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FINAL REPORT

by

Dr. Peter F. Stiller

22 April 1992

§1. Introduction.

This report summarizes the results obtained under U.S. Army Research Office contract

DAAL03-SS-K-0019 entitled "Algebro- Geometric and Differential Geometric Methods in

Solid Geometric Modeling". The principal investigator worked closely throughout the

period of performance with researchers at several Army Labs, especially the U.S. Army

Ballistic Research Lab. Many of our results have been incorporated into software and are

currently in use at these facilities. The principal investigator would like to express his

gratitude to a number of researchers at BRL, notably Mr. Edwin 0. Davisson and Dr.

Paul Deitz, for their support of this research.

As a new and rapidly expanding branch of mathematics, the field of geometric mod-

eling is playing a significant role in the development of improved computer graphics. an-

imation, simulation, and computer assisted design and manufacturing (Mortenson [24]).

Increasingly, powerful results and techniques from traditional mathematical disciplines

such as differential geometry and/or algebraic geometry are being brought to bear on

questions in geometric modeling. Conversely this rich new source of problems is providing

new directions and fueling progress in these traditional areas.

Our research sought to address several problems in geometric computation that re-

quired sophisticated and powerful techniques from algebraic and differential geometry. Our

investigations also included a search for algorithms to effectively implement theoretical re-

sults in algebraic geometry. Such algorithms are now a part of what has become known as

computational algebraic geometry.

This research originally grew out of the principal investigator's experience at the

Ballistic Research Laboratory as a participant in the Army's Summer Faculty Research

and Engineering Program. A number of problem areas of mutual interest were identified

and formed the basis of our original proposal. Over time the research moved into other

areas and the original problem areas generated new questions. These topics and a summary

of our results appear below.
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§2. Technical Report.

§2.1. Problems Studied and Summary of Results.

The specific questions that the principal investigator considered during the course of

this research fell into three categories:

1. Differential geometric questions related to computational methods for determining

curvature, surface integration techniques, and the tracking of geodesics on surfaces

modeled in various ways.

2. Methods for the rapid conversion of a constructive solid geometric model to a bound-

ary representation model, with special attention being paid to the classification and/or

explicit determination of surface intersections. This required the application of results

and techniques from algebraic geometry and raised a number of issues in computa-

tional algebraic geometry.

3. Surface modeling schemes based on rational surface patches.

We treat these sequentially below.

1) The extraction of differential geometric information from both CSG (constructive solid

geometric) models and surface representations (most notably, non-uniform rational B-

splines) and the use of that information in analysis (e.g. electro-magnetic signatures, solid

mechanics, computational fluid dynamics, etc.) has become crucial to a new generation of

computational applications.

Recall that the primary approach to solid geometric modeling at BRL involves con-

structive solid geometry as opposed to boundary representations. Surfaces and solids are

built up from a selected set of primitives which are combined using standard Boolean oper-

ations (intersection, union, and complementation). The resulting model is interrogated by

ray-tracing. In collaboration with Edwin 0. Davisson of the Ballistic Research Laboratory,

the principal investigator developed the computational methods for the extraction of met-

ric and second order information from BRL's CSG and B-spline models. This is detailed

in a BRL technical report, "Curvature and Principal Direction Calculations for MGED

Primitives using RT". A copy of the abstract and introduction appears in the appendix.

Among the specific results obtained, we were able to:
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1) devise a method for computing curvatures and principal directions that is less

solid specific and which applies to the broadest possible class of surfaces;

2) devise fast and accurate surface integration schemes which make use of curvature

information.

To understand 2), recall that typical surface integration schemes often involve facetiza-

tion of the surface. This amounts to using the best linear approximation to the surface

when forming the appropriate Riemann sums. Since the curvature reflects a quadratic

approximation, a surface integration scheme based on ray-tracing which makes use of the

curvature information computed in 1) provides faster and more accurate integration.

We also investigated accurate methods for tracking geodesics on a modeled surface

(primitive or spline based). This has application to computing efficient tool paths for

numerically controlled milling. Our investigations centered on the difficult problem of

finding geodesics on sufficiently smooth surfaces locally defined by a polynomial

f(x, Y, z) = 0

or on spline modeled surfaces. When a parametric expression is available for the surface

locally (e.g. in the spline case) one attempts to numerically solve the system of differential

equations which characterize the geodesics. The accuracy of such an approach is the critical

issue. We devised algorithms to carry out this procedure, but have yet to implement them.

