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I

THE VAPNIK CHERNOVENKIS DIMENSION:
INFORMATION VERSUS COMPLEXITY IN LEARNING

1.1 INTRODUCTION

We start by formalizing a simple setup for learning from examples. We have an
environment such as the set of visual images, and we call the set X. In this environ-
ment we have a concept defined as a function f : X — {0,1}, such as the presence or
absence of a tree in the image. The goal of learning is to produce a hypothesis, also de-
fined as a function g : X — {0,1}, that approximates the concept f, such as a pattern
recognition system that recognizes trees. To do this, we are given a number of exam-
ples (z1, f(z1)),...,(z N, f(z~)) from the concept, such as images with trees and images
without trees.

In generating the examples, we assume that there is an unknown probability distri-
bution P on the environment X. We pick each example independently according to this
probability distribution. The statements in the paper hold true for any probability distri-
bution P, which sounds very strong indeed. The catch is that the same P that generated
the example is the one that is used to test the system, which is a plausible assumption.
Thus we learn the tree concept by being exposed to ‘typical’ images. While X can be
finite or infinite (countable or uncountable), we shall use a simple language that assumes
no measure-theoretic complications.

The hypothesis g that we produce approximates f in the sense that g would rarely
be significantly different from f (7). This definition allows for two tolerance parameters
¢ and 6. With probability > 1 — §, g will differ from f at most ¢ of the time. The §
parameter protects against the small, but nonzero, chance that the examples happen to
be very atypical.

A learning algorithm is one that takes the examples and produces the hypothesis. The
performance is measured by the number of examples needed to produce a good hypothesis
as well as the running time of the algorithm.
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1.2 GENERALIZATION

We start with a simple case that may look at first as having little to do with what we
think of as generalization. Suppose we make a blind guess of a hypothesis g, without even
looking at any examples of the concept f. Now we take some examples of f and test g to
find out how well it approximates f. Under what conditions does the behavior of g on the
examples reflect its behavior in general?

This turns out to be a very simple question. On any point in X, f and g either agree
or disagree. Define the agreement set

A={z€ X : f(z)=g(z)}

The question now becomes: How does the frequency of the examples in A relate to the
probability of A? Let = be the probability of A, i.e., the probability that f(z) = g(z)
on a point z picked from X according to the probability distribution P. We can consider
each example as a Bernoulli trial (coin flip) with probability 7 of success (f = g) and
probability 1 — r of failure {f # g).

With N examples, we have N independent, identically distributed, Bernoulli trials.
Let n be the number of successes (n is a random variable), and let v = § be the frequency
of success. Bernoulli's theorem states that, by taking N sufficiently large, v can be made
arbitrarily close to m with very high probability. In other words, if you take enough
examples, the frequency of success will be a good estimate of the probability of success.

Notice that this does not say anything about the probability of success itself, but rather
about how the probability of success can be estimated from the frequency of success. If on
tlie examples we get 90% right, we should get about 90% right overall. If we get only 10%
right, we should continue to get about the same. We are only predicting that the results
of the experiment with the examples will persist, provided there are enough examples.

How does this case relate to learning and generalization? After all, we do not make a
blind guess when we learn, but rather construct a hypothesis from the examples. However,
at a closer look, we find that we make a guess, not of a hypothesis but of a set of hypotheses.
For example, when the backpropagation algorithm [6] is used in a feedforward network, we
are implicitly guessing that there is a good hypothesis among those that are obtained by
setting the weights of the given network in some fashion. The set of hypotheses G would
then be the set of all functions ¢ that are obtained by setting the weights of the network
in any fashion.

Therefore, when learning deals with a limited domain of representation, such as a
given network with free weights, we in effect make a guess G of hypotheses. The learning
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algorithm then picks a hypothesis g € G that mostly agrees with f on the examples. The
question of generalization now becomes: Does this choice, which is based on the behavior
on the examples, hold in general?

We can approach this question in a similar way to the previous case. We define, for

every g € G, the agreement set

4 ={ze X | f(z) =g()}.

These sets are different for different g’s. Let 7, be the probability of 4,, i.e., the probability
that f(z) = g(z) on a point z picked from X according to the probability distribution P,
for the particular g € G in question. We can again define random variables n, (the number
of successes with respect to different ¢ s) and the frequencies of success v, = -# At this
point the problem looks exactly ‘the same as the previous one and one may expect the
same answer.

