp (oe Fgure 6.10), we start with the given definition for op2.
We merg the second component (where the n;Perat'n -is defined) with the adjacent first
component to obtain an inemeiteoeation OP,,x2- Then we merge this intermediat
awggregaP with the now adjacent: thirdcomponenuo obtain the operation op on the aggregate
data mm Notice doa ap= and unepui are being introdued explicity for the firs
time, In the previous sections, the comptibl- map served implicity in that capacity.
Eowever the expression here, are more complex so that span and unspan functions must
be introdued. in order to get the expessions int a form that we know how to antipulate.

These are precisly the spa and unspan definitions used in the algorithm presented. at the
beginning ofthis section. They satisfy the properties given in Definition 9. By cntuction,
the aSM function is guaranteed to be injectve. Simc the component argument appar in
the aggrugat result, then tWO distinct comonnt -P-always yield two distinct aggreaS.
Also by %Aconstrci, thde unupui -f-ution is guaranteed to be suriective. Since the fields in
the mage meolt are a subset of the fields in the aggregate argument the evM element
oftheresultis inthe haweofunsopui.

innann theeVciisin ,te&atadr procedure fom
te ass definition we trasformned int functiona definitions to, yiel an aggrgat
PUMP&
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Ghm ph, mi., mf.
bwd

IS(2) 40
Ag~ca, c,2) whir. ci n mrpl.(ft) r - w

UflSPW*&q(CI,C2,CS)) 4- X
AW({ CI I mrd%.(Cs) ) C2)I

I I I C1 I

c

unupm( LggC29CzS))) 4-
oP~x(UnsPwt(&qg(c, c2, c3)))---------

Fgure 10: Irmental Merging

Debiddm 10. An aggretpmofle is a refinement of the sagegte defini-
tics wheom the data transfom procedure have been mranedinto functional
defiiton to produce the first executable systm.

Vic saw an exunpl of a prottp bufe in Figure 3.5.

6.1.6 "1hizto

The functonal definitons of the awgat PWotOtype are further refined for otmzto
purp omes to yied is aggrgat impbementation

Defbide 1L. An aggegt bv lumnaao is a refineomen of the prototype
pvi~S a "ef~iof 1 -of doedaatpe

Efficloiec s meauerdin emof the dvelopmersneds, nd inolvesforexample, trdeoff
beween do mount of space ro gram uses and the tim required to ran te prorm.
V& saw so example of an optimized bufe in Figure 3.6.

U. Module Transformflon Rules
This secto ProVides a mor riwus explanaion of the module trnformation rules,
vakmi WI aApt, woN icoporat ad uule. They were intily presented in Sec-
tdos23; di rder may wa tosfer back to th aection toreview the notaedo and naming
C On I deSHn. lack subsectio iOCludes a desiptiOn Of the mnodule I tranfmo rule. and
fit sop in ***yg the- irm ation tritl speaking the angbouadon is a singl

amp. Mhe umumng sop to pat the pogrm int t proper foan 2st trasfomaion
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CM2. franslate
Mw 11 w trnlt 1-,ansfoti-on is used to chang the rersnainof a datonyp and/or

mve coMputation- - along the data paths of a program. This cbange in repres entamions
is expessd by a funcdt htmaupfromtheorigilepesentatic intothe new one.
The trasfomation provides a mechanical means to- rimp lament the operations of this
datatype on the alterative &Mt representation. The meaning of the abstract datatyp,
howevam remains the same. Tis 1 ansfomation diffiers from shif [761 in its use in t
integration ofcmpaots shift is ued tooptiminwitn adsnglecomponent, £iwwate
is used to inerate betweenawcompmtsRathe tan"syntheizig"thefunctionwithina
component that is used to tranform the original program into a more efficient one, voanlate
uses anm "anaytic appoach The fution is introduced at the systm level between, two
distinct component in order %D Integrae them. In addition, when shWf requires an ivee
translation function that is difficult to deine, vowane could be used as an alternative.
WMh the emphasis on insgratip datatypes, this 1 ansfomation differs frorm work done
by Daulingeon [17, 18] on .s-ntheW ig imbebotosfrom algebraic specifications.
Harrison sod Koh isn[431 have developed. an automated system for implementin
datatypes for a lmedlanguage where they syntheWn the invers mapping function.

In order to understand t slt transformationw we exame a representative selec-
tion of operations for the datatype, tha produce an instance of the type opera on the typ,
and revea some information about the type. (Of cours ther may be additional parameters
besides the type of intrest.)

typ type
amn: dtype
aid: etp. -+ dtyp.

doS: typ. -+ V

Given a spnigfuncn:

U: a,-*
Ulupi: Dtype'type - Dtnmdtype
1mapmuDtyp.'Absa)) 0 Dtyp..Ab(q))

Replece:

U"WuINe Dtyp : DTW3 = M

typdtyp.*=AbS da
gon 4cAb(G)

xtNAW&()) * Abs@ffa))
obe(AbaO) 4S 0(a)
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Shudor Dtype' :EMDTT?3
tOp dtype - Ans o'

umpm(Xffq 4- Dtyp.4Wf
Imspm~~4)) Dtype5XWWpWfl))

CbSs) o Dtyp.bSUlp i)
a

Using &ae nodon of corc c n ps relation [46, 78], we can ensure that unspw is a valid
abstrction function. An abstracton function is a surjective, stropg-homomophisin from
the vrepres entation, B, to, the abstraction, A. Se construc an abstractin function,

hfy Dtypefty --. Dtypefty", (i-e., hkt : a- -~

V& dmoth requirent= that it be suriective. (A requireume that Must be ensured bY the,
softwar deuigm) Then we can show that h is a strong partial h M rpim considering
each operao in turn.

kdtypeOgft) - Aggn
hidtyp*Q(dW~2) - Asxt(htyp.())

lrbs") -Aobs(htype(4)

In our tranS-MaUonwhere we treat Dtypef a B and Dtype as A. these equations are
satsd Wby conucsd, p - unspsf.A smlila argument holds when we have spa
(a regposenationfunction) instad.

Applylog the rauskeru---A- - his tasormation is the important step in a series of
Mp datprdue iene I-- buetaonof the datatype. The datarm eetto and

the-- of the operations change, but the meaning of the datatype, remains the
sMISMe. 'DI Iglvel steps of the, trasfomation mre. (1) define the new mpe ntations
a daa tansfacm precedures (2) w"el anl old defintions; (3) "ixige t old and nw
IrIp p e 1- -- ow and (4) fold t sp1Annn function. Preminary work was done in an Ego,
Semarwon nferential Proramig by EMWio[U]4.

The operations are dud an t datatyp with rep.esnttio . For example, obs

of t abstao (rpruensed, by a) and nreans fte result of performing some opeation
on it (iupeo~~by~c th-p--r 0).

Sbu.ob type: DM Z a iu
Otyepe-Abs d

gsn .MSA(G)
SWAbW) AbsMx))
ad(s
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Thefunction spa maps the given data*Wyplemeentation into the new represettin
rom. now on% Dtyp..Abe and Dtype'AbS ame abbreviated as Abe and Abe.

The new implementations of the operatons are defined in tmsof the original imple-
mnxtton on a (as data u~asform procedure). Strictly speaking, this is the &ransae

9&CI Dtype': DTYPZ a S&Mc
till dtype - Ans of a?

GS0 4- SPan(tYp..e)
2sWI(WAsa))) 4- SPanKDtYP.Xt(A))

~(san(bea 4- DtypeObS()
spui(Absq)) 4- AWs'S(a))

md

The old operation definitions are mechanically "unfoldd, that is, the names of the opera-
tions are replaced by ther bodies.

S&VdMet Dtype' : DTYPZ a Shuct
type dtype - Abe of a'

*e - SPWl(Abs(G))
~spwi(bu~a)) * swiAbs(Eq)))

gt(spa(Abs(a))) 4- 0(a)
SPmi(Ab9(q)) 4- AtWS'(a))

-i

The sp= function on the rlgthand side is likewise mehncal unfolded."

S~ouI Dtype' : DI?!?3 a Ibuc

tIM dtype - Abe of av'
genl *- Abs'(S(Gy))
M~IPWi(Abs(,a))) 4- Abs'(SE(a)))
=(sPwb(a))) 4- 0(a)

apmnAbo(a)) 4- Abs'(S(a))
Md

If t invers of q=u could be obtained, then deriving new ipentiosof the
operatons is easdez Simply map the new datatype into the old rersntto, perform
IM opeation and don map do datatype badk into t new repeeaton.f Obtaining the
invers may =a be pacica sinc e tspnning function my not always be one-to-on, and,
eve If it we, termay be noeay way to abamit. Rather tha coming up with do invers
Nqalcli ft is sometimes possible to use syntctic manipulations and s ,iifiCatioUS to in
sc twar die spaMig funcIon. This IS acmlse by siplifying te exprtession
to match do now -NoPuuenai Ion expesd in die spanning function. Ibis is where insights
about do domain from do deelper we nded.
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Streewe Dty.' : DMP a ulauc
yp dtyp.* - Ans ofa'

gen 4 As'G'

gbspn(As))) 4-- Wb'(S()))

aPan(Absa)) *: AWs(S(a))

Now that the expressions in the operations match the spanning function, we mechanically
"fold" spa on the righthMi side.

Sirmim Dtype': DTYPE = SUd
typ dtype - AXS of ?

gen *: Abs'(G')
gapn(Abs(a))) 4= AWs(E'(Rep(pmnAbs()T))

g~(pal(bSa)) 4- O(RWp(aPmn(Abs(a))))
saw(Abe(a)) 4- Abs'(S(a))

Since ai nstances of the datatype appear in the context of sWe(Abea)) which is the new
datatype, it is renamed.

Sb~uctwe Dtye' : DTYPE = bUirc
tp dtyvpe = Abeso ela

gen 4- AWs(G')
jIafs'(q)) 4= AWs'0(a))

New impezuntoof the operations (represented by G', LV, and 0) have been, derived

thatoert on the new data, sumcum a', directy.

6=2 SbM
MWe Shp -trnsxmatio is Used to move computation along the data paths of a progam to
Wmr. the efficiency of the progra (eg., moving comuato on adata strucure from
when it is acceused to when it is goneated). This may change the data representation of
a dotaype but the moaning of the abstract datatype remains the same. Mxe idea of a sAft

ormfiation was pr11eented by Jarring and Scherhs [49, 76].

-1 DI'PEwi

type typ.
gun: ftyp.
os: type -,V

sod
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Replac
S~rue Dtyp. : DTYPE rmc

typ dtype - Abs of a
OW 4--Ab(G)
Qk(Ab(a)) 4* RWp(sPar(Abs(a)))
SpwflDtyp..Abs(a)) 4-- Dtype'Abs(O(a))

cud

S&Rudw Dtyp : DTYPE = Suair
typ dtype - Abeso a'

9wn 4- tpan(Abe(G))
gt(Ab(q)) 4- RWp(Abo(a))
qSflDtyp..AbS(a)) 4- Dtyp.'Abs(O(q))

Md

Shift is a special case of trawslate. We demonstrate this by using translate to effCt
the shift from the original definition of the operations in Dtype to the new definitions in
Dtyp.,.

9wn 4-Ab(G)
QAb()) 4- RWp(upariAbs(q)))

Jorring and Sdheris perform the actal shift by replacing Abs with spa o Abs, and spa
by the ident function. Instead, we introduce a step for defining new definitions for the
operatis using the translate -ansformation to define alternative implementations.

Owi 4- apwlDtyp..gen)
-apm(bsa) * DtypeObsAbs(a))

Then we mechanically "unfoldo h definitions of the operations on the righthand side. This
puts the eraor in t desired format, (Le., replacing Ans by q=a o Abe). In the observer
functim onth dauatype is alrady in the c ntext of sp= on the righthazd side. This mamcbo
the occurrence on the let thand side introduced in the definition.

gin -- apwiAbs(G))
~(auI(bs~a) * RP*(6psn(Abe(a)))

Since t datatype in obs appars only in t cont=x of spa it is renamed. Tibs produces
the su result as Scherlis obtains in replacing spa by the identity fwuncin.

gen *z aPan(Abs(G))
gAbs()) *- Rsp(Wabe))

'Wb the simqplify, removing the abstractos boundary in ohs.
g9n 4z pwi(Abs(O))
gMAbKa)) 4z a

V& now bay doe trandxamed progru of Dtyp.'* wher spa has been shifted from ate to
gpn A siiAW argumeat holds when shifft from g9n to obs.
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Applying the trufrai~.The steps for trnfomn -h oprtin folo fo"advancing" computaticn from. the observer obs to the generator gen. It is also possible
to "delay" co nmputation from a generaor to an observe The high-level Steps Of the
tranaflonation are: (1) introduce the intended new boundary; (2) abstract the code segment
-betweenr the old repesentation and the new abstraction into a new function; (3) accomplish
the actual shift; and (4) simplify.

We stat with the original deinition,

Studtue Dtype : DTYPZ = Struct
typ dtype - Abe of a

gWn 4-AWG)

ad

ad introduce an abstraction boundary in the observer function.