In the later stages of our research, we choose to focus on the geometric aspects of

partial differential equations, particularly adaptive geometry for optimization of physical

properties (geometric optimization e.g. minimum radar cross-section). Here the geometric

modeling scheme must be coupled and adapted to the partial differential equations and

the analysis.

We concentrated on adaptive grid generation and geometric deformation. Current

emphasis in adaptive grids, for use with numerical methods to solve partial differential

equations, is on elliptic solvers which numerically solve Laplace's or Poisson's equation,

given boundary data, in a region. This leads to a nice set of mutually orthogonal grid

curves. Unfortunately, the method is computationally intensive and not well suited to a

situation where it is necessary to adapt the grid - concentrating grid points in regions where
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important physical parameters are rapidly changing and thinning them out elsewhere to

increase the accuracy and resolution of the numerical method without loss of computational

efficiency. Problems also occur when it becomes important for the ambient geometry to

deform in order to find an optimum shape with respect to some physical parameter.

An alternative method is to use B-spline parametrizations to provide grids. One

previous drawback of this method, when griding a curved surface or segmenting a curve,

was that when you moved the grid points on the surface or along the curve, and then

refitted the spline, you destroyed the original surface or curve. We show that this problem

can be overcome by "refitting parameter space" (usually [0, 1]"), leaving the original fit

alone. The refitting map is given by its graph - an n dimensional B-spline surface in [0, 1]".

It then becomes necessary to characterize all B-spline maps from [0, 1]" to [0, 1]n which are

1-1 onto, i.e. what are necessary and sufficient conditions on the control net in the target

[0, 11n so as to yield a diffeomorphism of [0, 1]". We were able to prove a theorem in the one

dimensional case which gives these conditions - surprisingly the control net need not be

monotonic. This result leads to an identifiable space of "grid deformations" on which we

can do analysis. For example, mimicking techniques from the theory of harmonic maps, we

can produce, via a "principle of least action/minimal energy", a coordinate system (grid)

which reduces the rate of change per grid step of some physical quantity. In essence we

achieve a kind of finite-element approach to adaptive grids. Similar techniques can be used

to actually deform geometry in response to a physical parameter.

Along similar lines, and for application to the above problem, the principal inves-

tigator examined a newly developed technique in non-linear optimization (the so-called

equation-based technique). This technique has other interesting applications. One, dis-

cussed with Mr. John Grosch of BRL, is to ballistic modeling to optimize gun and shell

design. These techniques were designed to apply to complex dynamical system where con-

vergence to a solution must be done concurrent with the optimization in order to stay

within computational limits.

2) Methods for rapid conversion from a CSG modeling system to a boundary representa-

tion require that special attention be paid to the classification and determination of surface

intersections. This remains a difficult problem in geometric modeling. A new type of data
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structure, the so-called non-manifold representation (Weiler [32]) is an attempt to combine

in one computational paradigm the best features of both CSG systems and surface repre-

sentation schemes. We investigated this approach and employed techniques from algebraic

geometry (intersection theory) to attack problems connected with computationally inter-

secting geometric objects in several dimensions. Higher dimensional intersection can play

an important role in visualization for scientific (e.g. CFD) computation. We also success-

fully exploited Gr6ber basis techniques to speed NURB based intersection algorithms. A

preliminary version of our algorithm for intersections has been coded and is undergoing

testing. We necessarily were forced to focus on robustness in geometric computation, par-

ticularly in regard to our intersection algorithms. Details appear in our paper "Minimal

Convex Hulls of Algebraic Varieties with Application to Intersections in Computational

Geometry", an abstract of which is attached.

We also investigated contouring algorithms for the fast determination of level curves

and surfaces. These curves and surfaces are described locally by equations

for f(z,y,z)=O

where f is a multilinear, quadratic, or cubic spline interpolant. The goal is to construct

a quick polygonal or facetized approximation to the level set. This requires a complete

classification of the topological types of the curve or surface elements that can occur.

This has been done. One then needs to insure that as one moves from patch to patch

the approximations mesh on the boundary to give a complete description. Some details

remain in the higher degree (quadratic and cubic cases), but no problems are anticipated.

