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Abstract

The problem of Write-All —using P-processors write 1's into all locations of an array of
size N, where P < N— has been used as the basic building block for constructing efficient
and fault-tolerant parallel algorithms. All previous Write-All solutions use Q(P) auxiliary
shared memory and assume that this memory is cleared or initialized to some known value.
When Write-All building blocks are used in polylogarithmic parallel time algorithms (e.g.,
to compute prefix sums or list ranking) auxiliary memory initialization cannot be amortized
over the computation. Thus, assuming clear memory is a very strong precondition and for
Write-All itself raises a legitimate “chicken-or-egg” objection.

In this note, using a deterministic bootstrapping and balancing argument, we show
how to Write-All when auxiliary memory is contaminated with arbitrary values. For any
dynamic pattern of fail-stop, no-restart errors on a CRCW PRAM with at least one surviving
processor, our new algorithm writes all 1’s using O(N + P log® N/(loglog? N)) work, without
any initialization assumption. This technique can be combined with any Write-Allalgorithm
to yield efficient simulations of any PRAM and even optimal simulations given processor
slack. It can also be used with restartable fail-stop processor simulations. In addition,
we show that for the parallel prefix computation it is possible to improve on the best
deterministic simulations to date: by a factor of log N when the memory is clear and by a
factor of loglog N when the memory is contaminated.
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1 Introduction

Related work and motivation:

The study of fault-tolerant and asynchronous parallel algorithms for the parallel random access
machine (PRAM [8]) has attracted a fair amount of recent attention. Several efficient algorithms
have been designed for PRAMs that are subject to stop-failures or to processor delays, where
this processor behavior is determined by adversaries of varying strengths. For example: asyn-
chronous PRAMSs are the subject of [1, 4, 5, 6, 9, 13, 18, 19], and fault-prone PRAMs are studied in
[4, 11, 12, 13, 20]. The motivation of this research area is to bridge the gap between realizable
parallel computers and the PRAM, with its unrealistic features of broad bandwidth memory
access, processor synchrony and freedom from faults. Qur work is in the area of asynchronous
and fault-prone models, but we do use broad bandwidth access to shared memory as a means of
providing redundancy when encountering faults. For a detailed discussion of the general model
used and how it can be realized see [4].

Here, we reexamine the key problem of Write-All and remove a strong initialization as-
sumption that has been used in all its previous solutions. Write-All was formulated in [11]
in order to show that it is possible to combine efficiency and fau': tolerance in the presence
of arbitrary dynamic fail-stop PRAM processor errors. Its solutions have been used to compile
PRAM algorithms for architectures where asynchrony or processor failures are present. It can
be formulated as follows:

Using P-processors write 1’s into all locations of an array of size N, where P < N.

Write-All captures the computational progress that can be naturally accomplished in unit
time by a PRAM (when P = N). In the presence of asynchrony or failures, efficient solutions
to Write-All (increasing the fault-free work by polylogarithmic factors only) are non-obvious.
Note that, in all existing solutions it does not matter what is the initial state of the size N array.
For example we assume it is all 0’s in [11, 4, 20], but the algorithms would work even if the
N locations were initialized using arbitrary 0’s and 1’s. A much more important assumption
in all previous Write-All solutions was the initial state of additional auxiliary memory used
(typically of §2( P) size). The basic assumption has been that:

The Q)(P) auziliary shared memory is cleared or initialized to some known value.

In theory, this is a natural, even if unstated assumption, for PRAMs [8] and RAMs (cf., Turing
Machine auxiliary tapes are initially blank). However, given the definition of Write-All this
dependence on clear space raises a legitimate “chicken-or-egg” objection. In practice, memory
locations typically contain unpredictable values, and processes that need to use large blocks of
memory cannot assume that it is cleared or is initialized tc a known value. In fact operating
systems usually provide explicit services that allocate clear memory, e.g., calloc() in standard
C libraries. Such allocation is predictably much more time consuming, even in the absence of
failures.

It is easy to construct simple Write-All algorithms that do not assume clear shared memory,
but they appear to use quadratic work. I the overall computation involves many steps, one can
perhaps afford an expensive initialization phase and amortize its cost over subsequent efficient
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steps. Unfortnately, when Write-All building blocks are used in very fast (i.e., polylogarith-
mic parallel time) algorithms (e.g., to compute prefix sums or list ranking) auxiliary memory
initialization cannot be amortized over the computation. Fortunately, we show that there is a
way around this dilemma:

We present Write-All algorithms and algorithm simulations that do not require that
the auziliary memory is cleared prior to the computation.

