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SECTION 1

INTRODUCTION

This volume is a final report on research into security policies and models for distributed C? systems.
The research has been performed under the Assured Service Concepts and Models (ASCM) project.
The goals of the ASCM project are to:

a. Develop security policies and models for distributed C? systems.
b. Develop availability policies and models for distributed C? systems.

Analyze trade-offs between security and availability.

[e]

d. Analyze a real-system with respect to the policies and models developed on the project.

This report addresses the first of these tasks.

1.1 PURPOSE

Considering the extensive research that has been conducted into formalizing the notion of security
in computer systems, it is natural to ask why more research is necessary. The simplest answer is
that the policies that have been developed to date are not sufficient to address the concerns present
in distributed C? systems.

To begin with, it is not clear that the security policies that have been developed for nondetermin-
istic systems are adequate. Since there usually is some degree of nondeterminism in a distributed
computing system, it is necessarv to deal with nondeterministic systems before considering dis-
tributed systems. The nondeterminism is caused both by the concurrency that is present whenever
the system has multiple CPUs and by uncertainties in the communications medium.

Second, the broadcast protocols used to address the uncertainties in the communications medium
can lead to additional security concerns. For example, broadcast protocols often rely on a sender
being able to observe an acknowledgement from a receiver to determine whether a broadcast message
is received. In the case where the receiver is allowed to receive messages from the sender but not
allowed to send messages to the sender, this might introduce a security flaw. The receiver might
be able to send messages to the sender indirectly through acknowledgements.

Finally, there are features required for C? systems that are not necessarily required for distributed
systems. The features that will be considered in this report are those of an adaptive nature. These
features allow a system to adapt its processing as it evolves. The specific adaptive features that
will be considered in this report are:

a. Reclassification of Data — It is not uncommon for the classification of a piece of data to
change with time. For example, plans for a battle are probably more sensitive before the
battle than after the battle. It is also possible for data to become more sensitive.




b. System Reconfiguration — As new nodes are added to a system or nodes in a system fail, the
system is reconfigured.

c. Change of Operational Mode — The rules defining the correct operation of the system can
change over time.

Before attempting to formalize the concept of security in a distributed C? system, we provide an
example system in Section 2. Using the intuition provided by the example svstem, we define in
Section 3 what we believe to be the control objectives for the security policy. Next, in Section 4 we
provide a brief survey of policies that have been developed to date. In addition to describing existing
policies, we discuss deficiencies present in these policies and suggestions as to how some of these
deficiencies can be addressed. Since we view adaptive security policies as addressing exceptions
to standard security policies, we feel that it is important to address deficiencies in these standard
security policies before attempting to address adaptive security policies. Then, in Section O we
discuss adaptive security policies and security issues related to broadcast protocols. In this section
we propose a new security policy, TH-Guardedness as an “adaptive security policy.” In Section 6
we discuss relationships that hold between various security policies. In particular, we examine the
so-called composability issue. Finally, in Section 7 we summarize the report and pose questions
that require further research.




SECTION 2

EXAMPLE C? ADAPTIVE SECURITY POLICY

Adaptive Security Policies are ushering in the next generation of security policies. Currently, secu-
rity policies such as the DOD Bell-LaPadula Policy[25] and various Discretionary Access Control
policies[8] typify a static form of security policy. Once such a policy is set, it remains in force until
the system administrator or a user decides to alter the policy. In contrast, adaptive security poli-
cies are dynamic in nature. An adaptive security policy modifies access decisions based upon the
properties of the system to which it is applied and the environment in which the system operates.
If these factors change, the policy will adapt to these changes in a pre-defined manner.

Examples of adaptive security policies abound. In the financial markets it is illegal for corporate
insiders to leak certain information until a formal announcement is made. In government, politi-
cians are not required to disclose honoraria until they exceed $100,000.00. In defense, war plans
remair secret until their disclosure no longer threatens the mission. In each of these examples,
information is kept secret until a specific property of the system or environment changes: a formal
announcement, exceeding the honorarium limit, reduced mission threat. At that point a different
policy on the flow of information is implemented.

One of the purposes of this report is to present models of adaptive security policies. The models
will be based on a hypothetical example of an Air Force C? system with well understood security
requirements. This section will present a top-level description of this system and its security
requirements.

2.1 OVERVIEW

This example was derived from the Military Airlift Command (MAC)[26] and models a C? system
responsible for transportation. It is not intended to perfectly model MAC but instead to describe
the relevant features common to most 2 systems.

C? systems have the responsibility to ensure the timely initiation of the planning, scheduling and
execution of missions. It is not the system’s job to load the cargo or turn the wrenches, but
to guarantee these tasks are done, and, if necessary, to acquire and allocate resources needed to
complete them.

C? systems have unique security requirements. C? security requirements typically change as the
system enters different modes of operations. For example, in peace mode, force capability informa-
tion is typically unclassified while in war mode it may become top secret. It is difficult to address
such “exceptions” in a conventional static security policy. Thus, adaptive security policies must be
developed to cover these changes in operational modes.

This section will describe the concept of operations, the organization, the information flows, and
the system modes for the C? example.




2.1.1 Concept of Operations

The concept of operations addresses the command and information flow through the C? system
during the course of a mission (Figure 2-1). The three major participants in the C? system are the
initiator of the transport request, Headquarters (HQ) which is responsible for global management.
and Field Units (FU) which are responsible for local management in the field.

The concept of operations revolves around moving cargo from source to destination. C? respon-
sibilities begin when HQ receives a request to transport cargo. At this time the initiator will list
all the requirements associated with the request such as cargo type, times, sensitivity of planning
information, embarkation and disembarkation points, etc. HQ will respond with a package of alter-
native courses of action to service the transportation request. It is possible that the initiator will
iteratively ask ~What if several of the requirements are altered to enhance the service?” HQ will
respond with a possibly different course of action package.

Example C2 Phases and Tasks

. Develop Choose
Lisc Courses Course
Airlife of of Schedule Commence Complete
Requirements Action Action Airlift Airlift Alrlift
3 1\
v ] 1
_"What If" ] "How To" “"Do It“
Course Of Action Scheduling Execution Montoring

2

-
>

Figure 2-1. C? Phases

When the initiator acquires sufficient information to make a decision, a specific course of action is
chosen for HQ to plan and implement. HQ is then responsible for scheduling the resources to satisfy




the course of action. HQ will respond with a transport schedule that will commence sometime in
the future.

At the appropriate time, HQ will commence the transport. The C? system is now responsible for
monitoring the execution of the transport. When the transport is complete, HQ will notify the
initiator that the request for transport has been fulfilled.

2.1.2  Organization

The C? organizational structure for this example is composed of a headquarters(HQ) and field
units(FU) (Figure 2-2). HQ is responsible for accepting transport requests and interacting with one
or more FUs to accomplish the task. The major functions of this C? organization are Operations.
Transportation and Logistics.

Operations is responsible for gathering information from its supporting groups and then plan-
ning, scheduling and monitoring the mission. Transportation is responsible for allocating sufficient
resources to transport the cargo and ensuring the cargo arrives at its destination. Logistics is re-
sponsible for allocating maintenance and support resources and ensuring that the system maintains
a level of capability needed to complete the mission.

These three major functions are further subdivided into specific roles (Figure 2-3). Roles are job
positions with specific responsibilities. One example of a role from Figure 2-3 is OP.COA.HQ.
OP.COA.HQ has the responsibility of operations and planning during the course of action phase
at the Headquarters level. This role is commonly called a mission planner.

The interaction between these roles is depicted by the lines in Figure 2-2. Each role communicates
directly with its support group. Although interactions may be composed of several liwer level
iterative interactions, this example will only focus on the top-level system interaction.

2.1.3 Information Flows

The information flows that result from the interactions among roles are depicted in Figures 2-4
through 2-5. The nodes of these graphs represent the roles described in Figure 2-3. The boxes
represent the type of information that is allowed to flow between two roles. The arrows describe
what information flows between roles. For example, in Figure 2-5, Weather is a type of information
that flows from FU Operations to HQ Operations during the Course of Action phase.

The general flow is initiated by the Joint Deployment Community (JDC). HQ will take JDC
information and then pass it down to the FUs. The FUs process the information and then return
additional information to HQ. This cycle is repeated for each mission task as depicted in Figure
2-1.
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C2 Example Role Definition

Course
of Execution
Action Schedule Monitoring
(Con) (s) (M)
OP.COA.HQ OP.S.HQ OP.M.HQ
LO.COA.HQ LO.S.HQ ) LO.M.HQ
HeadQuarters TR.COA . HQ TR.S.HQ TR.M.HQ
(HQ)
OP.COA.FU OP.S.FU OP.M.FU
Field LO.COA.FU LO.S.FU LO.M.FU
Units TR.COA.FU TR.S.FU TR.M.FU
(Fu)

OP = Operations and Planning
10 = Logistics and Maintenance
TR = Transportation and Airlift

Figure 2-3. C? Roles
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FU ransportc OP . COA . Fu

Capabilities

Maintenance

Equipment
Capabilities

TR.COA
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Figure 2-5. Course of Action - Develop Courses of Action
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The first information flow is initiated by the JDC (Figure 2-4). JDC provides a list of transport
requirements to HQ. These requirements contain information such as type of cargo, transport
locations and transport time. HQ passes this information to the FUs that will participate in the
transport. Each FU will determine the local resources that must be made available to service
this request. Each FU function will return one or more alternative plans to its parent HQ function
(Figure 2-4). This information contains forecasts of capabilities, weather, intelligence, availabilities,
etc. With this information HQ will prepare a package of course of action plans and deliver them
ta the JDC(Figure 2-5).

Figures 2-4 and 2-5 describe information flows for the Course of Action phase of the mission.
Information flows for the remaining two phases (scheduling, execution) exist but contain redundant
information that does not add to the content of this report. Therefore, they will not be discussed
at this time.

2.1.4 System Modes

This example C? system can operate in three modes: training, war, and peace. Training mode
permits users to experiment with different scenarios without fear of corrupting real information
because data is duplicated or fabricated. Peace mode is the normal operating mode of the system.
In peace mode most missions are scheduled long in advance and short notice “critical” missions are
the exception. In war mode, short notice “critical” missions are dictated by the situation in the
battlefield and secrecy of information is a greater concern. In peace and war modes, long range
planning must co-exist with the realities of short notice missions.

2.2 ADAPTIVE SECURITY POLICY

Since adaptive security policies are based upon properties of the system, if there are many properties
the policy may become very complex. To avoid such complexities, the adaptive security policy for
this C? example will only contain the following components:

Role Flow Rule - Restricts flows between roles.

Mode Rule - Restricts flows based on modes.

The Role Flow Rule refers to the information flows described in section 2.1.3. These information
flows subtly describe one type of adaptive security. During each phase of the mission only specific
information flows are permitted. For example, the Transport Requirements are not available during
the execution monitoring phase. More formally:

Role Flow Rule: The restriction of information flow is based upon the types of
data and the roles in the system. The policy rules specific to the system will explicitly
state what types of data are permitted to flow between roles. Any flows outside of the
scope of these policy rules are in violation of the policy.

13




Note that the Role Flow Rule does not explicitly restrict information flow based on mission phase.
This restriction is implicitly resident in the definition of a role. A role is defined in terms of mission
phases. Using roles, the Role Flow Rule indirectly restricts the flow of information between mission
phases.

