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INTR

As we mentioned in the previous progress report, in addition to the studies

on swirling flows of Newtonian and non-Newtonian fluids, we also studied other

closely related problems involving flows of non-Newtonian fluids which can shed

light on the mechanics of such fluids. In all, we studied the following problems:

(i) Flow of non-Newtonian fluids of the rate type between two parallel

plates rotating with different angular speeds about a common axis.

(ii) Flow of non-Newtonian fluids of the integral type between parallel

plates rotating about distinct axes.

(iii) Flow of non-Newtonian fluids due to torsional and longitudinal

oscillations.

(iv) Flow of non-Newtonian fluids in pipes of varying cross-sections.

(v) Flow of shear thinning fluid between intersecting planes.

The results of our work have been published in archival journals and copies

of these have been attached to this final report. Here, we discuss briefly our

contributions to the understanding of each of the above problems. It would be fair

to say that this study has contributed significantly to the understanding of

swirling flows in both Newtonian and non-Newtonian fluids and this is reflected

in the various invitations we have received both nationally and internationally to

present our work.

The grant also supported the doctoral dissertation of Mr. Z.H. Ji which was

titled "Multiplicity of von Karman flows of viscoelastic fluids" awarded in 1990.

MAT LPELIMINARIES

Let a 0 c E denote the reference configuration of the body. We shall denote

by X e GO, particles belonging to the body in the reference configuration. Let the



configuration of the body at time t be denoted by Ch and let x denote the position of

X at time t. By the motion of the body, we mean a one-to-one invertible mapping x

through

X = Z(xt). (1)

The deformation gradient F associated with the motion is defined through

F=___
x" (2)

We shall assume that F is invertibh. Let 4 denote the position of the particle at

time c, 05,c O t. Then

= z(x, T) = z(z'(x,t),t) = Z,(zt). (3)

Xt is called the relative motion The relative deformation gradient Ft () is defined

through

(4)

The history of the stretch tensor Ct (T) is defined through

c,( ) = FrT()F,(r). (5)

The velocity of the particle v(x, t) is defined through

,v(x, t) = d4

d - ,  (6)

and the velocity gradient L is defined



L(x,t) = grad v(xt)=

It immediately follows that

L(x,t) = PF-'. (8)

We next record the basic balance laws.

The conservation of mass takes the form

W +div (pv) = 0, (9)

where p denotes the density of the fluid. Since we shall be concerned with

incompressible materials, we shall require the constraint

dIv v = 0, (10)

or

det F=1. (11)

The balance of linear momentum is given by

dv
div T+pb=p-, (12)

where T denotes the Cauchy stress, b the external body force field and d/dt the

usual material time derivative.

RESARCH CARR OUT

(i) Flow of fluids of the rate tvme between two Rarailel Dlates rotating with

differing angular speeds about a common axi

Amongst the many models for the fluids of the rate type, one that is very

popular amongst rheologists, and includes the classical Navier-Stokes model and



the Maxwell model as special cases, is the Oldroyd-B fluid.

The constitutive equation for the extra stress S for the Oldroyd-B fluid is

given by (cf. Oldroyd [11)

S=pl+T,

S + Ai(S- LS- SLT) =.u[A + A2(A - LAI -A) (13)

where the overscore dot denotes the material time derivative, g. is the viscosity,

and A, and A2 are material constants, referred to as the relaxation time and the

retardation time, respectively. Also,

L =grad v, (14)

A=L + LT, (15)

and

)=+[grad ( )]Y. (16)

We are concerned here with the flow that is induced by the rotation of two

infinite disks. The disks are parallel to one another and are located at z = 0 and

z = I of a cylindrical polar coordinate system. The disks rotate with angular

velocity 1 and f12, respectively. The separation between the disks is d and the

fluid velocity v has radial, azimuthal and axial components designated by u, v,

and w.