Algorithms in the setting studied in the present paper have some similarities with the
notion of a self-stabilizing system introduced by Dijkstra in [7]. Paraphrasing [7], a system is
self-stabilizing if and only if, regardless of the initial state the system can always make a state
transition into another state, and the system is guaranteed to find itself in a legitimate state
after a finite number of transitions. Our computations using initially contaminated memory can
be viewed as self-stabilizing with respect to the state of shared memory. In order to describe our
technical contributions we must now review the state-of-the-art of the algorithmics of Write-All.

For the worst case on-line stop-failures without restarts, Kanellakis and Shvartsman [11] gave
an efficient (within a log? factor) algorithm for Write-All (algorithm W) and other key problems
using an iterated Write-All paradigm. This paradigm was then employed independently by
Kedem et al. [12] and Shvartsman [20] to extend the results of [11] to arbitrary PRAM algorithms.
In addition, Kedem et al. [12] analyzed the expected behavior of several solutions to Write-All
using a random failure model. Shvartsman [20] presented a deterministic optimal O(N) work
execution of PRAM algorithms subject to worst case failures by exploiting parallel slackness
with P < N/log? N. A simple randomized Write-All algorithm that can be used for simulating
arbitrary PRAM algorithms on an asynchronous PRAM is presented by Martel et al. in [18];
this simulation has very good expected performance when the adversary is off-line. Kedem
et al. [13] have shown an (N log N) lower bound on work, for any deterministic Write-All

solution. In addition, they have shown an O(N lol‘é%) deterministic work upper bound on
Write-All. Their upper bound is based on a variation of algorithm W, and it has been shown
by Martel [16] that the same upper bound applies to algorithm W [11].

For the worst case on-line stop-failures with restarts there has also been some progress. A
parallel model where processors are subject to failures and restarts is examined by Buss et
al. in [4]. This framework generalized previous models of robust parallel computations and in
it Write-All has a subquadratic O(N?-*®) work solution. Martel et al. [17] presented several
randomized solutions for list ranking and sorting that have very efficient expected work when
the scheduling adversary is off-line. An efficient randomized solution for the Write-All problem
was developed by Anderson and Woll in [1] for the asynchronous parallel model. They have
also showed an existence proof for an algorithm achieving work O(N*¢) for any ¢ > 0. General
synchronous PRAM simulations are impossible using bounded resources on asynchronous PRAMs
because of the impossibility result shown by Herlihy [10]. However the algorithms in {1] can be
used with the restartable fail-stop model defined by Buss et al. [4] (which restricts asynchrony).
We will take advantage of this since general simulations are possible in that model.
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Contributions:

We eliminate the assumption that any amount of clear initial memory is available for the fail-
stop and fail-stop restartable algorithms. We develop deterministic fault-tolerant algorithms
that can bc¢ ased to simulate PRAMs using contaminated memory, i.e., when the shared memory
not containing the input is initially in an arbitrary and possibly illegal state. We also improve
on the state-of-the-art robust prefix sums computations. More specifically:

1. In the no-restart fail-stop parallel model, any N-processor PRAM algorithm that runs
in time 7 can be deterministically simulated using O(N) contaminated memory on P
fail-stop processors with work O(N + Plog® N/(loglog N)? + 7 - Plog? N/loglog N) for
1<P<N.

This simulation has an optimal range of processors, i.e., the work of the simulation is
asymptotically equal to the work of the simulated non-fault-tolerant algorithm.

2. In the restartable fail-stop model, any N-processor PRAM algorithm that runs in time
T can be simulated using O(N) contaminated memory on P = N restartable fail-stop
processors with § = O(7 - N1+¢),

3. For the parallel prefix computation it is possible to improve on the oblivious simulations
of non-fault-tolerant algorithm (e.g., the ones we get by using [12, 20] with conventional
algorithms). In order to compute the prefix sums of N values using N processors, at
least log N/ loglog N parallel steps are required [2, 15], and the known algorithms require
at least log N steps. Therefore an oblivious simulation of a known prefix algorithm will
require simulating at least log N steps. We improve this work of oblivious deterministic
simulation by a factor of log N when the memory is clear, and by a factor of loglog N
when the memory is contaminated.