Sbvudm Dtype : DTYPE = src
typ dtype - Abs of a

gen 4-AWG)

md

The nex step Is to advance computatio by mechanically "folding" the new abstraction
into a span function. The span function take the original Abstract: datatype and produces a
new abstraction.

tructur Dtype : DTYPE z Sradl
twp dtype - Abe of a

9we4--AsG)
g(Asa)) 4- RPI'(apaAbS(d)))
span(AbS~)) 4- Abs(0(q))

Gui

The datatype is now in t correct format to apply the shifttrnfrain

Shuclure Dtype' : DTYPZ * armS
type dtype - Abs of 0

gsa 4- VpanAbe(G))
9(ASa)) 4- a
OWAbsa)) 4- AWs(0(a))

aod

V& simpl~y by unding span in the generamo
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Sttgr Dtype : DTYP. = hU

type dtype = Abs et
gen 4 Abs(O(G))
g k(A W (a)) €- a

em

We we that shifting under these conditions is a special case of the more general rwnsaae
data tnsformation technique, wber the new generato G' is 0(0), and the new observer
0' is the identity function. Since the span function is uncovered from the observer function,
it simply drops out as we shift the computation over to the generator function.

6.23 Expose

The epose transfomationis used to reveal the undelying type structue. This has he effect
of moving the boundary of the type "inward." The expose transformation was presented by
Scherlis [76].
Given spanning functions:

S:T-- T, x ... xT.
U:Tj x ... x T, -aT

epmflDtYP..Abs(a)) 4- Dtyp.'AbS(s(a))
uflpf(DtypeI'.Abs(a)) - DtypeAb(U(a))

Replace:

S&O trtr Dtype : DTYPE - sruct
tp dtype = Abe ofa

gen 4= Abs(U(G))
Wxtq) 4- AbsU(BW a)))))
obe(a) v- O(S(Rep~a)))

emd

S&tcte Dtype' : DTYPE = Strut

typ dtype - Abe ofa
gen - unpa((Abe,... ,Ab)())
exga) 4-- u nspan(Ne,.., Ags)(F-(Rep,..., Rep)(span()))))

obIKO) o-= O((Repj,..., Rep)(span(q)))

ad

Mwe eWoN 6sa ation reple all ins tUes of Abs o U by unspmn o (Abe,,... ,Abs.)
ad all instances ofSo Rep by (Rep,,...,Rep,) o san. The bodies of span ad unspan
ae repreeted by S and U.
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Expoe can be thought of as a "strategy" composed of mome basic steps. Thesesteps are
explained in terms of dho simpler transformation steps, introducing an abstaction boundary
and folding tdo definition for spa or unspa. PFr example, starting with Abs o U, we
intrduce an Abstraction boundary to got Abs o U o (Repp1 ,...,,Repa) o (Abs1,...,Abf6).
But the first thrce composed operations is the defintion of unspan, so folding obtains,
unspm o (Abe,... ,Absn.

Here are the stps for replacing all instances of Abs o U by unspan o (Abs 1,..., MAs.):

Abe *U
Abe oU o(Rep,...,Re) o(Abe,..., Abf,)
unhpan * (Absl,..., Abs.)

Here are the steps for replacing all instances of S o Rep by (Rep,,... , Rep,) o spa:

(Rep,... ,Rep.) o (Abel,. .. , Abe.) oS * Rep
(Rep1 ... , Rep.) osa=

Applying Mhe' trnfrm a Thew high-level steps of this trnfrainare: (1) ma-
nipulatethe typeso that all instancesof Rep appewrin the context S oRep and all instane
of Abe appear in the context Abe o U; (2) move the boundary of the type inward; and (3)
excise the: spaning functions.

We start with the original definition,

Strur Dtype : DTYPE = Srad

type dtyp. = Abe of a
gsn 4-Abs(G)
=Ka) 4- AbsaE(epq)))

ead

and manipulate the representation of the type so that all instances of Rep appea in the
conext S oRep and all instancsof Abe appear inthe context Abe o U. Ibis is do=eusing

sImpification Steps, the fold trnsoration, and insight from the software developer.

U-S-1
S&Oudur Dtyp. : DTYPE -Strad

yp dtyp. Abs of a

M&n Ab(U(')) d)))

and
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Thw datatp is now in the correct format to apply the cvpose trnformation; all instances
ofS oRepmnoreplaced by (Rep,,..., Rep.) o span and all instances of AbesoUare replaced
by uaa o (Abe,,... ,Abs.).

SiriCtur Dtype : DTYPE z strut
type dtype = Ab o ia

gen c= unhpmn(Ab,..., Abs,)(G'))
2&ae) 4= unpan((Abs,... ,Abs.)(E'((Rep,,..., ,Rep)(spar~a)))))

Spmfla) v- (Abs1 ,..., Abs)(S(Repq)))

md

Ibis has the effect of moving the boundary of the type "inward." In Scherlis' paper, the
next Step is to use the rleaSe Iransfirmto to to excise the sp= and unspen portions
from the type. Heme we instead make use of the translate transform ation to derive a new

Fmplementation for the type, revealing the underlying data structure, the tuple (a,. x... x a3).

S&NetM Dtype' : DTYPZ z ibuct
typedtyp =Abe of (eq x ... x a.)

gen 4- span(type.gen)
Wa) 4- s;ParKDtYPe.exKUfswana)))
M(a) 4- Dtyp..obswspan(a))

wSUnpn) 4- Abs(U((Rep,..., Repj(q)))
amd

Next we mehncal unfold the old operation definitions. The collection of abstraction
functions. (Ae,.Abe5), is applied to an n-tuple to create an n-tuple of abstractions. The
collection of irepresentation function is similarly defined.

ShuetMe Dtype' : DTYIF = Waduc

tIMedtype - An of (a x ... x a,)

g"n 4- pmuhmn(Abs,... ,Abs,.i)(GO)))
204e) V- smunp((Abs,... ,Abs.)(E'((Rp,,... , Rep,)(spanunspan)))))))

uflpalO) 4-- Abe(U((e,A... ,Rep)()))

Simplfy, this is easy sinc spa and unspmn cancel out.
Shuft., Dtype' : DTYPK zubuct

tM dtype - AXSof(a x... x a

S&~) 4- (Abej,*,. ,bs(E((RpAIf... , Rep)(a)))

gba4dRe.()
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6.U. Incrporate
The incoupoate tranformation moves an external function (or module) into the publi part
of a type or a Public functio (or module) into, the private Part Of a tye. Dcarations
in the I n-pcute structure must be evaluated in the defining evironment and name
clashes avoided (df. Standard ML semantics of the "open" staemnt). 'There must be no
external references when moving a public structure mwnto eprivat part of the type. This
Irnsora& o is used for specializing modules in the context they apea in by moving
external funcion or suooipnet into a module. ilie incorote tasformatio was
presenftedby Schefrli76]. Simia ideas were presented by Wfle [91] based on Clea [131.
Similar application to modules arefound in the work on 1a1ameterization in OBJ[33] and
in Tracz's thesis [9] where incorporate is an instanc of "removal of horizontal strucue -
inheritance hierarchy Blattening.- Any module that imports another module can be reduced
to a single module wth the same func -tionality.

Since we do no" need to access the ilntena structure of the datatype, we use a general
functio f (wherem. denotes multpl instances) rather than Qefl, e9t and abs.
Replace:

SIgmatus DTYPE z dg

sad
S~uc~uw Dtype : DTYPK - Iuc

(f (?) bj
sad

By.

SlgNMae DTYPE mug

{f :
sad

Shtu Dtyp. : DTYPE -sirmt

(f(v') 4- )
sad

This is a one step process, so unlike the other trnformations, there is no section for
applying the transor-adon.

6.U. Releas
The rwease- trasomation moves a fution (or module) out of the public or private part of
a type powvided the function definition does not contain any references to the abstacion
functions far t. typ). Naming conflicts must also be handled (eg., by renaming) The
release transfrmton was presented by Scherli [76].
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g:s
I :t}"

Sbutrm Dtype : D :3E = iruct

{f( ) b)"
em'

By:
Signature DTY?3 = si

If : 40
end

Strutum Dtyp. : DTYPE -uct

(f(v') 4- b)"

md

,g(v):s S 4-

This is a one step process, so unlie the other tnsformation, there is no section for
applying the as ai

6.3 Limitations and Benefits of the Semantic Model
The fimewor for t mde transfoa system describe in this chapter uses: (1)
an algebraic model to explain the meaning of integration; (2) a notion of a cor=s
relation to explain the meaning of forma on data representations; and (3) theries
to epain the m of tnsformations on abstract interfaces. The motivation for
developing a fmew is to enhance the understanding of the terms used inrmafly, to
provide fucur aiding the softwae developer in using this approach, and to provide
insih automating the process. Therefore the emphasis of this chapter has been on
developing enough of a framework to understand the process rather than developig all the
details of the semnic model

The dependency of using Standard ML in this framework is on the module system,
rather than on the language itself. Required extensions to the nomion to expss thetranformatim pncess include: axioms [72], views [33], expression procedures [74], and
a means to expn a alternative solutions. Axioms air needed to enrich the expressive
powe of Standard ML so that te properties of the aggregate specfication can be defined.
Views eable de software designer to express how the components ar related though
consistency relations. Expression procedres provide the notation needed to express the
initial deinition of the aappS upon which module tasformation rules can he applied.
Altmave solutions are used to maintain the internal consistency of the aggregate.
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The benefits of this seamantc model came from its simplicity and the inasigh itprovides
for autonwmain his, semantic model could be enriched in a number of ways. The
intpwati process described in Section 6.1 implements consistency relation n terms of
translation functions. Higher-level abstections of consistency that could provide a bene
model for explalning the design amdmianipulation. of module'- - are =discussed
in Section L.2.4. An outline of the module -rf-maIon rules was provided in Section 6.2;
this description. would beneft from a rice model for interfaces, exparts, imports, and a
mor absowat notion of equivalenc (see Section 82.3). Mome details on how the module

6 n -oraion system compares to reated amea of work are discussed in Chapter 7.



Chapter 7

Related Work

Section 7.1 begins with an evaluation of the module intezface, tansformaton System (re-
firred ID as bMt in the dscuisson that folows) by compar"ing it to UIadonal approaches
in software ngneering to determine how well the approach addresses t problems of
inwegrag module interfaces raised in the beginning of the thesis (Section. 1.2). Then, t
following four sections evaluat the utility of the hMt techniques by comparng them to
severa related. -M of work building system fom softwae components (Sectio 7.2);
defining and managing re PresentaIons (Section 73); data design and refinement (Sec-
tion 7.4); and adapting latmiaes (Sectio 7.5). Some of the related. methods have simila
motivations or shaed technique while others are complementary approaches. Data tvans-
formation technques that this research builds upon were discussed in Section 2.2 and
Section 6.2. Fbnaly application domains for these technique are discussed in Section 7.6.

7.1 TraditionIA Solutions - Revisited
MWs deMsMae Mme ppoch addresses t poblems of integating modul inefaces=
(raisd earlier, in Section 1.2) in the subsections tha follow. Mwe areas of related, work are
grooped according to, tu four points which catgarize when agrement on interfaces in
the desig nmust he reached, and is evaluated with respect to. scalbility, exPrssiveness,
aproriSeeo rersna iInterface agreement, adaptabiity, corrTectoes perfor-
umne and automation. AR of tes criteia awe not considered in each of the sections that
Ifollo1w ahr the important points are raised a appropriate.

Duiuihg Sysm frm 8.8tw., ur a m V Rather than requiring an a pior agree-
moM on dat rePr esetaios. complex dattatypes are defined a a collectio, of separate

* ~~moduls tha ae syseemaafty merged using formal methods to derive t modue intr-
faces and -diin epeattons.

When god waeuumosae difficult odesign, especiallywhen there isnot much
91qle118111 Is ft particUlar aPplcation domain, t system desge can define, a complex

daltype as a letion of sepae modules. These mules at systematically marged
=ing fama methods. Ile metds als facilitat adaptation in liewith eouinr

117
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models of dvoieasince the prc.. of adding a new component is simila to, the
F n em of mursing t original copnns

kn Section 7., specification langpuags modul langages and domain langue are
evaluited witrespect to expresshveness and scalabiit todetemine, bow wel they support
building systems; ftix collections of modules or sofwar m onts

Defigsail rumsoub Rah rtmetanonsM -dwamm gh
interediat translation functions, new modue interfaces an derived that interac directly.
Ti~s has been the pimary focus of this research Tfranslation functions provide, a

notion of consistency among the components and trnsomations are applied to derive,
new module Interfaces that interact directly. The reuiemnt for tnlto functions
between all components were relaxed, to allow for idrc connections (via an intermet
componient) and connections in one direction only.

In Section 7.3, techniques, for defining and managingiqesetn are evaluated with
respect to apFprquiatem -0Cf repeseaIonsd, interface agreement~ and adaptability.

Daa Dulp and R.mmsint. Rath. than leaving data design decisions to a compiler
when using very-high-level languages, do software designer is involved in defining and
orpuniing module inerfaces.

Thedecision was made toklnveethe softwae dsge by giving input toan interactive
systm in oia~l low forrichabsttons for u-dfined types. Once formalized it may
be possible to more fully sutomaft do approisch; this has been left to futureP resarch. See,
forexample, an s ioftwaredevIlP IMenpaimpeesdy-le(
Harrison and 1hsnusn[431 have an utmated, system. for implemntng datatypes;
they use an approach similar wo AM in requiring do desine to spcify an abstraction
function (essentially a trnston function), but use a restrictve language to automatically
synthesize, t inverse mapping function to define, doU3t eai Simplifications can
then be appie vD deriv functions that oera on t new dat structure drecty.

