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PREFACE
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the sponsorship of the Naval Air Development Center, Flight Controls Group (Code 6012) at Warminster,

PA. Technical monitor was Robert D. Digirolamo. James C. Smith, Ph.D., was the Principal Investigator

at Systems Technology, Inc. Robert V. Walters was the Principal Investigator at STR Corporation of

Reston, VA, who were one-third partners in applying their proprietary neural-net algorithms and simulation
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I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

The need for on-line adaptation, the capacity to deal with essential nonlinearities and rapid real-time

response to damage has prompted the search for control strategies for application in advanced high-

bandwidth aircraft control. Among the strategies for control system design which have been explored over

the past 20 years, are a number of implementations which offer real-time adaptive control and/or self

reconfiguration. Recently, such systems based on modular adaptive elements and widely referred to as

Artificial Neural Network (ANN) technology have emerged as promising candidates for adaptive control

design. Conventional control systems must be specifically designed to tolerate and compensate for known

design properties of the object system. Controllers based on ANN technology, however, have the ability

to compensate for system behavior unknown at design time by learning to attain some specific control

objective in real time. The potential for application of ANN technology to aircraft control has burgeoned

with the proliferation of digitally based flight controllers, owing largely to the flexibility of the hardware

and its generic capacity for reconfigurability in real time. The present study, while intended to

demonstrate that the use of ANNs in control system architecture can provide certain benefits in terms of

safety and flexibility, has proven additionally beneficial in elucidating the use of analytical procedures for

identifying and evaluating ANN activity in real-time control context.

While a number of reports have been published on the application of neurocontrollers to feedback

control of mechanical systems [Jordan, 1989; Kawato, 1990], there remains a significant amount of work

to be done in order to properly assess and document the appropriateness of various types of ANN

architectures to specific control problems. In accomplishing this, special emphasis must be placed on

ascertaining whether the underlying neurodynamics are appropriate to the dynamics of the controlled

element as well as the broad objectives of the control process [Barto, 1983; Bavarian, 1988; Coolidge,

1963; Guez, 1988; Holdaway, 1989].

Difficulties with detecting and reconfiguring of an aircraft to compensate for individual control

effector failures (e.g., see Appendix A), led us to consider a different approach. This approach works

within the constraints of an existing feedback loop architecture. It utilizes inputs and feedback error

signals which are already in place to determine appropriate controlled-element responses to extant controls,

by approximating the element's inverse in an open loop manner so as not to degrade closed loop stability.

This strategy is analogous to the "Pursuit" mode of human operator behavior in the "Successive

Organization of Perception" paradigm for an operator learning of a controlled element's dynamic response

(i.e., Compensatory, Pursuit, and Precognitive) [Krendel and McRuer, 1960]. Eventually the skilled

operator can respond mostly on the input (if it is displayed), with only vernier corrections from the error

correcting "compensatory" loop. This approach, which simulates the human's ability to coordinate

complex joint motions by inverting their complex impedances in a feedforward loop was successfully

1
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applied by Kawato [19901. After exploring alternative architectures, we finally adopted this particular

scheme in view of its proven track record (in human neural nets and in Kawato's work) and its rich

potential for aircraft control applications.

B. OBJECTIVES AND SCOPE

The primary overall objective of this project was to investigate and evaluate the use of artificial

neural networks (ANN) in implementing flight control functions for advanced manned aircraft. In this

regard, we have endeavored to take advantage of the known properties and limitations of aircraft control

in conjunction with certain known attributes of a Stability and Control Augmentation System (SCAS) in

order to provide a rational working environment for a real-time Neurocontroller (NC). This environment

should, ideally, permit the NC to exercise sufficient authority to improve the basic control effectiveness

under time-varying conditions and allow it to cope with unforseen failures of various aircraft control

effectors while minimizing the impact of these failures upon aircraft safety and SCAS bandwidth.

Although these objectives seem straightforward, a number of practical issues have tended to impede

applications of neurocontrollers to high bandwidth aircraft control problems. These include: limited state

measurement, difficult-to-identify plant dynamics, compromises between achieving good responses to

commands while regulating against disturbances, fast-enough computations to catch sudden and serious

(but controllable), failures, and "smart" enough to distinguish failure from normal manuevers.

Since a frontal assault on all of these issues was precluded by the budget and time limitations of the

Phase I effort, a simplified set of obiectives evolved:

i. Apply a feedforward-loop neural net controller to a practical but potentially
challenging aircraft longitudinal control task, having one or two effectors.

ii. Demonstrate feasible fast-time operation of the STR Adaptive Clustering
Network approach to mechanize a fast and efficient neural-net-controller.

iii. Evolve techniques and measures to reveal what the neurocontroller is doing
to aid in its understanding and validation.

iv. Provide a workable simulation of the aircraft/SCAS/ANN NC system suitable
for further expansion.

Some of the questions to be answered in Phase I included:

a. Is the simulation a valid representation of the selected aircraft/SCAS
combination?

b. Can the ICMS architecture, as originally proposed, accomplish the reconfigu-
ration and management characteristics as originally conceived or, if not, what
is an appropriate adaptive architecture for conformance with known aircraft
and mission objectives.

2
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c. Can useful diagnostic methods be applied to understand and validate the

selected ANN operation?

d. Does the ANN controller achieve improvements in basic control response?

e. Does the ANN controller achieve its principal design objective to rapidly
cope with control failures?

f. What problems revealed in Phase I are to be addressed in Phase II?

C. AP'PROACH

Our approach to the problem addressed these basic issues:

a. Does the placement of the neural net in the control loop potentially satisfy the control
and stability requirements for vehicle operation ?

b. Does the neural net adequately map the input space over its design locus ?

c Are the adaptation objectives of the controller achieved with the network architecture
applied ?

d. Is the overall system performance adequately described by test inputs ?

The first of the above considerations was concerned with the placement of the adaptive elements in

the control loop. In this regard, our intent was to place the adaptive element within the control structure

in order to take the best advantage of the known "good" properties of neurocontrollers, and if at all

possible, avoid some of the bad ones. We theorized that ANN adaptation should function well if required

to map the inverse of a controlled element, much in the way a human operator or pilot would. The

original proposed approach had suggested that we explore the application of a Jordan [1989] type of

backpropagation-based ANN with classification type outputs intended only for the purpose of switching

modes according to dynamically changing criteria as sensed by the adaptive element. In this sense the

ANN would function as an intelligent arbiter of configuration state, thus relieving the pilot of

configuration related activities as well as smoothing the transitions between states. Preliminary studies,
however, indicated that, for several reasons, this architecture would not work well in the context of failed

system detection/compensation. The Kawato Type-C [19901 feedback error approach was ultimately

selected as a control loop configuration for the studies reported herein, but not before certain features of

other network architectures in control context were revealed in pilot studies.

One of the primary reasons for the failure of our initial approach using forward modeling was the

slowness of the backpropagation based element i. ;onverging on an appropriate solution. We felt that this

design was unsuitable, especially at the relatively low frame rates which characterize some flight control

systems. In seeking an alternative approach we became aware of two possibilities. One of these was the

use of radial basis functions (RBFs) in constructing the network as reported in Musavi, et 1, [1991]. This

technique for performing rapid interpolations in high dimensional space, can potentially solve interpolative

3
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mapping problems of input space much more efficiently than can backpropagation. This is due to the

inhcrent ability of RBF processing elements (PEs) to adjust their receptive fields adaptively, thus
"clustering" their influence around active regions of the input field. STR, early on, undertook to develop

this concept, adapting it to yield continuous system outputs rather than discrete classification events. STR

also endowed the RBF network architecture (RBFN) with the ability to instantiate new PEs when inputs

occur beyond the receptive fields of extant elements. This architecture evolved into the STR proprietary

paradigm, the ACN network (previously referred to as adaptive-clustering interpolative mapping, or ACIM

network). STR's proprietary ACN network bears a functional resemblance to an Adaptive Resonance

Theory (ART) network [Barto, 1983; Bavarian, 1988; Holdaway, 1984] with supervised learning. The

ACN architecture has the following advantages foi real time control:

* Self-organizing for enhanced feature determination
" Self-learning mechanism with fast initial learning rate
• Hardware implementation can allow real time processing
* Nearest neighbor classification of novelty
• Novelty detection and globally controllable arousal
° Self-scaling, and
* Self-stabilizing

ACNs represent a possible solution to the problem of maintaining adaptive potential in a near-stable

environment - the so-called stability/plasticity dilemma. This plasticity is critical for any system which

must continue to adapt without supervision. ACN is particularly well suited to the task of adapting to

evolutionary process changes of the type likely to be experienced in the control context.

The availability, at STR Corp., of a rapidly responding clustering algorithm prompted us not only

to re-examine the loop structure, but also to revise our strategy for the role of the ANN. In this regard,

we adopted the strategy described in Section IV, using the ANN to exercise continuous control authority

within constraints imposed by parallel operation of a conventional feedback controller. Further discussion

of the rationale underlying this architecture will be found in Section IV.

An early observation of ACN performance influenced our choice of placing the ACN in the feedback

error configuration [Kawato, et al, 1990]. As it became apparent that ANN architectures with rapid

adaptation qualities were essential to the success of ANNs in flight control STR reviewed a number of

alternatives to standard backpropagation including Counterpropagation, RBFs and Adaptive Resonance

Technique (ART). In the course of these investigations, it was observed that rapidly adapting networks

commonly exhibit extreme swings in output during the learning process. In a continuously learning system,

it seemed prudent to adopt a control strategy which would minimize the influence of output extremes

during the learning process, but allow the authority of the neurocontroller to increase as its input space

became more fully mapped. The Kawato feedback error architecture [Kawato, 1990] appeared to fill this

role, in that the ANN element operates in parallel with a conventional controller feedback controller; with

4
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the system, in effect, responding to a summation of the two elements. This would tend to minimize the

likelihood of extreme outputs from the neurocontroller influencing stability during early phases of input

space acquisition.

Having thus selected a feedback structure, and a candidate network architecture, we proceeded to

construct an appropriately simplified set of aircraft dynamics for evaluating the neurocontroller's

performance. The aircraft dynamics are discussed in Section II. STR elected to utilize the Symantec

THINK PASCAL environment on Apple MacIntosh computers for the development effort, due to their

familiarity with the environment and the existence of ANN models and tools which could be adapted to

the present problem. The actual simulations reported here were run at STI on a MacIntosh IIcx, and the

time histories converted to MS-DOS format for frequency domain analysis, since appropriate tools are not

presently available for the MacIntosh environment. Both the results and the metheldology reported here

form the basis for the work proposed for Phase II, which comprises the development of analytical tools

specifically oriented toward validating and optimizing neurocontrollers in aircraft flight control systems.

5
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II. SPECIFIC AIRCRAFT SELECTION

A. RATIONALE

An aircraft control situation was sought which would be challenging for a neurocontroller, yet

capable of being simplified for Phase I, then expanded to full complexity in Phase II. The example case

should also be easy to simulate on a Macintosh using the Symantec THINK PASCAL development

environment, on which STR's ACN development shell had already been mechanized. It was also desirable

that the failure detection example would not be a trivial problem for a simplified approach, e.g., a shaft-

position monitor in a conventional control system.