In the rest of the paper, we present the model in Section 2, contamination-tolerant algo-

rithms are in Section 3, we cover general simulations and algorithm transformations in Section
4.

2 Model and definitions

The basis of our model is the restartable fail-stop CRcw PRAM that is discussed and justified
by Buss et al. in [4], except that the shared memory that does not contain the input is
contaminated:

1. There are P PRAM processors. Each has a unique processor identifier PID € {0,..., P-1}.

2. Shared memory is accessible to all processors; each processor has a constant size private
memory. Each memory cell stores one word of size O(log max{N, P}).

3. The input is stored in N cells in shared memory.
4. The shared memory not containing the input is contaminated.
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To enable algorithm termination and sensible accounting of resources, the work of the pro-
cessors is structured using update cycles. Each cycle consists of reading a small number of
shared memory cells, performing a fixed time computation, and writing a small number of
shared memory cells. The number of reads and writes per cycle is fixed, but depend on the
instruction set of the PRAM. The fail-stop with restart failure model is defined as follows:

1. A failure pattern F (i.e., failures and restarts) is determined by an on-line adversary, that
knows everything about the algorithm and is unknown to the algorithm.

2. Any processor may fail at any time in any update cycle, and it may later restart, provided:
(i) at any time at least one processor is executing an update cycle that successfully
completes;

(ii) single bit writes are atomic, i.e., failures can occur before or after a write of a single
bit.

3. Failures do not affect the shared memory, but the failed processors lose their private mem-
ory. Processors are restarted at their initial state with their PID as their only knowledge.

Condition 2(i) makes termination possible. Update cycles also serve as units of accounting.
They do not constrain the instruction set of the PRAM, however the processors are not charged
for the instructions of the update cycles that are not completed. (In the absence of update cycle
accounting, a thrashing adversary can force quadratic work for any Write-All solution [4].)

A failure pattern F is specified as a set of triples <tag, PID, t > where tag is either failure
for a processor failure, or restart for a restart, PID is the processor identifier, and ¢ is the time
when the processor either stops or restarts. The size of F' is defined as the cardinality |F.

The complexity measure completed work generalizes the Parallel-timex Processors product:

Definition 2.1 Consider an algorithm with P initial processors that terminates in parallel-
time r after completing its task on some input data I of size |I| = N, and in the presence
of any pattern F of failures and restarts of size |F| < M. If P,(I,F) < P is the number of
processors completing an update cycle at time ¢, and ¢ is the time required to complete one
update cycle, then we define completed work as: S = Sy m,p = maxyr{cY ., Pi(I,F)}. O

Remark 1 The incomplete work cycles are not counted in S. When the restarts do not occur,
then the maximum work spent in the incomplete cycles is bounded by O(P), since there can be
no more than P failures. Therefore, for the fail-stop no-restart model, using completed work S
yields the same results as using the available processor steps measure in [11].

We use the notation “Write-All(N, P, L)” to stand for an instance of fault-tolerant Write-

All that uses P processors and clear auxiliary memory of size L to initialize to 1 an array of
size N.

Definition 2.2 An algorithm that uses P processors to solve a Write-All problem of size N is
contamination-tolerant, if it is a Write-All(N, P,0) algorithm. O
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3 Write-All algorithms

The Write-All algorithms and simulations based on Write-All paradigm, e.g., [11, 12, 13, 20],
or the algorithms that can serve as Write-All solution, e.g., the addition algorithm in {5] or the
maximum finding algorithm in [18], invariably assume that a linear portion of shared memory
is either cleared or is initialized to known values. Starting with a non-contaminated portion of
memory, such algorithms and simulations are able to perform their computation by “using up”
the clear memory, and concurrently or subsequently clearing additional segments of memory
needed for future iterations. We develop an efficient Write-All solution that requires no clear
shared memory.

3.1 A Bootstrap procedure

We formulate a bootstrap approach to the design of fault-tolerant Write-All algorithms, such
that the auxiliary memory is initially contaminated. The bootstrapping procedes in stages:

In stage 1 of our procedure, all P processors clear an initial segment of Ny locations in the
auxiliary memory.