The final step will be coding the algorithm and testing it.

As mentioned, we were led to consider various aspects of computational algebraic ge-

ometry. We proved a nice result that relates volumes in certain "Grassmannians" to surface

areas of modeled solids. The result has application to ray-tracing and computing surface

areas via ray tracing. An abstract of our paper which presents this result, "Integral Geom-

etry, Grassmannians, and Ray-Tracing", is attached. In addition we investigated algebraic

and symbolic tools for the general analysis of solutions to non-linear systems of polyno-

mial equations. Our point of departure was the Generalized Characteristic Polynomial
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introduced by Canny, extending the so-called MacCauley and U-resultants. We developed

some additional new perturbation and projection techniques and expect to publish these

results.

Finally our work in this area led into some theoretical questions in approximation

theory. These questions deal with spaces of splines (finite elements). Consider a surface

modeled in one of the above schemes. If we triangulate the surface and study the space

of splines of degree d and smoothness r on the surface relative to this triangulation, we

come up against the problem of determining the dimension of this space and a basis for

it. The principal investigator has found that these spaces are related to the cohomology

of certain vector bundles - well studied in algebraic geometry. A paper, "Splines and

Algebraic Geometry", detailing this relationship and its import for finite element analysis

has been submitted.

3) Surface modeling schemes based on rational surfaces (surfaces that can be parameterized

by rational functions, i.e. quotients of polynomials) can combine some of the best features

of the CSG and surface representation schemes. Unfortunately, problems of degeneration

(surface singularities) can intrude. Understanding the nature of those singularities and

how to both control and exploit their presence in the modeling environment is the central

problem.

Among the specific questions we considered were:

1. the problem of locally approximating a given curve or surface by a rational curve or

surface of a specified degree,

2. the problem of interpolating a "reasonable" set of points in space by passing a rational

surface of some specified degree through them.

The main difficulty in solving these problems is that while curves defined by polyno-

mials of degree 1 and 2 are always rational, curves of degree > 3 can only be rational if

they possess singularities (from the viewpoint of complex projective geometry). Moreover.

the generic curve of degree d > 3 is non-singular, so we are dealing with a "small" set of

curves when we limit ourselves to rational curves. This creates problems when we attempt

to interpolate. For example, we can pass a plane cubic f(x, y) = 0 through any nine
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points. To see this, recall that such a polynomial involves 10 coefficients, and therefore the

space of cubic curves is a 9-dimensional real projective space. Forcing the curve through

a point imposes at most one linear condition. However, the space of rational cubics is of

lower dimension and it follows that unless the nine points are in special position, we will

be unable to pass a rational cubic through them.

This leads to the following questions: Fixing a degree d, what is the maximum number

of points we can take, and still be sure that we can pass a rational curve of degree d through

them? How unique is that rational curve? How is the answer changed if we replace the

condition that the curve pass through the set of points by the condition that it pass

through certain points with prescribed tangent directions. We made some progress on

these questions which are clearly tied to some very deep problems in algebraic geometry.

For surfaces the situation is even more complex. Our paper "On the Arithmetic

and Geometry of Elliptic Surfaces" treats some theoretical aspects of the class of so-called

rational elliptic surfaces. One particular problem with surfaces is that the locus of singular

points can contain entire curves. As these singularities play a significant role in surface

geometry, their complexity is an obstacle to modeling. As yet, no satisfactory way has been

found to exert sufficient control on the singularities to assure that they do not disrupt our

attempt to build a smooth surface out of rational pieces.

Analysis of surface degeneration is the key to understanding how singularities play

a central role in the modeling scheme. Because of the complexity involved, symbolic

calculation was required to attack some of the questions concerning the classification of

specific types of degenerations and the real algebraic geometry of the available rational

curves and surfaces which we can use as the building blocks in our modeling scheme.

Complete classification even in restricted cases seems out of reach.

On the positive side, surfaces of degree < 3 are rational so that, with the exception of

the torus and the truncated general cone which are of degree four, one sees immediately

that the primitive solids in use at BRL are rational surfaces. In fact we have shown that

in the case of BRL's CSG modeling scheme, all of the primitive surfaces are rational (this

includes the two quartic surfaces mentioned above), so that exact rational representation

is possible.
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In a side note, we remark that the line integrals along rational curves,

fr(x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz

where f, g, h are polynomials, reduce to the form

I p(t) .t

,q(t)

where p, q are polynomials and that such integrals can be integrated in terms of elementary

functions. An analogous statement is true for surface integrals. Thus approximation by

rational curves and surfaces can serve as a basis for a line or surface integration scheme.

