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Chapter 1

Introduction

The goal of the Distributed Database Integrity Project is to improve the
integrity of distributed databases in a military command and control envi-
ronment. An important aspect of this effort is to find ways to achieve an
acceptable balance between the integrity of the database and its availabil-
ity. The users' requirements for availability from the database system can
become so critical that the users are willing to sacrifice some integrity in
order to proceed. These problems are complicated by the fact that commu-
nication failures, including network partitions, can occur frequently in this
environment.

During this project, we have examined a variety of approaches. In our in-
terim technical report [GDM90], we describe techniques for adding temporal
support [SA86] to the declarative constraint language of constraint equa-

tions [Mor89]. The resulting language can be used to improve integrity by
writing dynamic constraints over historical versions of objects. It can also be
used to improve availability by specifying transactions in a way that allows
their inherent concurrency to be described and exploited. We also discuss
techniques for combining different types of replica control algorithms.

This document describes a collection of approaches for improving the in-

tegrity and availability of the database by increasing the amount of informa-
tion available to the database system and using knowledge-based techniques
for reasoning about this information. We discuss the benefits of using an
object-oriented data model and describe an approach called object cQntracts
for managing object properties. Contracts allow structural and behavioral
invariants about objects to be created and enforced. We discuss the use
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of model-based reasoning to establish estimates and perform extrapolation.
We present an approach called constraints with exceptions that allows pro-
cessing to continue even though integrity constraints have been violated or
have not yet been evaluated. We also discuss the inclusion of temporal sup-
port features in the object data model and the issues involved in object
placement strategies. Finally, we present our conclusions and some ideas for
future work. In another report for this project, the Feasibility Implementa-
tion Plan [GR901, we present a detailed description of the steps necessary to
implement and evaluate these ideas, especially the ideas of object contracts
and constraints with exceptions.

1.1 The Problem

Military command, control and communications and intelligence (C3 I)
systems and the databases that support them must continue to function and
provide reliable information, even in the face of extreme challenges.

One challenge to the data integrity, and hence to the reliability, of any
information has its root in the intrinsic uncertainties of the C3 I task. Incom-
ing information is often uncertain and contradictory, yet must still be sorted
and evaluated. Data-entry errors and sensor failures may corrupt the data,
and in a real-time system there will rarely be time for a manual audit process
to uncover and correct such errors.

In addition to the uncertainty in the data itself, another threat to the in-
tegrity and availability of the database is from machine and communications
failure. This threat is intermittent and caused by various kinds of crises. At
times of crisis, especially if the system is under attack, the database must
function and deliver good decision making information even when communi-
cations are unreliable and many sites are temporarily or permanently down.

We expect that most of the time, the system will not be actively under
attack, most computers will be functioning, and communications will be
reliable. However, just as a fire department buys equipment to be able to
fight unusually large fires and an electric company must consider the power
demand on the hottest summer day, the success of a C31 system will be
judged on how well it functions in a highly stressed situation.

This principle of designing for the worst case has profound implications
for the architecture of a C3 1 system and the database that supports it. If
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we assume that periods of great stress are unusual, it is possible to greatly
simplify both the system design, and this research effort. To be successful,
any database must meet the needs of its users over a long period of time.
This means that the database and its applications must be maintainable, and
capable of evolving to meet changes in user needs. However, these capabili-
ties, while important and the subject of much worthwhile ongoing research,
are not the topic of this project. We assume that activities such as program
debugging and schema evolution may safely be postponed until the end of
a crisis. Instead, our research focuses on how a distributed object-oriented
database (OODB) can best maintain availability and integrity while the sys-
tem is under stress, and on how it can uphold its integrity in the face of
uncertain and unreliable data.

1.2 Metaphors for a Highly Available
Distributed OODB

No one has yet built an object-oriented database system (OODBS) with
the extreme survivability needed for C3 I applications. Because we are envi-
sioning a new kind of syster, the question arises as to what the best operating
metaphor is for such systems. Two main alternatives present themselves.

" A database supporting C3 I is best thought of as a database that hap-
pens to contain military information, rather than a military database
per se. Such a database can be constructed using existing OODBs,
which are themselves adapted from relational databases, by adding
provisions for real-time function, enhanced survivability, and so on. In
such a model, the demands of C3 I may cause some rethinking, but the
system is fundamentally based on existing technology and ideas.

" Alternatively, we may decide that a C3 I system has needs fundamen-
tally different from those met by any existing database, and a more
radical redesign is needed. Because communication is problematic, the
notion of a global state should be discarded, and the individual sites
should be viewed as a collection of independent, but cooperating agents.

The implementation of a system with no consistent global state would
borrow many ideas from artificial intelligence, including:
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- Cooperating agents, with explicit models of knowledge and belief

- Notification systems

- Model-based extrapolation systems

Of the above alternatives, this research project concentrates primarily on
the first, viewing C3 I systems as extensions of OODBs. This is the more
conservative approach, because it leverages an existing and well-developed
technology. However, we will also consider the more radical alternatives,
because they will provide indications for extensions and techniques to apply
where conventional approaches fail.

1.3 Navigational Versus Value-Oriented
Queries

An important difference between object-oriented and relational systems
is the query model. Relational systems rely exclusively on value-oriented
queries. In such queries, the system is given a logical specification of the
desired results, and all tuples matching the specification are returned.

While OODBs also support some forms of value-oriented queries, a great
proportion of object-oriented applications are primarily navigational. In nav-
igational operation, an application traverses a hierarchy of subject and other
specific links between objects. These links take the form of object ids stored
with the referencing object.

This form of operation has a profound effect on the design of query pro-
cessors, distribution, and integrity. First of all, query optimization by the
database system is much less emphasized. The navigational application has
a great deal of control as to the paths and orders by which data are accessed,
and it is assumed that the programmer is able to make efficient choices. In
addition, distribution semantics can be greatly different. For a value-oriented
query, the query processor needs to know where the information is, and this
requires access to a detailed fragmentation and distribution schema. While
this schema does not record the location of each tuple individually, it does
contain rules sufficient to assign any given tuple to a site. To keep such rules
simple and easy to store, fragmentation is usually made along the lines of
very simple predicates, so that, for example, different, sites will store tuples
with keys in different subranges of numerical values.

4



The distribution of objects does not have to be so carefully defined to

support navigation in an OODB. If an application is searching for an object,

and cannot find it in local storage, it knows that it must be at some other site.

The application may have to use a registry service to find the exact location

of an object, but the initial recognition that information is missing is intrinsic

to the object structure, and is signalled by an id without a corresponding

object. This means that object-oriented systems can afford to be far more

dynamic and informal with regard to object distribution. A least-recently-

used scheme may be employed to keep the most frequently accessed objects

in local storage. More principled schemes, based on logical specifications and

value subranges, are still possible, but they are not the only mechanism by

which a site can determine its working set of objects.
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Chapter 2

The ORION Database Model

Currently, there is no agreement as to the best model for object-oriented
systems in general and this lack of agreement extends to the database do-
main. Several OODBSs have been built, each based on a somewhat different
model. For concreteness, and because it is one of the best developed of the
operational systems, we take as our starting point the ORION-2 distributed
OODBS, which has been developed over the last five years at the Microelec-
tronics and Computer Technology Consortium (MCC).

The current versions of ORION include objects with unique identifiers,
attributes, classes, inheritance, methods, concurrency control, transactions,
schema evolution, distribution, versions, and automatic translation between
in-memory and on-disk representations for objects.'

Existing ORION implementations do not include a general trigger fa-
cility or a recovery mechanism for disk crashes. Neither of these features
is inconsistent with the basic model, and each might be included in future
versions.

Some of the advanced features of ORION are not directly relevant to this
research project. As we argued in the introduction, schema evolution and
long transactions will not take place when the system is under great stress.
As long as these featurcs are implemented so that they can safely be turned

'We list these features because the existence of a working ORION prototype provides
an existence proof that this is a compatible set of features, all of which can coexist in the
same system. Not all combinations of features are necessarily possible. For example, it has
been argued [Ull88] that non-procedural, algebraic queries are fundamentally incompatible
with a system providing object identifiers and methods.
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off (i.e., aborted) as a crisis develops, we need not be concerned with them
here.