In Secio 7.4, frameworks andpro mmin env'n - P in are evaluated. with respect
somoms perfrmance and automation, todeterminebow well they support the process
of darn desig and refinement.

Adaptmhglihrcss Ratherthanrequiringapribodagreemnenton abstract interfaces new
types may be defind as extensions of existing oan (eg., using object-oriented, techiniques
such as ineitance) and new mnodule intrfaces derived.

Mwe contribution in this an is, in developing a complemepntarppochta builds on
usin moles and nheitanc to adapt abstract interfaces and then applies dervations to,
speciai t of do inherited module in t context of te new module.
M&i -proc has many similarwtes with medatnreesttis through translation
fuanction and can maim use of do expeienc learned from this earlie efft.

In Secton 7.5, object-orintd techique and -ranformation systems that support
ovelatl = a aluaated wit respect so interface agreenert and adaptability by means of
soityogeitng 1F acM- r
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7.2 BuildIng Systems from Software Components

In this section, pecificatlo languas, module languages, and domain languages are
evaluated with respect to exrmeeaand scalabillt to deermin how they support
buildin sysem from software cMp&en Evaluating scalability raises t question
wat techniques Mr available for manging lage prognims? TIS is a mA*o source of
motivation for this inetgtOf Itransfrmtion and module intrfaces Evaluating
excpreodivenes raisns the question, to what degree ae the conceptual propeties of the
pbkm reflected in the syntax of t languag? Modulet failities enable more explicit
re pesen--atIon of system architectur and, throug information hiding~ enable components
to be designed and developed separaely. The chaienp is to develop module mechanism
and formal mieds approasches that can exploit modulaity, and to develop formal methods
approaches that support aggmo and integration of components for pefrmne

Even td=0g the MrS lsappoah is focused a the system design level1, which rqie
a "pogammig language in order ID manipule data lrepresentatins specification lan-

guge[92] give us insights into t strcuring of larg pograms. L arch [38] and Z [84]
areP rPreettv of recent deeoI et in specification languages for specifying lag

Thw ruwi is the basdc module of specification in L arch. A trait introduces operators and
seiestheirproperdes (via algebraic specifications). Sometimes the operiaoscorresponid

to an abstratdaatye sometmes they do not since it may be deshrbl to specify properties
that donot queconsttt a type. Traits can be combined to form richer traits, and a library
of Astractitrfaices has been constructed to aid do software designer Components in
bf I, like traits, descilibe a collection of operations that may not constitut a datatype.

The sawu is do basic module of specification in Z A schema introduces domasins
and operao and specifies thei p ertips (via set theory). Schemas can he combined in
variou ways to build larger progams a defned by do schem calculus. For example,
Suffin [88] -m Z so, develop a display edimL Z is a mdlo ifnted seificatin language
where one defines a system's behavior by constructinig a model of die system in term of

m~atial srctoes muastups nmd sequences. fino developa moreextensve
edb itrhm th6 definition provided do motivatio for introducing components tha are
views of some, commnon dattp sinc it is difficult to reP-AteP an iniil model of te bufe
that lend Itef ID specifying All Of Ut variou operatons Constraint in MIM, like Z
invariants, wer intoduced. to describe properties of t datatpe that ae not restricted to

Although teeqem luo languages have simiar goals in connecting software com-
pontents, ty am descriptive. They may describe what it means for components to he
idntread but not how to int them Tlhis Uties is adckessing the latte problemi and
is y focused at m rgra deign lene wheoe module interface and dan reprsentations
we- Manplmd Sinc speIiain deal with a hgi~ leve of abstraction, it is necessary
to use a mrgiig agaein which abstract inmrflces and data representations can
be defind an mm 6pd.Howvr, these specification languages motivated adding
0 1mIgo it and, consrit tot notation ad i e tsyle oft edtoreriation
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FPamthdi. y proganmin languages Standari ML [61] was chosen because it has
an ulepu module facility and a fuly defined semantics. Moreoven Extended, ML [72]
afds a usdefuluimsion to the language doe ability to add axims, and gives aprcs
meaning to dewpup~refining and cm sigprograms. This give the software
designer a olespcrn language to, represent higher-evel q Pec ifications that can be
reined to an Ipmeabesubset. Alhough dio decision was made ID base the notation
on Standoanib ML themnsforatIAUontechniques =r languag independent and can be applied
to, ohe language with modules sach as Ada, Qu, and Modula 3.

Cloguen [33] has studied the issue of component integration for lage-scale systems,
an proposes a module',-- meto agae( )wt rga o-opsn saftwarecopnnsd aiiusne.Counitade hreem -
tic concepwr (1) daeorfa, which, like Lach traits and the itrS definition of component

describe imlmnainalternatives for software interfaces; and (3) horiontal composi-
tian, which describes structua alternatives for a given level of an abseact machine. The
Mrs notation was adapted to include a construct for views to enable the software designer
w eqire.s bow die components are, related through consistency relations. Traditioal trans-
foration techniques deal with vwnla mp osition, which refines programs to a lower
leve of abstract Machine. IDi Mrs1 tr6anration techniques for integniion is an exam-
ple of horizontal composi~tion that is necessary for structuring Imp-scale programs. LIL
is descriptive, and describes what the alsernatives ae, but is not cosrc-e offering no

-udac in the alternatives. ih. techniques developed. in this thesis de-
scribe bow to use vraIonks to suplement the horizntal composition methods using
a conradve g

Thacz develops a system called LiEANNA [89] based on MLusing Ada as the program-
mzing language exened with ANNA [M6], a specification language for Ada that allows the
lusastion of anwoatons. Tracz provdes a model of module composr ii, fuly defines the

composItinachualuu (in IL) by allowing hoirizontal, vertical, and generic instantiation
in module eqnrstions and discusses die relationship between do. varis types of module
structuring. This provides a frunewak for describing changes to modules and may give in-

dskin no - Ir -- uu te st rctures needed for automation. The rquirements
for axzzposing modules in LILEANNA maies die underlying assumpion that modules that
ahe damn hae die am data ies meS. The MrS methods provide com lmr
techique for insegrating multiple dat epsntons.L

The Drao [62] system aids the softwase desige in constructing software systems
bum Iedl s11F o-Wputs. Thsofwe deinruses a domain language for describing
popemnin eachipblem - The M objects and operation in a domain language represent
mob*ysi mailm about a prbmt -domain [26. There is one software component for
each object mud orat I-in fti domain Objects and operations; from one domain language
mlplm eby being modeled by dkas ojc to and operaons ofotherdomain languages.
Brawiftly ile-lp Ip ns modeledin aconveaia executl (prMograming)

hoep Progranis = Pn oanrucsed&ba tdo objects and operations of a suitable domain.
Mhe usfi a domak language aids do. sofwa developer in exresing di. problem in the



73. DOW and Managing RepwseAwdons 121

Iauug homr support is lacdn in structuring objects and pations into daypes
or objects (in the object-oriented se). For exampile, an operation and an object that it
ma nipulate are rened separately (since each one is represented as a separate component);
furthPrmore, the refinements must agree on the underlying e of the object. The

M S nedo y on the other hand, provides a ytatic m ns to reach agreement of
the Iepreentation of the object and to derive new implemntions of opations defined
n thoobject.

Dra reprefsmaent optmizations at the domain language level; Draco re-
finements mak imp ntatic decisions. Traditional. tarmations combine the Draco
notions of tasrmations and refinements. The M S similarly makes a dis-
tinction between using -ran6-ormations within and between doan levels. The tecniques
for integration, in effect, smy within the sam domain. In conast, rather than source-to-
source transformations which conist of a lefthand side that is replaced by a righthand side,
MT uses transformations to derive and manipulate module interfaces. The subsequent
refinement steps make choices to implement the program in a more specialized domain.
Refinement in Draw is an interactive process where the systems designer is involved in
making decisions. For large systems, there are far too many decisions for the systems de-
signer to make. Daco provides two mechanism for dealing with this complexity: domains
and tactic The systems designer need only work in oe doman at a time which limits
the cope of what to think about. Tctiw s limit the number of decisions that must be made.
Even with these mechanisms, a systems are built and adapxd, a Draco system may become
increasingly diffcult to maintain The softwa develope using MFS for refinement, on
the othe hand, uses a small set of well-defined t fomaons for adjusting interfaces and
data repreentations.

7.3 Defining and Managing Representations

In this section, techniques used for defining and managing uteatios are evaluated
with repect to the criteria for ap itleem of rpre I interface agreemen ad

. Evaluating the ap iam reresenions rais the question, how
do chosen data repeseations reflect the reqIement of each component? As a system
evlvs, cmprms e s oe itably made to datapresentatio in order to meet diverse
needs: often exdient soluioms are devekped from which a later retreat is required.
Evahmaing interface agreement rais the question, when must agreement on interfaces in
the design of softwas be reached? Delaying design decisions when a prior agreement
canotbe rechedmay make d design process ear initilly but additional workis usually

Ptquedn i toItgrae the mpnent latE Evaating adapability rains the question, how
asy is it ID incorporate new components into the system?

TMe viem qiioch of Gat [291 has notivations snmin to the WM approach; rather
than having todecide in advance on sum compromise rpentation, spsat components
wi wrusim PP----,e deigned and laWr itgratd. This alaws agreement
oan In-frs to occur lawe in the design prncess. Unlike the bM approach, horew,

Smgis restricted to a small numbe of fixed datates, thus yielding a Vreater degree of
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automation at the expense of epsivenes, power, and fletibility. Tlh prgra With
view approach of the Ganda group [391 extends Garlan's work to support the integration
ofprograms (tools) that access andmanipulate a shared datarresentation.I The description
of the shred data sentation is factored into the individual tools; each tool defines its
own view of the d structume it uses. Thes views we lae miegrated by desmbig
how itrmation is dated between tools and what invants must be mintained between
Ifferennw of the samne data. Th3is supports dhe merging of arbitrary Abstract datatypes

(that are comnected via "compatibility maps"), but is less automatic sc it requires all
operations to be rewritten by band for a merged type.

The AM techniques for deriving modul interfaces require a single compatibility map
to nterzm e any two componen This facilitates the deign level of integration, but
requires additional work at the implementation level of integration where the developer
must provide some guidance. The integration of the components is resolved at compile-
time under BM but at runtime under Ganalf. A static approach permits optimizations to
be peformed as well, and alleviaes the additional overhead required to handle integration
during runtim. t is important to keep in mind that the 1s techniques we= designed
to handle a slightly different problem (which permits this static approach), building a
dataqp from a collection ofpieces and not maintainig separift views in the merged type.
Howerv, these tachniques may provide a basis for formalizing the process of merging in
proSrmming with views (seepro w with views in Section 7.6 for more details).

Whenever a chang is made to a component, this may affect other components that in
some way depend on it. The techniques for manipulating module intrfaces isol chng
in the new component andthen propagaw change to other intrdeped entcomponents
through the proess of integration. Research in databases has similar motivations for
introducing and propatng change. Balzr [2] provides a languag for making structural
changes to o description of a knowledge representation system. He also provides tools
for mapping those changs into conesonding trarmations on the existing data. The
chaneis y propagated. An alternative to propagating the change immediately
is to us versions so that, for example, types of bects stored in a database can be changed
without having to modify existing data or tools (81].

lTw coe of old and new data and tools comes at the cost of the additional
ovetead for maintaining and accessing multiple type versions, chan is neverpropapted.
An I m It approach is to pmp& structural changs only when data is actually
accessed by a sysm configured for d new structures. TransormGen [5] was designed
o alvo roblemns of gUmmar evolution for structure-oriented vioments e
Implemenur mchanges to fthe gmmar of a structure-oriented t.
lIt ouput from Transform en is a new rammar together with a transfrmer, which takes

m adatmbmmbs bu under old grmmar and autmaically conve themto
inasmss of daabase nsw, thdt = legal undrh nw grammar In MIS. the chanes are
IId I inmmddafd howom since chigs are isolated in die new component, the
=lhmlSysMn (Ia ecanearlier versio) is still available.
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7.4 Data Design and Refinement

In this smdo, frameworksandpogrammingnvionments are evaluated with rspect o the
criteria for correctness, performan and automation to determine how well they support
the process of dam deign and refinenm Evaluatming correctne raises the question, how
can higher asance of correctness be provided for larger systems, or, rather, for aspects
of behavior of larr systems? Evaluating performance raises the question, what choices
are availab to the designer for improving the efficy of a program? These might
include tchniques that affect the frequency of execution of parts of the program and how
readily information is made availabk, Evaluating automation raises the question, what
elemets of the process of producing effient programs from high-level programs can be
mechann M? The main emphasis her should be on achieving productive interactions of
automated systems with developers and maintaminers.