At the stage ¢ of the procedure, we use P processors to clear N;;; memory locations with
the help of N; memory locations that were cleared in the stge ¢ — 1.

If Niy1 > N; and Ng 2> 1, then this procedure will clear the required N memory location in
at most N stages. Say 7 is the final stage number, i.e., N, = N.

Let P; be the number of active processors that initiate phase i, and define N_; = 0. The
cost of such a procedure is: Spoor = Y iy Si(Ni, P;, Ni—1) where S; is the cost of the Write-
All(N,, P;y N;_;) algorithia used in stage 1.

The efficiency of the resuiting algorithm depends on the choices of the particular Write-All
solution(s) used in each stage and the parameters N;.

One specific approach is to define a series of multipliers Gg, Gy, ..., G, such that N; =
1'[;-=0 G;. The high level view of such algorithm is given in Figure 1. The algorithm consists
of an initialization (lines 02-04) and a parallel loop (lines 04-09). We use a variation of this
scheme below.

We next use the bootstrap approach to construct and analyze contamination-tolerant Write-
All algorithms in the fail-stop and restartable fail-stop models.

3.2 Algorithm Z for the fail-stop model

We use algorithm W of Kanellakis and Shvartsman [11] and its analysis by Martel [16]. We call
algorithm Z the algorithm that results from using W in each phase of the bootstrap procedure.

We analyze algorithm Z for the following choice of parameters: we use Gy = log N, and
G; = Gi-1log N (for i > 0). In the initialization, all P processors traverse a list of size Gy
sequentially and clear it. Then, iteratively, the processors use algorithm W to clear increasingly
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01 forall processors PID=0..P — 1 parbegin ——Use P processors to clear N memory
02 Clear the initial block of No = Go elements sequentially using P processors

03 i:= 0 ——Iteration counter

04 while N; < N do

05 Use a Write-All solution with data structures of size N;

086 and G;4) elements at the leaves

07 to clear memory of size Nj1 = N; - Gi1

08 1:=i+1

09 od

10 parend

Figure 1: A high level view of the bootstrap algorithm.

larger sections of memory using the auxiliary memory cleared in the previous iteration (Fig. 1,
lines 05-07).

Algorithm W is a fail-stop (no restart) Write-All solution. It uses two full binary trees
(represented as heaps in memory) and it consists of a loop in which the active processors
synchronously iterate through the following phases:

W1: enumerate the processors in a bottom-up traversal of the processor tree;
W2: allocate the processors in a divide-and-conquer top-down traversal of the progress tree;
W3: work at the leaves; and

W4: evaluate progress in a bottom-up traversal of the progress tree.

To avoid a complete restatement, the reader is urged to refer to [11]. Martel showed the
following upper bound for algorithm W:

Theorem 3.1 [16] Algorithm W with P processors, the progress tree with H leaves (P < H)
and 2H — 1 total nodes all initialized to zero and G array elements at each leaf, has the work
of S = O((H + Plog H/loglog H) - (log P + log H + G)) for any pattern of stop-failures.

Note that the above result and algorithm W can be used when P > H. As described in
[4], when there are P processors and the progress tree has H < P leaves, then it is sufficient
for each processor to take its PID modulo H to assure uniform initial assignment of processors
and to preserve the result.

Algorithm W stores its binary trees as linear arrays interpreted as heaps. Therefore the
structure of the trees is unaffected by the state of the memory, because the heaps are imlicit.
We next observe that the enumeration of the processors in phase W1 of algorithm W can
be done in a bottom-up traversal of a contaminated processor tree. The pseudocode for this
algorithm is given in Figure 2. We call it algorithm Z.n,m. The surviving processors enumerate
themselves using a standard logarithmic time algorithm based on addition. The contaminated
memory cells are distinguished from the cells that contain valid values via the use of a single
bit associated with each cell (a so called “deadman flag”). When a processor arrives at a node,
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01 forall processors PID = ()..P — 1 parbegin

02 shared integer array ¢[1..2N — 1]; ——processor counts
03 shared bit array alive[l..2N — 1]; ——alive/dead markers
04 private integer pn ——enumerated processor number