Long transactions are motivated by a need to intermix "think time" with
database updates. This happens, for example, in a design database where a
designer may check out a portion of a design, work on modifying that portion,
and upon completion try to integrate the modifications back into th( 'xisting
shared database. The difficulty with this kind of modification is that if the
designer locks the relevant section of the database upon checking it out, the
database loses availability. Conversely, if no locking is used, some provision
is needed for adjusting the new design to take into account any intervening
updates. Therefore, some systems support change notification, and "soft"
locks to facilitate the re-integration. However, in the midst of a crisis, there
will rarely be enough time to perform this kind of update However, some
kinds of network partitions may appear similar to long design transactions,
so some of the techniques may apply.

Other features of the object-oriented data model might also cause prob-
lems for the integrity and availability of a distributed OODB. Unlike dynamic
schema updates and long transactions, these features are more fundamental
to the object-oriented model. These features include inheritance, change
notification, and triggers. All can cause problems for availability because
providing such features frequently requires access to data not contained in
the object itself.

Inheritance, for example, implies that an object cannot be understood in
isolation. Rather, the object's behavior and state are defined by both its own
attributes and by any objects or class definitions from which it inherits. If
an object is located on a different site than its ancestors, and communication
with the ancestors' site is lost, then the behavior of the object becomes
undefined or at least problematic. Because of this, the smallest manageable
unit for data partitioning must include not just an object, but also any
context required for the operation and interpretation of the object.

Change notification and triggers can cause similar problems, but for up-
dates rather than for the interpretation of objects. In a system that supports
triggers, what appears to be a simple update to a single object may in fact
trigger a cascade of updates to triggered objects. Again, if these other objects
are not available locally, ,ompleting the update is contingent on the avail-
ability of the (omninincation system. These problems are not unique to the
object-oriented model. One reason that inheritance and triggers are useful is
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that they provide a way to model interconnections and dependencies present
in the domain. Any knowledge representation that faithfully models such an
interconnected domain will need to make use of some non-local features.
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Chapter 3

Establishing and Managing
Object Properties

3.1 Meta-Knowledge and Encapsulation

An idea central to the attraction of the object-oriented model is that ob-
jects are characterized by their behavior and object id. Any underlying struc-
ture used to implement the object behavior is encapsulated, and not available
for direct manipulation. This encapsulation provides some of the most im-
portant benefits of the object model. For example, program reusability is
greatly improved because programmers are free to vary the implementation
of objects so long as the interface remains unchanged.

However, any intelligent system built on top of an object model will need
to make use of meta-knowledge. One very simple kind of meta-knowledge is
that required to maintain an index. Suppose we wish to be able to answer
range queries about a set of objects very quickly. (An example of a range
query is: "Find people with last names alphabetically between Go and Gr.")
The natural thing to do in such a case is to create an index on the Last-name
attribute, so that we may access the objects in sorted order.

In object-oriented systems, there is a fundamental difficulty with this ap-
proach. To maintain encapsulation, access to the Last-name attribute should
only be via the object methods. The person's last name is a string that the
object sends in reply to a given message, and the interface to the object de-
fines no further operational semantics. In particular, there is no guarantee
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that successive messages to the object will elicit the same response. (For
example, suppose a hapless programmer tries to create an index on a set of
file objects, and uses as the index attribute the get-next..char method!) Even
worse, the method itself may be redefined. Finally, even if the method is nor-
mally well behaved, there needs to be a mechanism for the index maintainer
to be notified when the attribute is updated.

The usual solution to this problem breaks the encapsulation of objects.
The part of the system that maintains indexes is at a lower level of the
system, and is empowered to look inside objects so that indexes may be
maintained on structure rather than on behavior. In addition, all updates
to the structure are passed through or at least made known to this index
maintainer. In this way, when an attribute value changes, the maintainer
can adjust the object's place in the index accordingly.

The disadvantage of breaking the encapsulation is that all code that main-
tains and directly manipulates such indexes is at a lower level than the object
system. As such, the index maintaining code cannot be object oriented in
itself, and it will not have the modularity and other benefits of the object
model. In addition, by looking inside objects, the index maintainer is ex-
posed to a great deal of complexity that is normally hidden by encapsulation.
Maintaining an index on a polymorphic collection of objects is particularly
difficult. These problems, which arise in the relatively simple task of index
maintenance, are even worse for more involved applications.

In our system, there will be a great deal of meta-knowledge needed to en-
hance integrity and availability. In fact, it is likely that such information will
form a substantial portion of the knowledge that the system manipulates.
Therefore, it is imperative that the meta-knowledge be available at the ordi-
nary programmer level and that tools of the highest quality are available for
its maintenance. This implies an object-oriented paradigm. Therefore, we
conclude that meta-knowledge should be handled so as not to break object
encapsulation.

3.2 Object Contracts

We propose that each object be held responsible for maintaining its own
meta-knowledge. Meta-knowledge is communicated to other portions of the
system via a contract, which represents a promise on the part of an object
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that some kind of invariant will be maintained.
For example, one kind of contract would be a declaration that a given

method may be indexed. By signing this contract, the object is ensuring that
calls to the method do not change the state of the object. In addition, the
contract ensures that the other signatories to the contract will be notified
whenever the attribute is updated, so that they may adjust their indexes
accordingly.

Another example of meta-knowledge that can be declared in a contract
is substructure independence. Under this contract, the object ensures that
some portion b of its methods has behavior wholly independent from another
portion a. Thus, it is possible to update portion b without worrying about
portion a. Consequently, updates to substructures that have been declared to
be independent need not be serializable. In its most grandiose form, each ob-
ject would have a scheduler for intra-object concurrency control, which would
take a stream of proposed queries and updates, and report any conflicts.

A contract that is nearly the converse is also useful in some situations.
Such a contract would declare that groups of objects are linked, and that
attempts to update one object in the group will necessitate, perhaps through
triggers, updates to other objects in the group. These declarations would pro-
vide a warning to concurrency control algorithms that it may be necessary to
lock the whole group. Between them, these two varieties of contracts provide
granularity information, signaling the scheduler whenever the serialization
granularity differs from the object granularity.

3.2.1 A Contract Protocol

Here we would like to give some examples of the kind of information
that might be encoded in an object contract, and how it might be used. At
this point it is premature to try to give a high level declarative language
for defining contract terms. Instead, we will list example provisions, and
describe how such provisions can be combined into contract agreements. We
do not expect the list to be exhaustive, and indeed one of the requirements
of the contract protocol will be an escape mechanism for adding extensions.

Perhaps the simplest kind of contract describes the basic query and up-
date behavior of an object and its methods. The behavior of a method is
a function of the internal structure of the object, but may also depend on
other influences such as inheritance from other objects, data from I/O de-
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Environment Local State
Writes Reads Writes Reads Sample Task

no no no no Cosine
no no no yes Access to a record attribute
no no yes no Blind write to a component
no no yes yes Incrementing a counter
no yes no no Access to system time service
no yes no yes -

no yes yes no -

no yes yes yes -
yes no no no -

yes no no yes -

yes no yes no -

yes no yes yes Reading a file via a local file pointer
yes yes no no Displaying a character on a screen
yes yes no yes -

yes yes yes no
yes yes yes yes

Table 3.1: Possible Values of the Gross Read/Write Contract.

vices, and so on. For convenience, we group all such influences together under
the general heading of "environment." The result of a call to a method may
depend on the internal structure of the object, the object's environment, or
both. Similarly, a method may cause changes to either or both the internal
structure and environment. This information can be captured in a contract.
Table 3.1 lists the possible combinations and gives examples for some of the
combinations. The information in such a specification is meant to be conser-
vative so that a "no" provides a guarantee that the indicated read or write
will not take place, while a "yes" is merely an indication that it is possible.