Finally, we investigated algebraic and symbolic tools for the analysis of solutions to

non-linear systems of polynomial equations. Our point of departure was the Generalized

Characteristic Polynomial introduced by Canny, extending the so-called MacCauley and

U-resultants. We developed some new perturbation and projection techniques and expect

to publish our results shortly.

4) During the course of this research we became interested in the problem of image recog-

nition using range data. Simulated data can easily be obtained by ray-tracing geometric

models of the various targets. The necessary geometric and statistical studies can then be

performed to test proposed algorithms. The principal investigator has started to develop

algorithms based on wavelets for use in image recognition problems of this sort.
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§2.2. List of Publications and Technical Reports

The following is a list of papers and technical reports produced during this research

effort. Additional related Army technical reports produced outside of this contract, but

which made use of the results of this research, are also listed.

Papers

1) P. Stiller, -'The Arithmetic and Geometry of Elliptic Surfaces," Contemporary Math.,

Amer. Math. Soc. (1992), 13 pages, to appear.

2) P. Stiller, "'Splines and Algebraic Geometry," submitted.

3) P. Stiller, "Kloosterman Polynomials and Kloosterman Sums," submitted.

4) P. Stiller, 'Minimal Convex Hulls of Algebraic Varieties with Application to Intersec-

tion to Computational Geometry," preprint to be submitted.

5) E. Davisson and P. Stiller, "'Integral Geometry. Grassmannians, and Ray-Tracing,"

preprint to be submitted.

Technical Reports

1) E. Davisson and P. Stiller, "Curvature and Principal Direction Calculations for MGED

Primitives using RT," U. S. Army Ballistic Research Laboratory Technical Report.

Related Technical Reports:

1) P. Stiller. "Automatic Target Recognition and 3D Image Generation," Technical Re-

port for the Center for Night Vision and Electro-Optics, Ft. Belvoir.

2) P. Stiller, "Splines and Spline Wavelets for T.MR," Technical Report to the Instru-

mentation Directorate, U. S. Army White Sands Missile Range.

For additional details see the abstracts in the appendix.
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§2.3. Participating Scientific Personnel and Laboratory Contacts

The principal investigator, Dr. Peter Stiller, and one of his graduate students, Mr.

W. Lau, were partially supported by contract funds during the course of this research.

Numerious trips were made to discuss the work with researchers at various Army

Labs. Contacts at the U.S. Army Ballistic Research Lab include:

Mr. Edwin Davisson: gec..ietric modelling, image recognition

Dr. Brinton Cooper: algebraic geometry, error correcting codes

Mr. John Grosch: non-linear optimization, geometric optimization

Mr. Phillip Dykstra: visualization in computation fluid dynamics, geometry of flows

Dr. Kurt Fickie: scientific visualization, wavelets

Dr. Tim Rohaly: scientific visualization, wavelets

The principal investigator also had contacts (as part of other research projects) with in-

dividuals at the U.S. Army Center for Night Vision and Electro-Optics at Ft. Belvoir and

with the U.S. Army Concepts Analysis Agency. The former in regard to differential ge-

ometric aspects of target recognition and the latter in regard to the use of differential

geometry, dynamical systems, and stochastic differential equations in combat modeling. A

paper "Applications of Differential Geometry to Selected Problems in Combat Analysis"

has appeared under CAA cover, and a technical report "Automatic Target Recognition and

3D Image Generation" was delivered to the Center for Night Vision and Electro-Optics.

Recently, the principal investigator was in contact with Mr. Elwin Nunn and Mr. Robert

Voss at the Instrumentation Directorate at White Sands Missile Range and submitted a

report to them on "Spline Methods for Target Motion Resolution". Finally, in November

1991, the principal investigator visited the Army High Performance Computing Research

Center in Minneapolis as a Research Fellow.
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§4. Appendix: Publications and Abstracts

The following is a list of papers and technical reports produced during this research

effort. Abstracts of these items are attached below.