We assume a velocity field of the form (cf. von Karman [2]):

{u,v,w} = {rF',rG,- 2F} (17)



where F and G are functions of the axial coordinate z only. A lengthy but straight

forward manipulation yields the following equations (cf. Ji, Rajagopal & Szeri [31):

Sfl, + A,[r(F'S,,, - 2F"S,,) - 2FS,,-2FS, + GS,]

= /I 12F' - 2Ar 2 F -2 - 2( + FF')]}

SS+ A, [r(F'S,.. - 2F-S,. - G'S.) - 2FS, - 2FS,', + GS,]O

= -2.u A2r2F"G'

S.+ A1[r(F'S, ., - 2F-S,,) + FS, - 2FS,., + GS,,.]

= jv4F" + 2A 2(3F'F"v - Fr')]

Seg + A,[r(F'S., - 2G'S) - 2F'SO - 2FS*,. + Sg*

= P 12F' - 2A[r 2 G 2 + 2(F 2 +F"]

So, + A,[r(FS,,, - G'S.) + F'Se, - 2FS,.. + GS,.,]

= pr[G' + 2A 2(3F'G' - FG7)J

S.+ Al{rF'S. + 4FS - 2FS,, ,+ GSZ.}.

= 174-4F' + 8A 2(FFff - 2F 12T] (18)



The stress components have to satisf~y the following set of ordinary

differential equations

A - 2A1 (FA' + F'A) =.u[2F' - 4A, (F 2 +FF",)]

B - 2A,(FB' + F'B) =,[F- 4A 2 (F12 + FF")]

Q - 2A,(FQ' + G'P) = -2pA 2G'2

P - A1(2FP' - 2F'P + G'R) = p4G' + 2A2 (3F'G' - FG")]

-2A,(2FR' - 2F'R) =u ,4-4F' + 8A 2(FF' -2F 12)]

-2A,(2FX' - F"Z) = -2pu A2F"2

Y - A,(2FY' + G'Z + F"!') = -2ju A2F"IG'

Z - A1(2FZ' - 2F7Z + F"R) = ,4FN + 2A2 (3F'F"v - FF"v')]. (19)

Here A, B, ... etc., are defined through

2

S I(S.

M- ii0
(A EJ0*



S2=tY Q o
0 0 O (21)

The balance of linear momentum, in the absence of body force, takes the

form

pr(F' 2 -2FF"-G)-- +-+ I--+ S.-S
r

2pr(F'G - FG') = -I +-0 +2 $,*

4pFF'= - "+ " + "'+r"2
dzr dz r (22)

Let

p= p, (z) + P-K r'
P

2 (23)

then, substituting for Srr, ..., Szz we obtain the equations of motion as

3X-Q+Z'=p(F'2 -2FF"-G 2 + K)

4Y + p" = 2p(F'G -FG')

P2 f+ZR(z) + (2Zz) dz -2pF +constant

A B. (24)

To non-dim asionalize the problem we employ the transformation:

z=dz, F=Lvf(z), G= Qtg(z), E=vlQd2,

W= 1 A1, 1 2 = IA2, P =AJA,, k=K/.,

Q=-- Q, P=OP 9 4, R=AQR,

d

d (25)



Here E is the Ekman number, W is the Weissenberg number and I is a measure

of retardation time relative to relaxation time.

The above set of ordinary differential equations read, after dropping the

overscore bars

Q - 2W(JQ' + g'P) = -2MiW g',2

P - W(2fP' - 2fP + g'R) = g' + 2/31(3fg' - fg")

R - 2W(fR' - 2f 2?) = -4f" + 83(ff" - 2f#2)

X - 2W(f" + f'Z) = -2p3 f 2"2

Y-W(2JY +g'Z+ffP) = -2 Wf"g'

Z - W(2jZ'- 2f'Z + f 'R)= f" + 23W(3f'" - if")

+ = 2(f,, _f 4+ g2 _ k

4Y+13=2 fg').
E (26)