A second way in which the information flows are sensitive to their environment is related to the
operational modes of the system. Depending on the mode of the system, each information flow is
assigned a specific hierarchical security level. More formally:

Mode Rule: For all data, a hierarchical security level for each system mode will
be assigned. The level will reflect the sensitivity of the data for a given system mode.
Users must be cleared to the level of the data in order to access the data regardless of
the role they are performing or the mode of the system.

Figures 2-6 to 2-7 depict the security levels assigned to information flows per system mode, per
mission phase. Training mode is the simplest to implement as all information is classified at sensitive
but unclassified. Most peace mode information flows are classified at sensitive but unclassified, but
there are secret flows for capability information and top secret flows for handling intelligence related
information. Most war mode information is classified at secret with capability and intelligence
information classified at top secret .

The most interesting aspect of this policy occurs when the system changes modes. Data will
suddenly be reclassified, thus introducing a period of uncertainty. For example, a database man-
agement process could be working on unclassified information in peace mode when suddenly the
system goes into war mode, thereby revoking the access that the process has to now top secret
information.

While this example has described a policy that adapts to the mode of the system, no policy has
been given for moderating the changes between system modes. This will be explored further in
Section 9.

14
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SECTION 3

CONTROL OBJECTIVES FOR A C? SYSTEM

In the previous section we presented an example of a C? system. In this section, we will use the
intuition provided by the example system to help formalize the objectives of securit policies for
C? systems.

The specific control objectives for a C? system are closely related to its mission. However, for this
study we are interested in security control objectives, which tend to be fairly generic. The computer
security problem is generally defined as the problem of protecting against unauthorized:

o Disclosure of data,
e Modification of data, and

¢ Denial of system service.

In this discussion we include executable object code as data.

In this report we address the first two problems. The corresponding control objectives are the se-
crecy control objective and the integrity control objective. We will address the problem of protection
against unauthorized denial of service in a future report, where we will formulate an availability
control objective. However, insofar as availability requires data and program integrity, the problem
is addressed by the integrity control objective.

In this section we describe each of the control objectives. These control objectives are stated in
terms of the authorizations of users to acquire information or modify data. We distinguish between
data and information in the following manner. Information is associated with human users of the
system. It is encoded in the system as data. Users extract information from data using whatever
context and auxiliary information they might have. Thus, certain classes of covert channels are the
result of private encodings of information in data. At the receiving end of the covert channel, either
the user extracts the information from the data or, more likely, a subject running on the user’s
behalf decodes the data and presents the user with a different set of data in which the information
is encoded in a more conventional fashion.

Before stating the control objectives, we present a description of the sort of environment in which we
envision the system is operating. This description is a generalization of the example in Section 2.

3.1 THE OPERATING ENVIRONMENT

We assume that the system under examination is a military, distributed, C2? system. Here we
discuss the ramifications of each modifier, military, distributed, and C2 , separately.
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Since we are studying a military system, we expect that there is a partially ordered set (poset) of
security levels associated with the system. Every dataset stored on the system is associated with a
security level that reflects the sensitivity of the information that the data is intended to represent.
Similarly, each user of the system has an associated security level that indicates the level of the
most sensitive information that the user is authorized to acquire. We do not assume that security
levels form a lattice. Thus, it is not necessarily true that each set of security levels has associated
high water mark (least upper bound) and low water mark (greatest lower bound) security levels.
In particular, there may not be a unique System High security level. We will, however, assume the
existence of a unique System Low security level.

The standard DoD security lattice, characterized as the product of the lattice of hierarchical security
levels and the lattice of subsets of the set of all categories, is a special case in which the security
poset has a special structure. Thus, the standard DoD lattice is one choice for the security poset
of the system. On the other hand, we address a much broader class of systems in which highly
sensitive information can be compartmentalized so that no single user may acquire access to it all.

Since the system is distributed, we expect that functional differences among the nodes will have
an impact on the control objectives, and we expect security policies that are specific to the nodes.
For instance, in the example, the control objectives will differ for the different command echelons.
Moreover, the precise formulation of the security policy at a node will depend upon the functions
performed at the node. This will have an impact on the overall policy, which must be compatible
with both the control objectives for the overall system and with the control objectives and policies
of the different nodes.

We must also expect that at times the mode of operation will vary among the nodes. In the example,
most nodes might be operating normally, while one node is off the network for maintenance and
a training exercise is underway on another node. While this is the case, communications among
the nodes must be restricted, and it may be necessary to transfer some of the functions normally
performed by the nodes currently in maintenance and training modes to other nodes. This is one
reason for replication of data at the various nodes.

Because a C? system has a clearly defined mission, there are certain functions that must be per-
formed, and many users can be identified with clearly defined functions, or roles, on the system.
These users must perform specific, mode dependent actions on specific classes of data, and they
need not perform any other actions. Moreover, it is neither desirable not necessary for these users
to write and install their own programs. Their set of permissible actions can be encapsulated in a
well-defined set of programs developed for their use. Thus, the accesses of many users to code and
data can be restricted based on their roles and the current mode of operation of the system.

On the other hand, for these users to properly perform their duties, they must have access to correct
information. This means that certain datasets on the system must be faithful representations of
the information that they are intended to represent. To ensure this, modifications of these datasets
must be very carefully controlled. Since these datasets may not necessarily represent sensitive
information, they may not be associated with high security levels. To distinguish data that must be
protected against compromise from data that must be protected against unauthorized modification,
we call the latter critical data, reserving the term sensitive data for the former.
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These features:

e The control of access to information, and therefore data, by security level,
o Heterogenity of objectives, policy, and mode of operation across the network, and

e Separation of users and data by role, or function,

are the distinguishing characteristics of the systems that we are examining in this study. In the next
two subsections we present appropriate secrecy and integrity control objectives for such systems.

3.2 THE SECRECY CONTROL OBJECTIVE

The secrecy control objective can be stated as follows:

It shall not be possible for an individual to use the C? system to acquire sensitive information
unless the individual is authorized to know the information.

Information is sensitive either because it is classified or because the user responsible for the informa-
tion determines for some other reason that the data is sensitive. In the former case, the sensitivity
of the information is measured by the associated security level. In the latter case, the responsible
user indicates the sensitivity of the information by restricting the accesses of various individuals
and groups of individuals to the object(s) in which the corresponding data is stored. Because of
the broad set of possible options, the discretionary access component of the security policy is not
addressed further in this section.

Normally, the acquisition of information by a user occurs when a subject acting on behalf of the
user directly observes data in which the information is encoded. However, information can also
be acquired indirectly via the interactions of a chain of subjects at various security levels, acting
on behalf o one or more users. This is how covert channels are exploited. One or more subjects
manipulate the system in such a manner that the effects visible at a lower or incomparable level can
be used to encode information that is decoded by the actions of one or more subjects at the target
level. It has been demonstrated [14] that a security policy prohibiting direct acquisition of high
level information by a user does not necessarily prevent indirect acquisition of the inforniation by
the user. MLS noninterference policies [27] prohibit indirect as well as direct acquisition of higher
level information by users.

To achieve the secrecy control objective, we use a conditional MLS noninterference (CNI) policy
that is a generalization of the one developed for the LOCK system [31]. The policy is conditional
because downward interferences are inherent in certain required functions for a C? system, such
as the reclassification of data and mode changes. The CNI policy is described in Section 5.1. We
then supplement this policy with specific policies for each of the exceptions in Section 5.2.

Correct enforcement of both the CNI policy and the policies for the exceptions rely on the integrity
of the security database used by the trusted computing base (TCB) to enforce the policy. This
integrity is a consequence of the integrity control object that we present in the next section.
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3.3 THE INTEGRITY CONTROL OBJECTIVE

Integrity is a more complex concept than secrecy. The secrecy of data is independent of the se-
mantics of the data, but, as Clark and Wilson have demonstrated, this is not true for integrity [6].
Data integrity can be considered a combined measure of the degree to which the data accurately
reflects the external entity which it is intended to model and of the degree to which it is consistent
with a set of internal constraints. Generally, the internal constraints reflect structural requirements
determined by the semantics of the data. They differ from external constraints in that the consis-
tency between the data and internal constraints can be checked without further reference to the
state of the external entity. For both classes of constraints, the semantics of the data are critical in
determining the integrity of the data, and any operation on the data must reflect those semantics
if the integrity of the data is to be preserved or enhanced.

Since semantics are application dependent, any notion of integrity depends upon the intended
application for the data and the associated operations on the data. Thus, the maintenance of data
integrity requires a partnership between the application programs that are intended to operate on
the data and the underlying access control mechanisms of the system. Each application program
must operate correctly in the sense that, viewed as a function from data sets to data sets, it
will, if properly applied. always transform data in its domain into data with the desired integrity
properties. The underlying system access control mechanisms must restrict accesses so that only
users who can be trusted to correctly apply the function will have execute access to the program
and so that the program can only accept as input, data from the appropriate domain.

We now incorporate these comments into the following integrity control objective:

If an individual can modify critical data on a C? system, then the modification can only occur
as the result of an action which the individual is authorized to perform on the data and which
has been certified to preserve the integrity of the data.

The integrity control objective has been influenced by the work of Clark and Wilson [6]. Later.
in Section 6.2 we elaborate on the relationship between the integrity control objective and Clark-
Wilson integrity policies. We also show how LOCK type enforcement [4] can be used to describe
such policies.
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SECTION 4

FOUNDATIONS OF SECURITY

Because adaptive security policies are the composition of existing policies, a review of existing
policies is warranted. The two general categories of security policies are access control policies and
information flow policies. As we are more concerned with the secrecy control objective in this report
than the integrity control objective, the majority of this section deals with the secrecy control
objective. After describing access control policies, we will discuss how information flow policies
address flaws encountered when using access control policies in the context of the secrecy control
objective. We will then discuss attempts to generalize information flow policies to nondeterministic
and stochastic system models. After pointing out flaws in these attempts, we will suggest our own
information flow policies for these systems. The next section will then build upon these policies to
provide adaptive security policies.

4.1 ACCESS CONTROL POLICIES

Access control policies moderate the interaction between subjects (users/processes) and objects
(files). The simplest model of an access control policy is represented by a two-dimensional access
control matrix (Fig 4-1). The components of this model are:

e Subjects
e Objects
e  Access Permissions

e Access Matrix

One dimension of an access control matrix represents subjects, S,. Subjects are active entities
which at a high-level of abstraction represent users and at a low-level represent processes or jobs
acting on the behalf of a user. All subjects are labeled with ids and are assumed to be memoryless.

The other dimension of an access control matrix represents objects, O,. Objects are passive entities
that are operated on by subjects. Objects are repositories of protected information and labeled
with ids. Note that a computer program is stored in an object up to the point where it is executed
by a subject. When stored as a computer program it is labeled and referenced through an object
id, and when executed it is labeled and referenced through a subject id.

Access permissions state the permissible operations on an object. In the basic model these permis-
sions include read, write, execute, delete, and append. These three components( subjects, objects,
and access permissions) are combined in an access matrix to state an access control policy. The
policy rules are located in the the intersection between S; and O;. That is, the (i,j)*® entry in the
matrix indicates what operations $; is permitted to perform on the data stored in O;.
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Subjects

Objects

Figure 4-1. Access Matrix
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We say that a system satisfies the policy if subjects are only permitted to access objects in ways
that are consistent with the access control matrix.