The case chosen was the piloted longitudinal control of a fighter aircraft at high angle of attack

(a) and low airspeed such as:

* Execution of a flat or rolling "scissors" air combat maneuver (ACM)

* Low speed maneuvers due to ACM or other flight testing operations

The "scissors" maneuver is accomplished to effect a deliberate and rapid loss of energy for arresting

downrange travel and radically reducing turn radius. It can result in high a conditions at approximately

200-300 KIAS. Thrust vectoring, if available, will be important in vernier control of the aircraft.

Operation at any high a state during ACM, or in thrust-vectoring development tests, is likely to be

followed by a need to rapidly orient the aircraft to a gun target or an escape vector. To simplify this

initial analysis, the aircraft is perturbed around a quasi-steady trim condition.

We have assumed, here, that the aircraft's controls are: the all-moving stabilizer/elevator operated

by a fast servo actuator; and thrust vector deflection by a pair of exhaust deflection paddles operated by

a pair of slower servo actuators. At the 220 kt airspeed and 300 angle-of-attack trim condition, the

inherent pitch stability is negligible, and the pilot uses the fly-by-wire pitch control stick to maintain the

aircraft line of sight via a Pitch-Rate-Command Attitude-Hold Mode of the aircraft's Stability and Control

Augmentation System (SCAS) controller. Because the thrust must be approximately half of the weight

in this low airspeed condition, thrust vector control provides more pitching effectiveness than the elevator,

thereby requiring both control surfaces to achieve the needed aircraft pitching motions. The pilot must

employ fairly aggressive pitch rate commands because the aircraft is sluggish and the aircraft disturbances

due to buffet and target motions are all of moderate bandwidth.

In this case, the most likely failure mode is gradual or sudden bumoff of the thrust paddles, which

would not be detectable by a shaft position monitor. Another failure mode could be loss of part or all of

the stabilizer by battle damage or a "hardover" failure within the limited authority SCAS. These types

of failure alter the apparent response properties of the "plant" (servos plus aircraft) in ways that are

difficult to separately detect, because both the elevator and thrust vector deflection occur near the tail.

6
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If both were in identical axial locations, had identical servo dynamics, and were coupled to share the task,

then it would be impossible to segregate their effects, because both sets of inputs and responses would

be correlated identically. However, the thrust paddles' effective center-of-pressure is behind the elevator's

effective center-of-pressure, so some subtle differences between the ratios of normal acceleration and pitch

acceleration are present. These could be detected by a neural-net monitoring suitable sensors, and the

control scheme could be reconfigured appropriately. Appendix A contains a brief analysis of this

approach, using the dynamic insights gained from past experience to suggest the best set of sensors for

an efficient neural-net thrust-vector failure detector. [Jex, 1991]. After considerable analysis, described

more fully in Appendix A, it was decided to substitute the feedforward controller example for the failure-

detection example, leaving the latter as a separate issue for the Phase II development.

B. VEHICLE DYNAMICS AND SIMULATION

1. Aircraft Aerodynamic Model

In the course of ongoing controls research, STI has utilized and developed a variety of aircraft

models which function in a range of simulation environments. For this problem, we selected an STI

simplification of a fully implemented non-linear 6 DOF simulation of a twin-tailed fighter-attack

aircraft with thrust vectoring. The STI model was validated in experiments conducted by STI and

was implemented in the SYSL language. It has been used in recent research in the area of task-

tailored flying qualities. The relevant physical characteristics of this aircraft are summarized in

Appendix A (Table 1).

As noted earlier, the selected trim condition was 220 kts IAS, at a = 30*. At these conditions

the lift-curve slope, CL, is near zero, the thrust/weight ratio is near T/W = .50, and the pitching

moment curve slope, C.. ranges from slightly stable to slightly unstable, depending on the C.G.

2. Low Order Equivalent System Model

Because the pitch static stability at this large angle-of-attack is small or negative, it can be

assumed to be zero for Phase 1, thereby simplifying the aircraft equations of motion to only the

pitch attitude degree-of-freedom. The Low Order Equivalent System (LOES) transfer function

model for the aircraft response to controls is, then:

Q M,, .Q_ M. deg/sec (la, lb)
STAB (s--M) VEC (s-Mq) [ deg

Here:

Mq -. 31sec -1
-1.23 sec' 2

Mb, --- 2.53sec-2

(The negative signs on the M. coefficients arise from the definition of +6 giving +lift.)

7
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To further simplify the simulation, it was assumed that the pilot was commanding pitch rate

to hold the pitch near 30' (i.e., to track an overhead target line-of-sight) via a pitch-rate-attitude-hold

fly-by-wire SCAS mode. Only this inner loop was simulated, as this is where the neurocontroller

was to be located.

A typical fast servo for the STAB was included (time constant of .032 seconds).

STAB 1 = 1
STABcMD TSTAB + 1 .032s + 1

The thrust paddles require a slower, .12 second time-constant servo:

VEC = 1 1 8.33
VECcMD  TvEcS+1 .12s+1 s+8.33

The simulation and controller were sampled at 20 Hz (T, = .050 sec), which is a LOES

representation of the cumulative delays of the SCAS sensor/computer ensemble.

3. Block Diagram

The resulting Phase I block diagram is given in Figure 1. Notice that the neurocontroller (NC)

block acts as a feedforward from the command pitch rate (and its derived acceleration), creating a

so-called "Pursuit Control Architecture" in the sense of McRuer and Krendel [Krendel and McRuer,

1960]. The rationale behind this NC concept is discussed in Sections I-A and IV-A.

For Phase I the pitch control moments from the STAB and VEC deflections were roughly

equalized. VEC deflection is nearly 2 times as effective as STAB deflection. Here:

6 VEC CMD -1.0 KQQE [deg] (3a)

6 STABCMD -1.6 KQQ E  [deg] (3b)

The minus sign accounts for the negative sign definition of MbsTA and MbVEC. For most of

the cases shown here, K = 1.0 deg per deg/sec.

4. Transfer Functions Relations

The transfer functions between the various signals in the closed-loop system are based on the

fundamental feedback loop relationships given below:

a. Controlled Elements:

Yc C STAB a - Q [sec (4a)STABc 0  STABS 1 -e

S -1.0 (M EC [sec] (4b)

C VECcMD Twc5-1) s [c]4b

8
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b. Control Laws

Feedback Error Controller (Pure Gain)

Let CE be the reference control command from the error feedback (here ref. CE - VECCMD)

G C E degLdeg/sc j

= STABcMD = l.6 KQQE 
(5)

= VECCMD = IO

The 1.6 factor was used to better balance the control deflections.

Neural Net Controller (Feedforward Loop on Cmd and Cmd Rate)

N- = f(Qcc r deg [sec] (6)

Y QC" [deg/secJ

c. Open/Closed Loop Relations

Opened Loop

" Q (G E + N)Yc [deg/sec (7)
YO E - [ deg/secJ

Closed Loop

Q (GE + YN) C rdeg/sec (8)
QC 1 + (GEYc) [deg/sec (

Error/Input Loop

S I-YYc [deg/sec (9)
-E 1 = +GEYC [d/sec] (9)

5. Numerical Values

The numerical transfer functions for the simplified fighter case are given in Table 1. These

are given as s-domain factored polynomials, using the shorthand notation described in McRuer, et

al, [1973].

High Freq. Gain: KI, K

First Order: (s+a) = (a)

Second Order: [s' + 2,ws + C:] =[

The Table 1 transfer functions do not include sensing, or sample-and-hold effects.

10
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TABLE 1. NUMERICAL TRANSFER FUNCTIONS

Full System

YOL (s) - 82.5 (14.2)
(.309) (8.33) (31.3)

YCL (s) = 82.5 (14.2)
[.817, 6.55] (29.2)

(.309) (8.33) (31.3)YIE (s3) =
[.817, 6.55] (29.2)

VEC Failed (Stab Alone)

YOL () 61.4
(.309) (31.3)

YCL (s) = 61.4
(2.44) (29.1)

(.309) (31.3)
(2.44) (29.1)

STAB Failed (VEC Alone)

YOL (s) 21.1
(.309) (8.33)

21.1
YCL (s) = 2.

[.888, 4.86]

(.309) (8.33)
[.888, 4.86]
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For the computing interval of AT, = .05 sec, the effective loop delay is about AT/2 = .025 sec.

This is concatenated with YOL as a first order Pad6 Approximant for the delay:
exp(-T,/2) =1 - (T,/4)s ... = 1 - .0125s = -(80)

1 + (T,/4)s ... 1 + .0125s (80)

Parallel operation of two servos having different time-constants gives rise to a transfer function

first order zero at 14.2 rad/sec, representing the net effect on the opened loop transfer function

without ACN as shown below, with the computing delay added:

82.5(14.2) r-80 1
L - (.309)(8.33)(31.3) 8 80 (11)
Q- -Mq 1/ISTAB 1/TvEc e-

6. Simulation

The simulation of this one DOF aircraft Low Order Equivalent System (with the two first order

servos) is very straightforward. The digital difference equations are as follows in the time domain

(where n is the past sample and angular units are in radians):

Aircraft

0,. 1 = MqQ. - (MavEcVEC. + M6sTABSTAB.) (12a,b)

Qn-I = Qn + ATsQA

STAB Servo

STJB3.., = 31.25 (STABSUM.., - STAB,) (13a,b)

STAB.., = (STAB. + ATs STAkBo.,)

VEC Servo

VtC , = 8.33(VECSUM , - VEC,) (14a,b)

VEC., = VEC. + ATs VC.. 1

The computing interval is AT, = .050 sec or 20 Hz.

7. Validation of the Simulation

Th-, freqcncy response Bode plot for the opened loop is given in Fig. 2a, along with the data

points measured by the seven-frequency quasi-random forcing function. (See Section III-A for

further details of this describing-function and measurement procedure.) The agreement is excellent,

thus verifying the simulation of the controlled-element dynamics. Also shown in Fig. 2 are the

closed-loop (YcL) and error/input (YME), frequency responses. The agreement with the theoretical

12
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digitized model is good throughout. Notice that over the lowest five frequencies, the magnitude

curve of YE is nearly the inverse of YOL, but the phase curves do not correspond to each other. This

observation will be used later.

The importance of early verification of the controlled element by independent frequency

domain measurements was underscored, here, because several subtle coding errors were revealed by

mismatch of the computed vs. measured frequency responses. It is also essential that the delay

corrected form (Z-transform) be used to allow for high-frequency phase distortion due to the

computing delay artifact.

C. IMPLICATIONS FOR A FAILED CONTROL

For this LOES aircraft, pitch stability is neutral (CM. A 0), so a failed STAB or VEC drastically

reduces the effective gain of the controlled element. This, in turn, reduces the opened-loop gain

magnitude ratio and increases the Yt magnitude. Here: a) the rms error for a sum-of-sines input is the

root-sum-squared of the discrete input frequencies; b) a Bode plot is a logarithmic representation of the

error magnification so the highest few frequencies dominate the rms error; and c) the inputs (here) have

constant or "white" amplitude. Thus, the input frequencies at or beyond the crossover frequency, w, will

dominate the rms error in such cases.

Keep this observation in mind later, while interpreting the effects of STAB or VEC failure effects

with the ACN "off" and "on."