Ib n ar a number of formal frameworh for developing larger-scale programs by
trnforming high-level specifications ito executable code, LAI the hM approach, they
seek to extend tranformation techniqw s to larger-scale systms, and similarly involve the
softwae designer in the design of data representations (usually in order to avoid limiting
the e sveness of the specification language). The developers of CIP [5], for example,
advocate using alebraic s peficatious as the starting point for a top-down method of
program deve M Te developers of Extended ML [731 and VDM [71 use formal
veficaton, to invent now implentations and prove them correct The MS approach
differs from thes in its support for the integration of separa cmp This gives the
designer the flexibility to delay agreement on, as well as adapt, the intmfaces of a (module)
system

e Programmer's Apprentice [70] provides assistance in the implemeation, design,
and ra Iremnts phaes of the prgrLmmin tak, A formal etation for programs
and pprogrmmin concepts is provided by the Plan Calculus. A plan is a generWod

ion of a progra and is represented as a graph structure consisting of boxe and
arrows. The boes denoe operations and tests; tkhe arws denote control and dam fow.
The reprsntatio has a graphical notation and a formal semantics used for reasoning.
Relationships between plans (eg., specification and implemntation) is represented by an
overlay. An ovelay ddm a mapping from the set of instance of the implemenation plan
to a aet of instc of t spiication. It is a genealiztion of the abstraction function
in ft abstract day p . lie overlay's, MM translation functions represent
rationships, but reladionwips between components witin a given level of abstraction,
rah than rea ships between differnmt levels of abstracdon.

The Design Apprentice (a subsystem of the Pr m 's Apprentic) is designed
whom- (1) a task is expressed in a declarative (s c ion-l) input language; (2) the
system provides deection and explanation, of error made by the programmer (comple-
nessand c ihency v) and (3) t system auma* y wlects reasomble implemenion
co Infmtion is embodied in "clidhes" (m of program elements). Per-
ap the mehods developied in this teis could be used to build cliches in the first pl=.

Thin th MTS mehodolog could use cliches as a method for reuse.
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The ISmethodolg allows the designer to choose the data represenio and to
customize it in the cont that it appears in, unlike other methods where representations
and optmizatious are chosen from a predefined set. SETL [79] is an example of a very-
high-level language based on set-theoretic syntax and semantics. For the most parr, the
SEMI usu is not involved in choosing data impresentations. nsead., they are atomatically
chosen by a compiler for each abstract object, based on a catalog of optmizations. The
opdmizer does not make any significant change to the algorithmic form of the program, it
being more concerned with the data n tion that supports the specified algorithm.
Wide-spectrum languages such as Refine [82] give the software developer more control by
providing an interactive enYir t where the developer can apply optmi ons based
on the usage and context of the data. The optimizations are drawn from a set of supplied
rules and templates. OWJ [34] can be considered an executable specification language. It
provides a notation for structuring algebraic spc ifications into hierarchies of parmneterized
modules [281. Rather than focusing on data iepresentations, the OBJ system implements an
equatinal rewriting system

The MS techniques also have important diffenes with the transformation-based
apoh of Hisgen [45], which seeks to optimize usr-defined datypes automatically by
usingyr fined type-specifict.r anformation rules, 1U programmer writes pre-conditions
and post-conditions as well as transormations for each operon. Hisgen's mechanism is
well suited to the development of customized types for use in a very-high-level language
sysm. The type-specific optimizatins provided by a type designer can be applied auto-
matically by a compiler but the type designer is responsible for their correctness. Instead
of anticipating the collection of ransformations needed in advance, the software developer
using MM has a small collection of well-defined tasfomations to use to customize the
datatype in the context that it appears in.

In pro'am synthesis by Manna and Waldinger [57] programs are extracted from a
cnstructive-style proof. The proof serves as a high-level language. Recent developments
in this approach to nipulating proofs icude program development trough proof trans-
formation [681. While this provides a solution to the problem of designing the initial
program, there is still the need for a complementary process that optimizes the extracted
program by maniplating the data repPsentati*ns and the structure of the intmsces. Trans-
formation tehiuscould provide this capability [1].

7.5 Adapting Interfaces

In this sectio, object-orntde and transformation systems that support evolution
wre evaluated with respect to the criteria for adaptability by means of modifying exising
intrfas Evaluating interface aeement raises the question, when must agreement on
inthc in the design of softwa be rewhd? Delaying design decisions when a priori
aremet cammt be reached may make the design process easier initially but additional
work is usually r qeq d to integrate the compouInts later. Evaluating adaptWOty raises
the qiesdm how eay is it to modify existing interfaces and incorporate new components
into h syMM?
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fraditional object-oriented techniques [871 enable the development of customized ab-
stract interfaces based on existing types, but with representations and implmenatons
shared among the variants (eg, through inheritance). That is, in the object-oriented world,
a"specialized type" of one or more existing types may have a specialized abstract interface,
but the underlying implementation will fundamentally be determined (through inhritance)
by the existing type implementations. This can limit the efliciency of the implementation
and has led some languages to allow violations in abstraction boundaries by permitting
access to the reresentation of the ancestors of an inherited object [83]. A more controlled
approach is the "friends" declaration in C++ [86] where classes have special access to other
classes that are declared friends. The research presented in this thesis, however, may pro-
vide a means to obtain truly specialized implementations for the specialized types by means
of program ransformations. The Mrs techniques provide optimization and integration
of multipl representations to complement the object-oriented approach, which supports
flexible integration and enhancement but requires compatible interfaces.

Gfiswold's work [36] on program restrucuring as an aid to software maintenance
uses a transformational approach to address a different problem. He introduces a set of
autmatble tranformations to manipulate the structure of a system for supporting evolution
through manipulation of program structure. These transforations are applied locally to
effect a syntactic change; the system may make non-local changes to preserve data flow
dependence and control flow dependence. Griswold's work focuses on the trandormation
of the syntactic constructs of a block-structued language, whereas Mrs is focused at the
module lfvel.

7.6 Applications for the Module Transformation System

Domains where this approach is useful include: the development and evolution of proto-
types; the reuse of software modules in libraries; programming with views, het eneous
systems; and type m for persistent objects.

Devebpnwnt and Evoutim of Prooype In the development and evolution of pro-
totypes, a principal objective is achieving functioality in the easiest possible way. For a
complex type in a system (ie., abstract datatype interface) with many operations associated
with it, it might be difficult to design a single representation that is suitable for prototyping
and exploratory development of all of the various operations of the abstract datatype. In
such cases, it might be easier to design a collection of separate representations that work for
variou subs of the full set of operations. dividual operations could thus be separately
prootyped using appropriate repremtations. The problem then is to assemble the various
operadm and couficting representations into a single type that can be merged into a larger
prototype system and possibly transormed into a high performance implementation.

Ruumble 'Jbrarie of Software Modules. These tansformation techniques may also
enhance the ability to create and retain software objects for reuse [50] (eg., the Larch [38]
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library of abstract interfaces). One facto that makes reuse hard to realie is that mul-
tiple developers of system components with shared abstract interfaces will evolve data
representaIons that conflict. The conflicts are not due to a failure to settle interfaces in
advance, but due to technical needs that motivates choie by separate implementors (eg.,
the context in which an operation is used, frequency of use, space/time tradeoffs desired,
or flexibility/efficiency tradeoffs desired). Because of this conflict, components cannot be
shared unless additional components are implement that translate representations. The
cost of this transation is usually too high except in a prototype.

This research explores reuse through custonization [23,76], and provides a framework
for the adaptation of datatypes and the manipulatio ofinterrelated modules. An instance of
this framework is a network of generalized and specialized versions of absta data types
where the Ms technique builds and maintains the network.

Propnuin with Views The Janus system [39] supports the merging of absta
dataypes. w techniques developed in this thes may help formalize this process of
merging where t crfomations "compile" views into a canonical form and specialize them.
Janus provides four kinds of stora models: disjoint, derived, shared, and"anything goes"

In the disjoint storage model the fields of a merged class are the disjoint union of the
fields of the component lass is correds in some way to the process of "merging"
where the fields of a data aggregate are the cross product of the fields of the components.
As with disjoint union, all the fields from each original component appear separately on
the merged aggregate. The difference being that separate views are not maintained in the
aggregate. Each component contributes to the new single aggregate. It could be possible
to implement views on top of this.

In the derived stmma model the fields from one of the original classes are not stored
explicitly. Intead, their values are dynamically calculated when needed. This corresponds
to the process of "transating where the fields from on component mr not stored but
calculated from other fields in the aggregate. This could be done dynamically via a
translation function, or statically by deriving new impmentations of the component based
on a new represenin that is stored in the data aggregate.

In the shared storage model two fields from the original classes are stord as a single
fied in the mged class. Ths is a special case of "traslaing where the fields from one
component are not stored but calculated from th othr fields in the agegate. Since the
dam is identical, then th operations can be optimized to maipulate the shared data directly.

In the "anything goes" storage model the merged class conains fields that have no
direct crepodece with fields from any of the original classes. This corresponds to the
specialzation step of deriving an efficient m mation from the prototype. It is also
posible that a more genalized implemetion could be derived [211. There is in fact
a crepdence which is recorded in the derivatio in terms of the design decisions and
t frmatIon sup takn to produce the new data aggregate.

Hmw Syste=s The draft report on a Common Prottyping System [3] identi-
fies requirems for a language and system that supports pototyping as a first step twads
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building heoigeneous systems. The report identifies the need for "multi-language in-
Peabixit where fragments of existing code are "composed" in a prototype. One

subproblem involves converting data items from one reesentation used in one language to
the presentation used in the othe Hayes and Schlichting [44] have developed a solution
to this data resentation problem in multipaadigm pogamming for a fixed set of stan-
dard datypes. Perhaps data aggregation can provide a solution for user-defined datatypes
as well.

TypeMaagemetforPrsistet Objects. How does one propagate the effects ofchang-
ing a type to instances in a persistent store? A key subproblem is updating the library of
persistent objects [16]. One solution is to use a view-based model, and the MTS approach
could systlatically develop the mezped type representations. Another solution is to em-
ulate the new behavior, and the Mrs approach could aid the process of finding a type
representation that could support the functionality of emulation.
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Chapter 8

Conclusions

The rganizatim of interfaces among system components is a key task in the construction
and management of larger-scale software systems. Datatypes and modules that interact
must agree not only on the abstract interfaces, but also on data representations if their
implementations share data. As a software system evolves, the need to adapt existing
interfaces can arise. Thus, this problem of integration persists for as long as the system is
mainnined

This thesis has demonIaed that program formations (semantics-based program
manipulation) provide systemaic support for integrating genera-purpose software modules
into efficient systems. This approach also provides support for adaptive and perfective
maintennc. Complex type definitions initially consist of a number of components that
are composed via translation functions and module extensions. The initial interfaces
are then integratd, resulting in complex composite interfaces, by using data aggregation
transmatios.

8.1 Contributions

This thesis has three major cotibution: (1) New transformation tecniques for data
algretion that enable the applicadon of tranfmatio techniques to the development
and adaptation of larler-scale systems. (2) A hand-conducted study of the derivation of
a display editor that illumates a proof-of-concept for the methodology. (3) A framework
forde ibing dam t -tion techniques that enhances the eanding of the terms
used informally, provides structure to aid the software designer in using the approach and
is an important step towards automating the system.

Lars-Scale SytenM. The first contributio, new transfomation techniques for data
aglregd, enables the application of anfmaon techniques to the development and
adapation of larger-scale sysems. Figure 8.1 is an abstract view of this process for
cnst-u ng systems using the module interface trnsfiomation system, n corresponds
to the emnerad seps ulited below. The prmces srts with the design of the top-level
ag pegate speciication (step 1). The software designer who wishes to design a complex
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syseem is able to decompose the pobem into components that best model that portion
of the problem lT components may be obtained frem a library of software assets of
standard interface or protooyped, by the designer using a data representation that most
closely models the subproblun Conuistency relations establish orespo-Adences among
the dat, T1h aggegt s;Pciicaio is used in the Integradon phas
to produce an awgateu definition (step 2). Obtaining t aggregate, definiton from the
sageae s;Pec ification is a mechanical proess once compatibility maps (which respect the
consistency relations) are provided Mw aWagate definition is in a form upon which data.
translation ca be performed to obtain an executable potoawe (stp 3). Then additional

-ransformations such a s oe, incorporate, reles, and ahWf can be performed to optimize
the prottp into an efficient 6 ln,auuentatd- (suep 4). Lateron the software designer may
wish to intrduc additional fcinality- in the aidWp phase

The essential steps for imlmetn datatypes or modules by components:

1. Suwamr (chorue) the systm amn modiles, list the operations that constitute
the requrements- for some system. Define, the component imlmnaineach of
which implements some subset of the interface. Collectively, all of the components
implemuent the entire interface. Use moueexensionsto adaptthe abstract intefaces.
Establih any data invasiances among the components by defining functions that
transltefro n cMompo~nent rpresejntationint another to establish the consistncy
of t coillection of data rpre Psenta tions.

2. Integrate tie couqponenu to deow die dataype or modad. Cowose as an "expedient
rereenatonthe product oftecmoetrpeettos Each operation defined

in a component induces a corsodn peraton on the composit dattp or
module Each operation definition is put into a format amenable to -rnsoration.

3. Derive dsefrt execuable posa~ye ofdie dasatWe or ndde. Sinc the definitons
are data. transform procedures this is dane by applying transforations. Mwhe x-
presion psocdmes ar trasfomed into futional definitions. When adapting the
system, it may be possile to reuse, some of the information from the derivation of
te integraio of the original System.