At the next level of complexity, we consider methods that are guaranteed
to be pure reads and/or updates to local structures, and consider possible
interactions between them. A likely question is whether a call to method A
can affect the results method B will give in the future. In principle, any or
all of these intermethod dependencies might be of interest, so if an object
has n methods, one form of contract would be the n x n matrix of possible
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dependencies. In practice, this might be far more information than is needed,
so abbreviated forms may be used. Such forms might indicate that certain
pairs of methods are independent or that all the methods in one subset are
independent of all the methods in another subset.

For methods that do affect or read from the environment, a contract
might still be used to codify any constraints on the scope of the effects. For
example, a contract may guarantee that the effects of calling a method are
limited to the objects in a given list. Similarly, a read method might list the
ids of objects that may be consulted in answering a method call.

Yet another kind of contract would describe behavioral obligations. A
typical behavioral contract would specify that whenever a specified attribute
is updated, another object will be notified. This is very similar to the ideas
underlying triggers. The difference is that a contract specifies that some be-
havior is promised, while a trigger is a piece of executable code that provides
some behavior. Thus, a trigger may be used to fulfill the terms of a contact.

Let us now look at some possible applications and how they would use
the above contract protocol.

* Indexing. To maintain an index on a class of objects, the index main-
tainer would need to know that the method is read-only, with no to all
interactions except read from local structure. In addition, the object
has a behavioral obligation to notify the maintainer in the event that
the attribute is updated.

e Update locking. If the methods of an object can be partitioned into
two independent sets, then the concurrency control manager need not
enforce strict serializability at the object level. Instead, updates to
each of the partitions can proceed independently.

* Trigger Chasing. Here the external behavior of an update is called
into account. If an object can pre-specify which objects might be
changed in an update, the updating transaction can attempt to pre-
fetch those objects so as to achieve greater performance. In addition,
when objects are distributed across sites in a network, an effort can be
made to collocate objects with strong inter-dependencies.

9 Coordinating Future Behavior. This is a much more advanced ap-
plication, and assumes that the objects have agent-like characteristics.
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The goal is for objects at different sites to coordinate behavior, even if
future communication is likely to be cut off.

3.2.2 Sources of Knowledge for Contracts

Contracts are a special form of meta knowledge; as with all
such knowledge-based systems, the problem of knowledge acquisition is
paramount. For some contracts, knowledge acquisition will have to be the
responsibility of the object programmer. For the most part, we would like to
avoid imposing this burden. For the simpler kinds of contracts discussed
above, such as (in)dependence of methods, and read/write of local stor-
age/environment, much of the needed information can be obtained by analy-
sis of the code that implements the methods. The techniques used would be
very similar to the kind of analysis presently done in a globally optimizing
compiler.

3.2.3 Inheritance and Object Contracts

We expect that the code that maintains contract invariants "will be fairly
complex. To avoid duplication and wasted effort, methods for determining
and maintaining contracts will be inherited. In addition, contracts them-
selves, and their obligations will be inheritable. In the index example, a
class definition may sign the contract that a particular method is to be in-
dexable. All instances will inherit this obligation, as well as the list of benefi-
ciaries who need to be notified in the event of an update. This inheritance of
contract-maintaining functionality means that object contacts can subsume
the functionality of more centralized techniques. For example, if we decide
to write a centralized module that can look inside encapsulated objects and
maintain indexes, we could simply package this module as an object and let
all indexable objects inherit this capability.

3.2.4 Advantages of Object Contracts

The main advantage offered by the contract paradigm is flexibility. Meta-
knowledge is available at the user level, and new forms of meta-knowledge
may be defined as needed, rather than being "cast in stone" as low-level
system services. Local autonomy is enhanced, because individual sites may
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choose whether or not to participate in certain contracts, or may use different
mechanisms to ensure compliance with the same contract. This decentralizes
the effort of maintaining a given invariant, and may be of great advantage in
a distributed environment.

For example, suppose that a given object is replicated, but takes on differ-
ent forms at different sites: the object representation used at headquarters
may be richer and more complex than is appropriate for efficiency and/or
security reasons for field units. In the contract mechanism, there is no r- ed
for a single agent to understand the inner workings of each site's view of the
object.
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Chapter 4

Using Estimates and
Extrapolations

C3 I systems function in a demanding real-time environment. A database
serving such an environment must provide uninterrupted high-speed access
to data. Unlike conventional databases, which take integrity to be an abso-
lute and try to achieve the best possible availability within this constraint,
C3 I systems will attempt to provide the best possible integrity within the
constraint of absolute availability.

Suppose an application needs immediate access to a particular atomic
data value, such as the amount of fuel remaining in a supply depot. Suppose
also that the database is replicated so that a replica containing the needed
value is immediately available. However, also suppose that not all replicas are
kept completely up-to-date, so that the locally available value may not be the
most current. In this circumstance, we propose a protocol where the result
to a simple query is not a value, but a triple: (Most-recent-value, Projected-
current-value, Actual-current-value). Most-recent-value is the value con-
tained in the immediately accessible snapshot. Projected-current-value is
a heuristically computed estimate of what the value is likely to be at present,
while Actual-current-value is the globally consistent and up-to-date value.
These three responses are delivered asynchronously so that the local snapshot
is available immediately, the estimate is available after some local computa-
tion. and the globally consistent value may be arbitrarily delayed, perhaps
in waiting for key sites to become available.

The success of such an architecture hinges on being able to compute good
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estimates. Some methods are domain independent, and hence applicable to a
wide variety of situations. In particular, statistical techniques can be used to
extrapolate present and future values from past behavior. Such estimates can
be treacherous, however, so it is best if they can be conditioned with domain-
specific information such as constraints, domain models, and knowledge of
future plans.

Statistical methods are most applicable to real-valued attributes. Where
attributes have another form, we will have to rely almost entirely on domain-
specific models and plans.

In general, the architecture of an estimation system can take advantage of
both object orientation and the contract mechanism. Domain-independent
methods, such as statistical estimation, can be stored in higher level objects,
and the techniques inherited as needed. Domain-specific information will
be stored so that its scope of inheritance will approximate its domain of
applicability. In addition, if an application needs a response different than
the usual three-level response, it can be arranged through the negotiation
protocols of the contract mechanism. By pre-arranging a delivery format
and semantics, the application can get the benefits of greater planning and
optimization on the part of the object.

4.1 Model-Based Communication

Imagine a spectrum of communicating agents. On the extreme left side
of the spectrum is a distribute- relational database with global two-phase
locking, voting algorithms, and so on. The algorithms for ensuring consis-
tency are entirely syntactic, which is a great advantage because it means
such databases will work no matter what the semantics of the application.

At the other extreme, consider a group of people, perhaps the circulating
crowd at a high school reunion, pairs or small groups of whom meet from
time to time and communicate. Each person's model of the world is unique:
there is no sense of a globally consistent model. However, when two or more
people meet, they try to synchronize, i.e., to bring each other up to date on
important happenings. These communications are characterized by:

* A great deal of meta-communication ("have you heard about...
aimed at determining what information should be transferred
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" Models of other agents' thought processes

" The use of boredom and interest, as a rationing device to ensure that
only the more important information is transferred in a world of limited
time and bandwidth

" Very strong model-based compression, using the communications con-
vention that objects or events are prototypical, and that interesting
deviations from the prototype will be further explained

To apply some of these ideas to computer systems, we propose a predic-
tor/corrector model of distributed systems. Each agent gains a description
of the local situation by direct observation, and this local model is assumed
to be accurate. In addition, each agent maintains an approximate model of
the global situation. This model is based on whatever reports are available,
filled in with global defaults and extrapolations.

In addition, each agent also maintains an approximate model of the local
situation. This model is based on the history of reports given to outside
agents, extrapolated forward to the current time. The purpose of this model
is not to model reality, which is available by direct observation, but to model
the state of mind of other agents. When the local model and the observed re-
ality differ, this indicates that something unexpected has happened and that
there is a high priority requirement to bring other agents up to date about
this exceptional event. If there is uniformity of extrapolating techniques
among agents, the communication can also be compressed. The messages
need describe only the differences between expected and observed reality,
with the assumption that anything not described is behaving according to
expectations.