D. IMPLICATIONS FOR PLANT INVERSION

An interesting property of a tightly closed control loop, one in which the error is much less than the

input over a bandwidth mostly below the unity gain crossover frequency, is that the error/input transfer

function (YIE) is a close approximation of the inverse of the opened-loop transfer function, 1/Yc.

1. Let YOL = GE(s)Yc(s), where GE is the controller, suitably equalized to yield a "Crossover

Model" type of YOL [McRuer, et al, 1973]. This implies:

i. gain >> 1 at low frequencies, below o,,
ii. gain << 1 at high frequencies, above w.
iii. adequate phase margin, GM, near ), for L = .3 to .8 is 30° to 800
iv. adequate gain margin, KM., near w,, of 6 - 20 dB

Here, very conservative stability margins of KM = 16 dB and GM = 750 were used, to allow

for possible NC destabilizing effects.
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2. The closed loop error transfer function (NC = OFF) is given by:

YIE (s) = 1 (15)

1 +YOL (S)

For inputs below w; where YOL >> 1 per i above:
1

Y .EI1..o "0 OL C c (16)

But for inputs well above (.0, YOL << 1 per ii above:

YEl,,a S 1 (M--OdB, phase-*0) (0 Wc

For the baseline case, refer to the similarities and differences between 1/YOL and YIE in Fig. 2c.

Keep these fundamental relationships in mind, as they form the basis, here, for the

neurocontroller training scheme and its limitations, as well.
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III. IDENTIFYING CONTROL PROCESS DYNAMICS

A. FORCING FUNCTIONS

1. Rationale and Selection

In developing and analyzing neural net controllers, the use of appropriate forcing functions

(commands and disturbances) is important, because neural nets can "learn" specific inputs and

optimize the control actions for them. Among the candidates for the Phase I demonstration of

fighter control were: various discrete maneuvers (steps, doublets, [1-cosine] functions, etc.), and

quasi-random inputs. The detailed characteristics of these test functions are important, since

inadequately structured inputs can often obscure adverse system qualities.

Quasi-random commands to the pitch rate were selected for the following reasons:

i) They are typical of the pilot control task, in maintaining line-of-sight attitude against target
aircraft disturbances.

ii) They can be designed to cover a wide range of the command-space of amplitude, rate, and
frequency.

iii) They have a much broader utility for identification of the adaptive neurocontroller properties
across the range of command space than simpler, more repetitious forcing functions.

Although other forcing functions will be recommended for use in Phase II, quasi-random pitch

rate commands were used for the Phase I experiments.

A special type of quasi-random signal, termed a "sum-of-sines" [SOS], was used in the present

study. In this type of signal, several sinusoids of different frequencies are summed. The selection

of frequencies is critical and something of an art, because one must avoid any low and simple

harmonic ratios, otherwise repeated patterns will occur. The number of sinusoids must be limited

to 5-10 waves in order to concentrate the input power for better signal/noise ratio in measured

responses of nonlinear or noisy systems. Near logarithmic spacing in frequency is desirable to best

exhibit the frequency response on a Bode plot with the fewest frequencies. Finally, an integer

number of cycles per run length is needed to provide accurate Fourier-integral coefficients.

STI has over 30 years experience in developing and applying this sum-of-sines approach for

use as a system identification tool [Allen and Jex, 1972]. Although other test signals were initially

applied to this problem, it became apparent that the SOS would likely be more productive in

revealing non-obvious system characteristics.

2. Specific Inputs

We used two sets of inputs: a 7-sine wideband case for verifying the controlled element

simulations, and a 5-sine baseline set with the highest frequency near the crossover region, for the

reasons discussed earlier. By using all sinusoids of alternating polarity, the compound waveform
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exhibits several desirable properties. First, it starts and ends at zero; second, the beginning and

ending portions have low slopes; and third, the overall waveform is inherently skew-symmetric. The

low initial and terminal slopes condition the waveform for better accuracy of the Fourier integrals

and the skew-symmetry guarantees a symmetric amplitude distribution. However, the rates or

integrals of the sines are all cosines, which produce a bilaterally symmetric waveform over the epoch

and a non-symmetric amplitude histogram. For convenience, all sinusoids had the same amplitude,

adjusted to achieve the same RMS level. This amounts to a sort of "pink" noise, because the

constant power sines are divided by a logarithmically increasing bin width. Because the total power

in the waveform is concentrated at several precise frequencies, the signal/noise ratio for noisy

systems is excellent.

The resulting forcing functions are designated as follows:

"SS-5" 5 Sum-of-Sines - frequencies from o = .90 to 6.28 r/s (.14 to 1.00 Hz), RMS = 1.87 den/sec

"SS-7" 7 Sum-of-Sines - frequencies from w = .90 to 16.2 r/s (.14 to 2.57 Hz), RMS = 1.87 deg/sec

Table 2 gives the parameters for each case.

Table 2 Sum-of-Sines Input Parameters

ine No. II 1 1

sign + - + - + - +
Amplitude: "SS7" 1.0 1.0 1.0 1.0 1.0 1.C 1.0

"SS5" 1.18 1.18 1.18 1.18 1.18 0 0

No. of Cycles 3 5 8 13 21 34 55
in Epoch (T) I I

Frequency - Hz .143 .238 .387 .619 1.000 1.571 2.571
(T = 21.0 sec)

Frequency - rad/sec .89 1.50 2.39 3.9 6.28 9.87 16.16

Statistics 5 Sum-of-Sines 7 Sum-of-Sines

Epoch Length 21 21
Mean 0 0

Std. Deviation 1.87 1.87
Skewness 0.0 0.0
Kurtosis -.77 -.94

The run length epoch should be long enough for at least three cycles of the lowest frequency;

here, it is T = 21 seconds. Notice that the number of cycles per run is integer, i.e., 3, 5, 8, 13, 21,

33, and 54 for SS-7. These are the seven Fibonacci Number Series, from 3 to 54 in which each

value is the sum of the preceding two values. These have no simple harmonic ratios, but the ratio
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of succeeding frequencies is always near 1.6 and approaches 1.618 eventually, giving even spacing

on a logarithmic Bode plot.

The amplitudes of each sine in the 5 Sum-of-Sines is increased by a factor of 1.18 = 75

over those in the 7 Sum-of-Sines to equalize their rms values to be equivalent to a s = 07 = 1.87

degrees/sec of input.

The sum-of-sines generator for the simulation is in two subroutines in Appendix B:

"ffSumofSins5" and "ffSumofSins7." A running rms computation with a 3 second window is also

applied, as part of post-run data processing.

3. Examples

Time histories of the 5-SOS and 7-SOS inputs are given in Figures 3 and 4. Shown in each

case are: the time trace, the rurning rms, the amplitude histogram, and the power spectral density.

The following points are noted:

- The waveform has a gentle start and finish, as intended.

- The distribution of large and small peaks is quite uniform, as confirmed by the 3-second
running rms signal.

- The amplitude histograms are roughly monotonic and are slightly more leptokurtic than a pure
gaussian distribution.

- The PSD are pure line spectra, nearly evenly distributed in the (logarithmic) Bode plot, as
intended.

Thus, these sum-of-sines forcing functions appear nearly ideal for use in neurocontroller

training and validation.

B. MEASURES OF NEURAL NET ACTIVITY AND EFFECTS

The adaptive clustering network (ACN) adds a new processing element (PE) whenever a point in

input space occurs which does not fall within the receptive fields of any existing PE. This is referred to

as "bottom-up instantiation." in addition, the ACN, as presently implemented, is capable of PE

instantiation based on the feedback error signal. This is referred to as "top-down instantiation" and is a

feature of STR's proprietary ACN architecture which enhances its ability to rapidly adapt to mapping

nonlinear regions of the system's input/output space. By monitoring the growth rate of new cells and the

source (bottom up or top-down) of the instantiation request, we can determine the appropriateness of the

ACN structure to the I/O space and its rate or learning at any instant in the simulation epoch. The
"characteristic radius" of the gaussian shaped neuron-influence "transfer functions" is conventionally

specified as o, the inflection point of the gaussian function. Sufficient neurons are added to assure that

at least one or more overlapping radii cover the locus of input states traversed by the training process.
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While the neuron radius c is adjusted as a parameter, here, the ACN algorithm determines the centroid

loci. Therefore, a plot of their locations in the NN input region is a useful measure of the ACN

distribution and will be shown later.

Many of the neural net effects are subtle and nonlinear and can only be appreciated by close
comparison of the waveforms of the process during training or following a failure of some type. Time

traces of the relevant pitch rate command, response and error signals and the running rms error will be
used for a side-by-side comparison of neural net "off" and "on" effects. Corresponding side-by-side time

histories of the control signals from the feedback-error controller and the neurocontroller, are also given

for each case.

For this report we have restricted the time histories to a 42 second run, which includes two of the
basic 21-second input epochs. This permits accurate frequency domain describing functions to be obtained
for the early and late portions of a long training run, or for the pre- and post- failure portions of a failure

run (the failure always occurred at 21+ seconds).

Finally, the various frequency response describing functions were computed by STI's proprietary
FREquency Domain Analysis (FREDA) program, using the relationships defined in Figure 2 and Equations

5 -9.
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IV. NEURAL-NET CONTROLLER

A. CONTROL LOOP ARCHITECTURE

Application of ANN based controllers, or for that matter, any adaptive element to problems for
which conventional control solutions already exist requires that careful attention be paid to the placement

of the adaptive element in the control loop architecture. Our proposed approach was a doubly cautious
one in which we would: (1) apply a neural net only in a position where it could select from within a
predetermined set of parameters already determined to be appropriate for stable system operation and (2)

use a neural net architecture already of proven value in a feedback control context.

Input Fe ytm -Sli~kMission

........... F l .h Objectives

CAS Model ..

Forward
r + 1 "Model

/F Lead-Lag PID...
Filters Co ntroller !

Loo Fqcor JSelector

LeadAircraft Horiz. Toil

Lag itc Ra ynoics Thrust Vectoring

Figure 5. Proposed Flight Controller with ANN-Based
"Intelligent Configuration Management System " (ICMS)

Figure 5 shows a typical aircraft control system augmented by the forward model. In this

architectural concept, we proposed to place the primary adaptive element in the control loop as a forward

model. This construction provided for a forward model of the plant whose function was to adapt in

response to critical cues provided by external performance criteria. Output from this model would then
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influence the intrinsic response of the plant in two ways. First, parametric adjustments would be provided
to a PID controller element on order to compensate the system for altered frequency domain requirements.
Second, state characteristics of the forward model would feed forward into a preprogrammed nonlinear
selector module and serve as flight mode-changer, allowing intrinsic control system coefficients to be
altered by learned patterns of control system activity. In this model framework, it was planned to have
the ANN function in a forward model loop and feed back into a conventional controller. It was felt that
this architecture would be advantageous in re-identification of the system following component damage
and would allow for maximum reliance on existing aircraft states while allowing the adaptive element to
develop a modified state image and simultaneously minimize the likelihood of margin exceedances. In
addition, the forward model architecture could be easily adapted to the reduced-order form used by STI
to explore experimental models. This modeling approach essentially represents the method used by Jordan
[1989] and may be viewed in more conventional block diagram representation as shown in Figure 6 below.