In order to apply access control policies to systems, it is necessary to interpret the access -~ontrol
matrix in the context of the system, to determine what it means for a subject to access an object
in the system, and to determine the manner in which the access control matrix can be altered.
By varving these factors, the general access control policy can be instantiated in several ways.
In the remainder of this section will discuss several of these instantiations: DAC, Bell-LaPadula.
Clark-Wilson, Type Enforcement, and Chinese Wall. We then describe a Generalize Framework
for Access Control (GFAC) [23] that can be used to combinz the various access control policies.
In all of these policies, we will see that the focus is on representing the access control matrix and
controlling modifications to the access control matr_«. Surprisingly, the question of what it means
to access an object is ignored in access contro. poli.ies. For example, the question of what it means
to read or write an object is typically ignored in these policies. They simply require that whenever
a subject has access to read or write - 1 object, the security policy allows that subject to read or
write the object. There is not, hcwever, an explicit requirement that a subject needs to have access
to read or write an nbject in order to actually read or write the object.
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4.1.1 Discretionary Access Control(DAC)

Early computer systems had no forms of internal access control. Access control consisted of a
computer operator mounting the appropriate tape for the appropriate job. \ith the advent of
on-line disk storage the responsibility of access contro! shifted from operators to users, hence the
term Discretionary Access Control (DAC) !.

DAC is typically used to control the access that a subject has to objects based on the user on
whose behalf the subject is operating. As there are often sets of users to which it is desirable to
grant the same accesses, it is quite common to provide the capability to specify groups of users
and the accesses they have to each object. This is merely a convenience. though, and provides no
additional functionality.

As computer systems mature, a profusion of users and objects are added to the access matrix com-
plicating management and security analysis. It is also very inefficient to store a large access matrix
that is sparsely populated. To address these weaknesses, row and column based representations of
the access matrix were formulated.

4.1.1.1 Row Based DAC Policies— Row based DAC policies include capabilities, profiles
and passwords. These DAC policies are considered row-based representation of the access matrix
because associated with each subject is a list of objects that it has access to. There is no global
access matrix, all access information is local to the subject (Figure 4-2) [12].
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Figure 4-2. Row Based DAC

Y Access control specified and maintained by the user and not the system (hence, at the users discretion).
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The most common of these representations are capabilities [18]. A subject obtains a capability by
creating and owning the object, or through another subject that passes the capability. A capability
contains information about the owner subject, access rights, and a crypto checksum. The crypto
checksum ensures that subjects do not maliciously forge capabilities or manipulate access rights.

A subject obtains access to an object by searching through its capability list for the capability or
“ticket” to the object. The subject then presents the capability and desired mode of operation to
the system. The system verifies the capability and permits/denies the subject access to the object.
Additional policies moderating the creation, passing, and modification of capabilities have been
formulated [13][18][33].

Profiles [8] are very similar to capabilities with the exception that users do not present a profile to
the system when requesting access to a resource. Instead the system is responsible for scanning a
subject’s profile searching for authorization to the resource.

Passwords (8] are also similar to capabilities, they both require users to present a “ticket” in order
to access the object. Objects are password protected. When a subject requires access to an object,
the subject must present a password(the “ticket”) to the object. Some systems have a different
password for every access mode to an object.

In all of these methods we see that the access control matrix is divided into structures that define
the objects to which each subject/user has access and the corresponding accesses permitted. In
general, modification of the pieces of the access control matrix is at the discretion of subjects/users.

4.1.1.2 Column Based DAC — Row-based DAC policies complicate the revocation of privi-
leges and access review because of duplicated object information. Object information is duplicated
because each subject maintains a separate copy of the access privileges to a specific object. If the
system decides to revoke access to an object, it must search through the capability lists of all the
subjects in the system for the specific object.

Column based DAC is a representation of the access control matrix that centralizes control over the
object(Figure 4-3). The system performs access reviews by searching through an object’s access
list which is stored locally with the object. Column based DAC policies include Access Control
Lists (ACL)s and protection bits.
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Figure 4-3. Column Based DAC

An ACL[8] is a list of users(groups) that are allowed/denied access to an object. Associated with
each user in an ACL is the access privileges for that user. When a subject acting on behalf of
a given user requests access to an object, the system searches through the object’s ACL for the
users access rights. If access rights are present, the system permits the subject to access the object.
With current technology, ACLs are the best way to implement an access control matrix by column.
ACLs are the only mechanism that allows users to explicitly allow and deny access to an object.

Protection bits[8] are a coarser form of ACL most commonly found on Unix systems. Instead of
explicitly listing the users that are permitted access to an object, protection bits only specify access
permissions granted to the owner, a group or all users (world privileges). Protection bits do not
have the capability to explicitly deny access to a specific user as do ACLs.

In all of these methods we see that the access control matrix is divided into structures that define
the subjects/users that can access each object and the corresponding accesses permitted. In general,
modification of the pieces of the access control matrix is at the discretion of subjects/users.

4.1.2 Bell-LaPadula

A common security flaw common to all DAC mechanisms is readily exploited by Trojan horses.
A Trojan horse is a program that whiffffffle performing a useful task surreptitiously steals or modifies
information. For example, suppose that user A has an object that he does not want user B to
read, user B wants to read the object, and that user A attempts to protect the object by using a
DAC mechanism to prevent subjects operating on the behalf of user B from reading the object.
Now, suppose that user B writes a program that while appearing to perform some useful task
surreptitiously copies the object into a second object that user B can read. If user B runs the
program, then the DAC mechanism will prevent the data from being copied since the subject
executing the program would be operating on user B’s behalf. On the other hand, if user A runs
the program, then the subject executing the program will be operating on user A’s behalf and the
data will be copied. So, user B can obtain information in violation of the DAC policy by tricking
A into running the program and reading the copied data. The cause of this problem is that the
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policy does not address the transitive nature of information flow. If user A can read X and write
Y and user B can read Y, then one must recognize the possibility that X can be transmitted to B
through Y.

A similar problem occurs when the permitted accesses can be manipulated by subjects. Continuing
with our above example, user B’s program might change the permissions associated with the object
so that user B has access. Then, after tricking user A into running the program, user B can read
the object at will.

In order to thwart such attacks, the DOD mandatory access control policy formalized by Bell and
LaPadula [2]:

¢ Enforces a mandatory policy rather than a discretionary policy.

e  Addresses the transitive nature of information flow.
Bell-LaPadula consists of 4 components:

o  Hierarchical Security Levels.
o Non-Hierarchical Categories.
o C(Clearances and Classifications by Access Classes.

o  Access Rules.

Hierarchical levels form a linearly ordered lattice based on dominance. Each level instantiates a
common set of non-hierarchical categories. Dominance for categories is determined by a lattice of
subsets ordered by the inclusion relation [7]. An access class consists of a level-category pair.

Every subject/object has a related access class. For a subject, the level indicates the level of trust
associated with the subject and the category set indicates the set of topics about with the subject
needs to know. It is tacitly assumed that the clearance level and “need to know” of the user
associated with the subject are greater than the clearance level and category set of the subject.
For an object, the level indicates the maximum sensitivity of data that can be stored in the object
and the category set indicates the set of topics that can be related to data stored in the object[12].

It is common practice to define a partial ordering on access classes by:

(liye1) X (I2,¢2) if and only if:
— 1 is less than or equal to [; with respect to the ordering on levels.

- ate
and to refer to state policies in terms of access classes rather than hierarchical levels and categories.
It is also common practice to then ignore the distinction between access classes and levels and simply
consider systems with partially ordered security levels rather than systems with linearly ordered
security levels and partially ordered category sets. We will follow this practice and refer to access
classes as levels in the remainder of this report.
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A subject’s accesses to an object are restricted by the following access rules: [12][24}):
e Simple Security Property - A subject may have read access to an object only if the object’s
level is less than or equal to that of the subject.

e *-property - A subject may have write access to an object only if the level of the object is
greater than or equal to that of the subject.

In a system constrained by these rules, information only flows upwards in level. The simple security
property permits high level subjects to read information at the same or lower level than itself (pull
information upwards). The *-property permits low level subjects to write information at the same
or higher level than itself (write information upwards).

So, we see that the Bell-LaPadula policy implicitly defines the access control matrix by the Simple
Security Property and the *-property. It is a mandatory policy, rather than a discretionary policy,
in that it is assumed that neither the levels of subjects and objects nor the partial ordering on
security levels can be modified at the discretion of users. It addresses the transitive nature of
information flow by using a transitive ordering on the security levels. More explicitly, if A can read
X and write Y and B can read Y, then:

e Since A can read X, A’s level dominates that of X.
o Since A can write Y, Y’s level dominates that of A.
e Since B can read Y, B’s level dominates that of Y.

e  Then, the transitivity of the ordering on levels implies that B’s level dominates that of X.

In other words, whenever the policy allows B to indirectly obtain X through Y, it allows B to obtain
X directly. Conversely, if B cannot obtain X directly, then B cannot obtain X indirectly through
Y. This is in contrast to DAC in which B can obtain X indirectly even if A has used the DAC
mechanism to prohibit B from directly accessing X.

4.1.3 Integrity Policies

The Bell-LaPadula model of multilevel security supports the first goal of all security policies,
protecting the confidentiality of the data. Soon after the Bell-LaPadula model was developed people
began to develop integrity policies that described the permissible modifications to information. Two
integrity policies are discussed in this section: Biba, and Clark-Wilson.

Biba integrity [3] is useful for users assigning a course granularity of integrity to objects. Biba’s
integrity model retains Bell-LaPadula’s hierarchical levels but inverts the rules for reading and
writing. Low level subjects (possibly malicious) are not permitted to write up to higher level
objects thus protecting the integrity of high level data. High level subjects are not permitted read
down from lower level objects thus protecting the integrity of high level subjects and objects. Note
that the set of levels used in stating a Biba integrity policy for a system is typically different than
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the set of levels used in stating a Bell-LaPadula policy for the same system. To avoid confusion,
the former is commonly referred to as the set of integrity levels while the latter is referred to as the
set of security levels. So, although it might seem that the Biba integrity policy conflicts with the
Bell-LaPadula security policy, there is no conflict since they deal with two totally different sets of
levels.

Clark and Wilson expanded the focus of security policies by defining an integrity policy for the
commercial world [6]. In the commercial world, security is based on the roles that people play;
accounts receivable, accounts payable, shipping, etc. Associated with these roles are well defined
duties, constrained inputs and outputs, and interactions with other roles. For example, a clerk in
accounts receivable only deals with billing customers while a clerk in accounts payable only deals
with paying a firm’s bills. Rarely do these two roles interact.

Clark-Wilson integrity formalizes roles with two main concepts; well formed transactions (WFT),
and separation of duties. WFTs are operations that have been certified to preserve or introduce
integrity properties of data. Clark and Wilson use WFTs to state integrity policies where certain
integrity preserving operations are required to transform information from one format to another.
For example, consider the role of an auditor. The auditor is trusted to digest a firm’s financial
information, authenticate its validity and produce a financial bill of health. Thus, programs for
accomplishing these tasks would comprise a natural set of WFTs to provide the auditor role.