This is quite different from the syntactically based algorithms used in
relational databases, because it hinges very heavily on semantics. Unless
there are reasonably accurate prediction and extrapolation functions, the
approximate model will differ so greatly from reality as to be useless. Thus,
this kind of architecture will be useful only in domains in which large portions
of the model are predictable. In addition to the domain, the time scale of
operations will also affect the usefulness of these techniques. Weather, for
example, is predictable at a fine-grained level over a period of a few days,
but not over weeks or months.
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Thus, this idea will need experimental investigation to determine how
well it works.
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Chapter 5

Using Constraints in an
Object-Oriented System

A constraint equation is meant to provide consistency criteria among
subsets of the data in a given extension of the database. The basic form of
a constraint equation is:

Pattern op Pattern

where pattern is a type of query, and op is a logical test (such as subset
inclusion) on the results of the queries given by the two patterns.

The patterns themselves are similar to relational algebra, structure and
power.' The advantage of this formulation is that even a naive constraint
verifier is not prohibitively expensive. Such a naive verifier would simply
evaluate both of the queries and compare the results using the indicated
test. The cost of verification is thus the cost of two relational queries.

Constraint equations are static conditions on a database state, and the
code to maintain a constraint may be arbitrarily costly. For example, if
we allow constraint violations to trigger actions, which may in turn cause
other violations and trigger other actions, the resulting rule system is Turing
complete. This allows great flexibility, because any needed computation may
be encoded, but introduces a high level of complexity in particular, as is
shown by Theorem 1 in the appendix, the question of whether the constraint-
action sequence ever terminates is undecidable. The proof of Theorem 1 relies

'One difference is that patterns can include an operator +, which allows a given edge
to be traversed "one or more times," to provide a form of transitive closure.
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on an unlimited ability to call rules to repair database constraint violations.
This immediately suggests limitations that can make a constraint system
more tractable and easily analyzed. For example, if all rules are guaranteed
to terminate, and if only one rule or some bounded number of rules is called
in response to a constraint violation, and if these rules cause no additional
violations themselves, then we can be sure that the constraint maint ,lance
process will terminate.

5.1 Specifying Transactions with
Constraints

Database patterns can include a time specification, so that the pattern
selects not just the value of a particular :'btribute, but the value of that
attribute at a particular point in time. The notation is general, but by far
the most common time values used are the before and after values for a given
transaction. This allows constraint equations to express dynamic constraints
o- transactions, and in some cases actually to define transactions, in that
tle new database state is chosen so as to satisfy the constraint. In order for

* ctions to be fully defined by these constraints, a number of conventions
must be added to the transaction language.

The first element needed is a concept of causality, or at least a separation
between dependent and independent variables. In the absence of a causality
specification, it would be possible to satisfy the constraint that expresses a
transaction by picking an arbitrary new value, and changing the past to fit.
Most of the time, this is not the desired semantics.

Even with a convention that the past determines the future and not vice
versa, there remains a problem of ambiguity. For a given old state, there
may be many new database states that satisfy the constraint equation. For
example, database elements that are not mentioned in the transaction pat-
terns could take on arbitrary values in the new database state. Thus, we
need to take on a convention of minimal change semantics to eliminate this
possibility. Also referred to as the frame assumption, minimal change se-
mantics cause as few changes as possible to the database, consistent with
the update requirement. However, e, with causality and minimal change
semantics, there may still be ambiguity about the best choice for the new
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database state.
The advantage of using constraints to specify transactions is that we now

have a more declarative representation, and that transactions may be more
easily analyzed.

The program for concurrency control suggested by the interim report, but
not carried out, is first to specify all transactions with constraint equations.
Given the declarative representation, the read and write sets of the trans-
actions can be analyzed. In fact, sometimes the analysis will reveal that a
given transaction is composed of independent components, with disjoint read
and write sets. If this is the case, we will be able to schedule the components
independently, with increased concurrency.

Interestingly, this advantage is not unique to constraint equations. In
fact, given any language in which it is possible to determine on which inputs
a particular output functionally depends, it is sometimes possible to safely
factor a transaction into separately schedulable subtransactions. 2

The main use of constraint equations is to specify integrity constraints,
and possibly triggers. There might be some benefit in having the integrity
constraints and transactions represented in the same language. For exam-
ple, we may be able to do some compile-time checking to determine that a
transaction cannot violate a given constraint.

2 Although, if we use strict two-phase locking and do not break the atomicity of the
original transaction, at some point the parallelized aggregate transaction will need to hold
all the locks that the original transaction needed at its peak. Thus, the opportunity to
gain additional concurrency is limited to the advantage we might get from the parallelized
transaction running faster.
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Chapter 6

Constraints with Exceptions

There seem to be (at least) three distinct levels of database constraints,
differing in their possible sources of violations, and also in the appropriate
responses to them.

At the first level, some constraints are absolutes, intended to maintain
algorithmic and representational invariants. Examples are:

" If an object is deleted, all references to it should be invalidated.

* The objects in a given B-tree are in sorted order.

" If B is a member of A's parent slot, then A is a member of B's child
slot.

" If copies of an object are available at different sites across a network,
all copies have identical values and behavior.

Statements in this class make no assumptions about the outside world. They
are purely internal to the database and its underlying physical representa-
tion, and are for the most part artifacts of redundancies in internal data
representations.

This type of constraint should not be violated at all, except perhaps
temporarily, inside atomic transaction code. Other than this, any violation
is indicative of a fault in the database system. Checking such constraints is
very useful, as a part of "defensive programming." When a violation is found,
great priority should be attached to its correction, because such violations
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represent a threat to the integrity of the lowest levels of the database system,
and can easily propagate to destroy large portions of the database.

At the next level, there are simple assumptions about fundamental prop-
erties of the world, that we do not expect to see violated. Examples include:

" Two physical objects may not be in the exact same position at the
same time.

" Energy is conserved.

" Information does not travel faster than the speed of light.

These constraints do encode assumptions about the state of the world, and
we nuay often expect the data in the database to indicate that these kind
of constraints are violated. When a violation occurs, it may mean that we
need to rethink assumptions or, far more likely, there is an error in that the
database does not correctly reflect the true state of the world.

Finally, at the third level, there are constraints that represent policies,
legal requirements, and observed behavior that happen "almost always." Ex-
amples include:

" Except in cases of extreme emergency, never draw the fuel supply at
depot number 7 down below 20%.

" Grade 2 programmers are paid between $26,000 and $39,000 per year.

Here, many more explanations for a reported violation are possible. Just
as for the lower levels, software bugs and mismatches between the data and
the true state of the world can also cause violations at the third level. In
addition, however, the possibility arises that the database does faithfully
reflect the state of the world, but the world is not behaving according to
expectations.

Now let us consider appropriate responses to detected violations of these
constraints.

* If a failure at level 1 occurs, this means the data structures are in-
consistent. Uncorrected errors of this sort are very dangerous, and re-
sponses up to and including halting the machine may be appropriate.
In a distributed database, the possibility arises that different copies of
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replicated data may become inconsistent. This is a level 1 constraint
violation. Ordinarily, voting or primary token algorithms can rule out
this possibility, but because of availability concerns these solutions are
not desirable. Therefore, the database will need to recover gracefully
even from some level-one constraint violations.

* Discovery of violations at level 2 indicates an error somewhere in the
database. The proper correction of the error may be ambiguous, how-
ever, as the cause may be unclear. One suspect is the transaction that
caused the violation. This transaction may be incorrect, in which case
it should be aborted. However, it is possible that the transaction is
correct, but is exposing a previously undetected error in the database.
Therefore, a correcting response may have to be delayed until further
investigation can determine the correct cause of the error.

* At level 3, many of the violations we see will occur because the world is
not behaving according to plan, rather than because the database has
incorrect data about the state of the world. If so, it may be appropriate
to initiate corrective external action, for example to enforce the policy,
but almost never should the database choose to "see no evil," and
change its internal state.

Thus, especially for violations at levels two and three, the database must
continue functioning in the presence of known constraint violations. This
implies that constraints are not absolute and raises the interesting question of
how to represent and manage non-absolute constraints and their exceptions.