Papers

1) P. Stiller, "The Arithmetic and Geometry of Elliptic Surfaces," Contemporary Math.,

Amer. Math. Soc. (1992), 13 pages, to appear.

2) P. Stiller, "Splines and Algebraic Geometry," submitted.

3) P. Stiller, "Kloosterman Polynomials and Kloosterman Sums," submitted.

4) P. Stiller, "Minimal Convex Hulls of Algebraic Varieties with Application to Intersec-

tion to Computational Geometry," preprint to be submitted.

5) E. Davisson and P. Stiller, "Integral Geometry, Grassmannians, and Ray-Tracing,"

preprint to be submitted.

Technical Reports

1) E. Davisson and P. Stiller, "Curvature and Principal Direction Calculations for MGED

Primitives using RT," U. S. Army Ballistic Research Laboratory Technical Report.
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The Arithmetic and

Geometry of Elliptic Surfaces

PETER F. STILLER

ABSTRACT. We survey some aspects of the theory of eliptic surfaces and
give some results aimed at determining the Picard number of such a sur-
face. For the surfaces considered, this will be equivalent to determining
the Mordeil-Weil rank of an elliptic curve defined over & function field in
one variable. An interesting conjecture concerning Galois actions on the
relative de Rharm cohomology of elliptic surfaces is discussed.

This paper focuses on an important class of algebraic surfaces called elliptic
surfaces. The results while geometric in character are arithmetic at heart, and
for that reason we devote a fair portion of our discussion to those definitions and
facts that make the arithmetic clear. Later in the paper, we will explain some
recent results and conjectures. This is a preliminary version, the detailed version
will appear elsewhere.

There are a number of natural routes leading to the definition of the class
of eilliptic surfaces. Let E denote a compact connected complex manifold with
dimc E = 2.

THEOREM 1. (Siegel) The field of meromorphic functions on E has transcen.
dence degree < 2 over C, i.e. the field of meromorphic functions is:

1) C constant functions
2) a finite separable extension of C(z)
3) a finite separable extension of C(z, y). 03

Case 3) is precisely the set of algebraic surfaces, i.e. those admitting an
embedding into PJ'. Case 2) was studied by Kodaira, leading to a series of three
papers:

1991 Mfthernstics Subject Clauification. 14G10.
The detailed version of this paper will be submitted for publication elsewhere.

@0000 Amencas Matbsmmasticl Society
0000-0000/00 11.00 + 1.25 per page
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Splines and Algebraic Geometry

by
Dr. Peter F. Stiller*

Texas A&M University

Abstract: In this paper we investigate a relationship that exists between certain spaces of
splines and the cohomology of certain vector bundles and sheaves on P'. We explain the
upper-semi continuity of the dimension of certain varying spaces of splines and we give
cohomologically based estimates for the generic dimension of such spaces.

§1. Introduction.

Let X C Rd be a finite polyhedron which we assume is connected, and let A be a fixed

triangulation of X. Let {0, a2,... ,0'} C A be the set of distinct d-dimensional simpliCes

in A. We make the following assumptions:

r

1) X = U a, so that X is the union of
i=1

its d-dimensional simplices,

2) for every i 5 j, oi n aj = 0 or aij where aij E A

is a (d - 1)-dimensional simplex.

It is easy to see that X has the topological type of a d-manifold with boundary. In

particular, the boundary OX has the topological type of a compact (d - 1)-manifold (not

necessarily connected).

Our principal object of study will be the finite dimensional vector space Sr (A) of

piecewise polynomial functions of degree < m on X, which possess continuous derivative.

to order r. Specifically, f E S'(A) if and only if

1) f E Cr(X)

and

2) f1,,, = pi

* Partially supported by U.S. Army Research Office Grant DAAL03-88-K-0019.
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On Kloosterman Polynomials and Kloosterman Sums*

Peter F. Stiller

Abstract: This paper explores some properties of Kloosterman polynomials, including

symmetry properties and coefficient estimates. Their relationship with Kloosterman sums

and to questions of the distinctness of Kloosterman sums is examined.

Let p be a prime and Fq be a finite field with q = p1 elements. Consider a non-trivial

additive character 0,: Fq -- Vi, say x i-, e2 7r i r(r)/p where Tr = Tr.I/F is the trace.