The separation of duties concept relies on the assumption that if the completion of a task requires
the actions of several individuals, then information can be stolen or modified through the perfor-
mance of the task only through collusion of some of the individuals. Separation of duties increases
the risk of detection and decreases the chances of success for potential attackers. An example of
separation of duties is the opening of a bank vault where two independent bank officers are required
to insert their keys and type in their security codes. Separation of duties may further require that
these actions occur in a specific order.

The policy presented in section 2.1.3 is an example of a Clark-Wilson integrity policy. Figure
4-4 (derived from figure 2-5) is a good example of WFTs and separation of duties. The roles
OP.COA.FU, LO.COA.FU and TR.COA.FU are certified to perform specific actions (WFTs) on
specific datasets (in Clark-Wilson terminology, Constrained Data Items). OP.COA.FU has been
certified to gather weather information and send it to OP.COA.HQ, TR.COA.FU has been certified
to build a transport schedule and send it to TR.COA.HQ, and LO.COA.FU has been certified to
build a maintenance schedule and send it to LO.COA.HQ. The FU roles are not permitted to
interact (separation of duties) thwarting any malicious collusions intended to corrupt information.

This portion of Clark-Wilson is an access control policy because it moderates the interactions
between subjects and objects. The access control matrix is defined by associating with each con-
strained data item the set of WFTs that can access it along with the permitted accesses. Thus, the
access control matrix in a Clark-Wilson policy is similar to the access control matrix in a column
based DAC policy. There is a significant difference between a Clark-Wilson policy and a column
based DAC policy in that a Clark-Wilson policy includes rules governing the manner in which the
access control matrix can be modified that make it a mandatory policy rather than a discretionary
policy. In addition, Clark-Wilson includes aspects that go beyond access control policies.
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Figure 4-4. C? Example of WFT and Separation of Duties
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4.1.4 Type Enforcement

Type enforcement is a policy that can be used as a foundation for a variety of integrity policies,
including Clark-Wilson policies. The basic concept behind type enforcement is a mandatory version
of an access control matrix and restrictions on the classes of subjects that can be associated with
a given user (see [19] and Section 4.1). The difference between type enforcement and the basic
access control matrix described in 4.1, is the granularity of control over subjects and objects.
Access control matrices require users to specify access permissions on a per subject-object basis.
In type enforcement, subjects are grouped into equivalence classes known as domains and objects
are grouped into equivalence classes knows as types (Figure 4-5). Access decisions are made on the
granularity of domains and types instead of subjects and objects. Access decisions are then applied
to the subjects and objects of those domains and types.

Objects

Subjects

o
@,,

Figure 4-5. Type Enforcement

For the example, Figure 4-5 shows how subjects S; through Ss are grouped into domains D; through
D,. A similar type of grouping applies to objects O; through Qg into types T, through T,.

The policy stated by this matrix is that S; and S, are permitted to read and write objects Oy, O2,
and O3 as well as execute Oy.

The access control matrix specifying the accesses subjects in each domain are permitted to objects
of each type is called the domain definition table (DDT). A second table, the role authorization
table (RAT) associates each user with the set of domains in which the user can have subjects
operating.

Type enforcement is extremely flexible. By proper configuration of the DDT and RAT, it is possibfe
to state a wide variety of properties. Additionally, research is being performed on application
specific policies such as Role-Based Application Policies [29].
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4.1.5 Chinese Wall

All the access control policies discussed to this point (DAC, Bell-LaPadula, Clark-Wilson) describe
policies that are somewhat static. The users or the system sets the access permissions and they
remain in force until explicitly changed. The Chinese Wall policy [5] popularized a new generation
of security policies with a dynamic flavor. Similar dynamic policies are found in the database
security world (LOCK Data Views or LDV) and are used for aggregation and inference control [9].

These policies are dynamic because access permissions are not explicitly set by the system but
instead are dependent on what information a subject has accessed in the past. When a subject
makes a request to access new information, the system consults with its security database to ensure
that new information does not conflict with any old information the subject may still have in its
memory. If there is no conflict, access is permitted. If there is a conflict, access is denied.

An example of where such a policy might be used is in controlling the access that an accountant
that consults for large corporations has to various pieces of information. In order to maintain
personal integrity, the accountant should not consult with two competing corporations at the same
time for fear of releasing sensitive information. The accountant should only work with the second
competitor after the conflicting information becomes old or purged.

4.1.6 Generalized Framework for Access Control

The Chinese Wall policy opens up a Pandora’s box for access control policies. Previously, access
control policies used very simple rules to moderate the interactions between subjects and objects.
For example:

e subject X is permitted read access to object Y, or

e asubject at Secret can write to objects at Top Secret.

Implementing the Chinese Wall policy requires that these rules become more complex and cover
additional attributes beyond ids and security levels. First, an information history must be kept for
all subjects. This history will maintain a list of the information the subject had access to in the
past. Second, access control authorities must be able to cleanly identify what information generates
conflicts and translate these conflicts into rules. The rules must then look into the information
history of a subject to ensure that information from the past does not conflict with information
a subject may wish to access. Third, the policy may conflict with existing access control policies
such as DAC. When a rule conflict occurs, the system must decide whether to handle the conflict
as an “exception” and permit access, or to logically “AND” the rules together and deny access.

Chinese Wall is not the first (or last) policy that introduces conflicts between rules, policies, and real
world needs. “Exceptions” to security policies are commonplace in order to make a system work
in the real world. For example, if Bell-LaPadula were strictly enforced the president would never
be able to issue press releases. Therefore, a trusted process is used that violates Bell-LaPadula (an
exception) in a secure manner in order to pass non-sensitive messages from the president to the
public.
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The problem now is identifying valid exceptions, ensuring these exceptions are not used to implicitly
leak sensitive information, and ensuring that exceptions do not conflict or amplify a weakness
in security. As a system matures, users will compound the problem by demanding additional
exceptions to make a system more usable.

To address these problems, Mitre is developing a Generalized Framework for Access Control
(GFAC)[23]. GFAC provides a flexible structure that aids in the construction of any type of
access control policy. There are no exceptions in GFAC because all interactions between subjects
and objects must be explicitly stated. Most existing security policies are consistent with GFAC.
The remaining discussion will detail these advantages as well as the structure and components of
GFAC.

GFAC is composed of 4 components([23]:

e Access Control Information (ACI) - Characteristics or properties of subjects and objects.
Their names are used in specifying the rules of the system; their values are used by the access
control rules.

e Access Control Context (ACC) - Additional information, such as time of day, used in access
control decision making.

o  Access Control Rules(ACR) - The set of formal expressions of policy for adjudicating requests
by subjects for access to objects.

e Access Control Authorities (ACA) - Agents who specify ACI, ACC, and ACR.

Given just ACI, ACR and ACA, one can specify policies such as DAC, and Bell-LaPadula. ACI
describes ids and security levels, ACR is the set of rules that moderate the interaction of subjects
to objects based on ids and/or security levels, and ACA specifies who is permitted to update the
security database. The real power of GFAC comes in the form of ACC. This permits the designers
of security policies to incorporate any needed external information into the construction of the
policy: time of day, operational mode of the system, age of data, history of subject, conditions for
downgrade, etc. With this external inforniation, policy designers can specify complex ACRs such
as:

e Subject X can access object Y between the hours of 4:00-5:00.
o Subject X can access object Y when Y is 10 years old.
e Subject X can access object Y if X does not contain Z in its information history.

e Subject X can access object Y if the system is in war mode.

These rules exemplify the flexibility of GFAC. With standard security policies, exceptions exist
because the policy is so rigid that it cannot cover all possible circumstances. With GFAC, any
and all external information can be stated in the policy so there is no reason for exceptions to
exist. GFAC’s flexibility also permits security policies such as Clark-Wilson, Bell-LaPadula, Type
Enforcement, and DAC to be stated in terms of GFAC. In addition, it is possible for all these
policies to co-exist because GFAC can contain rules for combining rules (meta-rules). Examples of
meta-rules include inheritance, logical AND, and explicit control over resolving rule conflicts.
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Because of this flexibility, GFAC is ideal for describing adaptive security policies. Adaptive policies
are dynamic in nature because they moderate a system that is dynamic. GFAC permits users to
include the dynamic attributes of the system into the policy and then develop a set of rules based
on those attributes. The C? example from section 2 could be described in terms of GFAC:

¢ ACI: Roles such as OP.COA.HQ, objects such as Transportation Requirements, levels such
as Top Secret.

¢ ACC: System modes such as WAR, PEACE, TRAINING.
¢ ACR:

if the system is in WAR mode then
OP.COA.HQ can read INTELLIGENCE data.

Although GFAC provides a framework for addressing both existing security policies and exceptions
to these policies, we will not make further use of it in this report because access control policies
have a significant flaw with regard to preventing disclosure of sensitive information. We will discuss
this flaw and how information flow policies address the flaw in the next section. Then, in Section 5
we will discuss an approach for extending information flow policies to deal with adaptive systems in
much the same manner as GFAC allows access control policies to be extended to deal with adaptive
systems.

4.2 INFORMATION FLOW POLICIES

In Section 4.1 we thought of a computing system as consisting of active entities (subjects) and
passive entities (objects). The motivation behind access control policies is that the data to be
protected is stored in objects and the only means available for accessing the data are subjects.
The contention is that the information can be protected by restricting subjects to observing only
objects they are permitted to observe.

Although the contention is plausible, there are some difficulties in attempting to protect data using
access control policies. The main difficulty is that the meaning of the policy is strongly dependent
on the meaning of “object” and the meaning of “observing.”

Intuitively, objects correspond to files. So, for example, the hardware data registers in a computing
system are not normally considered objects. If the data registers are not cleared when a high-level
subject is swapped out and a low-level subject is swapped in, then any data loaded into the registers
while the high-level subject was executing will be available to the low-level subject. Although this
allows a low-level subject to obtain high-level data, it is not normally detected by an access control
policy since the registers are not normally considered objects.

Although this problem can be addressed by considering the registers as an object with a security
level equal to that of the currently active subject, the point is that access control policies only
protect data stored in objects. If some entity that can contain data is not considered an object,
then it might be possible to circumvent the access control policy by moving data through that
entity.
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Even if the problem of defining the set of objects is handled, there is still the question of what it
means to observe an object. For example, it seems reasonable to allow a low-level subject to write
to a high-level object. If the high-level object has been deleted, then what action should be taken?
If any abnormal action is taken, the low-level subject might be able to infer that the high-level
object has been deleted. Does inferring that the object has been deleted constitute observing the
object? :

Both of these problems can be addressed by considering the manner in which data flows in the
system being analyzed. Any time that data can flow from an object to an entity, the entity must
also be an object. With regard to the hardware registers example, if a subject can load data from
an object into the registers, then the registers must be considered an object. So, information flow
analysis can be used to identify the set of objects in the system. Any time that data flows from
an object to a subject, the subject has observed the object. With regard to the object deletion
example, if the status that the subject receives when it writes to a deleted object is different than
the status it received before the object was deleted. then the fact that the object has been deleted
has flowed to the subject.

Rather than using information flow analysis to determine the set of objects and the notion of
observing for an access control policy, it is common when performing information flow analysis
to totally replace the access control policy with an information flow policy. All information flow
policies are of the following spirit:

Actions taken by high-level subjects cannot alter the response that low-level subjects receive
from the system.