/ 11

Pilot coraolr ModelAiN +System AMrradel

Figure 6. Forward Modeling ANN Loop Structure

Although this approach had certain advantages, it also had some non-obvious disadvantages. The
most obvious advantages included inherently definable state space representations of all flight modes,
tangible limits on the control authority developed by the adaptive element, and the use of conventional
gain scheduling technology. Disadvantages, however, included the use of an adaptive element based on
backpropagation which could be inherently slow to adapt, especially at conventional FCS frame rates; the
requirement for external sensors and Al input to manage the mission-related sensitivity of the system and
the additional development required for appropriate externalized reward-punishment without guarantee of
their generality. The results of backpropagation based forward modeling experiments presented in the
literature suggested that rapid convergence is difficult to achieve. Our own initial experiments with
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backprop-based forward modeling reinforced this conclusion, since several of these cases failed to

converge in preliminary experiments.

Other approaches which were considered included other controller configurations based on standard

backpropagation. In backpropagation, the partial derivatives of an error criterion are used to adjust the
weights along an error gradient in order to minimize the error function. Although backpropagation is

considered to be a computationally efficient scheme for performance based ANN learning [Narendra,

1990], we found it to be poorly suited to the aircraft problem in this context for the following reasons:

" Backpropagdtion networks are trained using a form of gradient descent, resulting in long
training times and the possibility of becoming trapped in a suboptimal state called a "local
minima." Our preliminary experiments using backpropagation in the feedback error
configuration showed an unacceptable rate of convergence on the error criterion which we had
established for performance of the controller.

* The oscillatory changes undergone by the feedback error controller with a feedback-error
element based on backpropagation detracted from the stability of the aircraft, especially during
early stages of learning. In the context of damage management, it was felt that this was
inappropriate behavior during this critical phase of mission management.

Even though backpropagation represents one of the most common implementations of ANN

architecture in specialized hardware, we felt that its performance was sufficiently adverse in this context

as to warrant development of a more customized approach. After careful review on the performance

characteristics of various network architectures, we determined that certain types of networks had

adaptation qualities considerably better suited to real-time flight control than the standard backpropagation

configuration. These qualities fell into the following performance areav

* Mapping capability
* Convergence
* Distribution of adaptation rates during training
" Noise characteristics

Since the aircraft problem, as posed, required the model to address continuous control issues as well

as issues relating to parameter identification and discrete state classification, we focused our review of
alternative architectures on those with capabilities of rapid learning with useable, if not accurate,

transitional state output. In our review of the literature dealing with neural nets in control applications,
we found a variety of architectures for incorporating ANNs into the control scheme. One of these is

discussed in Kawato's treatment of robotic arm trajectories [Kawato, 1990], specifically, the use of the

ANN to learn the inverse dynamics of the system. A typical Kawato feedback error configuration is

shown in Figure 7.
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+ Model

Figure 7. Kawato Type-C ANN Loop Structure

Note that this approach requires the existence of a conventional controller to "bootstrap" the system.

In the Kawato Type C architecture, [Kawato, 1990], it is assumed that in a tightly closed control

loop, the signals from the controller approach 1/OL and can, therefore, substitute for the plant inverse.

This approximation is valid for the demonstration case, however, when the command input approaches

the crossover frequency of 4.3 rad/sec, the feedback error approaches 1, and the approximation is no

longer valid.

Kawato, et al, in an earlier report, [Kawato, et al, 1987], recognized that when a tightly closed loop

was presented that the inverse mapping could be successfully approximated by this method. Since the

example system used in the present report appeared to have the desired properties of low gain and

relatively tight loop closure, we felt that the Kawato Type C loop architecture was a good choice for the

experiments reported herein.

B. THE ADAPTIVELY CLUSTERED NEURON (ACN) MODEL

The ACN model is hierarchical, using a simple fan-out input layer and two heterogeneous computing

layers. The first is a self-organizing hidden layer comprised of nodes, each of which has the ability to

adjust its receptive field based on a utility function. Processing elements which conform to these operating

characteristics are sometimes called Radial Basis Function (RBFs) [Musavi, et al, 1991]. In addition, this

hidden layer contains a variable number of RBF processing elements (PEs) and under unsupervised

learning, responds to a rule-set which allows for the addition of new PEs to the layer [Hirose, 1991].

Figure 8 schematically illustrates the structure of the ACN as implemented in the present studies. The

input and output layers conform to Grossberg Instar and Outstar configurations, respectively. [Grossberg,

1974]. The baseline ACN configuration utilizes a two-element input layer for pitch-rate command (Qc)

and its computed derivative (( ). This layer is fully interconnected with an RBFN layer of variable size
which can be augmented whenever the input space is not appropriately mapped and/or when certain other

rule-based conditions are met. These augmentation rules are based on either "bottom-up," data-driven
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control signals or "top-down" error signals [Holdaway, 1989]. This self-organizing hidden layer is

followed by a supervised learning layer capable of rapid, "top-down," performance based learning. ACN

network architecture conforms to the same overall design objectives as Hecht-Nielson's counterpropagation

model [Hecht-Nielson, 19871. The table at the bottom of Figure 8 shows certain network parameters

which can be experimentally varied in the simulation code listed in Appendix B.

The ACN's hidden layer uses unsupervised learning methods to adaptively cluster the inputs. Using

the principles described by Holdaway [Holdaway, 1989], the clustering algorithm is driven by an error

signal (top down) and by the data input stream (bottom up). This strategy is thought to increase learning

speed in addition to providing statistically optimized preprocessing of input signals. The output layer of

the ACN may be constructed in several ways, depending upon design constraints. Among the output layer

structures which have been applied to RBFN models are:

* Grossberg outstar
" Backpropagation
" Barycentric
" Widrow-Hoff (Performance Learning)

Each of these architectures exhibits specific advantages and disadvantages for various types of
dynamics. For the present example, we have used the Widrow-Hoff structure, implementing the output

layer as a "vector follower," with learning gated by pre-synaptic activation levels. STR also considered

implementing a Barycentric model to distribute RBF layer activations. It was initially theorized that the

non-linear Barycentric PEs would provide superior interpolative mapping of hidden layer neurons. In

order to use the Barycentric model, it is necessary for the ACN to calculate a full variance - covariance

matrix pseudo-inverse for use by the Barycentric PEs. This would necessitate a multi-rate implementation

of the ACN, which could exhibit loss of stability due to inter-sample learning. For this reason, the

Widrow-Hoff model was selected. A recurrent version of the ACN was also tried. It gave no clear

performance advantage. We must remember, however, that in these experiments, the ACN was presented

with input-output mappings with a persistent phase error. The apparent failure of this system to

completely map the plant inverse, therefore, cannot be wholly attributed to either the loop architecture or

the ACN structure.

In the Widrow-Hoff performance learning model, an error signal is computed for each iteration and

applied through a weight adjustment algorithm which attempts to reduce the error on the next iteration.

To implement Widrow-Hoff learning, a weight matrix [W] is maintained in input/output space for each

set of input (x) and output (y) signals. For each iteration of the system simulation, the error vector e

represents the difference between the actual and desired ouputs, so:

E = -- [Wlx (17)

The weight matrix, [W] is updated using the algorithm A[W] = k e xT . where k is a small, positive gain

coefficient used to modulate learning rate and control error overshoot during early phases of learning.
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VEC °  STAB* Feedforward controls
STAB*, VEC* to produce

Out* YN "¥ YC 1o

T r i n n S i n l n
STABN and VEC*
Controls Required Qc Derived Rate

to Keep

QERR "X QCMD . _
(from feedback
error controller)

Q Command

RBFN Inputs and Outputs Parameters (Selectable) Default Selected

Maximum Hidden Layer Size 200
Capture Radius (eN/RMS signal) 5.0 1.0
Initial Centroid Weights 0.5
Initial Radius Weights 0.9
Alpha (base threshold for Gaussian [computed]

capture region)
Activation Rate (Widrow-Hoff) .01 * dt
Aging Rate 0.1 * dt

Figure 8. Baseline Configuration of RBFN Inputs and Outputs
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Alternatively, this can be expressed as:

WO = Wij -, "xj ' (di -xi )

or, as in the present implementation:
Wi NEW = wOLD e (18)

where e' represents the returning error signal from the previous iteration, i.e., k. (QOLD - QOtD).

Widrow-Hoff learning accomplishes a gradient-descent approach to output layer weight optimization.

Given stationary dynamics, it is guaranteed to converge on the unique set of weights [W] which will yield

the minimum RMS error to a steady state signal.

In the present case, where the dynamics are time-variant, this convergence is not guaranteed,

however, the gradient-descent properties of the Widrow-Hoff algorithm were considered a good

justification for adopting this strategy for regulating output layer adaptation.

The simulation program used in the present study is listed in [Walters and Smith, 1991]. This

program represents a customized adaptation of several proprietary ANN methods developed by STR for

control applications. It should be emphasized that this program is a specially tailored example for the

preliminary studies reported in this paper, and does not reflect many of the advanced features and recent

innovations in STR's neurocontroller development software. For example, strategies for noise suppression,

cell annihilation, capture region shrinkage, and more selective cell commitment are presently under study.
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V. RESULTS

A. VERIFICATION OF NN OPERATION

The effects of neurocontroller actions are inherently time varying (as it "learns"), nonlinear (control

actions are not necessarily proportional to inputs or errors), and often subtle (affecting details of

waveforms). Therefore, we first compare the relevant time histories with NC = "OFF' vs "ON." Next,

the various measures of performance and NN functioning are compared. Finally, we analyzed selected

signals by frequency-domain describing functions to validate certain hypotheses and to interpret what was

happening in the neurocontroller block.

1. Effect of "Baseline" Neurocontroller, With No Failures:

The "baseline" NC configuration adopted was the basic Kawato Type C setup (inputs of

command state and derived rate; trained in the error feedback control commands), using quasi-

random inputs.

Baseline Case:

Neuron effective radius: r = 1.0Oa, 1 .0co

State inputs to NC: QcMD, (<MD

Training criterion to NC: CE = STABcMD, VECcMD

from the QE feedback error controller

Forcing function (5 Sum-of-Sines): ( i = .9 - 6.3 rad/sec (.14 - 1.0 Hz)

Ooc = 1.87 deg

Run length (2 input epochs): 42 sec

The five component forcing function permitted easy plotting of NC properties vs Qc, (I<, and

the lower bandwidth was more typical of pilot commands as well as mostly below crossover

frequency.

First, carefully examine the time histories in Figures 9 and 10, where NC OFF is on the left

and NC ON is at the right. Corresponding signals in each plot are to the same scales to facilitate

comparison. From the pitch rates of Figure 9-a and 9-b, the following points are noted (signal

definitions are given in Fig. 1):

NC Finding #

i. With NC OFF, the output Q appears to follow the command Qc waveform fairly well.
However, the tracking error QE is appreciable, as shown by the 3-second running RMS QE
below. With NC OFF, the RMS error is about 70 percent of the command ( 1.3 / 1.87).
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ii. With NC = ON, the NC seems to very rapidly adapt, as evidenced by the improvements in the
RMS error trace. Most of the adaptation seems almost complete by 10 seconds, as is
demonstrated in later plots.

iii. The RMS error/input ratio is further reduced by NC = ON to about 46 percent ( .86 / 1.87 =
.70). This is not as much as might be expected if the NC were successful in completely
inverting the plant as explained in Section II - D, but is clear evidence of successful NC
Action in improving the control effectiveness.

iv. The error signal is dominated by the highest pair of input frequencies ( .62 and 1.0 Hz). They
are at and slightly beyond the crossover frequency, (.67 Hz or 4.2 rad/sec), so are not followed
well. Nevertheless, if the plant were accurately inverted by the NC feedforward loop, these
errors would be reduced, as well. So, this is evidence that the NC is not truly inverting the
plant at higher frequencies.