05 private integer j1,j2, ——left/right siblings indices

06 t; ——predecessor index of j1 and 52

07 jl1:= PID 4+ (N - 1); ——bheap-leaf init

08 pn :=1; ——assume this processor is no. 1

09 ¢[jl] := 1; ——a processor is counted once in this step

10 for 1..log(P) do ——traverse the tree from leaf to root

11 t := j1 div 2; ——parent of 31 and ;2

12 if2+t=jl

13 then j2 := jl1 + 1 ——jI came from left

14 else j2:=jl =1 ——jI came from right

15 fi;

16 alive[j2] := 0 ——mark siblings dead

17 alive[j1] := 1 ——mark self alive

18 if alive[j2] =1 ——both sub-trees have active processors?
19 then cft] := ¢[j1] + ¢[j2] ——both branches are active
20 if j1 > j2 —-—jI came from right, update processor n umber
21 then pn := pn + ¢[;2]

22 fi

23 else c[t] := ¢[j1] ——all siblings failed

24 ;

25 jl:=1t ——advance up the heap

26 od

27 parend

Figure 2: Contamination robust processor enumeration Z.pyum-

it clears the bit associated with its sibling, then it sets its own bit (lines 16-17). Only cells that
have valid values written in them by active processors will have the bit set. The enumeration
itself is as in phase W1.

Theorem 3.2 Algorithm Z is a contamination-tolerant Write-All(N, P,0) algorithm that fo
any pattern of fail-stop errors has § = O(N + Plog® N/(loglog N)?) for 1< P < N.

Proof: We first evaluate and then total the work of the algorithm during each of the finite
numbers stages of its execution. In each use of algorithm W, we will have G = log N as the
number of memory locations associated with each leaf of the progress tree, and we will apply
Theorem 3.1 with different instantiations of H to evaluate the upper bound of work.

Stage 0: Enumerate processors using Z.num, then sequentially clear log N memory using all
surviving processors. The work using the initial Py < P processors is: Wy = Py-log P+ Py-log N.

Stage 1: P, < Py £ P. Using instance of Theorem 3.1 where H = log N, the work is:
W) = (log N + P loglog N/logloglog N) - (log P, + log N + loglog N).
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Stage i: P; < P,_; < N. Using instance where H = log' N:
W; = (log' N + P, -iloglog N/(log i + logloglog N)) - (log P; + log N + iloglog N)
The Final Stage 7 is when log" N = N/log N, i.e., T = Elfﬁ:g-ﬂ -1.
Totalling the work in all phases yields:
tloglog N
log i + logloglog N

S=3 Wi=Wo+ Y (log'N +P

T
1=0 i=1

) (log P + log N + iloglog N)

Simplifying the sum results in § = O(N + Plog® N/(loglog N)?). O

This approach has the following range of optimality:

Theorem 3.3 Algorithm Z is a contamination-tolerant Write-All(N, N (loglog N)?/log® N,0)
algorithm with § = O(N) for any pattern of fail-stop errors.

3.3 Algorithm Z, for the restartable fail-stop model

Algorithm Z, is similar to algorithm Z, except that in each stage we will be utilizing a restartable
Write-All algorithm. (Algorithm W that is not suitable when restarts are allowed, see [4]).
Other parameters of the bootstrap procedure are the same as for the fail-stop case.

In this analysis, we will be using an algorithm that was described and characterized with
the following result by Anderson and Woll:

Theorem 3.4 [1] There exists a Write-All(H, H, H) solution with H processors that has work
O(H**) for every € > 0.

This is an existential result, and we call this algorithm AW . The best known constructed
deterministic algorithm has ¢ = log; 3 — 1 < 0.59 as was shown by Buss et al. [4] (algorithm
X, that can also be used with the bootstrap). Note that algorithm AW was developed for the
asynchronous model, but it can be used in the restartable fail-stop model as well. The work of
the algorithm in the asynchronous model is the same as its completed work in the restartable
fail-stop model.

Theorem 3.5 Algorithm Z, is a contamination-tolerant Write-All(N, N,0) algorithm that fo
any pattern of fail-stop errors has § = O(N*¢) for any ¢ > 0.