6.1 Managing Exceptions
If a constraint might have some exceptions, the naive mapping from con-

straints to assertions in first order logic will not work. Under such a mapping,
a violation gives rise to a database inconsistency, and under the normal se-
mantics of first order logic, all inconsistent systems are essentially equivalent.
Therefore, the formulation of constraints needs to be less absolute than the
straightforward mapping.

One possible approach is given by Borgida in his work on exceptions in
information systems [Bor85]. In this approach, constraints are reformulated
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dynamically in the face of known exceptions. If T is the formula for a con-
straint violated by database state db, and the exception can be blamed on
the value of a predicate P on a vector of arguments P, a new constraint I"
is constructed by the rule,

with every occurrence of P(w) replaced by

[(w € 13) A P(w)] V [(w = 3) A -P(w)]

The database will be consistent with this modified constraint, but this
has the disadvantage that every database update is potentially a constraint
update, and that the resulting constraints may grow excessively large and
hard to verify.

Another approach is to weaken the constraint before any exceptions are
noted, but to add a non-monotonic component that restores some of the
strength of the original rule. For example, let us suppose that a certain
agency has a rule that pilots can be no more than 6 feet tall. This might be
expressed by a logical rule:

Vxpilot(x) =* height(x) < 6

However, if there ever is a pilot who breaks this rule, it will cause a contra-
diction. Therefore, we might want to weaken the rule by allowing for the
possibility of exceptions:

Vxpilot(x) = [height(x) < 6] V abnormal(x)

However, without additional provisions, this weakening may make the data-
base vacuous. If we use only the second rule, what is to rule out the possibility
that all pilots are abnormal?

The usual approach here is to use a system with semantics such that
pilots are assumed to be normal until there is evidence to the contrary. This
kind of reasoning is formalized in artificial intelligence by such systems as
circumscription, default logic, epsilon semantics, negation as failure, and
many others. Collectively, such techniques are referred to as systems for
non-monotonic reasoning.

Object-oriented systems already have features that embody some aspects
of non-monotonic reasoning. One such aspect is the closed-world assumption,
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the assumption that the set of objects represented in the database contains
all the objects relevant to the domain at hand. For example, in a company
it is usually convenient to make sure that all employees are represented by
objects in the employee database. If the database is complete, it is possible to
answer questions such as "How many employees are there?" with confidence.
Note that this assumption corresponds to a possibly infinite set of facts of the
form "X is not an employee." The assumption is non-monotonic, because the
addition of a new fact, i.e., the discovery of a new employee, can lead to the
invalidation of old conclusions. The closed-world assumption is not unique
to object-oriented systems; much of the original work on this assumption was
aimed at explaining the semantics of relational databases.

In our approach, we shall represent constraints with exceptions by using
the closed-world assumption with some operational conventions, in order to
achieve the desired non-monotonic behavior. We shall use the semantics of
circumscription as a comparison.

We have a two-level procedure for dealing with exceptions to constraints.
The transaction, if it detects violations, will flag the offending object(s).
Later, an asynchronous cleanup procedure will try to do something intelligent
about the violations.

6.2 A Proposed Architecture for
Constraints with Exceptions

Suppose we have an integrity constraint expressed by the rule:

Rule, : VxyzP(x,y,z)

where P(x, y, z) is an assertion over a database extension. If we wish to make
Rule, allow exceptions, we could rewrite the rule to be

Rule,, : VxyzP(x, y, z) V abnormal,,(x, y, z)

Note that we use a different flavor of abnormality for each rule, so that if
a given object violates a constraint, we know which constraint it has violated.
Note also that it is the entire rule-binding that is flagged as abnormal. Thus,
if there is an exception to a rule that mentions several objects, all of the
objects as a group will be abnormal.
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6.3 Design of Constraints

A constraint exception handling capability makes the overall system more
robust in the face of missing and incomplete information. Another advan-
tage, which should not be overlooked, is the potential simplification to the
constraint writing process. In a system where all constraints must be satisfied
at the end of every transaction, an incorrect constraint can be an availability
disaster. If a constraint is too tight, correct and perhaps essential transac-
tions will not be allowed to proceed. On the other hand, a constraint that is
too loose can allow incorrect transactions to execute, putting the database
in a state that may disallow further transactions.

For example, suppose a given company has trouble setting an upper
bound for salaries, and so checks salaries only to make sure that they com-
ply with minimum wage laws. However, departments do have budgets, and
there is a requirement that the total salary of all employees of a department
is less than the department's salary budget. Suppose that the order is then
given to raise a given employee's salary from $45,000 to $50,000. However,
through a keypunch error the new salary is actually recorded as $500,000.
This transaction is allowed to proceed, because there is no notion of a salary
being "unreasonably large." However, this transaction uses up almost all of
the money allotted for raises in a large department. Thereafter, many cor-
rect transactions will be disallowed on the basis of lack of funds. This might
have been avoided if the system had a concept of "unreasonably large." If we
allow the system to proceed with exceptions, constraint writers can take ad-
vantage of this by writing constraints not to a standard of "violations cannot
happen" but to a weaker standard of "violations indicate probable errors."

This raises the question of tradeoffs between the strength of constraints
and the severity of errors. We will use an example to explore how this
tradeoff might be optimized. Suppose we wish to represent the constraint
that employee ages should have "reasonable values," as a guard against data-
entry errors.

Suppose the actual ages of employees are spread according to the distri-
bution function Age(x) in Figure 6.1, so that the proportion of employees
with ages between n and n + 6 is given by:

,n+6 Age(x)dx
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distribution
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Figure 6.1: Distribution of actual ages

distribution
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Figure 6.2: Distribution of error entries
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However, assume that some proportion p of the age values entered into the
database are in error for some reason, and these error values are distributed
according to the function ErrorAge(x) in Figure 6.2. Note that the error
values show a much higher standard deviation than the correct values. Thus
the observed distribution of input values is given by

observed(x) = (1 - p) * Age(x) + p * ErrorAge(x)

Then, for a given input data value, we can compute a retrospective proba-
bility of being in error p, as

W =p * ErrorAge(x)

p* ErrorAge(x) + (1 - p) * Age(x)

A graph of this probability would look something like Figure 6.3. As we see
in Figure 6.3, as we reach more extreme ages, the probability of an input
data value being in error rises to a near certainty. If we assign system costs
cost,, to uncorrected errors and costf to false alarms, and if pe(x) follows a
smooth bathtub-shaped curve as in Figure 6.3, then we should assign the
upper and lower constraints at the boundaries where

Pe(X) * cost"(x) = (1 - Pe(X)) * Costf (X)

Error
Probabilty

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Age

Figure 6.3: Probability that a given entry is in error

In practical situations, the above distributions are likely to be known only
as approximations, and we may not have an exact measure of the costs of
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uncorrected errors or false alarms. However, this exercise is meant to give
a flavor of the added flexibility possible if constraints can have exceptions.
Rather than requiring constraints to be rigorous absolutes, we assume a
constraint becomes useful if adding it results in a net increase in utility for
the database.

35



Chapter 7

Modeling Time

7.1 The Relational Approach to Time

Many of the key ideas regarding time-varying data and timestamps in
general have been explored in the context of the relational model. We briefly
review some of the relevant concepts here, and show how they apply to
OODBs.

A relation is a set of identically structured tuples, each of which con-
tains a ruling part (here shown underlined), and some number of dependent
attributes:

(Key, attrl, ... , attrn)

If the data in a tuple are valid only at a particular time, or over a par-
ticular interval, we add time-value as an extra attribute to the relation:

(Key, attrl, ... , attrn, time-value)

Note that the time value is underlined. This is to indicate that some
of the dependent attributes may depend on time: the key alone no longer
determines them. Therefore, time-value is included in the ruling part.