We next record the boundary conditions appropriate for the flow under

consideration. Since the fluid adheres to the boundary

f(O)=0, f'(0)=0, g(O)=l,

f(1)=0, f'(1)=0, g(1)=s (27)

where s a 02/01. As we have eight differential equations governing the motion of

the fluid and the above conditions yield but six of the required twelve boundary

conditions, we have to augment (16); to this end we evaluate the stress

components Z, P and R at both z = 0 and z = 1, as they are determined in effect by

(16). Thus



Z(O) = f"(O), Z(l)= f(1),

P(O) = g'(O), P(1)= 9'(),

R(O)=0, R(l)=0. (28)

The above system of equations was solved numerically using PITCON on

the CRAY Y-MIP/48.

The equations exhibit interesting multiple solutions and a detailed

discussion of these solutions and plots for the velocities can be founded in the

attached paper titled "Multiplicity of solutions in von Karman flows of viscoelastic

fluids".

(ii) Flow of nan-Newtonian fluids of the integral tve between narallel plates
rotating about distinct axes

While rate type and differential type models are useful in describing dilute

polymeric solutions and materials with fading memory, when it comes to

describing the behavior of polymeric material which have finite memory we have

to use integral representations for the stress which incorporates the history of the

deformation in the model. The K-BKZ model (cf. Kaye [41, Bernstein, Kearsley &

Zapas [5]) has proved to be quite successful in describing behavior of a wide class

of polymeric fluids and in addition the model has been shown to have a firm

footing from the point of view of statistical theories for modeling.

Here, we shall describe the flow of a K-BKZ fluid in an orthogonal

rheometer (cf. Maxwell & Chartoff [6], Rajagopal (7]).

A detailed discussion of the above equations for a special subclass of K-BKZ

fluid, the Wagner fluid, can be found in the attached paper titled "Flow of K-BKZ

fluids between parallel plates rotating about distinct axes: shear-thinning and

inertial effects" while the flow of another popular subclass, the Curie fluid can be



found in the attached paper titled "Flow of viscoelastic fluids between rotating

plates about distinct axes".

The Cauchy stress T in the K-BKZ fluid has the structure

T = -pl+ 2J_. {Uc'(r))-U 2C,(r)} dt, (29)

where

C, (r) = F(,)F(r). (30)

In (29) U denotes the strain energy function for t.- viscoelastic fluid and is

a function of the principal invariants of Ct (T) and Ct- (

U =U(l,,I 2t - "), (31)

11= trC,-' r, 12 = trC, -, (32)

and

U,=-u, i= 1,2.
A; (33)

Let x = (x, y, z) denote the position occupied by the same particle X at time t.

It follows that

-- n - g(q)). (34)

,=-r(g -f(;)), (35)

=o, (36)

with

4(t)=x, il(t)=y, and ;(t)=z.



Rajagopal [7] has shown that the motion (34)-(36) is a motion with constant

principal relative stretch history. In such motion, the stress is determined by the

first three Rivlin-Ericksen tensors A1, A2, and As .

However, for the motion under consideration

=-j 2A (37)

Thus, the stress is given by

T =-pl+I(A,A 2). (38)

The balance of linear momentum has the form:

1 Jp o~o+Q2[x-f]+l!hj(f,,g,,f,,g,,),

p ax p (39)

__. = __ + j2[y f] + I 2 (f',g',f",g"),
p i ky (40)

l -- =- -h3(f',g~',,g" )

pdy &c" (41)

The specific constitutive equations determine the functions h1 , h 2, and hS. This

can then be substituted into (39)-(41) and the appropriate partial differential

equations analyzed. Notice that (39)-(41) are of second order and hence the no-slip

boundary conditions are sufficient for determinacy. The appropriate boundary

conditions for the velocity field are (cf. Figure 2)

u=-- y, u=fx, w=O at z=h,
2 (42)



u=Q---fy, V=fM., w=O at z=O,2 (43)

and

u-+-, v- ±, as x,y-.-4± . (44)

It follows from (42), (43), and (34)-(36) that

f(h) = f(O)=O, (45)

g(h) = , g(O)=-a .