Proof: We first note that there exists a Write-All(H, P, H) solution with P > H processors
that has work O(P!*¢) for every ¢ > 0. We use algorithm AW, except all processors use their
PIDs modulo H. The worst case work is achieved when up to [§] processors that have the
same PID module H operate synchronously as a single processor. The work of the algorithm in
this case is: § = [§]-O(H*¢) = O(P'**). Using this algorithm at each stage of the bootstrap
procedure, and evaluating the total work as in Theorem 3.2 yields the desired result:

A e SR e e SR e SN SESENRD.
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We evaluate and then sum the work of the algorithm during each of the finite numbers
stages of its execution. In each stage i > 1 of algorithm Z,, we will use algorithm AW log N
times to clear log'*! N memory locations. In each instance of use of Theorem 3.4, we will use
§ > 0 as the exponent, such that £/2 = §. This is done to simplify the final sum using the
property that log N = O(N?) for any § > C We also use P = N for clarity.

Stage 0: All processors linearly initialize the segment of shared memory of length log N using
The work is: Wo = P -log N.

Stage 1: The algorithm is applied log N times to clear a segment of shared memory of size
log? N. Using instance where H = log N, the work is: W; = (Plog® N) -log N.

Stage i: Using instance H = log' N: W; = (P(log' N)*N) -log N = (Plog* N)-log N.
Final Stage T where log” N = N/log N,i.e., 7 = log N/loglog N — 1. Using the instance where

H =log" N = N/log N, the work is: W, = (P(log” N)°)-log N = (P(N/log N)!)-logN =
P-Nélog'*N.

S=Y"Wi=Wo+) (Plog” N)log N = O(N'**log!~® N) = O(N'*’log N) = O(N**).

1=0 =1

(]

4 Algorithm simulations and algorithm transformations

4.1 Oblivious simulations

Using general simulation techniques [12, 20}, if S,,(N, ) is the efficiency of solving a Write-All
instance of size N using P processors, and if a linear amount of clear memory is available, then
a single N-processor PRAM step can be deterministically simulated using P fail-stop processors
and work S, (N, P). Thus if the Parallel-time X Processors of an original N-processor algorithm
is 7- N, then the work § of the fault-tolerant version of the algorithm will be O(7 - Sy (N, P)).

For the setting with initially contaminated shared memory, using algorithms Z and Z, with
the simulation techniques [12, 20], we obtain the following results:

Theorem 4.1 Any N-processor, T parallel time PRAM algorithm can be simulated using O(N)
contaminated memory and F fail-stop CRCW processors with § = O(Plog® N/(loglog N)?+1-
N +71-Plog?N/loglogN)for 1 < P< N.

This simulation has optimal ranges:

Corollary 4.2 Any N-processor, T parallel time PRAM algorithm can be simulated using O(N)
contaminated memory and P fail-stop CRCW processors with § = O(7 - N) when:

(1)1 < P < N(loglog N)?/log® N), or
(2)1< P< Nloglog N/log? N) and r > log N/loglog N.
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In the restartable fail-stop model we get:

Theorem 4.3 Any N-processor, T parallel time PRAM algorithm can be simulated using O(N)
contaminated memory and N restartable fail-stop CRCW processors with § = O((1+7)- N1+¢),

Remark 2 Buss et al. [4] define an amortized complexity measure of overhead ratio o that
measures the computational overhead of an algorithm relative to the necessary work and the
number of failures that are encountered. The simulation in the restartable fail-stop model has
overhead ratio per PRAM step of 0 = N°. This overhead ratio can be made polylogarithmic by
interleaving algorithm Z, with algorithm V as presented in [4].

4.2 Improving oblivious simulations

In addition to serving ac *he basis for oblivious simulations, any solution for the Write-All
problem can also be readily used as a building block for custom transformations of efficient
parallei algorithms into robust ones [11]. Custom transformations are interesting because in
some cases it is possible to improve on the work of the naive oblivious simulation. These
improvements are most significant for fast algorithms when a full range of processors is used,
i.e., when N are used to simulate N processors, because in this case the parallel slack cannot
be taken advantage of. For example in the models with clear initial memory, a factor of
log N/loglog N was saved off the pointer doubling simulations [11], and using randomization
and off-line adversaries, improvements can be obtained in expected work of other algorithms
(17, 18].