However, some attributes may not change with time. Such stable at-
tributes will only be a function of attributes of the original key. This depen-
dency on a subset of the ruling part violates second normal form, and we can
avoid redundancy and update anomalies by decomposing the relation into
two separate relations:

(Key, time-value, time-varying-attributes)
(Key, stable-attributes)
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So far, we have been deliberately vague about the definition of time-value.
One of the most successful interpretations of time values is Wiederhold's
interval representation [Wie90, KW90]. In this representation, the funda-
mei:tal descriptor of time is the half-open interval. Several different kinds of
semantics may be attached to these intervals, but the simplest is the stabil-
ity assumption, in which if [tl, t 2) is the time value of a tuple T, then the
data values of T are assumed to hold at all times starting with ti, and up to
but not including t2. This means that a single tuple corresponds not to an
atomic data value, but to a set of data values.' The semantics of relations
also change. Usually, a relation is considered to be a set of tuples. But.
in the interval representation, in which each tuple is a set, the more useful
semantics for a temporal relation is that of a union of all the tuple sets. Be-
cause of this, syntactically different temporal relations may have the same
semantics. For example, the relation:

Name Salary Time
John 12,000 [1960,1961)
John 12,000 [1961,1964)
John 14,000 [1970,1969)

is equivalent to the single-tuple relation:

Name Salary Time
John 112,000 [1960,1964)

The first two tuples coalesce into a single tuple over a longer interval, while
the third tuple can be eliminated because its time interval is equivalent to
an empty set. This raises the concept of temporal normalization: a temporal
relation is normalized if all tuples with empty time intervals have been elim-
inated, and any pairs of tuples with adjacent time intervals and otherwise
identical attributes have been coalesced.

In this representation, temporal versions of the relational operations such
as selection, cross-product, difference, etc., can be defined. In each case,

'Using a tuple to represent a set of values is not unique to temporal databases. In
geometric databases, n-dimensional intervals (i.e., a set of points) may be used to represent
the extent of objects, while in databases that admit uncertainty, certain kinds of nulls
represent a set of possible data values. In all these cases, special versions of the relational
operators must be defined and implemented to take into account the modified semantics.
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adjustments are needed to handle interval attributes. For example, if we ap-
plied the selection condition Time > 1963 to the above single-tuple relation,
we would get the result formed by determining what subset of the interval
satisfies the selection condition:

Name Salary Time
John 12,000 [1963, 1964)

Similarly, to compute an equi-join along time-values, we form a cross
product as usual, but instead of testing intervals for syntactic equality, we
perform an intersection.

Relation A Relation B
A-Value Time-interval B-Value Time-interval

a, [1,3) bl [1,4)
a2 [3,7) b2  [4,8)
a3 [7,10) b3  [8,10)

For example, suppose we have relations A and B and wish to perform
the join A x B. This is equivalent to a selection on the cross product of A
and B. This selection should oe interpreted as acting on the sets of times
denoted by the intervals, rather than on the intervals themselves. Thus, the
correct semantics are obtained by replacing a pair of time intervals by the
intersection of the intervals, and then normalizing the result.

AmB
A-value B-value Time-interval

a, b1  [1,3)
a 2  bl [3,4)
a 2  b2 [4,7)
a3  b2  [7,8)
a3  b3  [8,10)

In the above example, the argument relations are in the from of proper
histories: any given time value between the extreme start and finish points
is contained in the interval of exactly one tuple for a given time-independent
ruling part. For relations in this form, a temporal join may be computed with
a sort-merge algorithm, at cost roughly comparable with that of a normal
equi-join.
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7.2 Time in the Object Model

Temporal ideas from the relational model generally translate to the
object-oriented model, but additional issues need to be addressed because
of representational differences. In the relational model, a time value of a
tuple is assumed to apply to all of its attribute values. However, because the
relational concepts of decomposition and normalization do not apply in the
same way to objects, an object-wide scope for a time value may be inconve-
niently broad. Therefore it is sometimes necessary to define reduced scopes
and corresponding storage architectures.

For example, suppose that among the slots of a given person object, there
are two time-varying attributes, weight and salary. If both attributes are rep-
resented by proper histories over the same time domain, we can use the join
techniques defined in the relational model. The whole-object history is com-
puted as the join of the attribute histories, so it is possible to switch between
putting timestamps on the individual attributes and on the whole object. We
could, for example, store attribute histories to minimize storage redundancy,
and still provide a method to access the whole-object history. When data
are incomplete, or different semantics apply to intervals, the algebra is not
quite as simple or clean. If this occurs, there might be information loss in
converting back and forth between attribute-level and object-level time val-
ues. One representation is likely to be preferred, but the other can at least
be approximated algorithmically.

In addition to questions of architecture, a number of semantic issues need
to be examined, especially in a system that needs to maintain high availability
despite poor communication. In Section 4, we saw how the database may
need to substitute an extrapolation from an old value, if no fresh data is
available. This presupposes that the system has a concept of time, including
at a minimum, accurate timestamps and standards of how old data should
be evolved. Object contracts also may involve time. In particular, when an
object signs a contract, it may specify a limited duration for the applicability
of the contract. In this way, if an object needs to change its behavior, the
object has the option of waiting for the contract to expire, as opposed to the
more laborious route of tracking down all the signatories and obtaining their
permission to make a change.
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Chapter 8

Patterns, Contracts, and Object
Distribution

8.1 Distribution Costs

In this section, we draw together many of the ideas of this research project
to examine the distribution design for an 00DB.

Distribution design addresses the problem of where information should
be located, and is motivated by the same considerations that lead to a dis-
tributed database. If data items can be located at or close to the sites where
they are most used and updated, then the overall costs of distributed system
operation will be minimized.

In most work on distributed databases, the measures of cost are response
time and resource utilization. While these are important in our project as
well, our primary focus is on availability and integrity. This shift in focus may
not greatly change the preferred distributions, however. Communications
lines are slow and costly, so communications should be minimized to reduce
monetary costs. Communications lines are also unreliable, so to increase
availability, as much information as possible should be stored locally.

8.2 Granularity of Distribution

For an OODB, the objects themselves provide an obvious granularity
at which to consider the problem of data distribution. The database is a
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collection of objects, and subsets of these objects will be allocated to the
various sites. In many cases, however, this granularity is either too coarse
or too fine for an optimal distribution. As we saw in the work on contracts,
sometimes portions of an object can exhibit nearly independent behavior,
and we may want to distribute parts of a single object to different sites. On
the other hand, triggers and contracts can also bind sets of objects into such
tight interdependencies that it is imperative to cluster such interdependent
objects on the same site.

We need no new operatioh~s to consider clusters of objects. If, on the
other hand, object-level granularity is too coarse, we need new operations
for distributing parts of objects

8.3 Object Fragments

We shall postpone the question of when it is advisable to distribute por-
tions of objects, and first introduce some operations to do so.

Database patterns provide a nonprocedural query language for accessing
object databases; in addition, through the pattern's output form, they define
the structure and content of the query result. The result of applying a
database pattern to a particular object can be a surrogate that mimics some
of the structure of the original object. We can even define methods for such
a surrogate. For the most part, these methods will be simple accessors,
but more complicated methods can be "inherited" from the original object.
This surrogate can then be installed and queried on a different site than
the original, and the pair together can provide a simulation of a distributed
object. The actual procedure for accomplishing this would be something like
the following.

1. Design a pattern to extract and structure a relevant subset of an ob-
ject. The query result, an object in its own right, provides a type of
materialized view of the original object.

2. Get the original object to sign a contract that it will notify the surrogate
whenever the relevant portion of the original object is updated.

3. Install triggers in the update methods of the surrogate, so that any
changes are propagated back to the original object.
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4. Allow the surrogate to migrate to wherever it is most convenient. The
surrogate will be able to field queries related to its scope, without
requiring network access to the original object.

8.4 Distribution Design
The procedure described above gives us the ability to fragment and dis-

tribute objects. How do we find the wisdom to make best use of this ability?
The answer lies in the various kinds of knowledge that can be available in
an OODB. First of all, contracts provide a representation for a variety of
meta-knowledge at the object level. Contracts that describe inter-method
dependencies can be used to determine when one subset of the methods is
nearly independent of other methods, and thus identify possible fragmenta-
tions for an object. At a larger scale, contracts can also indicate dependencies
between objects, and thus provide guidance as to which objects should be
collocated.