Some key control signals are compared in Fig. 10: the ( ) signals are the control commands

to STAB or VEC from the NC block. The SUM( ) signals are the total control commands from

both the linear feedback error controller ( )CMD and NC controller (). (The ( )CU signals are not

shown because they are proportional to the QE signals in Fig. 9). The following points are

concluded from Fig. 10:

v. Because the QE is less with NC = ON, the ( )cd signals are reduced as expected.

vi. The total control commands are larger with NC = ON, because the NC signals ( ) become
larger as the NC attempts to "learn" the plant inverse. This is evidence of effectively increased
loop gain.

vii. Although there is sume evidence of higher frequencies in the NC control output (especially
for other cases not shown here), it is dominated by the forcing function frequencies. This
observation justifies describing function analysis of the NC control outputs.

viii. Some (+ vs -) asymmetry is seen in the control signals. This reflects the earlier observation
(Section II), that the error signal is composed of mostly cosine waves, which have an
unsymmetric amplitude distribution.

Further validation of the NC's action (to be discussed later) is that the VEC" and STAB* for

NC = OFF (not fed to the servos) are exactly proportional to the VECsuM and STABsuM signals.

That is, the NC has been trained to recall the VEC and STAB control cc.nmands learned from the

linear control loop's corrective commands. Some measures of the neurocontroller activity for this

baseline case are given in Figure 11. At the top are the cumulative number of neurons added by

the Adaptive Clustering Network algorithm (see Section IV). As surmised above, most of the

adaptation (of the total 23 neurons) is done within the first 6 seconds, because the command state

and rate space is quickly covered by the quasi-random forcing function.
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The neuron coverage is illustrated in Fig. 11-c, showing each point in the trajectory of the

forcing function in the Qc, 0< phase-plane as a dot for each pair of concurrent Q, and 0<. The

plots are scaled such that the rms Q, and (0c have the same plot distance. The ACN neuron's

effective action zones are superimposed as circles of the effective radius RN = 1.0 X00 = C.. The
Q

conclusions drawn from Figure 11 are as follows:

ix. From Figure 11-c the sampled trajectory points of the quasi-random 5-SOS forcing function
states fairly uniformly cover the Q, ( < state space, leading to a correspondingly fairly
uniform distribution of ACN-clustered neurons. It is symmetric in Qc (which is all-sines), but
is asymmetric in 0< (which is mostly all cosines). Some cosine waves should be added to
the forcing functions to produce a more uniform result.

x. The 1-unit normalized neuron radius (ratio of effective RBF radius to each state's RMS signal
level) provides almost complete coverage of the command state region, with sufficient overlap
for 1 to 5 neurons to influence each control action.

xi. To cover the NC-input state space (here, Qc and Q< only), takes about 21 neurons of a I o
effective radius and is 70% trained by 10 seconds and is 90% trained by 21 seconds.

xii. Figure 11-b shows that although few new neurons are added after 21 seconds, their centroids
are optimized such that the number of cells contributing actively to each control action uses
from 1 - 3 near the start to 2 - 4 cells near the 30 - 40 second region. This is the desirable
level of neuron cooperation.

To further validate the dynamic effects of NC Action, describing functions among key signals

were computed via STI's FREDA program (see Section III-A). Figure 12 compares the frequency

responses for NC = OFF vs ON. While the closed-loop describing function, Q/QcmD is easy to

interpret per se, we had also computed the apparent "opened loop" (see Section I-B, Eqn. 7) TF.

This interprets NC effects "as if" they were operating on the error alone, and gives insight into how

this form of NC is acting. The following conclusions are drawn from Figure 12:

xiii. Because the neurocontroller mimics the feedback-error control signals it "acts as if" it increases
the gain of the error loop by a factor of 2, roughly 6 dB. Note that the gain crossover
frequency roughly doubles from wc = 4.2 to 8.5 rad/sec. This would account for the tighter
loop closure and reduced apparent stability margin.

xiv. The closed-loop effective bandwidth (3 dB-down frequency) increases from WB = 8 rad/sec to

16 rad/sec with the NC = ON.

xv. There is some increase in closed loop overshoot, suggesting a reduced stability margin.

Because the opened-loop data points with NC = ON appeared as a pure forward loop gain shift

of about 6 - 7 dB, the model of Fig. 1 was exercised with K. increased from 1.0 to 2.0, the dashed

curves of Fig. 12b. The resulting closed-loop "model" is shown as the dashed and dotted lines in

Fig. 12-a. The close agreement validates the hypothesis that this NC feedforward loop acts as if it

increases the opened loop gain by roughly a factor of 2. Of concern, here, is that the stability
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margins, (e.g., gain and phase margins) and closed loop damping ratio are all reduced by this NC external

loop, which theoretically should not affect closed loop stability per se. Further analysis of this case

represents a priority research issue for Phase 11.
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Figure 13. Comparison of Ideal and Measured Feedforward Describing Functions

2. Further Understanding of the Neurocontrolier's Feedforward Actions

To further understand the action of the neurocontroller, the apparent command-feedforward

describing function of the NC block was computed, i.e., VEC7/Qc. Ideally, this should approach the 1NYc Jv (s)

as shown in Section II-D.

Figure 13 compares the measured data points results with this prediction. It can be seen that

the magnitude curve appears close to the desired result at unit frequencies. However, the phase

drops off at the higher frequencies providing less lead compensation than required for perfect 1/Yc

equalization of Yc. The reasons were partly predicted in Section II-D, and have the following

components:
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xvi. The neural-net maps the feedback error's control commands as functions of Qo 0, so it can
do no better than YE " l/Yc. That is, Kawato's Type C scheme can invert the controlled
element only as well as YIE approaches Yc (i.e., at frequencies well below crossover
frequency) per Section II-D. It can be seen that the feedforward phase data points beyond W.
depart from the lfYc curve and approach the YlE curve.

xvii. There are probably some subtle delay artifacts in mapping the VEC' and STAB* controls vs
Qc and 0<, which act to reduce the lead compensation obtainable from serial computations.
For example, the 0c state is derived from backdifferencing, so it is about one-half sample
delay stale. The ACN mapping and recovery functions may also introduce some delays.
Individually such delays are short, but cumulatively they may add up to an appreciable impedi-
ment to achieving timely 1/Yc plant inversion.

The overall conclusions of this section are that this neurocontroller/aircraft simulation: works

rapidly within an order of magnitude of real-time speeds, improves performance significantly in the

no failure case, and can be understood and validated through the combination of the evolved neural-

net measures, time histories, and frequency domain describing functions.

B. NEUROCONTROLLER EFFECTS FOLLOWING A THRUST VECTOR FAILURE

To test the ability of the baseline neurocontroller to correct an inside-the-loop control failure, we

"failed" the thrust-vector (e.g., as if from a paddle burnout) at 21 seconds into the 42 second run. This

is right at the end of the first input epoch, so accurate Fourier analyses of before and after could be

obtained. As discussed under Section II-C, this failure does not destabilize the aircraft dynamics but

drastically reduces the pitch control effectiveness of the combined STAB and VEC combination.

Following failure, the controlled element gain is reduced to about one-third its previous value

(1.23 / [1.23 + 2.53] = .33).

Figures 14 and 15 show the time histories of pitch rates and control actions for neurocontrol OFF

vs ON, with the VEC failure at 21' seconds, after nearly all unfailed neurons have been clustered by the

ACN algorithm. The conclusions drawn from Figs. 14 and 15 are:

Failure Mode Finding #

i. There is an increase in tracking error (e.g., compare Q and QE traces) following a VEC failure.
The rms error increases by 15 percent (1.5 / 1.3 deg). With NC = OFF, the output
significantly undershoots and lags the command, as expected.

ii. With the NC = ON, there is not much improvement. The failure increases QE by 20 percent
(1.03/.86). Because the error is larger, the ACN's output is larger; therefore it increases the
STAB' commands in proportion to the larger tracking error.

iii. The neurocontroller command to STAB* does not increase by the factor of three needed to
restore former closed-loop performance.

iv. There is no apparent surge of control activity following the failure, as might be expected.
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These findings are consistent with the previous findings that this Kawato Type-C neurocontroller

merely maps the unfailed linear controller's control corrections to the command input states. It does not

"know" there is a failure, so it just increases the apparent feedback loop's gain, as before.

Figure 16 shows the neural-net activity measures for this failed-VEC case. In accord with the

foregoing observations, and even though the ACN learning algorithm is still "ON" after 21" sec, there is

no sudden surge of new neuron instantiations or activity to suggest that this baseline ACN is reacting

strongly to the failure. Figure 16-c, showing the four new neuron centroids created after the failure as

squares, reveals that they are placed near low Q, and 0< states, where few were placed for the unfailed

case (compare with Fig. 11-c). The ACN algorithm maintains a concurrent cell activation at 2 - 4 per

correction.

The overall conclusion from this failure experiment is as follows: because this baseline (Kawato

Type C) architecture merely maps the feedback-error-based corrective controls to the neurocontroller

transfer functions, it cannot easily learn that one or another control surface has faile, because there are

no diagnostic-value states input to the NC. Thus, it continues to put out corrective control commands to

both STAB' and VEC' which were learned from the correctly operating feedback system while following

the already-mapped command-input states.

This seduced us into adding more states to the neurocontroller input, with little prior analysis of the

type in Appendix A.

C. EFFECTS OF ADDING OUTPUT STATES TO THE NEUROCONTROLLER INPUTS

It was hypothesized that feeding the desired output states to the NC would help to correct for

internal disturbances, including control failures, so a number of runs were made with the output states Q

and Q added to oc and (,c at the neurocontroller input. Somewhat surprisingly, tracking error

performance for the unfailed situation was generally not as good as with Qc and 0C only as the inputs,

although there was evidence of better waveform peak matching. The results are shown in Figs. 17 and

18, where the VEC fails at 21' sec, contrasting the baseline and modified cases, but all with NC = ON.

The observations from this and similar runs are as follows:

Modified NC Finding #:

i. Considering the unfailedfirst 21 sec of Figure 17 with prior Figure 14, it is apparent that the
modified NC input vector gives five percent worse rms tracking error ( .90 / .86 = 1.05 )
compared to the baseline case.

ii. For the post VEC failure period ( t = 21* to 42 seconds) the modified NC input gives ten
percent worse rms error ( 1.1 / 1.0 = 1.10 ).
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iii. Considering the control activity of Fig. 18 for t = 0 - 21 sec, the STAB signal best illustrates
that the modified input vector (Fig. 18-b) reduces the extreme peaks (Fig. 18-a), but also
introduces some apparent high-frequency "noise."

iv. Following the VEC-fail from t = 21* sec onwards, the modified NC input shows comparable
magnitudes to the baseline configuration. The increase of STAB noise is readily apparent in
Fig. 18-b near the 35 - 42 second region.

v. The increase in control noise for the modified input vector is probably due to the higher
average number of concurrently active cells (e.g., see Fig. 16-c), wherein the changes from,
say, 2 to 5 cells active causes jumps in the NN output layer's weighted sum. These appear
mostly in the STAB signal, because its actuator has less smoothing effect than the slower VEC
servo.