2 2 (46)

In eliminating the pressure field we have raised the order of the equations. Thus

the boundary conditions (45) and (46) are not sufficient to determine the solution to

the system (39) and (41). We augment the number of boundary conditions by

recognizing that the locus of the centers of rotation cuts the plane

z = 0 at some point, say (11, e2). Thus

However, if we restrict ourselves to solutions which have midplane symmetry,

then

41h)=o g) (48)

For the rest of this section we restrict ourselves to a discussion of solutions which

possess midplane symmetry. For the motion under consideration, a lengthy but

straightforward computation yields

C,(.r) = I-1A + ) 49A2



and

1-c) 2 (1 - c)u 12lCf2+g)A
+ (,-C A+S(I-c) (A+A ,

n3 (AIA+ 2 A), (50)

where

sa=sin.Q(t- ), C -COAI(,- r). (51)

Also, notice that

l,(t, T) = 12(t, -r) = 3 + 2(1 - cXf "2 + g 2 ) S l(: - r),z). (52)

It follows from (39)-(41), (40), and (50) that

dz ff'B(r') + g'A(W)} = p af, (3dz

__ 2 (53)
d {-f'A(1c) + g'B(jc)} = Pa 2 9, 

(54)

where

(f'2 + g )V (55)

and

A(K)= 2fJ [3 + 2(1 - cos aa) C2 , a]sinflada, (56)

(r) = 2f 0 [3+ 2(1-,cos a](1osa)d, (57)

Of(1,a)-,(1,1,a)+U,(1,1,a). (58)

Let t. and ty denote the x and y components of the traction on the plates. It

follows that



t.(h) = +B(j,Q)f'(h) + A(A,fU)g'(h), (59)

t,(h) = -A(jf U)f'(h) + A(c,Q)g'(h). (60)

Thus the material parameters Ar, Q) and B(c, () can be expressed in

terms of t. and ty as (cf. Bower, Wineman & Rajagopal [8]):

A""r) = 24[tf'+ tgj], (61)

B(P', ) = -L[tf'+ ,g']. (62)

Dai, Rajagopal and Szeri [9] studied the flow of a Currie fluid for which the strain

energy U is given by

U = U(11,12,s) = -G(s)[51n(J - 1) - 9.73], (63)

where

J =11 + 2(12 + 3.25)/2 (64)

and

O(s) = -Ce-. (65)

This model is a very popular model for polymeric materials.

In a recent study Zhang and Goddard [10] studied the flow of a Currie fluid

in an orthogonal rheometer and found problems with convergence when values of

certain parameters were large. However, Dai, Rajagopal and Szeri [9] were able

to go well past the of the parameters for which Zhang and Goddard [10] had

difficulty, using an analytic continuation technique. The details of the results can

be found in the paper of Dai, Rajagopal and Szeri [9] appended to this report. Of

particular interest is the fact that Dai, Rajagopal and Szeri [9] were able to study



the problem for Reynolds numbers as high as 10,000 and found the presence of

interesting boundary layers.

(iii) Flow of non-Newtonian fluids due to torsional and lon*tudinal oscillations

There are many important applications like the drilling for oil where we

encounter the flow induced due to the torsional and longitudinal oscillations of a

cylinder in a non-Newtonian fluid. Here, we discuss the flow in the case of a

general incompressible simple fluid (cf. Truesdell & Noll [11]). The Cauchy stress

T in a homogeneous incompressible simple fluid is given by

T = -p1 +, [F(t- s)], (66)

where j. is a general functional aid Ft (t - s) is the relative deformation gradient.

s=o

Coleman and Noll [12] developed a method for approximating (66) within the

context of retarded motions. They showed that up to order four

4T=-pl+y s-p1+ (67)

s,=, A, (68)