Recall the definition of the Kloosterman sums

Kl(q, a) = Z: -i(±
irF' X +'z EiFq

for a E F'.

For this family of exponential sums, parameterized by a E F', we can ask if the values

Kl(q, a) are distinct. Posed this way the question has a negative answer. If we denote by

¢ the Frobenius element of Gal(Fq/lFp), so that a(x) = xP, then it is easy to see that

Kt(q, a) = Kl(q, aa).

So instead, we can ask if, apart from this action of Gal(lq/Fp) on F', the values Kl(q, a)

are distinct.

The first partial result is due to B. Fisher [7]:

Theorem 1: For the prime field Fp, the Kloosterman sums

Kl(p,a) = X + a)= Z ,+

zEF' zy axP

for a E F' are distinct.

* AMS subject classification: llLxi

This paper is in final form and no version of it will be submitted for publication elsewhere.
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Minimal Convex Hulls of Algebraic Varieties with Application to
Intersection in Computational Geometry

by
Dr. Peter F. Stiller'

Texas A&M University

Abstract: Given positive integers d, n, r and k with r < n, n < k, we investigate sets of
k points in R n whose convex hull contains an algebraic patch of degree d, [0, ]r -. IR n,
and has minimal volume. We also show that the control points of Bezier cubics have this
property. Applications of the results to the computation of geometric intersections are
discussed.

Key Words: Convex hull, algebraic variety, Bezier curves, Bezier surfaces, geometric
computation.
AMS Subject Classification: 68U05 and 52A99.
*Partially supported by U.S. Army Research Grant DAAL 03-88-K-0019.
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Integral Geometry, Grassmannians, and Rayqrracing

by

Dr. Peter F. Stiller*

Texas A&M University

Abstract: We show that the measure of certain weighted sets of directed lines can be

used to determine the surface area of a suitably regular solid in R3 . The results are then

applied to devise ray-tracing and sampling methods for various computations.

§1. Introduction.

There are two major approaches to modeling geometric objects in three-dimensional

space. One method focuses on boundary representations which describe only the oriented

surface (boundary) of the solid object. The other method is known as constructive solid

geometry (CSG). It makes use of a set of simple geometric primitives, which are combined

using Boolean operations (union, intersection, and difference), to construct complex three-

dimensional objects.

In the typical CSG scheme, ray-tracing is used to interrogate and/or render the ge-

ometry. This means that one usually has at one's disposal the ability to "sample" the

geometry by firing randomly selected rays through it. In this paper we shall examine this

sampling process and the geometric information that can be extracted from a solid object

in this "probabilistic" way. The mathematical discipline used to address questions of this

sort is known as Integral Geometry.

Key Words: Invariant metric, integral geometry, sampling, ray-tracing, geometric model-

ing, Grassmannians.

AMS Subject Classification: 68U05.

*Partially supported by U.S. Army Research Office Contract DAAL 03-88-K-0019.
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Cur' ature and Principal Direction Calculations for
MGED Primitives using RT

Dr. Peler Stdller

.Mfr. Edwin 0. Damison

N'uinerabili.y Methodology Branch
Vulnerability/Lethality Division

USA Bailistic Research Laboratory
ATTN: SLCBR-VLD-V

Aberdeen Proving Ground, N 21005-5066

ABSTRA CT

An introduction to the basic concepts of curvature and related
topics is given. Specific methods used in version 1.2 of the RT ray-
tracing program for the calculation of principal curvatures and
principal directions are presented.

INTRODUCTION
Curvature is a classical notion in differential geometry. Loosely speaking, it

is a measure of the bending of a curve or surface situated in space. Unlike
tangent lines or tangent planes which involve first order data and are the best
linear approximation to a curve or surface at a point, curvature involves second
order data.

This report begins with a review of the basic concept of curvature and
-- vcral related ideas that the reader will need in order to follow the later calcula-

ticns. It then examines in detail the methods used to implement the calculation
of curvatures and principal directions in version 1.2 of the Balistic Research
Laboratory's RT code. The final section details the calculations specific to each
primitive and provides full documentation of the code. Appendix A contains a
discussion of eigenvalue calculations pertinent to the curvature and principal
direction determination. A method for computing the curvatures and principal
directions for spline surfaces is included in appendix B.
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