Not too surprisingly, the general conclusion from this and similar runs is that states which are

diagnostic/corrective for inner loop failures must be included in the neurocontroller. This problem was

anticipated and analyzed here, in Appendix - A, and those implications will be further considered in Phase

II. The limited Phase I scope prevented exploration of a more complete set of parameters and inputs,

but that is easy to do now that the complete simulation has been debugged and runs easily. The

complexity of the ACN mapping and the nonlinear dynamics within it implies that a more careful pre-run
"systems survey" type of analysis be given to each major NC architectural change. Then, only carefully

selected changes should be added gradually, in order to permit understanding at each step. It is all too

easy, as we have found out, to mix ever more ingredients into the NC pot, stir wildly, and then try to

understand what had been cooked up. A more rational approach will be our discipline in Phase II.

42



Contract No. N62269-91 -C-0206
Report No. NADC-91123-60

0 00

Sn l Sn Sn

K I IMP

0N I 00 
4

00

C) czi
0 0 0 0

0 0 I.......l,
00 00 00 DA .

NC

sc. CD
.. L_

> 0 _
Nj N

F-I,

iii
.0000 00 00 0 0 0 0 0 0a

o00l:<q 0POCCP P CP~~
VMN- -c~ 0

436



Contract No. N62269-91-C.0206
Report No. NADC-91123-60

0T-
0i 0ei

0 0 -- FT -'-Q

6 C; HI I;I

18 HI H )
I.,,, 'IPC I iCV IY H

H 0 K 0 I6
0m 0Yc

I' (IP-4

<I'S Q5

oP

000000 J)0....
-0-> E~

Z 0~ ~ *o 0

0 0

U. S 0l
p P

o 06

C, CD

0000 0 000000
00000 000

IINWVOVWNH I ' 0

1,1 0 44



Contract No. N62269-91-C-0206
Report No. NADC-91123-60

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Meeting of Phase I Objectives

During Phase I, most of the revised Objectives stated in Section I were met; specifically:

Conclusion #

i. A feedback learning (Kawato Type C) neural-net controller (NC) was successfully applied to
the longitudinal control of an attack fighter via all-movable stabilizer and aft thrust vectoring.

ii. The low-order-equivalent-system (LOES) aircraft system model and all neurocontrol operations
were successfully mechanized within STR Corporation's Adaptive Clustering Network (ACN)
simulation using the THINK PASCAL 3.0 development environment running on a MacIntosh
Il-CX computer. Despite the large computing overhead for the development environment,
(e.g., debugging routines), the ACN training runs could be made in less than 10 times real-
time. The achievement of real-time on-line ACN action now seems feasible on flight control
hardware.

iii. In addition to standard time-domain traces of neurocontrol and combined system action, some
new measures and methods were demonstrated, such as: use of frequency domain describing
functions to unravel the quasi-linear NC actions, neuron centroid overlays on the input state
phase plane, and concurrent cell participation in control activity.

iv. The LOES aircraft model evolved in Phase I was actually reduced from more complete 6 DOF
and 3 DOF simulations of an actual twin-tailed Navy attack fighter, and is well suited to re-
expansion in Phase I1. Means for readily validating and exercising the simulation via an
efficient quasi-random forcing function were demonstrated.

v. One overall objective of NADC's SBIR solicitation, the detection and reconfiguration of failed
aircraft controls was analyzed for the longitudinal case and shown to be a subtle and tough
problem for near-co-located controls. Because its solution requires a higher-order aircraft
model having additional states and sensors, as well as a multilayered NN, that objective was
deferred to Phase H1.

vi. A new direction for Phase II emphasis evolved from the various tests and measures for
validating, training, and exercising the neurocontrol system. The current lack of standard
procedures and measures indicated a clear need for a "Neurocontrol System Evaluation
Toolbox" of methods, procedures, forcing functions, analytical strategies, and evaluation
criteria.

2. Answering Phase I Questions

Most of the Section I-B specific questions to be answered in Phase I were satisfactorily

covered, specifically:

Section I-B Questions

a. The LOES representation of the attack aircraft was shown to be correctly simulated, and the
dynamics were representative of a pitch-rate command, attitude-hold SCAS system.
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b. The originally proposed neurocontrollcr architecture (an Intelligent Configuration Management
System, ICMS) was examined and deemed too complex for Phase I demonstra'ion. Instead,
a type of feed-forward controller, using the feedback error controls to train the ACN, was
adopted. This Kawato Type-C scheme mimics a human operator's actions in the so-called
"pursuit" level of skill acquisition, and aims to learn the plant inverse, just as a skilled operator
does. It promises some novel applications for aircraft control, including learning a rapidly
changed or failed control element. In Phase I, we concentrated on the technology for
mechanizing, simulatirg, and measuring such a feedforward/feedback neurocontroller, but did
not have time to refine it.

c. Among the diagnostic tests applied productively in Phase I was the frequency-domain
describing function of the non-linear, time-varying neural-net input-to-control dynar i.cs. Using
this technique we were able to show that the plant inverse could only be crudely, albeit
efficiently, approximated by the Kawato Type-C approach. Feeding back the plant outputs to
the NC can result in sneak-feedback loops which can destabilize the NC/SCAS/aircraft system.
By computing the "effective opened-loop" describing function of the combined feedforward!-
feedback system, it was shown that the neurocontroller feedforward roughly doubled the gain
of the feedback loop. The closed loop consequences of this effect were reduced stability,
poorer damping, and a trade-off of reduced low frequency error for higher frequency overshoot
errors.

d. The baseline Kawato Type C system was shown to improve the aircraft's response to controls,
resulting in higher apparent pitch-control bandwidth with more overshoot, but reduced rms
pitch rate tracking errors (46 percent of the NC = OFF case).

e. The baseline NC does not do a good job of rapidly coping with single-control failures. For
example, a likely failure mode - burnoff of a thrust-vector paddle - was not "discovered" for
I - 2 seconds, and was not restored to more-or-less normal performance until 3 - 5 seconds.
This is rapid by some neural-net standards, but not good enough for unstable aircraft
undergoing maneuvers. The modifications required for Phase II were clearly revealed in the
process of evaluating the Phase I measures and results.

f. Among the "key problems uncovered in Phase I to be solved in Phase II" were the following.
(The risk involved is indicated in parentheses):

- Simulation of a much more complete aircraft/SCAS/sensor model within the NC
simulation program. (Straightforward).

- Concurrent monitoring for failure and selection of: sensors, signals, criteria for
reconfiguration, and on-line adaptive control within the feedforward/feedback scheme
adopted here; i.e., multilayer vs. multiple NC's, vs. mode selector, etc. (Challenging).

- Development of a more predictive analytical insight, prior to running the simulations,
in order to screen out worthless or unstable concepts. This needs the Neurocontroller
Analysis Toolbox. (Needs every multidisciplinary trick in the STI/STR repertoire and
some new ones from the NN field; tricky to put in visual and user-friendly form).

- Better criteria for judging the effectiveness, efficiency, and off-design operation of the
intrinsically nonlinear neurocontrollers. (Little precedent to go on; straightforward
extension of STI Flying Qualities tests and criteria concepts).
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3. Some Interesting Findings

Some details on these conclusions should be mentioned, here. In the RESULTS, Section V,

there are some 26 specific findings (identified by lower-case Roman numerals) which can be scanned

for details but some of the more interesting ones are as follows:

a. Detection of STAB vs VEC Failures (from Appendix A).

The detection and separation of failed elevator (STAB) vs a failed thrust vector (VEC)

is a tough problem in longitudinal control, because both are located well aft of the G and

produce roughly comparable ratios of pitching acceleration and normal acceleration at the CG.

However, proper placement of the virtual centers of rotation of t0 and nz sensors and

bandpassing their inputs can probably separate the likely failed surface. This depends on the

geometric effective tail arms (ratio of nz to Q) being more constant than the actual levels of 0

and nz alone, which may vary widely. The wide difference in the response between STAB

actuators (high BW) compared with VEC actuators (low BW), allows mid-bandpassed signals

to reduce the measurement influence of the former with respect to the latter in a failure

detection neural-net. This approach is considered novel and will be a priority objective in

Phase II.

b. Inversion of the Controlled Element (From Sections I1-D and V-A-I)

The Kawato Type C neurocontroller concept makes use of an ingenious observation to

avoid back-propagation-training for inverting the effective controlled element. As shown in

Section II-D, if the feedback controller ensemble reduces the closed-loop-error to values very

much less than the command, then the control signals generated by the error-feedback loop

approximate those required to invert the plant dynamics up to the opened-loop gain crossover

frequency, wc. These control states are then mapped as a function of the command input and

rate, to produce the desired neurocontroller feedforward effect:

- controls 1 forY 1
YCJ) " commands Ycwo) rc

so that the complete forward loop, Yn. is:

YFL = Y " Yc 1 - " c S 1.0

as desired.

As revealed by our analysis and verified by measurements, the 1/Yc approximation can

only be successful for forcing functions bandwidths well below wc and for tightly closed but
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well-damped feedback loops, a condition that is violated when one or the other control surface

fails.

C. Failure Detection and Reconfiguration

The Kawato Type C system cannot produce the correct control actions of the remaining

control, nor the shutdown of commands on the failed control that are desired, because no

information on control signals within the loop are fed to it. Our attempt to improve this by

input of the output states on Q and Q to the neurocontroller yielded sneak feedback paths

(paralleling but lagging the basic feedback signals) which tightened the loop and destabilized

it.

A more sophisticated set of state feedbacks to the neurocontroller is clearly indicated.

These must account for not only failures of control surfaces, but also changes in pitch inertia,

mass, or dynamic pressure, all of which can be responsible for "confounded" variations in the

measured Q and nz signals. We now know what some of the relevant signals are, but need

to develop their filtering and pre-NN summing and weighting algorithms.

B. RECOMMENDATIONS FOR PHASE II

The problem area selected in Phase I still is an excellent one for Phase II. The longitudinal control

of a tactical fighter using a system with imbedded neurocontrol can demonstrate nearly all of the

advantages, problems, and methodology needed for more general cases, while retaining a much simpler

model and simulation. Therefore, we should extend the Phase I problem to cover a more realistic

aerodynamic model, maneuvers, and failure modes.

Similarly, the Adaptive Clustering Network scheme for the neurocontroller (NC) seems very

promising, in that relatively few neurons were required for useful improvements in control. However,

adequate and understandable corrections for internal failures and disturbances were marginal with the

baseline system which worked off commands and feedback errors only. There were a number of potential

NC improvements suggested by the Phase I data, which should be pursued in Phase II.

Finally, in the process of understanding and validating this NC, several new analysis and validation

"tools" were shown feasible for analyzing any NC system. Because a comprehensive set of such NC test-

and-evaluation tools and procedures is not currently available, we should start the development of such

a "Neurocontroller Analysis Toolbox" during Phase II. In almost all of the neurocontrol literature we have

read to date, there is little understanding of how to properly design and validate a complex system. The

steps should include: functional requirements and their implications on design; iterative analysis of

different candidates which are not in an optimal-design continuum; multi-factor assessment and evaluation

by sometimes non-numerical criteria; and selection of a "best compromise" design. STI has been doing
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this for derades in the design of SCAS and AFCS, and we strongly recommend more attention to this art

in neurocontroller development.