4. Derive an ejlcmt ----nenato by tvuhuladoL Uncove an efficient represen-
tation by eliminating unnecessary rehduacy and specializing dat in the context
that it app ears in. Derive efficient implmnain of te oeratins on the new

reprsenatin usng ranforations.

Using thes echdniqe sugests a paradigm for dataype implmntto by "compo-
nents" Sometimes it is dificult to diesign types or anticipat futiu F needs. Instead of
intoducing a type and ancipang all necessary %opemos, ft opeatons are designed as
we discove the need for them in do progrm using the datatype. lit representtions are
selected basd on t needed operations. This thesis also suggests a paradigm of system

by modules where we use transfomtion tchnique to get betrperfor-
mnethan simply reusing code. lMa module transfraion ssem pmvides a way to

mnpulate modules and to chag the coAeivns and the couplings of te modules.
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These paradigms povide benefit to scaling primarily at the design -levl Complexity
Is managed through abstraction, modularilzation, and step-wise -ransOrmation Mhe focus
of t softwar desige is on doe design domain. These design decisions are translated
into changes throughout the system at the V1: inimpltiono lv t aro n
Optimize the system. The formal maipiulations at this level are gewally carlied ou within
local contexts Howevu, in order 10 claim that this method truly scales, thien assistance
is needed at the integration impemnato level in carrying out all of the steps Most of
these =r mechanical stps that could be perfoand with autoaed supporL

M=r experience using the techniques may lead to interesting object-oriented, appli-
cations. Objecti-oriented pogramming xqport flexible integation and ehancment but
require compatible interfaes. Thes techniques provide -piizt and integraton of
Multipl repretation so do. two teh Ique arMopeenay hs could be done
Initially within the notation bused on Standard ML.., sinc objects with state can be defined
using ML functors, and a simple inherianc mechanism is supported.

P1 W-.Cw. The second onib1ution, a han--conducted study of the derivation
of a disply sdisor IlluStae a proof-concept for the mehdooy bTis thess shows
the hard problems of module interf aceitgration that ourin stwre deelpnt -and
introduces amehdlogythatr comlemens orenhansexisting methods for solving the.
Theadvantags of uingdths-mehology -- includ iabiity sodelaydecisons tohave
the systun infer sme of the information for the wfrmndo om the design, and to

In order to deo dort thedcique for integrating module interacies by program-
trnfratons, a simple ineractive display-edior was developed. First: a uex buffer was

implemented .. d them additional fuctioNlit was intoduced to demonstrate how the tex
bufe is adapted The decision for the dama resntaio of di. buffr was delayed until
afte integration p rcesI. Te components were simply connected (via compatibility
Map); do. mehd g _ provided a systematic means to Infer the othe connections when
they wer needed. During adaptation a single connection bewtwe i new component
and the eist system was needed: once the new repenttion was integrated with the

connectin compn -nt- from t existing sysumm, thes insegration with di. res of the system
can maemofexisting Indigomand- ransfomtion stmps. By going through.the exercise
o constructing abufehfome isponm and then adding additional components to adapt
dthe fi bu a leson wsleane tha comount can implement parts of a datatp and
tha t trnfrainmethods enbl t integration of t parts into an aggregate data
MM&

Next t ficus of t exeapl changd to t module level and t bufe was used as
a part of a ire disply-edior system. Mw lessons learned- included how transforman
1ecA 1ques cmn be appl o I 1 1 "ca. satrunrd module systems, wher modules are
defimdla terms ofutberoddles Mt oufe atatp that has been peviously&deeloped is
rai ndcmd in ate mteofa large nactive diply-edio Tnfomtin
in used for adopting doa -PI P -st1ons and abstract intfces, and for op thyizations.
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Whie using the module inerfm tomation systm the focus of the softwae
desige is on the design domain and away from the application of the tchique (which
is doe raditid tan sfor mation approach). At the design phase, the system is composed
from co-omi with -strafrwad implementations. During the integation process,
do insights dal with reasoning about the domains in which the components are modeed.

Automating die technique is an important step to accomplish next, so that more expe-
rinc in this and other domains can provide additional information about the applicability

of the techniques and the costs associated with using them.

Framewmik. he third ctrbioa framework for describing data trnfrain
techniques, enhance the underustanding of the terms used informally, provides structur to
aid the software designer in using the approach and is an important step towards automating
the system. A notation based on Standard ML [59] modules is used to represent the
cmponents - of a system In addition to represnting datatype, definitions and modules, the
notation needs to als express the other strctures in the tnformation. process. Required
extend=on to the notation to expres the trnfrmto pioes include:- axioms [72],
view (33], expresio procedures [741, and a means to express alternative solutions.
Axio wre needed to enrich the expessive power of Standard ML so that the properties of
the aggrgate specification can be defined. Wiw enable the software, designer to express
how dh omont are reated throgh consistency relations. Expression procedures
pvide the notation, needed to epressP the Iniial definition, of the aggregate upon which
module transforsmatdon rules can be applied. Altenatve solutions ane used to maintain the
internal consistency of the agpqgate

As progress is made in explaining the techniquies in terms of a ftamework~ it may be
posbeto umea do derivati o ue as, an object that can be formally manipuled and

to cap=r the insights from the sofware designer. This increes the potential for reusing
dw previous derivations in integrating the existing system, when adapting the system by
adding a new compoet Tha 11 7i was dame informally in the editc derivation, by reusing data

rr procedure definitions, ft strcture of t -tasoraion steps, and some of the
inihsproided by do software developm. See Baxter [6] and Cheatham [15] for formal

appiraches. O wayso manipulaoropiizeteproesswould beto apply the tchnique
to the com patibility maps. for exmple, comple, a lengty sequence of copaiilt .MaPS
Itoa. single, compatibility map orproducew th tansitive closure to get connections between
all of dot connt start--ing - with a collection of components that =r simply connected.
It also my be possible to generat do inverse compatiblity maps as well (when ty
exist). Another optimization is to synthesize specialized conmpatibility map between the

compoentsthat c a -jri-e ft aggregate from the compati bility map among the original
compomn udoU refinement stp (which can be viewed as a translation, function from

UtO asgic psuotyp so Ut ag.pt
could be de vint obtain te new cmatibility maps. Riw than obtaining thm all at
once it my be benieficia to gemer1m- " only when needd or on demand.

Mbe trmlmlon fluction ned only reapect ft consstcy relation, by translating owt
apOOOO uPIeeu Pnt Poter 1reP eenation. During thedevainpoesth
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softwa developer provides insights to, enabl the consdcon of sanative impleien-
tatloms of a componnt. TMmh insights, in effec, as a databas of information about theprpties oftdo dm and their perap these t-~ zdc 0 ou.d
be formalizd as paiW tra on funcions (with information obtained fEm insight steps
and the properties of operations) that capture th insis provided by the software devel-
oper. As the database of information is built up, the translation function may eventually
captue all of the i -t1dIF; nie among the data to fully implement the consistency
relation. This provides a mechanism for reusing the insights from, the software designer,
and in some cases, onsmucting the invse translatim function, which greatly simplifies
the transformation procesm.

The poype and impImentation stages may not have to be two distnct steps. Often
a preat deal of work is done in tprototype stag only t be discarded. law on. It may be
possible to e a form of filter promoon to prune out the derivations that are unlikey to be
fruifl, or, to use a form of lazy derivation, or derivation on demand so that the software
deloper only expands enough of the derivation that is needed.

8.2 Turning the Method Into a Software Reality

A formaUy-based. mh l has been devised for systemadcally integrating software
compons,1. through ft mediation of abstract interfaces and underlying dam representa-
tims. This provides for the ability to delay or revise design decisions when it is diffmit to
reach an a priori agreement on interfaces or data reF;Psetations. A proo-of-concept for
this methodolo has been dem od by the derivati of an intem ve display-editor
Howev, this meho is not yet a saftware reality: (1) Com tions need to be established
with saftwar proess models. metdolo of the module transformation system
could help reduce the risk that a software system does not conform with the actual need, by
providing earlier validation within a software process model. The software process model
could provide moae guidance to the softwar designer consrucing software systems ig
the module trnformation system. (2) Automation is an important step in making proge
oward turnin the concept into an engineering method. (3) A more formal model of the
ransformation system would aid in de explanation and automation of the techniques. (4)
Inegration is low-level; notions of consistency at a hige level of abstracion than trans-
lation functons may provide better models for explaining the design and manipuaon of
module inmonnectims

82.1 Software Procem Models

Conne tns need to be established with saftware process models. The methodolog of
th mode tasfmation systm could help reduce the risk that a software system does
not Pc m with do actual need, by providing elier validation within a software process
model the software process mod could provide mom guidance to the saftware designer
cm m sotware sysms using the module tamato system.
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Figure 8.2: An Abstract View of Traditional Software Development

Reducing the Risk o System Noacoaformance with the Actual Need. Process models
have been developed orpnize the stages of software development. The waerall model
is the bas for most software development in government and industry. Development
is divided into stages (es., requirements analysis, spcification, coding, testing). Ther
is feedback between successive sups and a form of prototyping through the building
of an initial prototype in parallel with requir ement analysis. Wbile the waterfall model
may work well for problems that have a well defined domain, this traditional approach to
developing softr (ure 82) - ret analysis, speifcaton, validation - does
not always yield the desired result because often all the reqiree not known in
advance, but require some . This is true whether the implementaton is
designed separately and then verified or is derived using formal techniques. This entails
high risk because formalized requirements are not validated until very late.

i any software Ini dre ar two important conceptual pointL The point
of making a decision (eg., design decisions, data structure commitnt) and the point
of learning the consequnces (ie., the validation of the eadier decision). The interval in
between is a measure of the risk involved. The loner the interval, the greater the risk that
the initial decision may not be the correct one which will affect subsequent decisions that are
based on the initial decision. The way to reduce risk is to try to bring the two points closer
toedim either by delying decisions (eg., abstracting funton) or by advancing validation
(eg., building prootypes or reusing validated c, q pon). There we constraints on how
much the points can be site. Delaying decisions cannot be done indefiitely and too
much delay may produce over generalized results that are inefficient. Likewise advancing
validation is feasible only in the cont of given resourcs.

Mhe spiral model [83 creats a risk-driven approach to the software process. It accom-
modams to good features of other saftware models (eg., the waterfall, evolutionary, and
transform models) while avoiding many of their difficulties. Software process models can
be improved by developing more support for tbhe incremental creation and adaptation of
sysam bgure U) using formal met s (o. inferential k oran a77,511). Reque
meaco be used to produce prototpes that provide feedback for early and incremental
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&-lob

Figure 8.3: Evolutionar Transformation

validation and hence reduce risk. Derivations are bi-directional - a prototype can be
refined towards an implemeaion or "generalized" towards a more formal specification
(se work by Ditzen and Scherlis [23] for some thoughts on eralization). Such a
method would support an incremental, evolutionary approach to proyping and systems
d opmenthat is both adaptable and driven by risk requirements. It would also focus on
the stWkw atainment of appropriate levels of abstraction, function, and scale for complex
interfaces and complex SystemL

This thesis res ach incorporates techniques from inferential programming with a nar-
rower focus on prototyping and a wider focus on scaling andadapting interfaces. The
research assembles a set of echniqus that supporw (1) creation of prototypes that in-
volve complex typed objets (2) adaptation. of these prototypes, including reJA curn of
type signatures and addition of new rpresation for newly delineated operation subsets;
and (3) evolution of protoype into efficin imton, hence reuse of prototype
fragments throuigh aggreatio and custo rmization.

Still, there we numerous issues to be addressed for such a model. What structure will
derivations tke? How are derivatons manipulated? Will a new high level language be
required? Before some of thes broad issues can be addressed, it is useful to have some
practical experience with some examples. Tlis thesis contributes by expioring a "vertical
slice" of the issues that is narrow and deep, in order to expose some of the research issues
and focus on the overall structure. It examines the relatonships ammg I m ts
prototypes, and IIPeentations. Theefre, some ad hoc decisions have been made
regarding derivation design structure and language, to provide a basis for more detailed
futue rerch in each of ti areas of the model.

GuWace h m Syiem Usn this Apprah. C ts could also be
establishedwithaoftwar process models to provide me guidance in constucfg Soft-
ware symm using te module t fmaonsystem. Software process models that
sumortal poittpig awlevoluto~n, such as theSpiral odel [8), could provide guidance in
meldo thechece made availabl by the aproach developed in this thesis.
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The "slice" of the derivatim model (Figure 8.3) that is developed in this thesis provides
an overall m to guide the software designer in the design and development
process (Figure 8.1), and criteria such as the cost of integration and implementation are
available to evaluate the consequences of making certain decisions (see Chapter 5).

The methdology provides a srcture supporting development. It also records the
design decisions made durming the integation rces which are useful forlatermodification,
adaptation, and maintenance. Still, an "application theory" is missingc and must be applied
externally by the software design. The application theory is not part of the methodology
because all of the information is not available in the module system itself. Many decisions
are based on the environment in which the system is to be used and the non-functional
requremens of the usa. Such information is available from the software process model.
Within such a process model, this methodolog provides a specific capability where the
software process model provides advice on how to proceed [93].