S2 = axA 2 + a200 , (69)

S3 = fA3 + P2 (AA 2 + A2A) + P3(trA)A, (70)

S 4 = rA 4 + Y2(AA 3 + A3A) + Y34+ r4A2A
2+ A 2 A2]

+Y5(trA )A2+yr6(r41 )A2+yr7 rA3)A +yr.(A 2A)A, (71)

where A, is as defined earlier and (cf. Rivlin & Ericksen [131):

=d A .- ,(grad v)+(grad v) T ( .A d=tA,_ (72)
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Using the above approximation for the stress, we studied the longitudinal

and torsional oscillations of a solid cylinder in a simple fluid. We assume a

velocity field of the form (cf. Rajagopal, Kaloni & Tao (14])

v,=O, v.=v(rt), v =w(rt) (77)

where Vr, v0 and v, denote the components of the velocity in the r, e and z

directions. We assume that the velocity components v and w and the pressure p

can be expanded as a power series in Ql, for sufficiently small 0 (Q being the

frequency of torsional oscillations):

=.- n)(78)

w= an W¢" + o( '+'),
,R=. (79)

p = _ (80)

Substituting the above expansions into the balance of linear momentum and

equating the coefficients of fln, n = 1, ... leads to a hierarchy of equations which

can be solved successively. Here, we shall not document these equations as they

are exceedingly cumbersome. We refer the reader to the attached paper titled

"Longitudinal and torsional oscillations of a solid cylinder in a simple fluid" for

details of the calculations.

The appropriate boundary conditions are

V = OvCos~iIe, + Owcosuke, (81)

since we are assuming that the frequency of oscillations in the circumferential

and longitudinal directions are not necessarily the same.



Such a perturbation approach is very popular and has been used by many

in the field of non-Newtonian fluid mechanics. However, such an approach is not

without drawbacks and these are also discussed in some detail in the above

mentioned paper.

The study delineates the effects of the various material parameters on the

wall shear stress. In general, in keeping with expectations, an increase in the

higher order viscosities like 03 leads to an increase in the wall shear stress, as

also does an increase in Q. The effect of variation in the normal stress moduli a1

is quite dramatic. Details regarding the variations of the shear stress Tre, v and w

with the various material parameters are provided in Figures 1-12 of the paper

cited above.

(iv) Flow of non-Newtonian fluids in pines of varving cross-sections

The flow of non-Newtonian fluids through axially symmetric pipes of

varying cross-sections has relevance to several technologically significant

problems in biofluid dynamics and extrusion of polymeric materials. This

problem has been studied within the context of the classical linearly viscous fluid

model, and also specific non-Newtonian fluid models (mostly power law models)

by several authors.

We studied the flow of a four constant Oldroyd fluid (cf. Oldroyd [15]) in an

axi-symmetric pipe using a perturbation approach, using two parameters: e

which describes the departure of the cross-section of the pipe from circularity and

W (Weissenberg number) which is the ratio of the relaxation time to a

characteristic time scale for the problem.



The pressure drop along the axis of the tube and the shear stress are

calculated up to second order. The manner in which the elasticity of the fluid

alters the flow pattern, the effect of shear-thinning on the flow, and the formation

of eddies and the manner in which the flow separates are all studied in detail.

When appropriate parameters are set to zero, the results reduce to the results

established for the Navier-Stokes fluid. We find that elastic effects can initiate

separation at much lower Reynolds number than for a Newtonian fluid.

Moreover, the wall shear stress can change dramatically with changes in some of

the non-Newtonian parameters. For instance, increasing the retardation

parameter decreases the wall shear stress, while increasing another non-

Newtonian parameter (a) which appears in the model can significantly increase

the wall shear stress.