In addition, we need application-specific knowledge, in the form of execu-
tion profiles. Such profiles provide a statistical forecast of which applications
are likely to be run at which sites, and which objects and methods are called
by given applications. Acquiring such knowledge can be arbitrarily com-
plex, but can make use of deep insight into the semantics of the applications.
However, the simple empirical approach of running the database under a
standard mix of applications and gathering statistics from such trials has
had considerable success in the commercial world. In C3 I applications, the
environment is inherently unpredictable, so far more care has to be taken to
ensure that the distribution is robust across a range of configurations and
possible faults. Nevertheless, at least a hybrid empirical method is likely to
be the most successful..

Once the database interdependencies, applications, communications links,
and possible faults are all modeled with reasonable accuracy, choosing a
distribution design becomes an optimization problem to be addressed with
heuristic or standard mathematical techniques.

43



Chapter 9

Future Work

This project has proposed several promising approaches for improving
integrity and availability in military command and control databases. This
chapter describes some work that could be done in the future to help real-
ized the benefits of these approaches. The purpose of this work would be
to design mechanisms to implement these approaches and to develop exper-
imental prototypes to evaluate them. While these topics will be discussed
individually, it will be important to design them so they will work together.
Some of these topics, especially object contracts and constraints with excep-
tions have been discussed in detail in a companion document, the Feasibility
Implementation Plan [GR90].

9.1 Object Contracts

The purpose of object contracts is to establish agreements among data-
base objects and portions of the database system about object properties.
Many details need to be worked out in order to develop efficient implemen-
tations and evaluate the benefits of this approach. Representations will have
to be defined for the contracts themselves, and it will be necessary to de-
termine what contract terms are suitable and how they can be represented.
Negotiation protocols will need to be developed to allow contracts to be es-
tablished, and then possibly changed to accommodate new information or
requirements. A notification mechanism should also be designed; notifica-
tion is an important kind of contract term and will help support parts of the
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contract mechanism such as contract establishment and termination. These
mechanisms and policies become more complicated when objects are repli-
cated or fragmented. The contract terms and guarantees will have to be
enforced by the database system in order for them to be meaningful.

9.2 Constraints with Exceptions

Constraints with exceptions allow constraints to be violated in a con-
trolled manner. This approach also needs to be worked out in greater detail.
First, the representation of constraint exceptions needs to be defined. Then,
mechanisms and policies need to be developed to detect exceptions, to deter-
mine when and how to evaluate exceptions, and to remove exceptions. It will
also be important to determine what it means to execute when exceptions
exist, and how to interpret results based on abnormal values. One approach
may be to employ compensation to overcome the effects of exceptions that
turn out to be errors. The database interface will need to be enhanced so
that users can review and evaluate exceptions and can observe their effect
on results.

9.3 Model-Based Communication

To provide model-based communication, each agent, such as a database
system, employs a model of some activity to organize, understand, and make
use of the information it knows about that activity. Applying the model to
the information it receives from other sites, the agent forms a view of the
global state. Applying the model to the information it sends to other sites, it
forms a view of how other agents see its current state. This approach could
help improve availability and integrity in systems with slow communication
and network partitions.

Because this approach relies heavily on the use of semantics, it will be
difficult to apply it to all situations. Common situations that are amenable to
modeling will have to be identified. Models will have to be developed for these
situations, along with the associated functions such as those for prediction
and extrapolation. It will also be necessary to work out representations for
the models and their world views, and policies for when to use model-based
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views and extrapolations. Methods based on models and world views could
also be developed to manage the collection and dispersal of information in
the distributed database system. In addition, the database interface could be
extended to allow the user to see the influence of the models on the results.

9.4 Constraint Systems

Declarative constraint systems allow the relationships among data objects
to be expressed, evaluated, and enforced. While they have been studied for a
while, it has usually not been in the context of systems with slow communica-
tion and network partitions. A constraint system is an important base tech-
nology for constraints with exceptions and can be used in a variety of ways
to improve integrity. A prototype containing a subset of current constraint
ideas, such as constraint equations, could be specified and implemented to
evaluate its benefits and costs, both individually and in conjunction with
other proposed mechanisms. This subset and the related mechanisms and
policies should be selected so that they can be implemented efficiently and
constraint evaluation and enforcement can be guaranteed to terminate.

9.5 Active Databases

Active databases are able to take actions beyond those explicitly re-
quested by the database users. Mechanisms for active databases are an im-
portant base technology for many of the ideas proposed in this report. They
have not been studied extensively in the context of OODBSs. A prototype
containing active database mechanisms could be implemented to support ac-
tivities such as constraint evaluation and enforcement, notification, exception
evaluation, and the use of compensating actions. The mechanisms for the
prototype should be designed so that they can be implemented efficiently and
guaranteed to terminate. An important question to be explored is whether
to use low level mechanisms or higher level mechanisms with more advanced
abstractions for specific tasks.
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9.6 Intelligent Databases

Intelligent databases are able to form inferences about information avail-
able to them. This ability would be an important base technology for sup-
porting ideas contained in this report, such as approximating the value of
unavailable objects from models or contract guarantees. This technology is
also relatively new and has not been well integrated with OODBSs. A pro-
totype could be developed to explore the integration of intelligent database
mechanisms with the other ideas that have been proposed. One possibility
would be to select ideas from the persistent knowledge-base/database project
that was recently completed at SRI [Hsi90].

9.7 Meta-Knowledge Interface

A typical database interface accepts query and update commands from
users and returns data values and error responses. In this report, we have
described how an enhanced interface that contained meta-information about
the input and results could be used to improve integrity and availability.
For example, the user could be allowed to specify temporal contexts for
queries, the urgency with which results are needed, acceptable confidence
levels for results, execution priorities, intended usage profiles, and so forth.
The database could be allowed to respond with annotations indicating the
source, recency, and accuracy of the results; whether the results are based
on exceptions or estimates; multiple values indicating different versions of a
result obtained from different means; and so on. A prototype for a meta-
knowledge interface could be implemented to explore these ideas. It would
be necessary to find ways to specify this information and to understand its
meaning.

9.8 Temporal Support

The use of time has been mentioned in many ways on this project. For ex-
ample, users could specify that they want results from a certain time interval,
before a given event, or of a certain recency; constraints could be enhanced
with time information so they can be used to specify transactions; historical

48



values could be stored so they can be explicitly requested, or can be used
to detect trends and create estimates; results can be annotated with time
information so that their value can be better assessed by users, and so on. A
prototype could be developed based on an advanced temporal approach such
as Wiederhold's time intervals [Wie90]. The temporal information would
have to be integrated uniformly with all of the other mechanisms, and tech-
niques for maintaining an historical OODBS would have to be studied.
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Chapter 10

Conclusions

This report discusses a variety of approaches for improving the integrity
and availability of military C3 I database systems. The integrity of the data is
a key concern because of the critical nature of the data's uses. At the same
time, users often require the database to be highly available so they can
proceed in a timely manner. The urgency with which users need to operate
can cause the availability of the database to become more important than
the need for globally consistent data. The goal of the database system is
to maintain as much integrity as possible while providing the required level
of availability, and to restore integrity as soon as possible after it has been
damaged. Network partitions and slow communication are difficult challenges
facing integrity and availability.

A central theme underlying our approaches is to increase the amount of
information available to and supplied by the database system. This meta-
knowledge will allow the database system to act more intelligently with re-
spect to its users' requirements, its contents, and its environment, and allow
users to act more intelligently with respect to database responses. It enables
the database system to distinguish among different situations and to adapt
to changes, instead of treating all users, data, workloads, and configurations
in the same way. For example, availability will be improved if the database
system can determine that a user will be satisfied with globally consistent
data that is up to a day old, instead of assuming that it must supply the most
recent values. Active database and knowledge-based techniques are used to
specify, manage, and reason about the meta-knowledge.