In the remainder of this section we consider various formalizations of this concept for deterministic,
nondeterministic, and stochastic system models.

4.2.1 Deterministic Systems

The first information flow policies were developed in the context of deterministic systems. A system
is deterministic if the actions it will take in the future are totally determined by those it has taken
in the past. We can view such a system as a state machine with:

e aset of states, S
s a set of operations, OP
e a set of outputs, OUT

e a rule indicating whether a given operation can be executed in a given state (we will use
valid(op, st) to represent that op can be executed in st)

o whenever an operation op can be executed in a state st, a rule indicating:

-~ the state resulting from executing the operation (which we will denote by st°?)
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—  the output that results from the operation (which we will denote by output(op, st))

In order to state an MLS securitv policy for the system, it is necessary to assign security levels
to the operations and the outputs. We will use level{op) and level(out) to denote the level of an
operation and output, respectively.

Intuitively, a system is MLS secure if the actions taken by high-level subjects do not affect the
behavior of the system that is visible at the low-level. By equating the actions taken by high-level
subjects with operations executed by high-level subjects and the behavior of the system that is
visible at the low-level with low-level outputs, this requires that high-level operations not influence
low-level outputs.

By extending our notation for single elements to sequences in the natural way (for example, if seq
is a sequence of operations, then st*®? is the state obtained by apply’ng each of the operations in
seq to the state st in order), we obtain the following security policy:

A deterministic system is secure if and only if:
for each [, st, op, and sequence of operations seq such that valid(seg, st):
valid(seg|l, st)
and output(op, st**?)|{{ = output(op, stseqll)ll

where z|y is the sequence obtained by removing all of the elements from z having a level
that is not dominated by that of y

Such a system will be said to be noninterfering. In other words, a system is noninterfering if
the low-level outputs caused by an arbitrary sequence of operations are the same as the low-level
outputs caused when only the low-level operations in the sequence are executed. This concept of
MLS security is essentially the same as that proposed in {27], [31], and (30].

4.2.2 Nondeterministic Systems

It is generally accepted that noninterference is the correct formalization of an MLS information
flow policy for a deterministic system. Unfortunately, many of the systems of interest (in par-
ticular, distributed C? systems such as those being considered on this project) do not appear to
be deterministic. For example, it is quite common to view a read operation from shared memory
that is simultaneously being written as being nondeterministic. Due to the race condition existing
between the read and write operations, the value read could be the value that existed before the
write operation was initiated, the value existing after the write operation was completed, or even
a merger of the two values depending on which operation completes first. It is not clear that such
systems are as nondeterministic as is commonly believed, but for now we accept the common view
on this matter. In sections 4.2.2.2 and 4.2.3 we ccnsider the validity of this viewpoint.
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Given the assumption that distributed C? systems are nondeterministic, it is clear that noninter-
ference for deterministic systems is not the correct formalization of an MLS information flow policy
for a distributed C? system. Before discussing what we believe to be the correct formalization of
an MLS information flow policy for a distributed C? system. we will consider policies that have
been proposed to date.

4.2.2.1 Previous Work — Earlier attempts at defining MLS information flow policies for non-
deterministic systems include Forward Correctability [17], Hook-Up Security [20], Restrictiveness
(21}, and Strong Noninterference [28]. The common thread through all of these policies is that
a system is said to be secure if for any two sequences of actions that can be taken by high-level
subjects, the low-level behavior of the system is the same regardless of which sequence of actions
is taken. It is our belief that the reason there is such a diversity of policies attempting to say the
same thing is that they are all based on the CSP[15] formalism or, in the case of [28], a formalism
with semantics similar to CSP, and we believe this formalism hampers the statement of this type
of policy. Because of the difficulty in stating such a policy in CSP, none of the policies are intellec-
tually satisfying and it is natural to strive for an alternate statement of security. We will address
this issue further in Section 4.2.2.3.

Rather than discussing all of the aforementioned policies, we will discuss Restrictiveness as a rep-
resentative example. The main difference between it and the other policies is that it is written
in a formalism that, while based on CSP, is really a state-machine formalism while the others are
actually written in the CSP formalism. This difference is not as significant as it may seem because
(as will be discussed in the next contract deliverable) there is a straightforward connection between
the state-machine formalism and the CSP formalism.

As in the deterministic state machine model, S, OP, and OUTrepresent the states, operations,
and outputs of the machine. The differences are that:

o It is traditional to refer to OP as the set of inputs.

o Instead of there being a single state resulting from executing op in st, there is a set of states
that can be reached from st by executing op. We will use possible(st, stpew, 0p) to denote that
Stnew can be reached from st by executing op.

Note: valid(op, st) is equivalent to there exists some stp.,, such that possible(st, stpew, 0D).

o  Outputs do not have to occur directly after the input generating the output. Moreover, out-
puts do not even have to be generated by inputs. Instead, outputs are operations generated at
the discretion of the system that result in a value being transmitted from the system in addi-
tion to possibly causing the state of the system to change. We will use possible(st, styew, 0Out)
to denote that the system may generate out from st and then transition to stney. .

e  The set of elements in OP executed at levels dominated by ! is denoted by £Z; and the set of
the remaining elements of OP is denoted by HZ;. When [ is clear from the context, we will
simply refer to these sets as £Z and HZ.
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o The set of elements in OUT occurring at levels dominated by [ is denoted by £O; and the
set of the remaining e'2ments of OUT is denoted by H(O;. When [ is clear from the context,
we will simply refer to these sets as LO and HO. :

o The set of system events is the union of OP and OUT.

o H = HIUHO and £ = LI U LO are the set of high-level events and low-level events,
respectively.

Then, a system is said to be Restrictive if:

a. It is input total. This means that valid(op, st) holds for all st € S and op € OP.
b. For each level ! there is an equivalence relation (x;) on states such that:

(1) If op € HT and possible(st, stpey,0p), then st = Stpew-

(2) If op € LI, sty =y sta, and possible(st,, stn1,0p), then there exists some sty such that
possible(sty, stna, 0p) and stp; =y Stp2.

(3) If 7 is a sequence of outputs each of which is in HO, st; = stz, and possible(sty, stn1,7),
then there exists some st,2 and w such that:

e w is a sequence (possibly empty) of outputs from HO
e  possible(sty, stp2,w)
o Stpy =y Stp2

(4) If a and G are sequences of outputs from MO, out is in LO, st; = st3, and
possible(sty, stpy, a+ < out > +3), then there exists some st,2, 8, and w such that:

e 4 and w are both sequences (possibly empty) of outputs from HO

o  possible(sty, styz, 6+ < out > +w)

®  Slyy =y Stpo.
Here, st; = st; is meant to signify that there are no differences between st; and st, visible below
. So, the intuition behind b is:

a. Operations executed by high-level subjects should not change low-level information.

b. Operations executed by low-level subjects should only change low-level information in ways
determined by low-level information.

c. High-level outputs are only visible to low-level subjects through changes to low-level informa-
tion and the changes are determined by low-level information.
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d. Low-level outputs are determined by low-level information and system actions that are inde-
pendent of high-level inputs.

The main disadvantages of Restrictiveness are that:

o Rather than making an assertion about arbitrary sequences of operations, it attempts to make
assertions about operations in isolation. Although this makes it much easier to show that a
system is Restrictive, it is unsatisfying in that it is not clear what assertion about arbitrary
sequences of operations follows from the system being Restrictive. It is more desirable to start
with a global statement of security and derive conditions on each of the operations (such as
those required by Restrictiveness), there is really nothing wrong with starting with conditions
on each of the operations, deriving a global security policy, and providing the justification
for claiming that the global policy is the “correct” definition of security. For example, we
conjecture that Restrictiveness is equivalent to requiring that a system P be input-total and
satisfy the following requirement (stated in the CSP formalism):

Given any traces 7; and 7, such that r; and 7, differ only in events in H:
{z(LUHT) : z € traces(P/m1)} = {z|(LUHT) : z € traces(P/72)}
where:

*+  The set traces(Q) is the set of possible execution histories (sequence of operations
and outputs) of the system Q.

*  P/s denotes the system that behaves like P behaves after s occurs in P. P/s can be
thought of as defining the future behavior of the system after s occurs.

In other words, for any two sequences of activities that could occur in the system that appear
the same at the low-level, the future behavior visible at the low-level is the same.

o The conditions dealing with outputs are not very intuitive. If the low-level information in
sty is the same as that in st;, it seems reasonable to require that any low-level output that
can occur in one state can occur in the other state. Instead, Restrictiveness allows for the
states to have different outputs as long as the system can take appropriate action (through
high-level outputs) to correct the discrepancy. For example:

Suppose:

*  The only data in the system is an integer N.

*  There are high-level inputs A;-higo that can be used to set N to any value between 1
and 100.

*  There is a high-level output that increments the value of N as a side-effect.

*  The only other high-level output decrements the value of N as a side-effect.
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*  There are low-level outputs 0,-019p corresponding to the value of N.

It is straight-forward to show that this system is Restrictive. The general idea is that
the only possible illicit information flow would be through a high-level subject setting
N to some value and a low-level subject observing the setting of N through a low-level
output. But, the system can always undo the setting of N by taking appropriate action.
For example, if the high-level input results in N being changed from 1 to 100, the system
can correct by generating 99 decrementing outputs.

On the other hand, if the system chooses to do almost anything else (for example, not
generating any outputs), then the change will be noticeable.

This problem can be addressed by following our intuition and requiring that whenever

sty = sta:

+ A low-level output can occur in st; if and only if it can occur in st;.

*  If sty; and st,2 are the states resulting from a given low-level output occurring in st;
and st,, respectively, then st,; = stnz.

Then:

*  Since o0, can occur exactly when N = n, our new definition of security requires that
the value of N is the same in both states whenever st; =; st,.

*  Regardless of the value of N in a given st, there is some input A, that will result
in the value of N being altered. Thus, Restrictiveness’ requirement that high-level
inputs not cause changes visible at the low-level is not satisfied.

So, our intuition that the system is not secure is supported by this definition of security.
We will refer to a system that is Restrictive and satisfies this additional requirement as
being Strongly Restrictive. Strong Restrictiveness does not totally address the problem,
though. For example, consider the following variant of the above example system:

Suppose that instead of there being increment and decrement outputs, there are high-
level outputs n; — njoo that can set N’s value just as the high-level inputs can.

Suppose that any hj received after a n; and before the next o,, is ignored.
The system can more formally be described as:

Suppose each state has variables N, an integer, and R, a Boolean.

If R is set to TRUE, then each h; is treated as a no-op. Otherwise, hy sets N to k
and does not affect R.

An output n; can occur at any time. As a result of n; occurring, R is set to TRUE
and N is set to 7.
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An output o,, can only occur when R is set to TRUE and N = m. As a result of o,
occurring, R is set to FALSE.

Then, the following analysis shows that the system is Strongly Restrictive:
*  Define sty =; st; if and only if;

st;.R = sty R, and
Whenever st).R and st;.R are both set to TRUE, st;.N = st2.N

*  High-level inputs can only change N and can only do so when R is set to FALSE.
Since N is only relevant to the definition of =; when R is set to TRUE, high-level
inputs do not change the low-level view of the system.

*  Suppose that st; = st,.