There is one important difference. In the simple Bernoulli case, the issue was whether
v converged to 7. In the new case, the issue is whether the »,’s converge to the x,’s in a
uniform manner as N becomes large. In the learning process, we decide on one ¢ but not
the other based on the values of v,. If we had the v,’s converge to the «x,’s, but not in
a uniform manner, we could be fooled by one erratic g. For example, we may be picking
the hypothesis g with the maximum v,. With nonuniform convergence, the g we pick can
have a poor 7,. We want the probability that there is some g € G such that v, differs
significantly from 7, be very small. This can be expressed formally as

Pr [sup lvg — 7ol > e] < 4.
9€G

where ‘sup’ denotes the supremum.
1.3 THE V-C DIMENSION

A condition for uniform convergence, hence generalization, was found by Vapnik and
Chervonenkis [8]. The key is the inequality

Pr [sup lvg — mg] > e] < 4m(2N)e"’~/',
g€G

where m is a function that depends on G. We want the RHS of the inequality to be small
for large N, in order to achieve uniform convergence. The factor e~ N/8 ig very helpful,
since it is exponentially decaying in N. Unless the factor m(2N) grows too fast, we should
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be OK. For example, if m(2N') is polynomial in N, the RHS will go to zero as N goes to
infinity.

What is the function m? It depends on the set of hypotheses G. Intuitively, m(N)
measures the flexibility of G in expressing an arbitrary concept on N examples. For in-
stance, if G contains enough hypotheses to be able to express any concept on 100 examples,
one should not really expect any generalization with only 100 examples, but rather a mem-
orization of the concept on the examples. On the other hand, if gradually more and more
concepts cannot be expressed by any hypothesis in G as N grows, then the agreement on
the examples means something, and generalization is probable. Formally, m(/N') measures
the maximum number of different binary functions on the examples z,,...,z x5 induced by
the hypotheses g;,92,... € G.

For example, if X is the real line and G is the set of rays of the form z < a, i.e.,

functions of the form
0 z<a

9(z) = { 1 z>a’
then m(N) = N + 1. The reason is that on N points one can define only N + 1 different
functions of the above form by sliding the value of a from left of the leftmost point all the
way to right of the rightmost point.

There are two simple facts about the function m. First, m(N) < |G| (where |.|
denotes the cardinality), since G cannot induce more functions that it has. This fact is
useful only when G is a finite set of hypotheses. The second fact is that m(N) < 2N, since
G cannot induce more binary functions on N points than there are binary functions on N
points. Indeed, there are choices of G (trivially the set of all hypotheses on X) for which
m(N) = 2V. For those cases, the V-C inequality does not guarantee uniform convergence.

The main fact about m(N) that helps the characterization of G as far as generalization
is concerned is that m(N) is either identically equal to 2N for all N, or else is bounded
above by N4+ 1 for a constant d. This striking fact can be proved in a simple manner [4,8].
The latter case implies a polynomial m(N) and guarantees generalization. The value of d
matters only in how fast convergence is achieved. This is of practical importance because
this determines the number of examples needed to guarantee generalization within given
tolerance parameters.

The value of d turns out to be the smallest N at which G starts failing to induce all
possible 2V binary functions on any N examples. Thus, the former case can be considered
the case d = 0o. d is called the V-C dimension [2,3].




1.4 INTERPRETATION

Training a network with a set of examples can be thought of as a process for selecting
a hypothesis g with a favorable performance on the examples (large v,) from the set G.
Depending on the characteristics of G, one can predict how this performance will generalize.
This aspect of the characteristics of G is captured by the parameter d, the V-C dimension.
If the number of examples N is large enough with respect to d, generalization is expected.
This means that maximizing v, will approximately maximize 7, the real indicator of how
well the hypothesis approximates the concept.

In general, the more flexible (expressive, large) G is, the larger its V-C dimension d.
For example, the V-C dimeunsion of feedforward networks grows with the network size [2].
For example, the total number of weights in a one-hidden-layer network is an approximate
lower bound for the V-C dimension of the network. While a bigger network stands a
better chance of being able to implement a given function, its demands on the number
of examples needed for generalization is bigger. These are often conflicting criteria. The
V-C dimension indicates only the likelihood of generalization. This means, for better or
for worse, whether the behavior on the examples is going to persist. The ability of the
network to approximate a given function in principle is a separate issue.