The Cauchy stress T in a four constant Oldroyd fluid is related to the fluid

motion in the following manner (cf. Oldroyd [1):

{, fDT a (AT + ai)  2  (A 2)

LDt 2 J 2 (82)

where D/Dt represents the co-rotational or Jaumann time derivative, given by (for

any symmetric second order tensor B)

-B O2 =[grad B]u+WB- W"

DT a&83

and

A= Vu=(V)T, 2W = Vu-(Vg)r. (84)

Also, i1o is the viscosity of the fluid at the zero shear rate, X1, is the relaxation



time, X2 is the retardation time and a is a parameter whose value lies between 0

and 1. When a = 0, the above model is equivalent to Jeffery's version of the

Oldroyd model whereas when a = 1 it reduces to the limiting form of Walter's four

constant version of Oldroyd's model. In viscoelastic materials it seems

reasonable to assume that 0 < a < 1. In this range predicts shear rate dependent

viscosity, normal stress effects in shear flow and a reasonable behavior in

elongatial flow.

We assume the flow to be axisymmetric so that the components of the

velocity (-u, v, w) in (x, r, 0) direction satisfy the constraint of incompressibility:

dx r (85)

We introduce the axi-symmetric stream function V through

r r (86)

and the vorticity component Q through

r = r(), (87)

where the subscript denotes partial differention with respect to that variable.

The appropriate boundary condition on 3D are

U + (!) = 0on r=a(x)

Vr=O, V=0, and U,=0 on r=O. (88)



Equations (88)1,2 are a consequence of the adherence boundary condition and

imply that there is no fluid motion either tangential or normal to the wall. The

conditions (88)3,4 are essentially symmetry conditions on the axis of the tube. The

constant flow rate taking place through any cross-section of the tube is given by

Jo: ri!dOdr=2xQ=constant.

The boundary conditions (88)1-4 can be expressed in terms of I by entering (88)

into (86):

,=0, T=qo on r=a(x)

T=0 on r=O

09,( -4 0 as r -+O.
r r,

We row proceed to non-dimensionalize the governing equations. Let

i-U~f, V-j-v, -= 71PT f~AuIA W=v-I

P=(ov0'I44)q, T= oI(Z,x*,e), f=("I a)w(z,x*,e),

a(x,e)=aos(eXla) , (O<e<<I), x*=aKao, z=rao, (91)

where p is the pressure, and ao is a constant characteristic radius of the tube.

The function s(cxlao) is such that in the limit . -+ 0, the tube is of constant radius,

and the variation of a with respect to the axial coordinate x depends upon ex

rather than x alone. Here z is the normalized radial coordinate and x* is a



"slowly varying" normalized axial coordinate. On substituting (91) into (82) we

obtain the dimensionless form of the constitutive equation as

T =2A + 2eN f{DA =WA-AW-2a(A2)J

-Wi DT +WT-TW-a(AT+TA) ,DOt (92)

where

Wi = 1 o (Weissenberg number)

and

The dimensionless form of the equation of motion in the absence of body

forces is given by

div T - grad p = Re 
()

dt" (93)

where Re = 'o/ao V is a Reynolds number.

On substituting (91) into (90) we get the dimensionless boundary conditions

as

€,=0

,,n z = s(x *)
0=1

= 0 on 0=o, ... /z-+O as z-+0, (0,1z).-+ O as z-+0. (94)

We solve the system of equations (92)-(94) for small Weissenberg and Reynolds

number. The previous low Reynolds number solutions for the Navier-Stokes



equations can be readily retrieved from our solution and our results reduce to the

results of Manton [16] when the Weissenberg number Wi = 0.

First, assuming that Re is fixed and is of order unity, a solution is obtained

in the form of a power series in Wi for the quantities *, o, u, v, q, T, e, and w (cf.

Kasivishvanathan, Kaloni & Rajagopal [17]):

A =Ao+ WiA +(Wi)2 A2+... (95)

where A in turn stands for , ,u, v, q, T, e and w.

Details of the results can be found in the enclosed paper titled "Flow of a

non-Newtonian fluid through axi-symmetric pipes of varying cross-sections".
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