If 0,, can occur in st;, then st;.R = TRUE and st,.N = m. Then, st2.R = TRUE
and st;.N = m. So, 0, can occur in st; if and only if it can occur in st;. As a
result of 0,, occurring R is set to FALSE. So, st,1 = stn2, where st,; and st,;
are the states obtained as a result of o,, occurring in st; and stz, respectively.

Suppose n; can occur in st; and result in st,;. Since n; can occur in any state, it
can occur in stz. As aresult of n; occurring in a state, R is set to TRUE and N is
set to j. So, n; can occur in st; and result in a state st,2 such that st,; = stn2.

The same comments as we made about the previous example system can be made about
this example system. The security of the system is dependent on the outputs that the
system chooses to make. If the system almost always chooses to output n; such that j
= N, then it introduces little noise into the system and the low-level outputs correspond
closely with the high-level inputs. On the other hand, if the system chooses to make
totally random high-level outputs, there is little correlation between the high-level inputs
and the low-level outputs.

Our point is that it is quite possible that a nondeterministic model of a system is com-
pletely secure while the actual system is almost totally insecure. This is a common problem
with existing security policies for nondeterministic systems that will be considered further
in sections 4.2.2.2 and 4.2.3.

4.2.2.2 Strict vs. Loose Nondeterminism— As alluded to earlier, there is a rather se-
rious deficiency in existing nondeterministic security policies. Basically the problem is that it is
not always clear how the nondeterminism in the model relates to the nondeterminism in the actual

In [11] two types of nondeterminism are described. Loose nondeterminism is the type of nondeter-
minism typically associated with CSP processes. Any implementation that has less nondeterminism
than a model is a valid implementation of the model. Since the information flow policies we have
described for nondeterministic systems rely on high-level outputs being able to mask high-level
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operations, it is quite possible that removing nondeterminism from the model will result in the
implemented system becoming insecure. This is a serious concern because .he goal is to ensure
that the implemented system is secure by showing that the model is secure. If it is possible for the
model to be secure and a “valid” implementation of the model to be insecure, than there is little
point in analyzing the model.

Strict nondeterminism requires that the model and the implementation have the same degree of
nondeterminism. Thus, when performing a security analysis, it is necessary to assume strict nonde-
terminism. Unfortunately it is not always possible to show that the nondeterminism present in the
model is strict. For example, race conditions are often specified as being nondeterministic because
it is not clear exactly what will occur as the result of a race condition. Since it is not clear exactly
what will occur, it might not be possible to show that each of the possibilities specified in the model
can really occur in the implementation.

So, we see that the question of information flow security in nondeterministic systems is significantly
more difficult than that for deterministic systems. In Section 4.2.3, we will see that the situation
is even more serious.

4.2.2.3 Difficulties in Using CSP — In Section 4.2.2.1 we stated that we believe there is
an inherent problem in using CSP to state information flow policies. Although we do not have
a proof that it is not possible to state information flow in terms of CSP, we feel it is worthwhile
to briefly mention the problems that we see with using CSP. It is important to note that similar
problems exist in many other formalisms. Qur main reason for critiquing CSP in particular is that
most of the previous security policies for nondeterministic systems use the CSP formalism.

We begin the discussion with a quote from page 24 of {15]:

In choosing an alphabet, there is no need to make a distinction between events which
are initiated by the object ...and those which are initiated by some agent outside the
object ...The avoidance of the concept of causality leads to considerable simplification
in the theory and its application.

We believe causality to be a necessary concern in an information flow policy. Consider the following
example:

Suppose that the events that can occur in a system are hg, hy, lp, and [; with the former two
representing high-level events and the latter two representing low-level events.

Suppose that the system is such that I; can only occur if it is directly preceded by h; for each
i

If we view hg and h, as inputs and ly and [; as outputs, the system is obviously insecure.
Depending on whether lp or {; is output, it is obvious which event was last input by the
high-level subject.
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If we view hg and h; as outputs, then the system is obviously secure (since there are no inputs,
the only information that is output from the system is the outputs that it nondeterministically
chooses to make). Note that we assume here (as we have earlier in this report) that the goal
is to protect high-level inputs rather than high-level outputs. We will address the protection
of high-level outputs in Section 4.2.5.

The only distinction between random noise and actions issued by high-level processes is given by
the division of the high-level events into inputs and outputs. Yet, {15] explicitly states that the
semantics of CSP are not adequate to distinguish between inputs and outputs.

The reason this complicates the statement of an MLS information flow policy is that it is difficult
to distinguish between high-level outputs that are caused by low-level inputs, those caused by high-
level inputs, and those that are randomly generated by the system. We illustrate this with the
following examples:

e  The most straightforward generalization of noninterference is to simply require that given any
trace T of the system, if 7y is 7 with all high-level events removed, then 7; is a trace of the
system. The following example shows that this would exclude some obviously secure systems:

Suppose that a system has a low-level input ¢;, a high-level output o, and a low-level
output o;.

Suppose that any trace of the system is such that every o; is preceded by an o, and every
op, is preceded by an i;.

T =< 1,04,0; > is a trace of the system while 7, =< #,0; > is not. Yet, the system is
obviously secure since it does not have any high-level inputs.

e Since it is not reasonable to require that the system work the same with all high-level events
removed, we must determine which high-level events are reasonable to remove. Clearly it
should not be necessary for high-level input events to be present in order for a system to be
secure, so the next natural step is to attempt to define security as in the previous step with
7, meaning 7 with high-level inputs removed. But, this is too restrictive, too.

Suppose that a system has a high-level input i4, and a high-level output os.
Suppose that any trace of the system is such that every oy, is preceded by an ;.

T =< 1,0 > is a trace of the system while 7, =< o) > is not. Yet, the system is
obviously secure since it does not have any low-level events.

e Since the first attempt failed because too many outputs were removed in going to 7, (o4
should not have been removed) and the second fails because not enough were removed in
going to 7, (op should have been removed), the next natural step is to only remove some
high-level outputs. One possibility is to require that given any 7, that differs from 7 only in
high-level inputs, there exists a 7. that differs from 7, only in high-level outputs such that
7. is a trace (this policy is known as Correctability[17]). The intuition behind this policy is
that no matter how high-level subjects “perturb” the system through high-level inputs, the
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system can always “correct” itself through high-level outputs so that the high-level inputs are
not visible to low-level subjects. The difficulty with this policy is that it requires the system
to predict the future in order to maintain security. Since it is difficult to completely list the
traces for a good example, we will simply give a sketch of the system.

Suppose that a system allows a high-level subject to input a 0 or a 1, and outputsaQ ora
1 at the low-level. If no value is input, then the low-level output is 0. Otherwise, the low-
level output is equal to the high-level input if the system chooses not to introduce noise
and the opposite of the high-level input, otherwise. Suppose that we require the system to
decide whether to introduce noise before the high-level input is made. Regardless of the
high-level input made, the system can cause the low-level output to be 0 by appropriately
deciding whether to introduce noise. But, the system cannot determine whether it should
introduce noise without knowing the high-level input that will be made in the future.

For example, if the high-level subject observes the system introducing noise, then it inputs
the opposite of the value it wishes to send. Otherwise, it inputs the value it wishes to
send. In either case, the low-level output is the value that the high-level subject wishes
to send.

Another way of making the same point is that the proposed definition of security assumes
that the system knows all of the inputs that will be made by the high-level subject and
takes appropriate action to mask these inputs, while in reality it is the high-level subject
that knows the actions taken by the system and can mask them through appropriate
outputs.

So, it is clear that it is not reasonable to allow arbitrary “corrections.” The next natural step is
to only allow “corrections” based on past occurrences. This is essentially what Restrictiveness
and Forward Correctability require. As noted at the end of Section 4.2.2.1, this has the
drawback of calling some systems secure even though they are insecure if the system does
not introduce noise at the correct time. Since we have already made use of the input/output
distinction and the high/low distinction, it is not clear how to change the policy so that it
does not allow for such systems to be secure. We suspect that such a change is not possible
in CSP because the semantics do not allow for the concept of causality.

Further research needs to be done to determine whether there really is an inherent difficulty in
defining information flow policies in CSP. If there really is, then it is necessary to determine whether
there is actually an inherent difficulty in defining information flow policies fot nondeterministic
systems regardless of the formalism selected. In the next section we will consider an extension
to nondeterministic systems that results in a much more complicated system model but seems to
address some of the problems encountered in the system model for nondeterministic systems.

4.2.2.4 Summary— In this section we have discussed previous attempts at defining informa-
tion flow policies for nondeterministic systems and their deficiencies. We have proposed a new
security policy, Strong Restrictiveness, that we believe addresses some of these deficiencies. We
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have also discussed our opinion that certain formalisms seem to hamper the statement of an in-
formation flow policy. One issue that has not been addressed in this section is the likelihood of
events occurring. In nondeterministic models, no distinction is made between events that are quite
likely to occur and events that are quite unlikely to occur. In the next section, we will discuss the
implications this has for a security analysis.

t

4.2.3 Stochastic Systems

Recently some consideration has been given to information flow policies in stochastic systems[16].
The only difference between a stochastic system and the nondeterministic systems introduced in
the previous section is that instead of simply recognizing that an action can result in more than one
output, we also consider the probability of each result occurring. We can then define the stochastic
information flow policy to require that:

For any sequence of inputs and low-level outputs, the probability that the system will gen-
erate the given sequence of low-level outputs from the sequence of inputs is the same as the
probability the system will generate the low-level output sequence from only the low-level
inputs of the given input sequence.

For example, we can add probability distributions to one of our examples from Section 4.2.2.1 to
obtain the following system:

e  Suppose :

—  The only data in the system is an integer N.

—  There are high-level inputs hy-hjgo that can be used to set N to any value between 1 and
100.

—  There is a high-level output that increments the value of N as a side-effect.
—  The only other high-level output decrements the value of N as a side-effect.
—  There are low-level outputs 03-0100 corresponding to the value of N.

—  Initially, the system attempts to accept a high-level input with probability p and outputs
the value of N with probability 1 — p. If the system attempts to get input and no input
has been made, then the system does not change state.

—  If the system attempts to accept input and an input has been made, it transitions to a new
state from which it can increment N with probability ¢, decrement N with probability r,
accept another input with probability s, or output N with probability 1 —q —r —s. If the
system chooses to output N, then the system returns to the initial state. Otherwise, the
system repeatedly chooses to increment, decrement, accept new input, or output until an
output is made.
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The system can be thought of as a Markov chain. In particular, it is basically a drunken-sailor’s
walk (thinking of incrementing as stepping left. decrementing as stepping right, and outputting as
falling down, the system can be thought of as modeling the location at which the sailor will fall
down). In order for the system to be secure, the probability of the sailor falling at a given location
must be independent of the start location (since the high-level input can be thought of as defining
the starting location for the sailor).

It is interesting to note that although this system is Restrictive, the high-level input can have
a dramatic effect on the probability with which each output occurs. For example, if hy is the
only input, then at least 99 increments are required for 0,090 to occur. Since the probability of an
increment occurring at any given time after the input is g, the probability of 0,99 occurring after h;
is input is less than ¢%°. On the other hand, if kg is the only input, the system can immediately
output 0199 With probability 1 — ¢ — r — s. Consequently, the probability of o;09 occurring after
higo is at least 1 — g — r — s. If we choose ¢ = r = s = .1, then we see that the probability of 0100
occurring after h,; is input is essentially 0 while the probability of it occurring after hjqg is input is
at least .7.