8.2.2 Automation

Automation is an important step in making progress toward turning the concept into an
engineering method. Chapter 5 provided an interpretatio of the results of the editor
derivation. The benefits these techniques offer occur primarily at the design level. In
order to make this method accessible, assistance is needed at the implementation level in
carrying out all of the steps. Many of these are mechanical steps that can be performed
with automated support.

An initi project would demonstrat the implmentation ofa program derivation system
for a simple functional language (such as a subset of Standard ML) supplemented with
expression procedues. This program derivation system could be constructed using the
Ergo Support System [52]. Automated assistance is available in the form of tools that store
and display the programs and apply the selected tasfo As more information
is learned about this process, mor of the information provided by the designer may be
shifted to the tools, for example, by building strategies out of tranformation steps and
implementing them as mtaplrgrams. Here are the relevant components for an initial

Syntax Faciity. Given a BNF-like grammar for the language, the syntax facility [22]
prodes a paner, lexe , and unparser for translating the program into an abstract syntax
trm, manIpulating the abstract syntax of the program, and displaying the program on a
aspen

Amayah Faclty. Given an attribute grammar based on the abstract syntax of the lan-
guaS, the analysis facility [64] produces an analyzer to compute the attribute values of a
jiug . This is useful for doig data flow analysis [631, providing the transomations with
addianal information about the context (eg., the ncorporae and release transformations
need information about name conflicts and variable references).
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Interaton Facilty. The interction facility [27] uses the unparser to display the program
on a screen, and allows the user to highlight and manipulate the abstract syntax of the
program. This is essential for an interactive approach where the designer needs to point at
the program to offer hints. Other views of the process are also provided, such as displaying
the derivation as a tree structure.

The derivation is not necessarily a linea progressi Some form of hyper-text system
would be useful for navigating through the design choices. MellowCard provides a simple
mechanism to navigate through textual information, which is useful for recording the
design. There is a need to extend this mechanism to navigate through programs, pxoofs,
and derivations as structures in their own right

Lambda Prolog. Some form of meta-language is necessary to represent the derivation
process, for example, to express the transformations. Lambda prolog [69] is one poten-
tial meta-language and has been used to express transformations [40, 41]. The use of
higher-order abstract syntax, where the bindings of variables are explicitly represented, is a
useful feature for expressing and manipulating the scopes of variables, and for expressing
abstraction and application formations.

Perssten objects. The changes to the program and the recorded derivation (including
design decisions) need to be stoed for later retrieval. A persistent object database [71] pro-
vides storage for these objects that persist beyond the lifetime of any particular application
of the derivation program.

.23 Formal Models

A more formal model of the tnsformation system would aid in the explanation and
automnatim of the module tansformaion techniques. A framework for the derivation
system was presented in Chapter 6. Using a theory of data abstraction and the correctnes
of modular roramming (eg., Schoett [781) could aid in the explanation and automation
of the achniques

To assert that the module transfomation rules preserves the meaning of the datatype,
we must have a framework in which to define the meaning of datatypes and operations that
can be performed on them. One way to think about the meaning of programs is to use
Natural Semantics as used in the definition of Standard ML For example, B I- P =, M,
where, "against the baground B, the phrase P evaluates to the meaning M" [611. When
a tranformation transorms a program P into a program P', it is possible to check if they
evaluate to the same meaning within the same envinment See [47] for a discussion of
othe frameworks.

Schoen pesents a theoretical explanation for the correctness ofprograms obtained from
modular proamming using data absiraction. He develops a theory of "cells" which are
usd io rPresent the inerfaces of modules and are represented in"design graphs." He uses
the model to give a formal definition of decomposition and composition, and of refinement
in term of a correctos relation based on behavioral equivalence.
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Composed Cell S' Global Spedficafion SICompositon Iprqnm-n
Cell Spec

Cell =4 Spec

Figure 8.4: Composability of Refinements

A key theorem is the composability of rifinements (see Figure 8.4). Informally, the
theorem states: Let the collection of speifications, M, be a decomposition of the global
specificatio, S. Let the collection of implementaions, M', be a componentwise refinement
of M. Then, S', the compositon of M', is a refinement of S. Informally, the proof of the
temrem of the composability of refinements consists of showing: (1) The union of the
signatus of M', is a syntactic refinement of the signatu of S. (2) Whenever A is a base
(i.e., a bacJguorenvirment)frS then: A is a base for S', there exists a result of S'
onA, and everyresult of S' onA is result of S onA.

Schoett's theory could be extended to allow hierarchical compositions and decomposi-
tions in order to show the correctness of transformation on abstract interfaces by moving
abstraction boundaries, such as the incorporate and release transformations defined in this
thesis. This could be accomplished by defining what it means to incorporate or release
cells in the cell theory. The input and output of the program tansformation can then be
translated into a family of cells. To show the transformation is correct requires a proof that
the family of cells produced by the program ransformaton satisfies the definition of what
it means to incorporate or release cells in the cell theory. Schoett's corectness relation
can be used to show the correctne of transformations on data represetations, such as the
translate, shft and expose rnsformations defined in this thesis. This is accomplished by
demonUraing that the span and unspan functions preserve certain properties to qualify as
a proper correctness relation.

Are there a complete set of module anformation rules; re the ones covered sufficient?
There are undoubtedly mom which will be uncovered as additional experience in using the
mis applied to other domains. The ones necessary for the integration process
have been covered. It would be interesting to look at transorming design graphs and see
what module transfrmations or classes of transformations they suggest.

8.4 Integration is Low-Level

Integration is low-level; notions of consistency at a higher level of abstraction than trans-
lation functions may provide beter models for explaining the design and mani t of
module" i c ons. In Chapter 6 the notion of a core component and component
specitios were introduced to provide a well-defined meaning to compatibility maps
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in tems of consistency relations. It was left unsaid how the component specifcations fit
togethe to form the top-level specification., Addressing this issue could lead to an explana-
tion of views in specifcations and higher-level abstactions for explaining the design and
Manipulation of module in ronnections.

Translation functions ensure the consistency among components in relation to each
od=e Their meaning is defined in terms of th consistency relations and the core component.
But do wein factalways need to define the core component? We do not need toin the sense
that we do not always ster with a specfication to writ a program. But if we want to reason
about its meaning, the we need maine mrt of specification. Once the core component
and views of the components are defined, it may be possible in certain case to derive the
translation functions from the views ing a synta-direceed tanslation scheme.

In ection 2.2 we dimcuued tdo 'Ifrit a pproahes to lookting at correctness diagrams,
first looing at verification and tin addag whedwe it is possible to take a constructive
qappoch by using tr 16oMatins Behaxwra equivalence [78] handles the transiton
between data specifications an sewintt- ins in a more general way than abstracton
functions Sannefla and Tulacki r73 develop a mehd- g for formal development of
programs based on this. NPe taslaion functions can be generalized in t direction of
behavioral equivalence whee transfrations we applied to the consistecy relations (eg.,
using real relation as in Prolog). Cuntly the method, is resticted, to using functional

imleenatons of theme relations (ie.. comptbility mnaps).
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Appendix A

Notation

WW=au noftflo Examples use typewriter font for data types lower-case greek
leztm for yp variables, sanerf font for functions, and alics for variables. The
product typ constructor x binds more tighty tha the function typ constructor

Notation Ducvlpdon
4-- Function definion.

(XVY) mhie, constucto
s x t Product tp constructor
5* Ust constructor
FPW Set VP constructor

Logios implication.
Al : T. e Lambda abstraction.
f og Function cmoiin

Dommanrrot p pexm
EDFunctional. overridng operato

Abe, Rep Cmsate an abstraction, reveal the underlying repesentation.
Component. x Qualified. name of a typ or operation in a component
{CI ...* I ca} Altraaivesolutions.
MWs CositM c relation between copoents.
MpR. Cma4blt map from one component to another.
span unspan Thanslaion functions from one component to an aggegate.
v ut equation I Mw variable satisfies the equation.
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150 Appendix A. Notaon

Doiml opeatmiL Common domain operations and constnts that are used in the
definitioms of the component opersdns and th compatibility map

Opadon Dcripon
[C] Crease a sequenc.

cons(x, S) Add elemenvtx to the beginning of sequence s.
front(s), last(s) All but I element and last element of a sequence.
hd(s), tI(s) First element and rest of a sequence.
nullo Predicate, is the sequence empty?
rUv(s) Reverse a sequence.
"nl" Newline chracta.
1'1 Contbol Lcharacter.
4sp' Space character.
#s Thx cardinality of the sequence s.
s[,,] Subsequence of s from the beginning to i.
s[L] Sub uen ofsfrom itotheend.
s [L,,,I Sub que ofsfromitoj.
s[l] The P element of the sequence s.
[i] SetConstrucv.
XES Set mbersh2p.
Ifx I P X) 1e set whose elements satisfy the pred1ca P.
(X I P(X) An element that muies the pre.ate P

Auiliary tonctim, Special prpose ficto that m used in the definitions of the
component opatins ad the compatibility maps.

Funto name Desrp 'o

CIiipIgIO Pam a sequence of characters into a sequence of pages.
lnW-to-Charsl) Pae a sequences of lines into a sequence of characters.
nlpXc) Prdicaft, is the chrace a newline?
nlposo) The newline positions in the sequence of characters s.
numnlk) The number of newlines in the sequence of character s.
nPagO s) "In number of pages in tie sequence of characters s.

Parse a squec of chwces into a sequence of s-expressions.



Appendix B

Glossary

Abstract interface. Mw exported types and signatum of the operators in a module.

Aggregate delnitdon. An aggregate definition is a refinement of the aggregate specifi-
cation. The data reprentation is defined as the product of the component data
representatio and th operations are defined in terms of the component operations
as data m form procedures.

Aggregate nlmplneuatdM. An aggregate implmenatiois a refinement of the protype
providing an "effficient" im ent of the datatype.

Aggregate prototype An aggregate prototype is a refinement of the aggregate definition
where the data tasom procedures have been transformed into functional definitions
to produce the first executable system.

Aggregate -katm. An aggregate specification is a specification of a datanyp con-
mucted from a colectim of components and consistency relations. Each operation

in a component induces a corsipnding operation in the aggregate that maintains the
consistency of the c e ns

Cnai y mp. A cmpatibility map is a function that respects the consistency rela-
tieo It tasates one component representatim into another representation.

ompoent. A component defines a collection of operations that may or may not constitute
adatatype

Conulamq reaoin Given a collection of imp for a common definition, a
conisNtncy reaiM provides a romrespondence betwn the data objects manipulated
In one impmentation from those in anothe

Data Irrn procedu Dam transform procedures define alternative implementa-
ions on data repreatin-s. They may take one of two forms:
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152 Appendi XB. Glswy

1. Given a progrm fusing a data, tationD and a function, span, that trans-
late elements of the data IF ntationD to elements of the data representation
D', we define f as:

(apen(d)) 4- apn )
2. If, instad, there is a function, unspan, that translates elements of the data

_repestmtion D' to elements of the dam representation D, we define f as:

unspan(d)) o= f(unmn(d))

ProjectioL. Projection functions map an aggregate data object to a component object.

Span and Unspan. A span function is a mapping from one component into the aggregate
of all reachable components (ie., connected by compatibility maps). An unspan
function is a mapping from some aggregate of components into the component that
can be reached by all of them.

Spalzat The specialization process optimizes a program to take advantage of the
context that it appears in. This is accomplished through transformations such as
ewpose, ncoaorate, rekee, sho, and translate.

aaa fatmdo. A translation function is a function that translates one data repre-
sentaion into anothr representation. The spanning functions, span, and its inverse,
unspan, and compatibility maps are all examples of translation functions.

View. A view defines how an implnentation satisfies a specification and consists of a
mapping from the sorts of a specification P to the sorts of an implementation I, and
a mapping from the operations of P to the operations of .



Appendix C

Translating Representations

This section enumerates the ellided steps in Section 3.1.5 of deriving an implementation
for move-right on the aggregate data structure based on the component implementation of
Move-fight in Buf 1. Recall the data structure for the buffer definition.

type buf = Buf of
(int xch* - point of editing and text in the buffer

x ch* x ch* -chaacr to the e and rightof point
x (int x int) - the line dchandd e posiion of point
x line*) - lines in the buffer

We start with the definition of move-right from Figure 3.4.

unspan(move-rlght(Buf(pt,l,r, (1p, cp),U%))) o=
Buf .move-right(unspan(Buf(p, t, 1, r, (1p,cp), 0s)))

Recall that move-right was defined in the BufI component. The translation function
translates the data aggregate into this component representation.

unspan(Buf(p,t,1,r, (lp,cp),is)) 4=
Bufj.Buf( P I #1 I #(c(ts (p - I ])) +l+ }, { t I I @r I I2c(t) })

The compatibility maps have already been unfolded in unspan to simplify the presentation.
(12c is an abbreviation for lines-to-chars.) Since the definition of unspan does not change,
it is not repeated below. There are three ways to accomplish the translation of the aggregate
into the BufI component. Extract Buf I from the aggregate directly, or use one of the two
compatibility maps to translate Buf2 or Buf3 (extracted from the aggregate) into Buf 1 . All
of the three choices must be included here to ensure consistency in the aggregate.