We next show how to obtain determinsitic savings in work for the prefix sums algorithm that
occurs in solutions of several important problems [3]. Efficient parallel algorithms and circuits
for computing prefix sums were given by Ladner and Fischer in [14], where the prefiz problem
is defined as follows: Given an associative operation @ on a domain D, and z;,...,z, € D,
compute, for each &, (1 < k¥ < n) the sum @Ll z;.

Prefix sums can be computing robustly by using a naive simulation of a standard logarithmic
time algorithm. When using P = N processors, the work of such simulation will be O(S,,-log N).

Prior to dealing with prefix sums, we make a simple observation that improves on another
general simulation. It follows from the fact that since algorithms W and AW, by their definition
implement tree traversals, they can be used to implement an associative operation on N values:

Theorem 4.4 Given an associative operation @, and an array z[1..N], then @Y, z[i] can be
computed using N fail-stop processors at a cost of a single application of algorithms Z (or Z,).

This saves a full log N factor over oblivious simulations. We extend Theorem 4.4 and show a
robust prefix sum algorithm whose work complexity is O(S,,). In the no-restart fail-stop model
we have the following result:
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Lemma 4.5 Parallel prefix for N values can be computed using N non-restartable fail-stop
processors using O(N) clear memory with § = O(Nlog? N/loglog N).

Proof: The prefix summation algorithm that we are going to use as the basis, is an itera-
tive version of the recursive algorithm of [14]. The algorithm consists of two stages: (1) a
binary summation tree is computed, and (2) each prefix sum is computed from the summation
tree obtained in the first stage, each prefix sum requires no more than logarithmic number of
additions.

Each of the two stages can be performed in logarithmic time in parallel by up to N pro-
cessors. To produce the robust version of the above algorithm, we implement the above stages
using the controls of algorithm W with appropriate modifications as follows:

1. In the first stage, a binary summation tree is computed in bottom up traversals at the
same time when the progress tree of algorithm W is being updated. This modification to
the algorithm does not affect its asymptotic complexity.

2. In the second and final stage, the work phase of algorithm W is modified to include the
logarithmic time summation operations using the summation tree as input (as in Theorem
4.4).

This stage is shown in Figure 3. In the code, {(i)) is a binary string representing the value
i in binary, where most significant bit is bit number 0, and .. , is the true/false value of
thé/ht® most significant bit of ({i)).

The loop in lines 09-18 is the top-down t..versal - © the summation tree. In lines 13-17
the appropriate subtree sum is added (line 14) at d«nth k only if the corresponding bit
value of the processor PID is true.

Therefore the work to compute prefix sums is the same as the worst case work of algorithm W.
a

Thus we have realized a multiplicative factor of log N savings over the oblivious simulation
when the memory is clear.

Note that because of the lower bounds shown by Beame and Hastad [2] and Li and Yesha
(15), at least log N/ loglog N parallel time and at least N log N/loglog N work will be required
by P = N processors to compute the prefix sums in the absence of failures. Therefore the mul-
tiplicative overhead in work of our parallel prefix algorithm is only log N when using algorithm
W in the fail-stop model.

Using Lemma 4.5 we obtain the following result when the memory is contaminated:

Theorem 4.6 Parallel prefix for N values can be computed using N fail-stop processors and
O(N) contaminated memory with § = O(N log® N/(loglog N)?).

Note that using N processors to simulate a parallel prefix would require the work (Theorem

4.1) § = O(Nlog® N/loglog N), and so the custom algorithm saves a loglog N factor relative
to the oblivious simulation.
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01 forall processors PID = 0..N parbegin

02 shared integer array sum[1..2N — 1]; ——summation tree

03 shared integer array prefiz[l..N]; ——prefiz sums

04 private integer j, j1,j2, ——current/left/right indices

05 h; ——depth in the summation tree

08 3:=1; h:=0; ——begin at the root, and at depth 0

o7 prefiz[PID] := 0; ——initialize the sum

08 while h # 0 do ——traverse from root to leaf

09 h:=h+1;j1:=2%+j;j2:= j141 ——=lefi/right indices at a new depth
10 if (PID)) ——1Is the sub-sum at this level included?

11 then prefiz[PID) := prefiz[PID] + sum[jl] ——add the left sub-sum
12 j :== j2 ——go down to the right

13 else j:= jl —~—go down to the left

14 fi;

15 od

16 parend

Figure 3: Second stage of contamination-tonlerant prefix computation.
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