In order for the system to be completely secure, the probability of oj00 occurring should be the
same regardless of the high-level input. So, letting z represent the probability of 0100 occurring, we
see that:

o ¢®>z>1-q-r-3s

Unless g is very close to 1, ¢°° is very close to 0 and g+ r + s must be close to 1 for the system to be
secure. If ¢ is very close to 1, then g + r + s must be close to 1 since it must be greater than ¢ and
less than 1. Consequently, ¢ + 7 + s must be very close to 1 in order for the system to be secure.
In fact, some simple Markov analysis shows that it is impossible to make the system completely
secure unless ¢ + r + s is exactly 1. This really is not a valid choice for ¢ + r + s because it means
that the low-level output can never occur while our nondeterministic model of the system assumes
that it can occur.

In other words, even though the system is Restrictive, it does not satisfy the stochastic information
flow policy (regardless of how the probabilities are assigned). This agrees with our intuition in the
preceding section that Restrictiveness calls some “insecure” systems “secure.”

More research needs to be done to determine whether there are any systems that satisfy Strong
Restrictiveness and yet fail to satisfy the stochastic information flow policy regardless of how
the probabilities are selected. If there are not any such systems, then it would be possible to
use a nondeterministic model with Strong Restrictiveness as the security policy as a preliminary
investigation of the security of a nondeterministic system. Then, further analysis of the system
could concentrate on refining the model to a stochastic model and determining values for the
probabilities that will result in the system satisfying the stochastic information flow policy. If there
are some systems that satisfy Strong Restrictiveness but do not satisfy the stochastic information
flow policy, then there is the danger that the preliminary analysis would not detect any insecurities
while there is no possible way to assign probabilities to make the system secure in the subsequent
analysis.
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The stochastic information flow policy is basically that given in [16]. There are some serious
difficulties with using this policy.

a. It is not clear how the probabilities of events occurring are determined. In [16], it is assumed
that system designers will specify the probabilities and leave it to the system implementers to
ensure that the implementation is consistent with the design. This would seem to place a great
burden on the implementers since some of the probabilities will undoubtedly be influenced
by factors beyond the control of the implementers. Another approach would be to assume
that the analysis is done after the implementation is complete in which case experimentation
could be used to obtain an approximation of the probabilities.

b. Assuming that all of the probabilities can be obtained, there is the issue of performing the
analysis itself. If there is much more nondeterminism than determinism present in the system,
the analysis will probably become infeasible.

c. Even if experimentation suggests a given probability distribution is appropriate, there is still
the same type of concern as discussed in Section 4.2.2.2. In particular, even though the
system appears to be stochastic, it is possible that the system is actually deterministic with
transition rules that are so complex that they appear stochastic. This has serious implications
when we begin to consider the composability issue in Section 6.1.1.

4.2.4 Self Evolving Systems

All the information flow policies discussed previously suffer from a fundamental flaw:

They assume that the correct model of the system is that sub jects exist external to the system,
send input to the system, and obtain output from the system.

If we replace “subject” with “user”, then the above view is reasonable. The point is that while
users exist external to the system, subjects exist internal to the system. Since system operations
can modify the state of the system, it is possible for system operations to modify the behavior of
subjects. On the other hand, system operations do not change the behavior of a user. Consider
the following system:

Suppose that a low-level subject can input a 0 or a 1 and receives an output echoing its input.

Suppose that a high-level subject can input a 0 or a 1, and as a result of its input, it causes
the low-level subject to input the same value. If the high-level subject has not yet made an
input, assume that all the low-level subject can input is a 0. A case in which this could occur
in the real world is that in which the high-level subject’s input alters the code object for the
low-level subject. In our particular example, the low-level subject is instructed by its code
object to input a 0 and the high-level subject can change the low-level subject’s code object
through an input. System models usually abstract away the fact that a subject executes the
sequence of instructions contained in its code object rather than executing any instruction
sequence it desires. Thus, unless there are specific operations that allow low-level subject’s
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to observe the executable object, the executable object appears as an unreadable object in
the model and there is consequently no security violation detected when a high-level subject
modifies it.

Since the models we have considered previously assume that there is no correlation between high-
level inputs and low-level inputs, the system appears to be secure even though the correlation
between high-level inputs and low-level inputs clearly makes the system insecure. This example
suggests that a way to address this problem would be to attempt to identify instances in which
high-level inputs can affect the low-level inputs that may occur next.

Another possible way to address this problem is to view the system as self-contained and compare
the manner in which it evolves with the manner in which it would evolve if all of its high level
processes and data were purged. In the example above, if the high-level subject’s code object
instructs it to input a 1, then the result of running the machine would be that the high-level
subject would input a 1, the low-level subject would input a 1, and the system would output a 1
to the low-level subject. On the other hand, if we purge the high-level data and subjects, then the
low-level subject’s executable object would not be altered and the result of running the machine
would be that the low-level subject would input a 0 and the system would output a 0 to the low-
level subject. Since the operation of the system that is visible at the low-level is different when the
high-level data and subjects are purged, the system is seen to be insecure.

In [32], the approach taken is to attempt to determine conditions to place on the processing of
instructions that when combined with an information flow policy address the possibility of high-level
inputs having an effect on low-level inputs. At the Rome Laboratory 1990 Technology Exchange
Meeting, Tanya Korelski mentioned that her group had developed a security policy called “state
partitioned state machines” that sounds similar to our approach in which the system is considered
to evolve on its own rather than having external inputs. Future research is needed to determine
the relationship between “state partitioned state machines”. the approach described in [32], and
our approach.

4.2.5 Nonobservability

Another flaw present in information flow policies is that they only address the flow of informa-
tion from high-level subjects to low-level subjects and consequently ignore information flow from
high-level objects to low-level subjects. In other words, they do not necessarily.prohibit low-level
processes from directly reading high-level objects.

This is only a problem when the high-level object is nonmodifiable. In that case, even though a
low-level subject might be able to read the object, high-level subjects cannot transmit informa-
tion through the object due to their inability to modify the object. In some ways this is a less
serious security threat than those addressed by information flow policies because the information
compromised is limited to that initially stored in the object. On the other hand, the rate at which
the information is compromised could be significantly higher for this type of security flaw. For
example, if the low-level subject can directly read the high-level object, then it can probably obtain
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the information more quickly than it would if the high-level subject had encoded the information
in a form suitable for transmission through a covert channel. The encoding and decoding consume
time and covert channels themselves typically have a lower bandwidth than the read and write
operations in the system.

Regardless of how serious these threats actually are, it makes little sense to ignore them in the
" security analysis because we can address them with an information flow policy by making a slight
modification to the policy. Before describing the necessary modification, we will describe a separate
policy, which we call a nonobservability policy, to address this issue.

A system satisfies a nonobservability policy if, regardless of the values assigned to high-level
data in the initial state of the system, the outputs resulting from the execution of low-level
inputs are the same.

Any system that allows a low-level subject to read a high-level object will not satisfy the nonob-
servability policy because altering the value of the high-level object in the initial state will result
in a different value being read when the system is run.

Now, the obvious way to combine this with the information flow policy is to require that:

o Regardless of the values assigned to high-level data in the initial state of the system, the
outputs resulting from the execution of low-level inputs are independent of high-level inputs.

In the case of deterministic systems, this can be formalized as the requirement that:

sty = sty

and wvalid(seq|l, st;)
=

“valid(seq|l, st3)
and output(op, st*9)|l = output(op, sto5¢4l)|1

where st; = sty is used to denote that the only difference between st; and st; is in data that
is not visible at or below [. In [10] this is referred to as strong noninterference. This is an
unfortunate choice of names since there are at least two other security policies referred to as
“strong noninterference” that have no relation to this policy. One developed by ORA is described
in [21], and the other was developed by SRI and is described in [28].

Before closing this matter, we would like to discuss the additional complexity added by considering
observability. One obvious difference between strong noninterference and noninterference is that
it is necessary to define the notion of two states looking the same at a given level. Although this
is generally a difficult task, we maintain that it is no more difficult to perform an analysis with
respect to noninterference than it is with respect to strong noninterference since we believe that
the most reasonable way to perform a noninterference analysis is to divide it into four steps:
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a. Determine the appropriate definition of st; =; st3.
b. Show that whenever st; = stz, st;%%? = stzseqll’ for all seq, and [.

c. Show that the only outputs that can be caused by an input are outputs at levels greater than
or equal to that of the input.

d. Show that whenever st; =; st; and op is a low-level operation,
(1) valid(seq, st,) = valid(seq|l, st2)
(2) output(op, sty)|l = output(op, st2)|l

The intuition is that if it can be shown that:

e high-level inputs neither affect the view that low-level subjects have of the system nor cause
low-level outputs

e the low-level outputs caused by a low-level input are totally determined by the view that
low-level subjects have of the system,

then high-level inputs cannot have any influence on low-level outputs. As described in [30], the
definition of st; ~; st; and the noninterference analysis can be performed simultaneously in a rel-
atively efficient manner. It just so happens that this approach for showing that a system satisfies
noninterference actually shows that a system satisfies the stronger property of strong noninterfer-
ence. So, as long as this seems to be the most efficient way of performing a noninterference analysis,
it is pointless to use noninterference as the policy instead of strong noninterference. With regard to
extending this work to nondeterministic systems, we note that our Strong Restrictiveness addresses
nonobservability in the same way that strong noninterference does. In fact, both Restrictiveness
and Strong Restrictiveness are natural extensions of Strong Noninterference, as described in [10],
to nondeterministic systems.

It is important to note that strong noninterference does not totally solve the problem of low-level
subjects being able to observe high-level objects. It is possible to define st; =; st in such a way
that it requires the value of the high-level data to be the same. After doing so, the reading of this
object would no longer be detected as a security violation by the strong noninterference policy. The
problem here is that st; = st, is supposed to capture the intuitive notion of two states appearing
the same to subjects at or below [/, but we have defined it so it requires information above [ to be
the same. This conflicts with the intuition of st; & st; only capturing the low-lavel data. All this
means is that as st; ~; st; is constructed, care must be taken to ensure that no high-level data is
referenced. This is no different from the care that must be taken to assign correct security levels
to each state component in a traditional covert channel analysis[22].

4.3 RELATION WITH EXAMPLE SYSTEM

Although the example in Section 2 does not go into much detail concerning the security policies
described in this section, these policies are very important in C? systems. Access control policies
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are quite often used as the primitive security mechanism on each of the nodes. By building on
the access control policies provided by each node, it is possible to show that the node satisfies an
information flow policy (unless, of course, it allows information to be transmitted downward in
security level). Furthermore, by building on the information flow policy enforced by each node, it
is possible to obtain an information flow policy for the entire system (unless, of course, it allows
information to be transmitted downward in security level). These policies are not discussed much
in Section 2 because we wanted to emphasize the adaptive components of the system, not because
they are not important in the analysis of C? systems. The Role Flow Rule in Section 2 can be
thought of as either a Clark-Wilson policy or a type enforcement policy, while the Mode Rule has
aspects of both an information flow policy and access control policies. As further support for the
usefulness of these policies, we will show in the next section that they provide a natural foundation
for adaptive security policies.