The specific recommendations are as follows:

1. Complete the Aircraft Model and Kinematics

For Phase I, the complete 3 DOF equations of motion for the tactical fighter were reduced to

a 1 DOF set to facilitate simulation. These should be re-expanded to the 3 DOF form, with limits

included. Kinematics of the line-of-sight and target error should be added, and sensor locations and

dynamics typical of the fighter should be included. The more complex effects of control-effector-

hardover or surface-loss failures need to be modeled.

2. Expand the Mission Phase Tasks, Performance Criteria and Implied Forcing Functions

A more comprehensive set of "typical" mission tasks and failure modes needs to be cataloged.

A corresponding set of forcing-functions (commands and disturbances) should be derived from the

Flying Qualities literature, which are suitable for efficient testing and validation of the neuro-

controller/aircraft system. These would include quasi-random inputs (e.g., sum-of-sines-and-cosines)

and frequency sweeps (e.g., accelerating chirps), as well as discrete commands and gusts (e.g., steps,

"tuned" doublets, and tuned 1-cosine forcing functions). Attention should be given to standard

flying qualities test inputs and criteria. Strongly time-varying airspeed maneuvers need to be

considered, such as: weapon release pullups, Pugachev "Cobra" maneuvers, thrust-onset transients,
"scissors," etc. Much of this art has been developed for the U.S. Air Force and Navy by STI, so

it is readily available.

3. Review the Current and Potential Modifications to the Kawato Type-C Neurocontroller

We should consider an extension of the current Kawato Type-C neurocontroller (which uses

the existing SCAS feedback-error-controls relative to the inputs as an estimate of the plant inverse),

which we have come to understand in Phase I. Should NADC desire another NC of comparable

complexity to be used, we would consider it early in Phase II.

4. Refine the NC Topology and Processing Element Properties

Some promising additional architectural NC connections and signal shaping ideas were

explored late in Phase I. These were intended as refinements of the Phase I effort and should be

completed in Phase II. These include:

- Lead-equalization of the derived rates to compensate for computing lags.

- "Barvccntric" non-linear distribution of neural parameters (e.g., effective radius),
to more closely realize plant inversion, especially at small error conditions. [Coolidge, 1963]
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- Parallel NN loops to identify types of failure and redirect (reconfigure) the control

commands, (per Appendix A of the Phase I report).

- Different computing rates for the simulations and neurocontroller.

5. Refine the Measurement of Neurocontrol Functioning

One of the gaps in existing NC technology is the lack of well established methods and

measures to reveal and validate NC activity and functioning. Some were evolved in Phase I and

others were indicated but not tried. These should include: 3D and 4D plots for revealing the ACN

neuron distribution and radii in the NN input-parameter space; time-varying NC describing functions

in the frequency domain; time variations in the weighting functions; interpretation of the

neurocontroller action as effective control loop describing functions; etc. The use of STI's

proprietary NIPIP time-domain plant-identification procedure may be of value here, as it has been

for measuring human pilots (real adaptive neurocontrollers!) in failure mode control tasks and during

the Space Shuttle landing maneuvers. [Hanson and Jewell, 1983]

For use in the NC Toolbox, we should develop a more comprehensive set of standardized and

easy-to-simulate forcing functions designed especially to test and evaluate the neurocontroller actions

for discrete as well as continuous tasks.

6. Finalize the Aircraft/NC/Measurement Simulation at STR Corp

to Include the Foregoing Elements

The final software and hardware platforms for appropriate neurocontroller test cases should

be selected. Programming and processor options need to be reviewed. STI and STR Corp should

also review the NETSIM environment developed by Draper Labs and used by NADC for concurrent

neurocontroller development. Special attention should be given to assessing the suitability of this

software for ANN development and as a software platform for simulation experiments involving

comparative evaluation of alternative net architectures.

7. Select the Final Neurocontrolier Configuration and Tune Its Parameters

for Selected Tasks and Failure Modes

The final NC configuration for demonstration of the technology and toolbox application should

be chosen, with NADC interaction, and its parameters should be iteratively trained and "tuned,"

using the NC Toolbox procedures and tests. This NC configuration might not be the optimum with

respcct to any one (or several) performance criteria, but it would be "typical" and clearly

demonstrate the propcrties of the selected NC and the application of the Neurocontroller Analysis

Toolbox.
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8. Draft the "Toolbox Architecture"

The tools, measures, and procedures evolved in Tasks 1 and 2 need to be formalized for use

in the test and evaluation of a wide variety of neurocontrol systems. We should interact with NADC

during Phase II to evolve the overall architecture of a generally usable "Neurocontroller Analysis

Toolbox" for testing and analyzing aircraft neurocontrol systems. Adaptation of Toolbox elements

to various platforms and portability issues should be reviewed with NADC.

9. Provide a Set of Mission-Phase-Relevant Test Situations and Procedures for the NC Tests

Included should be a matrix of appropriately matched maneuvers, disturbances, failure types,

and likely-uncertainty sources for the previously selected mission phases of (say) tactical fighters.

10. Provide the Appropriate Forcing Functions for Each Case in Recommendation 9.

Include: quasi-random and chirp inputs, discrete maneuvers and disturbances, typical failure

consequences for a number of tactical situations.

11. Provide the Appropriate Measures and Analysis Procedures for the Above

There is a largely unwritten art in obtaining accurate dynamic and performance measures of

such nonlinear systems, much of it pioneered by STI for use in measuring human pilot "neuro-

controller" behavior. Guidelines to this art should be systematized and included in Phase II.

12. Provide Appropriate Evaluation Criteria and Current Benchmark Standards

Analyzed tests comprise only half of the evaluation process. Where possible, guidelines to
"good" or "adequate" NC performance should be given, or needs for further research clearly

indicated. The example case's computation speeds need to be benchmarked for comparison with

later improvements. STI experience with Flying Qualities Criteria and Design Guides will be useful,

here.

13. Demonstrate the Application of the NC Analysis Toolbox to the Neurocontrol/Aircraft

System Developed from Recommendations 1 - 6

At this Phase 11 stage, the NC Toolbox would not yet be a packaged-deliverable product; that

effort properly belongs in Phase III. It would include a rudimentary written Guidelines Manual, with

the tests, procedures, and inputs and outputs formally prescribed. Forcing functions and data

analysis procedures should be analytically described in pseudocode suitable for coding in most

computing platforms or environments. The Toolbox is not intended to simulate NC systems, but

rather is a set of functions and procedures which, when appropriately connected to an existing

simulation, will provide functional metrics for dynamic identification and validation of the system.
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We expect that NADC would imbed some of these tests and procedures into their own neural-

net control simulation projects and STI/STR would assist in this transfer of technology.

52



Contract No. N62269-91-C-206
Report No. NADC-91123-60

REFERENCES

1. Allen, R.W., and H.R. Jex, "A Simple Fourier Analysis Technique for Measuring Dynamic
Response of Manual Control Systems," IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-2, No. 5, November 1972.

2. Barto, A., Sutton, and Anderson, "Neuron-Like Adaptive Elements that Can Solve Difficult
Learning Control Problems," IEEE Transactions on Systems, Man, and Cybernetics,
1983.

3. Bavarian, B., "Introduction to Neural Network- for Automatic Control," IEEE Control
Systems Magazine, 1988.

4. Coolidge, I.L., A History of Geometrical Methods, Dover, New York, 1963.

5. Guez, Allon, Eilbert, and Kam, "Neural Network Architecture for Control, IEEE Control
Systems Magazine, 1988.

6. Hanson, Gregory D., and Wayne F. Jewell, Non-Intrusive Parameter Identification Procedure
User's Guide, NASA CR-170398, April 1983.

7. Hecht-Nielson, R., "Counter Propagation Networks," Proceedings of the International
Conference on Neural Networks, Vol. II, 1987.

8. Hirose, Yoshio, Yamashita, and Hijiya, "Backpropagation Algorithm Which Varies the
Number of Hidden Units," Neural Networks, Vol. 4, 1991.

9. Holdaway, R., "Enhancing Spervised Learning Algorithms Via Self-Organization," IEEE 2nd
International Conference on Neural Networks, 1989.

10. Jex, H.R., "On Improving the Detectability of Aircraft Pitch Control Impairment," WP 1285-
1, Systems Technology, Hawthorne, CA, 1991.

11. Jordan, M.I., and Jacobs, "Learning to Control an Unstable System with Forward Modeling,"
IEEE Conference on Neural Information Processing, Natural and Synthetic, 1989.

12. Kawato, M., Furukawa, K., and Suzuki, R., "A Hierarchical Neural-Network Model for
Control and Learning of Voluntary Movement," Biological Cybernetics, Vol. 57,
1987, pp. 169 - 185.

13. Kawato, M., "Computational Schemes and Neural Network Models for Formation and Control
of Multijoint Arm Trajectory," Neural Networks for Control, M.I.T. Press, Cambridge,
MA, 1990.

14. Krendcl, E.S., and D.T. McRuer, "A Servomechanisms Approach to Skill Development,"
Journal of the Franklin Institute, Vol. 249, pp. 24-42, 1960.

53



Contract No. N62269-91-C-0206
Report No. NADC-91123-60

15. McRucr, D.T., I.L. Asbkcnas, and D. Graham, Aircraft Dynamics and Automatic Control,
Princeton University Press, Princeton, Ni, 1973.

16. Musavi, M.T., K.B. Faris, K.H. Chan, and W. Ahmed, "Onf the Implementation of the RBF
Technique in Neural Networks," JACM, Vol. 5, 1991, pp. 110 - 115.

17. Narendra, KS., "Adaptive Control Using Neural Networks," Neural Networks for Control,
M.I.T. Press, Cambridge, MA, 1990.

54



Contract No. N62269-91-C-0206
Report No. NADC-91123-60

Appendix A

Working Paper No. 1285-1

ON IMPROVING THE DETECTABILITY OF
AIRCRAFT PITCH CONTROL IMPAIRMENT

June 1991

Henry R. Jex

Contract No. N62269-91-C-0206

The information contained in this working paper is
primarily for inlernal coordination and is subject to
modification, complete revision, or cancellation.

A-)



Contract No. N62269-91-C-0206

A. Introduction Report No. NADC-91123-60

The scenario, here, is a jet-fighter, pulled-up in level flight to about 30 degrees angle of attack

(whereby the trim thrust is about one-half of the weight), under an overhead target, with the pilot

maneuvering about this trim condition to aim the gunsight. A realistic and challlenging problem case for

the application of neural-net detectors and/or controllers in such situations is the need to cope with failure

of thrust vector controls during such use. The problem is serious, because from 50 to 100 percent of the

aircraft weight may be carried by the vectorable thrust, so an undetected failure (e.g., due to deflector

paddle burnaway) could cause loss of the aircraft.

Two failure modes; 1) paddle burnout and 2) stuck or hardover paddles, are the most likely ones,

due to paddle operation in a red-hot environment. Both elevator and thrust vectoring will be used

synergistically to preserve adequate margins of control effectiveness, and to compensate for the failure or

stalling of either one. Furthermore, the center-of-pressure of both elevator and paddle are aft of the center-

of-gravity, and this makes difficult the detection of failure of either, as discussed below. This informal

paper discusses some strategies for improving the detectability of such subtle failures, so that a neural-net

detection system would be easier to train and more positive in operation.