In chapter 2, we discuss the effect of using an object-oriented data model
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on integrity and availability. In particular, we examined the data model
supported by the ORION-2 database system, which we believe to be one of
the best examples available. We conclude that object-oriented data models
aid integrity by providing support for describing and enforcing structural re-
lationships and behavioral information that is not present in current data
models such as the relational and hierarchical models. Examples of the ad-
ditional structural relationships include the IS-A, part-of, and composed-of
relationships, and examples of the support for behavioral information include
methods, inheritance, and encapsulation.

We also conclude that the object-oriented data model will have a mixed ef-
fect on availability. The additional links among database components means
that more components of the database system may have to be available to
perform operations. For example, performing an operation on an object may
require access to methods inherited from the object's ancestors. However,
this additional meta-knowledge can help guide replication and distribution
decisions. Availability could be improved by trying to collocate information
that will frequently be referenced simultaneously. The fact that links be-
tween objects are represented as explicit references to object ids can also
improve availability by helping the database system realize when all relevant
information has been located.

Chapter 3 presents a new approach for establishing and managing ob-
ject properties called object contracts. An important problem with object-
oriented data models is that strict encapsulation can cause inefficient perfor-
mance because properties of the implementation cannot be exploited. Instead
of breaking encapsulation, with all of the problems that can cause, object
contracts allow relevant high-level implementation properties to be specified,
and make it possible for those properties to be guaranteed for a certain time
period. In this way, details about implementations are not scattered through-
out the system and implementations can change at any time as long as they
maintain the properties specified in contracts. New implementations can
also change the properties specified in contracts, but only after the contracts
have , xpired. The idea of contracts can be extended to cover the behavior of
objects, such as agreements to notify other objects when events occur, and
invariants on the contents of objects.

We believe that contracts will help improve both integrity and availability.
Knowing information about an object's implementation will allow for better
performance, which will in turn improve availability. For example, knowing
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that two of an object's methods are independent will enable the database
system to execute them in parallel and in a way that is not serializable. This
information will also help the database system improve availability by making
better object replication, fragmentation, and distribution decisions. Having
contracts about object behavior and contents can help improve integrity and
availability, especially during network partitions, by making it possible to
reason about this information. As a result, the database system can respond
more quickly, can provide answers that are more accurate, and can provide
better assessments about the accuracy of answers.

In chapter 4, we present the idea of responding to a query with three
different answers. The goal is to provide users with a range of choices for
different levels of integrity and availability so they can make an appropriate
tradeoff. One response would arrive quickly and would be based on informa-
tion available locally. Another, presumably more accurate response, would
arrive later because of the need to do some computation, and would be based
on local information and models of remote or global information. The last
response would be most accurate, but would not be available until all rele-
vant information had been accessed. The model-based knowledge could also
be used to help determine the most critical information to send to other sites
in order to improve global consistency, and to allow sites to communicate
fully with a smaller amount of information. We believe that this approach is
promising, but the success of model-based estimation depends on the difficult
problem of acquiring accurate models.

In chapters 5 and 6, we discuss issues related to the use of constraints.
First, we describe how database systems that automatically take corrective
actions to maintain constraints can become complex and difficult to analyze
if limits are not imposed on them. This can lead to constraint maintenance
activity that is unexpectedly expensive and may not even terminate. In
the appendix, we prove that the question of whether the constraint-action
sequence terminates is undecidable. We then consider some ramifications
of using constraints to specify transactions, an idea that was presented in
our interim report [GDM90]. We conclude that several conventions must
be added to the transaction language to make this viable. In particular,
the concept of causality is needed to prevent transactions from changing the
past, and the convention of minimal change semantics is needed to prevent
data items not mentioned in a transaction from changing.

Chapter 6 proposes a new approach for managing constraints, called con-
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straints with exceptions, in order to improve the integrity and availability of
the database. The basic idea is to make it possible to violate constraints in
a controlled manner. Instead of rejecting violations or changing constraints
to accommodate them, we propose to annotate the abnormal values. Ad-
ditional support would be needed to detect, store, represent, resolve, and
process with constraint exceptions. Availability can be improved by allow-
ing processing to continue in a controlled manner despite values that violate
constraints, values whose status has not yet been evaluated, and constraints
that might be incorrect. This is especially helpful during network partitions
and when processing is urgent. Integrity can be improved by writing tighter
constraints. We describe how constraints with exceptions can be used to
determine a lower average cost for an error by making it possible to establish
a more advantageous tradeoff between false positives and false negatives.

In chapter 7, we present an interval representation of time values that
has been proposed by Wiederhold for the relational data model. Much of
this approach also applies to the object-oriented data model. One important
difference is that, unlike the relational data model where a time value is
assigned to a tuple and assumed by all of its attributes, an object-wide
time value may sometimes be inappropriate. Instead, individual time values
should be assigned to each time-varying object attribute. A whole-object
history can then be computed from its attribute histories. This approach can
help save storage, but its semantics need to be explored further. Temporal
support will help improve both integrity and availability, and is assumed by
other features discussed in this report.

Finally, chapter 8 discusses how some of the ideas proposed for this project
can be used to improve object replication, fragmentation, and distribution
decisions. Good decisions will help improve availability by locating informa-
tion near where it will be needed and collocating information that will be
referenced together. We propose an approach called surrogates for support-
ing object fragmentation, where a surrogate is similar to a view of an object.
The location decisions can be guided by the knowledge represented in the
object-oriented data model, constraints, contracts, and user profiles.

This report proposes a variety of approaches for improving the integrity
and availability of a database system in a military command and control envi-
ronment. They are based on increasing the amount of information available
to the database system, and exploiting this information with knowledge-
based techniques. Together, they will allow each user to receive an individ-
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ualized tradeoff between integrity and availability, and allow a high level of
integrity to be maintained while availability is increased.
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Appendix A

Proof that Termination is
Undecidable

Theorem 1 A constraint system that allows cascading actions in response
to constraint violations is Turing complete. Hence, questions of termination
of such a system are undecidable.

Proof: The proof of this theorem shall be constructive, i.e., we shall illus-
trate a database and constraint system that can simulate an arbitrary Turing
machine computation. The database for the simulation consists of three re-
lations.

FSA ]
State IRead-Symbol Write-Symbol Move I Newstate

Current-State Tape_-9tte IHeadPosiionTape-Position I Symbol

One relation, FSA, gives the transition table of a finite state automaton.
Another relation, Current-State, acts as a program counter. Its single tuple
has attributes for the current state of the Turing machine and the position
of the head on the tape. The third relation, Tape, is a sequence of symbols,
indexed by the attribute Tape-Position.

There is only one constraint in the database, and it states that

Current-State.State == "Terminal,"
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which is meant to indicate that the Turing machine program has successfully
terminated. When this constraint is violated, an action code is called that
attempts to repair the database to make the constraint true. The effect of
calling this action code is to advance the Turing machine computation by
one step. This action code may be encoded as a database pattern as shown
in graphical form in Figure A.1. This pattern finds the tuple in relation FSA
with State corresponding to Current-State.State, and Tape.Symbol corre-
sponding to that currently under the tape head in relation Tape. Note that
in the figure, certain attributes are marked with a "a" to indicate that these
attributes are in the outform of the pattern. In this case, these attributes
are used for assignments to the database.

Tape.Symbol* +- FSA.Write-Symbol*
Current-State.State +- FSA.Newstate*
Current-State.Head-Position +- if FSA.Move* =- "Forward" then

increment (Current- State. Head- Position)
else

decrement (Current- State. Head- Position)

We have chosen to express the assignments directly, although they can also be
encoded in the pattern notation as constraints on a post-assignment version
of the database. Executing the assignments moves the computation one step
forward. If the new value written into Current-State.State is "Terminal,"
then the constraint is satisfied, and computation has terminated. If not,
then the constraint is not satisfied, and the action rule is called again.

Because neither the relations FSA or Tape were specified, this constraint
can be used to simulate any Turing machine on any input tape. Because the
termination of a Turing machine is undecidable, so also is the termination of
the constraint/action set. 0
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Current-State Current- State. State= FS A.State S(Wieymo*

.Move*,

Current- State.Head- Position Newstate*)

\Tape. Tape- Position Tape.Symbol*

Figure A.1: Database pattern
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