The aim of the transformations is to manipulate the operation to obtain a definition of
move-right that operates on the aggregate directly. Though the implementation of move-right
(and the other operations) will change, the meaning of the Buf type remains the same. First
the unspan operation is mechanically "unfolded" in the body of move-right.

unspaf(move-rght(Buf(p,,t,,r, (1p, p),i))) 4=
Buf,.ffmove-rlht(Buf,.Buf({p I #1 I #(2c(s[p - 1])) + + cp}, t I I @ r I 12c(s) ))
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154 Appendix C. Translating Representatons

Next, the component definition of move-right is mechanically "unfolded."

unspall(Mo Pht(":E(p, t,l, r, (/pI cp),tUP) €=-

suf,7u-f(i{ p+1 I #1+1 I (#f2csf[J-1J))+1+cp)+ 1), {t I l@r I 12c(ts)}))

We anticipate having to satisfy the constraint that the character index remain within the
current line by introducing case analysis for when the point of editing is at a line boundary
and the operation crosses the boundary. The point of editing is at the end of a line when
the character position is equal to the length of the current line, cp = #(ts (p]). The true
branch of the conditional is specialized to set the value of cp to #(ts ([p ] ) and the resulting
expression is simplified.

unrKrrtove-rigltsuf.(p,t,l,r, (Ip, cp),ts))) 4€=

kt ', C' ifcp-#(tp] )t a4¥,#( ]) +eep,cp+ l1i
Bufi.Buf({p+ I1 #1+l I (2c(ts[../p'-l]))+I+cp' }, {t I @r I l12c(ts)})

Using unspan, we know how to map the aggregate to the BufI component. If we could
obtain the invere, then deriving a new implementation for operations on the aggregate
would be easier. We simply map the aggregate into the component, perform the component
operation, and then map the component back into the aggregate. Obtaining the inverse may
not be practical since the translation function may not always be one-to-one, and, even if
it were, there may be no easy way to derive it. Rather than coming up with the inverse
explicitly, it is sometimes possible to use syntactic manipulations and simplifications to in
effect, "invert" the translation function. This is accomplished by simplifying the expressions
to match the new representation expressed in the translation function.

Take for example, the inversion of 1. The translation function and the preceding
definition of move-right are shown below where expressions not dependent on I are elided.
The approach is to use simplification rules to manipulate the instances of I in move-right to
match the corresponding instances in the translation function.

unrsparl{Buf(p,t,I,r, (Ip, cp),ts)) 4€:

Bufi.Buf({... I #1 1 ... }, {... I I@r I ... })
unSPanXrnoverkhtBuf(p,t,l,r, (Ip, cp),ts))) 4-=

let ... I
Bufl.Buf({ ... I #1+1 ... )} {... I 1@r I ... })

Using the simplification rule, #1 + I #Q @ [hd(r)]), we get #1 + 1 in the definition of
move-right to match #1 in the definition of unspan. This adds a new constraint that after
moving right, the new sequence to the left of the point will be the old sequence with the first
element of the right sequence appended. Using the simplification rule, r = [hd(r)] @ tl(r),
we get the other instance of I to meet this new constraint. This is where insights about the
domain from the developer are needed (in this and the following step).

unspanXmoe-dighKBuf(pltpllr, (lp, p),ts))) 4€=
ht V,q' = If =- #(u[p])d ¥,#Qs(up)+ eae 1p,q + Ii

Bufi.Buf({p+1 I #(lC[d(r)]) I #(l2cau[.p'- 1j))+i+cp'),
{ t I 1 [hd(r)] @tkr) I 12c(u)))
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The motivation for the next step is to satisfy the restriction (from the constraint on the
component) that the character position remains within the current line. We use a version of
the simplification rule:

#(2cts [J.1p - I I )) + I + #(ts [lp]) + 1 =-- #(12c(ts [..p] )) + 1

This rule states that the length of the preceding lines and the current line is equivalent to the
length of all lines preceding and including the current line. Instead of moving the character
position past the line boundary, we increment the line index and reset the character position
to the beginning of the next line.

unslan(moveriht(Buf(p ,t,lt, r , ( ¥, cp), ) )) 4-=
Ie ,cp=ifc=#(s[p]) thmlp+1,odselp,q +lin

Bufi.Buf({p+ 1 I #( @ [hd(r)]) I #(I2c [.p' - 1]))+ 1 + cp' },
ft I t@[hd(r)]@t(r) I 2c(ts)})

Now that all instances of the old representation appear in the context of the new represen-
tation, unspan is mechanically "folded."

unspanKMverihKuf p,t,I,r, (/p, cp),ts))) o-=
',cp -W cp-#(ts[p)thmp+l,oelp,cp+ 1i.

unspan(Buf(p + 1, t, I @ [hd(r)], tI(r), (Wp,cp), u))

Choose the solution.

nm-dghtBuf(p,t,l,r, {p,cp),ts))
' ,cp= ifcp=#(S[P])tmp+ 1,Oelsetp,cp+1i,

Buf(p+ 1, t, 1@ [hd(r)], t(r), (W',c'), ts)

A new implemenation of move-right has been derived that operates on the aggregate data
structure directly.
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Appendix D

Shifting Computation

This section enumerates the ellided steps in Section 3.1.6 involved in shifting computation
of newline information in next-line (in the prototype) to the other operations that generate
the datatype, such as makebuf and move-ght. In the new implementation, next-line is able
to look up the newline information it needs directly, while makebuf and move-right need to
do extra work to maintain this information.

Recall the data structure for the buffer prottype.

tp buf = Buf Of
(intxch* - point of editing and text in te buffer

x ch x ch - acm to the lM and right of point
x (intx int) - the line md aect rposition of point
x line*) - Uin ithe buffer

We start with the defiitions for the buffer operations from Figure 3.5. We have chosen
a solution for show-har and have defined span according to the observations made in
Section 3.1.6. The let statement in move-right has been unfolded in order to simplify the
presentation.

makebu - Buf(O, 0[, [1, [ 0,0), [])
mOve-rht(suf(p,t,,r, (p,cp),L)) 4

Buf(p + 1, t, I @ [hd(r)], tl(r), ifcp - #(s [IpJ) en Ip lebelp,
fcp=#([#p])tm0 dbecp+l, Lx)

show-char(Buf(p, t,1, r, (1p, cp), ts)) 4-
4P.o- 1]

next-Unes(Buf(p,t,l,r, (lp,ep),ts)) 4==

let d -(nosu)) [1p] - (n~osts)) [p -- I i
Buf(p+d, t, 1@r[.d], r[d+ 1.], (p+ 1, p), ts)

The translation function records the software developer's requirements t optimie the
prototype.

spn(bnsBuf(p,t,l,r,(Qp,cp),s)) o= Buf'(p, t, iaIp, nanlpos(r))

Since the definition of span does not change, it is not repeated in the definitions below.
New definitions for the operations are defined as data transform procedures.
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Makeuf' 4- SPanKmakebuf)
Spaifl(~o-rihtuf(p,, 1, r, (Ip,cp), s))) -

how-difBuf(p, t, 1, r, lp,cp), s)))

SPflWttiflb(uf(p, t, 1, r, (ip, cp), ts)))

The buffer operation defiitions are mechanically -unfolded.-

rnakebO 4- sp~l(uf(0, [ , [1], [ ], (o, o), D

spafl(uf(p +1, t, 10 hd(r)], tI(r), Ifcqp #tQp]) dmlp + Itelp,
ifip=-# (ts [lp]I) tbem0else p + 1, ts))

spmn(Ietd -(nposgs)) Elp) - (Inoo~s))p - I Iin
Buf(p +d, t, 1l r [Ad, rEd + 1I.], (lp +1, cp), as))

Next, sqa is mechanically "unfolded" on the righthand side.

mlakwbuf' -, Buf'(O, (10, flIOS[ D)

Buf (p+ 1, a, If cp - #(aa1l)tbmlp + Iese lp, ntos~s))
It M1.6(P)fBuf(p, a,1, r, (Ip,cp), Lx))) 4-
t[p - 1

!DIU.U(5Pafl(Euf(p,t,L,r, (Ip,cp),us))) 4-
Buf'(v*((lnOsts))[lp]-(nos~as))[p- 1]), a, Ip.4 ,nf~oe~s))

Since, the character position within the current line, cp, will no longer be computed,
all refernce to it must be transformed into an expresion that uses data that will still be
computed (ie.. p, r, l. and nlosu)). The expression cp - #Qts ( lp I is trnsormed into
nIP(9 EP]) which States that checking to Wee if the chacter position is at the end of a line
IS equivalent to chcking if the curret chaacter ns a newline. (nne details are omitted for
the sake of brevity.) As in the previous derivation, the guiding motivation is to manipulate
the definition so that all instances of the old repesentation appear in the context of the new

Buf (p+l, t, ffflp(t~pJ)dme.p+leep, nos~q))

I(p -11
k3(-laspn(uf(p,ta'l,r, QI,, ci), as))) 4-
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Introduce, a let abstration.

makebuf' 4- Buf'(o, ,~lO(D

ilepisi u~nps f, i0, fl~O6s) In
BUf'(p +1, t, ffNI(p) he.1+l1 eie , ni)

Buf'(p +(nCL]l - M i i- 11), t, + 1, no)

Introduce, an abstraction boundary. x = Rep(Abs(x)). Her, Buf' is used for introducing

the abstraction boundary and Rep' for uncovering the representation.

Makebuf' * Buf'(O, ( ], 0, no~os(C))

lup,t,i,Xl- Rep'(Buf'(p, t, 1,, nlOs~s)))lu
Buf'(p41, a, ffnlp(tp)thel+lduui, ni)

Idut,i, at RWp(Bu f (p, t, ip, noSts))) i

Id p, t, , id- Rep(Buf'(p, t, ip, flnoSts))) i
Buf'(p + (d iCI - W (1- 11), t, + 1, iii)

Mecanialy "fold" span on the righthiand side.

makebuf' 4- Buf'(O, [ , 0,lnpos([D)

tP, t, i, l = Rep(sPmn~b)) i
Buf'(p +1, t, ff lnQP]tV)thdm i+1Iebuui, l)

htp,a,L,xni- Rep(upmflb)) I
t(p- 1]

!3UljM(P WKBuf (p,a, I,rF,(Ip, cp), U))) 4-
ltp, t,L,id - Rep(upmnb))lin

Buf'(p +(nliJt - nl[Si- 1J), a, + 1, no)

Since al instances of the old reprs -qentation appear in the context of the new representation,
apsa(b) is renamed to bl.

muiwbuf' 4- suf'(O, [Cl, 0, flIOe([D)

Id p, 1, ,i- Rep(b') le
Buf'(p + , t, it n~p)thdm i+1IduLi, W)
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show-cha(b') 4-

le p, t, i, W- Rop(b) I

Buf'(p+(Xl[LI -li- I]), I, i+1, RI)

As an alterative, pattern ame used on the Iefthand sde to des~uctur the datatype instead
of using Rep expictly on the rightband sde.

rnakbjf 4- Buf'(,[U,0,[1]D
rnove-ht(Buf'(p,t,i,nl)) 4- Buf'(p+1, :, ifnfl~Qp])them*+1e, ni)
show-chaf(BUf'(p,,i,nO) 4- tEp- 13

In the new ipentiothe computation is shiftd away from next-line so that next-line
simply looks up the position of the newlines surronding the curret line directy. The
tans formation allows owe to get from the prototyperepesentation to this one in a controlled
manner.



Appendix E

Integrating Components-Proofs

This section contains the proos for Section 6.1.4. Each section starts with an aggregate
definition and shows the details about how the definition satisfies the axioms comprising
the aggregate -peciflcation.

ad=o pfMJ2(OP(agg)) - OprJ(agg))
Maxim projgg) M* Proj(ag) WWro2 OP(agg)) map- PMO(P(agg))
ad=o proj(agg) Mao' poj2(agg) W plhI(Op(agg)) WalpOM2 OP(agg))
ad=o prOj.(agg) Map proj(agg) prcj,(Op(agg)) P , O~p(agg))

Productof theRep eumntatlowi

Here is a simple definition for the aggregate where the data structure is the product of the
component representations

WhOj(gCl, C2, CO) 4- C2
p~j'z) Agg(Mah. 1 (x), z, Mqlap 3(x))

op(agg) 4- Pmjj1 (0P2(pOj(agg)))
-d

We need to ecsime that the above definition satisfies the axiomis that define the aggregate.

*Axiom 1. The first axiom holds because we derived the new definition from it
Howver we must justif the assumiptions made during the transomto steps
about the inverse projection being injective anid a left inverse of the projection. In so
doing, a definition for the invers projection is obtained.
7b show that projil (prohj&)) = x, the, proof goes as folows:

projj 1Q(poJA"gCj,C2,C3)) I Agg(CjC2,C3

Furs unfold, prolz,
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prW 1(C2) I Agg(cl, C2, C)

and then unfold projj'.

Agg(Mf8p- 1 (c2), C2, map,- 3(C2)) -7 Agg(Cl, C2, CO)

MWe components awe consistent by definition, so that cl End C3 canl be expressed in
trS Of C2, that is, ci = maNp- 1 (c2) and C3 = makp%- 3(C2).