B. Geometry

ICRe ICRP Jet Deflector "Paddles"
------ -- .Elevators Np ..... Rp

m/2' RefCt. N0 - . +
.-------------------- -- --- - -----.--..

- - - -- - - --------------- ---- ------.

IX + /P
- Z Radius of : -

X ref CTj Gyration xe xp

6T

Figure A-1. Definition of Geometric, Inertial, and Aerodynamic Parameters
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C. Approach Report No. NADC-91123-60

The basic effect of elevator or thrust deflection paddle deflections is to produce forces acting at

x, and xP, respectively. The normal components of these forces, N, and N,, respectively, produce normal

forces and moments at the reference center; for example, the quarter MAC [F/4] at the Fuselage

Reference Line [FRL]. The center of gravity, CG, can move around, so it is common to reference the

various aerodynamic forces and moments with respect to this reference CG, then to transfer their moments

to the current CG.

When the elevator and thrust paddles have different distances from the reference center, a given

normal force by either one will produce a different pitching moment, hence a different angular acceleration

about the Reference Center. This, in turn, produces different "instantaneous-centers-of-rotation," ICR, and

ICRP, respectively.l'" Two normal accelerometers in the vicinity of these ICRs (say, one at the Ref. Or.

and one at some distance I. - k, ahead of it) can detect the different effects of these different ICRs and

can permit identification of changes in either control's integrity. Alternately, one normal accelerometer

can provide the same information, provided that the body bending between the sensors and ICRs is

minimal in either case.

An artificial neural net, ANN, working on the outputs of such properly located sensors should be

able to detect and measure quickly the impairment to either control device and to start corrective

reconfiguration of the controller.

If the elevator action and thrust-paddle action both take place at the same distance from the Ref.

Or., it is theoretically impossible to separate out which is impaired, if both move in synchronism. If one

(say the paddle) lags the other, then it may still be possible to separate their effects. If the two surfaces

are separated, but moved synchronously, it is more difficult to separate impairments, but still possible.

If both surfaces are impaired concurrently and proportionally, it is very difficult to detect which is at fault,

because the absolute angular acceleration is, at any given moment, a non-robust parameter due to

uncertainties in CG, dynamic pressure, and aerodynamic effectiveness. On the other hand, the relative ICR

locations are dependent on locations of the effective control forces, and these locations are less uncertain

than the components of the forces themselves. Thus, the ANN sensor complex and processing should

relate to ICR locations. This note will cover the theoretical principles and considerations.

D. Theory

Refer to Fig. 19, using conventional aircraft body-centerline axes for simplicity: Let r1i be the

fraction of original elevator or paddle area (S,o) remaining (0 .5 7i < 1.0).

Thc instantaneous center of rotation is readily experienced while batting a baseball. If the ball
impacts the bat at its "swect spot" (label), the ICR is at the handle, so no impact is felt. Other impact
points arc strongly reflected in the perceived impact at the handle.
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Pitch moment of inertia: IYY = m kY2 (slug - ft2)

Z Force from + elevator: (Z is + dn; CN is + up) 21

Z (6e) = - tIE SE qE CN& 6E (1)

Moment from + elevator: (M is + nose up)

M (60 = Z (A) 1& (2)

= 11E I& SE. qE CN 6 E (3)

Recall that the conventional "dimensional derivatives" are defined as the linear or .,ngular

accelerations from control deflection:

Linear Acceleration:

Z6 Z(6) -%-,SqC,69 (4)
m m

Rotational Acceleration:

M. I kM(Q) -1 Ib. S.qCN .6o (5)

y y

Recall that, at the Instantaneous Center of Rotation (ICR, at 1. ahead of the CG), the net normal

acceleration from translation and rotation due to a step 6 is zero.[3)

Zo() 0 = Z. -kI M6.

so:

+Zkb +Z61= z (6)
S Mb~b M6

[Note: because Z6, is (-), M, is (-), then 1. is (+), ahead of CG)

Further, expanding out the components of each term:

(-n, So, qe CN Y,/ (7)(-1 ,, (7)

(-1 S, qe CN )/mky
2  1

or,

1, " = k(8)

f'+6, is a control rotation (vector) parallel to the +Y axis (trailing-edge down)

I lMcRucr, Ashkenas and Graham, Aircraft Dynamics and Automatic Control, Princeton University

Press, 1973, (pp. 452 and 486).
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the well-known relationship between the percussion point, instantaneous-center-of-rotation, and radius-of-

gyration, kyt31
(ky 2 = Iym)[3) (9)

Similarly, the equations of motion for the thrust paddle are given by the forces due to thrust

deflection, &r; where the exit thrust is T:

Z(6T) = Tsin6 r ii T6'r (6 T in rad) (10)

M(&r) = II'T'5T (11)

And, by analogy with the above relationships:

Normal Acceleration:

Z . T = (T ) bT  (12)

Angular Acceleration:

M .6T = ('kT2 . (13)

ICR loci:

1 Z6, kn (14)

Because, (for thes- fighters), 16- is larger than l,, the thrust ICR, I.., will be closer to the CG than

Numerical Values for the Fighter Example

We will use values for a typical twin-tail fighter case in 141; at a high trim angle of attack, (a =

30 ° ) and low speed ( V = 220 ft/s). For this case thrust vectoring is important, and the failure node of

thrust deflector burnout is critical. Numerical parameters are given in Table 1.

Then, using Eqn. 14 to find 1,. and Eqn. 8 to find I., and comparing the elevator and thrust

deflection parameters, the parameters of Table 2 result.

4";Myers, T.T., B.L. Aponso, and Z. Parseghian, Task Tailored Controls, Volume II: Enhanced

Fighter Maneuverabiliy Technical Report NASA/Langley, NAS 1-18661-2, Skcptember 1987.
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TABLE I Fighter Example Pitch Axis Parameters at aci = 300

Item English Units SI Units

Wing Area S = 4u0 ft2  
- 37.17 m 2

Wing Chord c = 11.52" ft = 3.51 m

Weight W = 32,366" lb - 143,964 newtons

Mass m = 1006.1 slug - 14,683 kg

Pitch Inertia Iy = 123936" sl ft- - 168,032 kg m 2

Radius of Gyration, ky = .123936 j("1= l.10ft = 3.38 m
pitch L1006.1

Z., due to elevator Z. = -13.1 ft/sec 2/rad = -3.99 m/sec2/rad

Z., due to thrust Z6,= -16.1 ft/sec 2/rad - -4.91 m/sec2/rad
deflection

Pitch Accel. due to M6 = -1.23 rad/sec 2/rad = -1.23 rad/sec 2/rad
elevator

Pitch Accel. due to Mb, = -2.53 rad/sec2/rad = -2.53 rad/sec2/rad
thrust deflection

= given, rest are derived]

TABLE 2 ICR's and Effective Control Arms

Elevator Deflection Thrust Deflection

Inst. Ctr. Rt'n.: I., Z, 1,.= -1.31 = +10.65 1,, = -16.1 = +6.36 ft
(+ ahead of CG) Mb -1.23 -2.53

Effective Control

Moment Area: l=kJ 1&= 11.1'= 11.6 ft It, 11.12 19.4 ft
(+ aft of CG) 1, 10.65 6.36
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On a sketch of the fighter, the effective centers are roughly as noted below:

LOA - 56'

Ahead of c.g. Aft of c.g.
25' 20' 15' 10' 5' 0 5' 10' 15' 20' 25'

I I I I I I I I I1
JXOT,,.. .

6.36'

ICI

ICR ICR cg.• " Elev Thrust5 J " "

--- - - - -- --

Elevator Arm_ -'ZT,-,=-10.5'-- , iE =  11.6' v

-ZE ZT
XOE : Thrust Arm IT = 19.9'

Figure A-2. Locations of Effective Control Arms and Instantaneous Centers of Rotation

Note that the effective moment arms are not precisely at the geometric surface centers due to

aerodynamic interactions with the fuselage, etc. Nevertheless, it is found from experience that these

geometric arms or locations are more stable values compared to the wide ranges in their component terms

(e.g., q) over the flight regime, so their estimate by suitably placed sensors is the robust way to detect

failures.

Implications tor 1' -lion of Elevator vs Thrust Deflector Failureq

1. The ratio of CG accelerations due to elevator/thrust deflections is (from Table 1) = -13.1/-

16.1 = .81. This .19 percent difference is not much, compared with the uncertainties

present at any flight condition. This means that a CG mounted accelerometer would not

be very useful alone in separating the differences, but is essential in detecting ICR or lb

variations, with the help of angular accelerations.

2. The ratio of pitching angular accelerations for elevator/thrust deflections is (from Table

1) -1.23,/-2.53 = .49, a roughly 1:2 ratio or a 51 percent difference. Therefore, angular

acceleration per control deflection is a more sensitive discriminant of thrust deflection vs

elevator deflection, but this is still not robust across flight conditions.

3. From Table 2, the ICR for elevator is nearly 11 ft vs 6 ft for the thrust deflection, and this

will be similar over a wide range of flight conditions. The ICR is measured by the ratio

of linear to rotary acceleration (Eqn. 6) and is roughly independent of flight conditions
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or control deflections. So, the ratio of CG acceleration to rotary acceleration (derivative

of pitch rate) at frequencies where control surface effects are dominant, is an excellent

parameter to use for detection of failure. Bending mode effects must be filtered out or

compensated for.

Z Z
IX.0(,) = =

S0 co,

The frequency range where this is valid lies just beyond the short-period mode, where the M., or

M., term dominates the acceleration and angular response (rigid-body, high-frequency asymptote).

4. There is another factor to be considered: the difference in the servo bandwidth for the

elevator motions vs thrust-deflector motions. For the test case Ref. [3] gives:

lt = 1/.032sec = 31.25 r/s

1 /TET = 1/.12sec = 8.33 r/s

This is a 4:1 range, and if both surfaces were commanded to oscillate at about 2.5 Hz (16

r/s) the elevator would respond nearly at the command amplitude, while the thrust

deflector would only oscillate at about one-quarter of the command. This implies that

band pass filtration of the accelerometers would be a fruitful way to further discriminate

between elevator and deflector effects. The bandpass would, ideally, be in the region

above the aircraft closed loop short period (here, in the order of .8 rad/sec) and the lowest

servo bandwidth (about 8 rad/sec), i.e., in the range of about 4-8 rad/sec, or about 1 Hz.

Conclusions

The best signals to feed to the neural-net ensemble, in order to most clearly detect failures in

elevator vs thrust deflection are:

1. CG acceleration, in the passband near 1 Hz ± .5 Hz
2. pitch acceleration, in the passband near 1 Hz ± .5 Hz.

Pitch rate is not as good a signal as pitch acceleration for the reasons analyzed in the text. A

neural net might learn (configure itself) to give a virtual lead-lag on pitch rate, thereby yielding a pseudo-

acceleration signal. However, it should be quicker to train with angular acceleration than rate. In the

actual case, the actual bending mode effects on the sensors must also be considered.

The neural net should be trained to recognize the relative (ratio) level between these (and any

other consistent but subtle clues) to identify the failure of one or the other surface.
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