44 SUMMARY

In this section we have considered the natural progression of security models. The earlier secu-
rity models were primitive access control policies. Later, information flow policies were developed
for deterministic systems. Next, attempts were made to extend these policies to nondeterministic
systems. Finally, work is currently being done to obtain a correct definition of information flow
security for nondeterministic systems and a start has been made on defining information flow secu-
rity for stochastic systems. We have attempted to explain the flaws with each of the earlier security
policies and the manner in which subsequent policies address the flaws. We have proposed Strong
Restrictiveness as being a more correct definition of information flow security for nondeterministic
systems and attempted to explain how it addresses flaws in other proposed definitions. In our
examination of nondeterministic systems, we discussed the possibility that we might not yet have
the correct formalism for stating information flow policies for such systems. We have also proposed
a statement of information flow security for stochastic systems that is similar to that proposed by
others. In the future, we hope to show that our definition of information flow security for stochastic
systems is a natural extension of Strong Restrictiveness, explore differences between our definition
for stochastic systems and definit.ons proposed by others, and try to identify formalisms that are
more conducive to the statement of information flow policies for nondeterministic systems.
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SECTION 5

ADAPTIVE SECURITY POLICIES

One of the specific goals of the ASCM project is to consider adaptive security policies. The following
is taken from the Statement of Work:

One category of service that must be made available in future C2 systems is that of
adaptive policies, i.e., maintaining an acceptable level of information security when there
is a desire or need to vary the security policy with time and other external conditions.
There are several reasons for considering adaptive policies, such as maintenance access,
reconfiguration of system resources, reclassification of information, broadcast messages,
and changing operational modes.

Our interpretation of the need for adaptive security policies is that existing security policies are too
restrictive for use with real systems. In particular, although requiring that there be no information
flow from high levels to low levels seems like a reasonable definition of MLS security, it does not
recognize that real systems often need to transmit information from high levels to low levels. For
example, a broadcast message from a low-level subject will often require acknowledgements from
high-level subjects in order to determine whether the message should be rebroadcast. In this sense
“adaptive security policy” is actually a misnomer. It is not that the security policy of the system
has changed to allow the normally disallowed information flow downward in level. The policy of the
system remains constant, but instead of requiring that there be no downward flow of information.
it requires that there be no downward flow of information except for certain special cases. With
this interpretation, adaptive security policies are seen to be conditional security policies.

5.1 CONDITIONAL SECURITY POLICIES

Given our earlier contention that an information flow policy is the correct notion of security, the
first step in developing “adaptive” security policies is to develop a conditional information flow
policy. [31] provides such a policy for deterministic state machines by generalizing noninterference
to conditional noninterference. The policy can be stated as:

High-level subjects can only interfere with low-level subjects through certain sequences of
operations.

In other words, while the noninterference policy requires that there be no interference from high-
level subjects to low-level subjects through any sequence of instructions, the conditional noninter-
ference policy weakens this to allow interference through some defined set of sequences. Thus, the
policy says that unless one of the exceptional sequences is executed, there is no illicit information
flow. Once the system is shown to satisfy the conditional noninterference policy, it remains only to

52




consider the risk associated with each of the exceptional sequences. In this section we will consider
some general classes of exceptional sequences. These classes represent functionality that is desirable
to have in C? systems but appears to conflict with MLS information flow policies.

5.2 CLASSES OF EXCEPTIONS

The classes of exceptional processing that we will consider are:

a. Reclassification of processes and data.
b. Reconfiguration of system resources.
c. Broadcast messages.

d. Change in operational mode.

5.2.1 Reclassification of Processes and Data

Reclassification refers to changing the security level associated with a piece of information. Many
enforcement mechanisms ignore the semantics of information and consider only the object contain-
ing the information. Similarly, the sensitivity of a program is usually assumed to be dominated by
that of any subject executing the program. So, we will concentrate on the changing of the security
level of a subject or object throughout this section rather than the more general problem of reclas-
sification of data. At the end of this section, we will briefly consider the more general problem in
the context of a specific interpretation of upgrading.

Many security models assume that the security levels of subjects and objects remain static. Con-
sequently, the reclassification of a subject or object will result in the assumptions of the model
being violated, regardless of the direction of the reclassification. In general, there is no reason
to prevent a low-level subject from reclassifying information to a higher level. Thus, rather than
simply viewing such a reclassification as an exception to an information flow policy, we feel it is
more reasonable to develop an information flow policy that is applicable to systems that allow
subjects and objects to change security level. After doing so, we will consider the cases that are
actually security problems. Finally, we will consider an alternative interpretation of upgrading that
addresses the reclassification of information rather than the reclassification of subjects and objects.

5.2.1.1 Nontranquil Information Flow Policies— Systems in which subjects and ob-
jects have static security levels are said to satisfy a tranquility property. In this section we will
consider systems that violate tranquility. Examining our earlier definition of information flow poli-
cies, we see that the only reference to the level of a subject or object is the assumption that a level
is associated with each input and output. In the policies we considered earlier, the level associated
with an input or output was assumed to be independent of the state of the system. So, to adapt
our earlier definitions of information flow policies to nontranquil systems, we must make the level
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of an input or output a function of the state of the system. Although this can be accomplished in
a pure CSP model by making the level of an input or output a function of the trace to which the
input or output is to be added, it will be easier in this section to adopt a state machine formalism.
For example, Strong Restrictiveness can be stated as:

a. The system is input total.
b. For each level { there is an equivalence relation (=;) on states such that:
(1) If possible(st, stpew,0p) and op € HI(st), then st = styey.

(2) If sty ~; sty, possible(sty,stn1,0p), op € LI(sty), and op € LI(st;), then there exists
some Sty such that possible(sts, stna,0p) and st,; = stn2.

(3) If sty =y sty, possible(sty, stn1,7), and 7 is in HOS(sty, stny), then there exists some st,;
and w such that:

e wisin HOS(sty, sty2)
e  possible(sty, stpz,w)
o Slpy =y stpo

(4) If sty =~; sty, possible(sty,st,1,< out >), and out is in LO(st;), then there exists some
Stpo such that:

o possible(sty, sty2, < out >)

. Stp1 =y Stpa.

(5) If sty = stg, then LI(st1) U LO(st)) = LI(st2) U LO(sty)
Here we have used HZ(st), HO(st), LI(st), and LO(st) to represent the high-level inputs, high-level
outputs, low-level inputs, and low-level outputs with respect to st and HOS(st,, stp) to represent

the set of output sequences & such that:

o  possible(st,, sty, a)

e Each out in a is in HO(stsyt), where sty is the state in which out occurs.

The definition of HOS is more complicated since the level of an output in the middle of a sequence
can be altered by outputs preceding it.

There are two differences between this policy and Strong Restrictiveness:

a. The sets HZ, HO, LI, and LO are state dependent.
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b. We require that the set of low-level events in st; be the same as the set of low-level events
in st; whenever st; = st. This is a natural requirement since =; is intended to capture the
portions of the system that are visible at the low level.

This straightforward generalization of Strong Restrictiveness to nontranquil systems prohibits the
downgrading of information while allowing information to be upgraded by low-level subjects. The
information flow policy developed for stochastic systems in Section 4.2.3 can be generalized in the
same manner.

5.2.1.2 Exceptions— Inputs or outputs that do not satisfy the requirements of our general-
ization of Strong Restrictiveness may result in information being transmitted downward in security
level. Since information flow policies generally prohibit such information flow, such inputs and out-
puts must be viewed as exceptions to the information flow policy. In the following we will divide
the exceptions into two classes, namely pseudo-downgrades and true-downgrades.

5.2.1.2.1 Pseudo-Downgrades — In some cases, the downgrading of information does not
constitute any security threat. In particular, the use of trusted subjects for performing downgrades
can in some cases eliminate the danger of information being transmitted downward in security level.

The key point to understanding this section is that the level of a piece of information is defined by
users rather than the system. The level that the system assigns to a piece of information should be
at least as high as the level that the user assigns to the information. This requirement is typically
enforced by:

a. Requiring the user to inform the system of any information input to the system.

b. Requiring the system to store the information in a data container with a level at least as high
as the level provided by the user.

c. Preventing information from flowing downward in security level.

If these three rules are followed, then the level of a data container always dominates that of the
contained information (this is the objective of the Mode Rule in Section 2). So, the enforcement of
an information flow policy is simply the means to an end. As long as the level the system assigns to
a piece of information is always at least as high as that the user assigns to the information, there is
no threat of data compromise regardless of whether the system satisfies an information flow policy.
In particular, a user who is authorized to operate at both the secret level and the unclassified level
is permitted to read information at the secret level and type it back in at the unclassified level.
This is not viewed as a security violation since the user is trusted not to enter information at an
incorrect level. So, if the user reenters secret information at the unclassified level, it is assumed
that the user has determined that the information does not need to be classified any higher than
unclassified. In other words, the user has reclassified the information.
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One special case is that in which a trusted process downgrades information that is a function of
information that is already available at the low-level. In this case, the trusted process can be viewed
as being at the low-level in the security analysis, and it is not even necessary to conditionalize the
policy. We can use our generalized form of Strong Restrictiveness with the inputs and outputs
associated with trusted processes included in £Z and £O. We will refer to the security policy
obtained from this new interpretation of £Z and £O as being TH-Guarded. Assuming that Trojan
horses are not present in trusted code, then our policy requires that the system guard against Trojan
horses by eliminating the possibility of untrusted subjects causing information to flow downward
in security level.

A good example of this is terminal I/O in the LOCK system[l]. In LOCK, each terminal has a
driver subject residing at device high, and subjects communicate with the terminal through buffer
objects that are at the level of the communicating subjects. Input from the terminal is accomplished
by the driver subject writing the input data into the buffer object provided by the subject currently
in control of the terminal. Thus, terminal input is accomplished by downgrading information. Since
the driver subject will only perform the downgrade if the level of the buffer object is the same as
that at which the user input the data, this is really a pseudo-downgrade. In fact, it could be argued
that the information was upgraded by the driver subject when it was read from the terminal and
that the downgrading actually returned the information to its proper level. When viewed in this
light, the downgrading is seen to not be a security violation. So, although I/0 in LOCK can result
in information being transmitted downward in security level, it is TH-Guarded.

Another good example is that of a sanitizer-downgrader. The idea behind a sanitizer-downgrader
is that downgrading should be a two step process. In the first step, the system sanitizes the
information by eliminating any changes that result from actions that were not initiated by a trusted
subject or a user. After eliminating any such changes, the system downgrades the information. If
the sanitizer-downgrader is TH-Guarded, then the proposed sanitization is appropriate. Otherwise,
we will be able to identify the operations that untrusted high-level subjects can take that are not
addressed by the sanitization by determining the reason that TH-Guardedness fails to hold.

It is desirable to analyze the code for trusted subjects to ensure that they behave as specified.
For example, if the trusted subject in a sanitizer-downgrader does not sanitize information as
described in its specification, the analysis performed on the model will not be applicable to the
implementation. Although this is true of any analysis performed on the model, the trusted subjects
are prime candidates for close examination due to their privileged status. Analysis of the code for
trusted subjects can also be used to provide support for the assumption that there are no Trojan
horse subjects present in trusted code.

In general, the greater the structure in the system, the easier it is to distinguish between