Agg(cl, C2, C3), =Agg(CI Pc2, CO

* Axiom 2. Start with the axiom,

proj2(agg) map proj 1(agg) =* prOV(op(agg)) map PrOj 1(OP(agg))

and prove the consequent,

proj 2(opagg)) rnap projl(op(agg))

by first unfolding the definition of op.

prJrOW(OP2(roh(agg)))) Ma~ rOj1(prqjj 1(Ojh(r42(agg))))

Then simplify, using: proj(pmE~(x)) = x and projj(projj'(x)) = maP2 -1(X).

OP2(proj(agg)) MaPjI maph1 (op2(prqj(agg)))

Factor out the common subexpression to make it more obvious.

X Map Map 1 (i)WbMXm opIproj2(agg))

This is true by definition of =ap4.

9 Axiom 3. Showing that the third axiom holds is similar to the proof for Axiom 2.

* Axiom 4.

Start with the aim

proj(agg) mUIP prIj(agig) -* ProJ,(Op(agg)) ffmPI Prqj(OP(agg))

and prove the consequent,

Proj3(Wpagg)) M* POI(op(ag))
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by first unfolding op.

proj3 (rojj(hOp2(r 2(agq)))) map pr(pojIQWW(op2pOj(agg))))

Then fold the definitions of =Np2 .3 mi mcP2-.4

Map- 3(p 2(ro 2(agg))) map rnaP2..4 (hOp2 rJ 2(agg)))

and factor out the common subexpression.

Map-(X) maPI MapI(X) whereX = 0P2(pOj2 agg))

Substitute mnap3-1 (map-. 3(x)) for maep2-1.(x),

MaP2 -3(X) Mapj m3 1(mv 3 )) wee:= 0po(agg))

and factor out the common subexpression.

y map maP3,1(y)wwee:= P2(proj2(agg)) ady = maP2 3(X)

T'his is true by definition of map.

Reimple-ntig the Operations

Given a definition of the operation in one component, we derive alternative iplementations
for the other components using data transform definitions and then define the aggregate
operation in terms of these component operations.

Give. OP2, mapj.. flWP3 -2

Iwo

OP(Agg(cI,C2,C3)) 4- Ag(c'j, 4, C;)
wher C' = P1(ci)

and 4 = OP1(C2)
=Am C; 0P3(C3)

end

9 Aiom)1. Startwith the axiomi,

prOJ2(0p(Aqjg(C1 , C2,C))) = Op(PO(%(Agg(Ci,C2, Cs))

and take te second project=o on the righthad side.
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PrOJ2OP(Agg(C1,CIc3))) = Oh(C2)

Unfold op and take the second projection on the lefthand side.

0P( 2(c) - OP2(C2)

9 Axiomn2. Start with the axiom:

prOj1(Agg(c,*Ci Ci)) nMaPJ Pr~j1(Agg(C1,c2, C3)) =C
Pr0J2(P(AgJg(Ci ,C2, C3))) Map proJ(op(Agg(C1 , C, cs)))

To prove the consequent,

Pr~j2(OP(A9g(CI ,C2, C3))) "MaP2 proj(OpAgg(cJ, C2, C3)))

define an impeetton of the relation as a compatibility map that maps one com-

ponent into the other, that is: x maps y =-y = Map,1(k).

ProJ1(op(A99(ci ,C2, Cs)))) - MaP2 1(proj 2(OP(Agg(c 1 cic3))))

Unfold op and take the projection.

Since the righthand side matches the body of OPi, fold the (expression procedure)
definition of opl,

and then substitute c, for mqap, 1 (c2) which is given by the antecedent.

op1(C1 ) - aPI(ci)

e Axiom 3. Start with the, axiom:

prOj(Agg(cI,C2,Ci)) Mq2I prOj2 agq(C,c2,C,))
prO1h(0p(Agq(c ,C2, C3))) "I prOJ2(op(Agg(ci ,c2,Cs)))

As above, to prove the consequent,

Pr(p(aqgM(C1 , 3))) M*p prOj2(oXAgg(cI,C2, Ci)))
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defin the relation in terms of a compatibility map; that is:
X raMP Y= y ma=3 ... (X).

proj2(op(Agg(c 1 , ,C3))) maC2_ C 2(poh(oP(Ag(c, C2, C3))))

Unfold op and take the projection.

op2(c2) 7 fp_ 2(OP3(C3))

Since the righthand side matches the definition of op3, unfold the (expression proce-
dure) definition of op3,

oP2(C2) = Op2(rnap3. 2(C3))

and then substitute c2 for map3_.2 (c3 ) which is given by the antecedent.

op2(c2) = oP2(c2)

SAxiom 4.

Start with the axiom:

pro(agg) maPi projl(agg) =* proh (O(agg)) mapI proj(op(agg))

To prove the consequent,

proj3(Op(agg)) mapi proj1(op(agg))

first define the relation in terms of a compatibility map:
x nalp y = y = maN.(rnaP- 2 (x)).

proj(Op(agg)) ? mV. 8(map_2(Proj 3(op(agg))))

Unfold op and take the projection.

opI(cI) ? rnal 1_QTalp_ 2(Op3 (c3)))

Then unfold the (expression procedure) definition of 0p3,

op(c) ? maP_.(OP3(mapI3 2(c3)))

and fold the (expression procedure) definition of opl.

op(cO) - opJ(maPJ_,(rna3.2(C3)))

Simplify, using: cI = map .(map 3 _.2(c3)).

OPI(cI) - oap(c)
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Showing 'fransitivity

Here we relax the restriction that requires any two components to be directly connected
by a compatibility map, to simply requiring a connection, possibly through some numbe
Of intreie components. In all of the cae, the proof for Axiom 1 in this section is
identical to the proof for Axiom 1 in the preceding section. We focus on Axiom 3 since it
is the interesting case where the consistency relation cannot be defined in terms of a single

copaiilt map, and so an intermediate component must be used. The proofs for the
other axioms are simila to the ones in the preceding section since there are direct translation
functions in these cases.

Cane L

GIvem opl, map2 1, mapqh_

oP1 (Map1.. (C2)) 4- Map...(0P2(C2))

0I(Agg(Cl,C2,C3)) '4- Agg(C'I, c, C;)
Vwhec =' OPI(CI)

and c4 = P2(C2)
MnW 42 0P3(C3)

end

Unlike the proof for Axiom 3 in the preceding section, to prove the consequent,

Proj3(op(Agg~ci, ,2, c3))) ma* PrOj2 (pgg~ci, C2, C3))

we defie t relation in ters of the composition of the compatibility maps. The compo-
. azs are '"relaC if C2 can be translated into C3 using the composition of the compatibility
maps.

PrOj 3(OP0(gC,C2, C3))) -? M8.. 3(napI(proj2 (op(Agg(c1 ,C2, c)))))

Unfold op and take the rojection.

aPj(Ci) -Mh.M8h(jC*)

Fold the definition of opl,

and then fold the definition of op3.

o% )- oP,(rmqh.,r%_,2 .C 2 )))

Simplify Using: C3 M~P1-. (Map2-.(C 2)) from the antecedent.

011i(CS) O P3(Cs)
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Case 2. Similar to Case 1.

Case 3.

Given: oP2, malh- 1, ma3._1

opI(malh_(c 2)) -- map2 .1(op2(c2))mlN...(oP3(c3)) 4-- opI(malN_1(c3))

in
Op(Agg(cI, C2, C3)) -= Agg(c , C , C)

wherec = oP1(ci)
ad c2 = oP2(c2)
and c = Op3(c3)

end

To prove that this definition satisfies the axioms, we need only reconsider the proof for
Axiom 3 (since the others remain the same). Unlike the proof for Axiom 3 in the preceding
section, to prove the consequent,

prOb(OP(Agg(cl, C2, C3))) map] prOj(op(Agg(cI, c2, C3)))

we define the relation in terms of a pair of compatibility maps. The components are "related"
if they both can be translated into some common form.

mal: _(proj 2(op(Agg(c1 , C2,C3)))) = maP3_(Oj3 (OP(Agg(c,,C2,C3))))

Unfold op and take the projection.

map2. 1 (op2(c2)) = mal3.(OP3(C3))

Fold the definition of op, on the lefthand side, and unfold the definition of op 3 on the
righthand side.

opI(mfal _l(c2) ) ? OlI(map3_1(c3))

Simplify, using: map2.. (c 2) = map3... (c 3) from the antecedent.

Op1(map. 1 (c3)) - op,(ma;j_(c 3))



168 Appendix E. Integrating Components-Proofs

Case 4.

Given: op2 , map1...2, maPI 3
local

mfaPI..2(oPI(Cl)) 'C= Ol2(ma4R_2(CI))
op3(maPI_3(Cl)) 'C= maPx.3(oP&Oc)

in
oP(Agg(cl,c2, C3)) 4= Agg(c', c4, c;)

where c' = op1(c)
and c = oP2(c2)
and = 0p3(c3)

end

As for case 3, we need only consider the proof for Axiom 3.

proj(op(Agg(cl, C2, C3))) mapi prOj2(Op(Agg(c, c2, C3)))

We define the relation in terms of some intermediate,

3X. 11ap1_ 2(x) = prOj2(Op(Agg(cI, c2, CD))) AND map_ 3(x) = proj(op(Agg(cI, C2, C3)))

and take the appropriate projections.

3X. mal_.4 (x) = OPz(c2) AND map._ 3(x) - op3(c3)

The components ar consistent bydefinition, that is: map1 _.,2(c1 ) = C2 and map., 3(c) = C3.
The antecedent states that the cI component is indeed the same in each equation.

3 . mah_2(z) = Olh(maPl 2 (c1 )) AND maPI_ 3(x) = oP3(Map_ 3(cl))

Fold the body of op, and unfold the definition of oP 3.

3Z. map- 2 ((X) = ma . 2(op(c) AND mapI 3 (X) = map 3 (op(cO)

This istrue when x is equal to op,(cl).

Incrementally building the aggregate.

This section demonstrates how the incremental definition shown below satisfies the defini-
tion presented in Figure 6.8. This approach is a verification presentation where the new
definition is "invented" and then the equivalence between the old and new definitions is
shown using the usual symbol manipulations of fold and unfold.

Give*op., maip_, map _,
local

mfn(cWz) 4= Agg,(c, C2) where CI - map2_ 1(c 2 )
UflSPN)(gg(ci, C2, CO) 4- AggA{ CI I Map3- 1 (C3) 1, C2)

in
op,(sBnC2)) 4 Span(op2(c2))
UffVpan(Op(A99(CI,C2,C3))) 4= Opj(Unspfn(A9g(c1 , c2, C)))

end
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Mwe following insight is useful in c im up wvith the aWqat deinsiut In the
prvosdefinition of op, we. saw that it containe the following -uexx1 uiam

We can transform a pair of functions, each retiuning a singl value, int a single function It-
turning apair of values. That is, transorm c' = opj(cj),0p2 (c2) into cl c - pgjc, c2).
Notice that the components are now computed together (in a single function), so dthat for
example, C2 is available to compute the new value of c I, which the designe might use if it
increass efficiency. We can then repeat the process and combine t result with the third
component C3.

Her we start with t new definition and follow a sequence of trasfoormations that
demnstatehow it is equivalent to the old one (in Fig=r 6.8).

unspan(op(Agg(c1 , C2, C3))) 4- opj(ufspafl(Agg(Cj, C2, COD)

Unfold unspan on the righthand side.

UnsPan(op(Agg(C1 ,C2,C3))) 4-- OP(Agg 5.({ cI jMap,.. 1(C3))1'C2))

The components are consistent; that is: ci = Map-. 1 (c3) and cl = map2 . (C2).

UrqsaflOP(Agg(c, ,C2, C3))) 4- 0p1(Agg, 1 cl I Map2- 1(c2) ) , C2))

Fold span on fth righthand side,
unspan(op(Agg(c1 , C2, C3))) 4-- Opi(span(C2))

unfold op,

uMlpeflOP(Agg(C1 , C2, COD) 4- Agg8<Mqph-.(OP2(C2)), OP2(C2))

and then fold t definition of op1 .

UnSPanOP(Ag(J9C 1 , C2, c))) '4- Agg9(0P(Mapj(c2)), OP2(C2))

The components are consistent; that is: CI = map3 .(C3) and cl = map2._1 (C2 ).

unMpan(OP(Agg(c 1 ,C2, C3))) 4- Aggj(0P1 (MaP3.(c3)), OP2(C2))

Introducethe equality, I{x I x. If xis v"ithen both alternatives are valid ways to
compute the value.

unSpar(OP(Agg(C,C 2,C,))) AMg1( 0P1(mP 3...1 3)) I OPI(Map3- 1(c3)) },0P2(C2))

The components an consistent; that is: CI = MaP3-1.(C 3 ).

UnsPan(WpAqg(C1,C2,C3))) 4- Agg.({ 0P1(C1) I op1 (map,~1 (C3)) },op2 (c2))

Fold the definition of %,3

UrnOP(Agg(c,C 2 ,C,))) 4-- Agg,<{ 0PI(CI) I MMaP 3. 1(op&( 3)) I,Olh(C2))

fold unspan
unspanOp(Agg(c , C2, Cg))) 4- UflParlAgg ( cj), op(C 2), OP3(C3)))

and then choose a solution.

OP(Agg(c , C2, C3)) 4- Agg(OP1(Ci),OP 2(C2), Op3(Cg))