The running time of the learning algorithm is a key concern [5,7]. As the number of
examples increases, the running time generally increases. However, this dependency is a
minor one. Even with few examples, an algorithm may need an excessive amount of time
to manipulate the examples into a hypothesis. The independence of this complexity issue
from the above discussion regarding information is apparent. Without a sufficient number
of examples, no algorithm slow or fast can produce a good hypothesis. Yet a sufficient
number of examples is of little use if the computational task of digesting the examples into
a hypothesis proves intractable.
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LEARNING FROM HINTS
IN NEURAL NETWORKS

I1.1 INTRODUCTION

We can think of learning from examples as one end of a spectrum whose other end
is explicit programming. Between these two extremes, there is a spectrum of largely
unexplored possibilities. _

To explain what we mean, let us assume that we have a decision function f : X —
{0,1} that we wish to implement. For instance, the primality problem where X =
{1,2,3,...} and f(z) = 1 iff z is a prime. Also, the problem of recognizing a tree in
an image where X is a set of images and f(z) = 1 iff z contains a tree. The goal is
to come up with an implementation of f. We can write a simple program for f in the
primality problem. However, the lack of a mathematical understanding of f in the image
recognition problem forces us to seek other approaches. One approach is learning from
examples, where we use a ‘learning process’ that we present with examples of images with
trees and images without trees until the process infers an implementation of f. Whenever
we have an effective process for learning from examples, it is tantamount to automated
programming. The process is a mechanical means of producing an implementation of f.

When feasible, learning from examples is a very convenient approach. It does not
require any knowledge of f, just input-output examples. In many practical situations, we
do have some knowledge of f. In these cases, it would be inefficient to take blind examples
without taking advantage of what we already know about f. This gives rise to learning
from hints as opposec: to learning from examples. Learning from hints is still a learning
process, since we do not know enough about f to program it outright.

A hint is u{y piece of information about f. As a matter of fact, an input-output
example is a special case of a hint. A hint may take the form of a global constraint on f,
such as a symmetry property or an invariance. It may also be partial information about
the implementation of f.

A hint may be valuable to the learning process in two ways. It may reduce the number
of functions that are candidates to be f (information value), and may reduce the number of
steps needed to find the implementation of f (complexity value). For illustration, suppose
we are learning about an unknown integer N (10°> < N < 10%) and we want to represent
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it as a six-digit number. Which is a more valuable hint: The number is a prime or The
most significant digit is 7 ? Although the first hint has more information value, it may
have less complexity value because it does not reduce the search space in a way that is

easily compatible with the desired representation.

We shall report a positive result and a negative result in this paper. The positive result
is a technique that incorporates any invariance hint in any descent technique for learning.
The negative result is that general learning in neural networks remains NP-complete even
with a hint that is biologically plausible. This paper provides a preliminary treatment of
the subject of hints, and many directions of investigation warrant further exploration.

For completeness, we briefly introduce feedforward neural networks and their gradient
descent learning. A single-output feedforward neural network (Figure I1.1) is a combina-
tional circuit organized in layers of units (neurors). Each neuron performs a threshold
function §(3_; wju; — t), where {u;} are the inputs to the neuron, {w;} are real numbers
(weights), t is a real number (threshold), and 6 is a ‘sigmoid’ function (soft or hard) that
varies between —1 and +1 monotonically (the binary convention is +1 instead of 0,1). -

For any set of values for the weights and the thresholds, the network output y is a fixed
function of the input variables x = z,...zn. In order to make the network implement
a function f(x), we need to choose the weights and the thresholds such that the actual
output y and the desired output f(x) are as close as possible. A gradient descent method
for learning f from examples minimizes (y — f(x))? for each example by perturbing the
weights and thresholds. The formula for perturbing the weights is

Buwi & —5o-(y = SO = ~2y - FNEL

When this formula is applied to the neurons of a feedforward network, the resulting rule is
the backpropagation algorithm of Werbos, described in (Rumelhart, Hinton, and Williams,
1986).

I1.2 INVARIANCE HINTS

Many of the hints we have in pattern recognition problems are invariance hints. A
hand written letter S can be deformed in many ways without losing its identity. Properties
such as shift invariance, scale invariance, and rotation invariance are commonplace in image
recognition.

An invariance property can be formalized as a set A of subsets A C X such that if
T1,72 € A, then f(z,) = f(z2). Thus f is invariant within each set A € A. Interesting
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invariances are usually common to many functions f on the same domain X. For exarmple,
if X is the set of images, many recognition functions share some form of scale invariance.
In this case, each set A € A consists of images which are scaled versions of one another.

How can the invariance hint help the learning process? One way is to incornorate
the hint directly in the implementation. For illustration, consider the implementation of
a function f : {~1,+1}" — {-1,+1)} on a feedforward neural network. If we know that
f is an even function, i.e., f(zy,23,...,2N) = f(-21,-22,...,—2ZN), We can incorporate
this hint in the network as shown in Figure I1.2.

Each input z; is applied to two sets of neurons, with one set implementing the dual
functions of the other set. The dual of f(z,,23,...,2N)is defined as ~f(~z,,—z3,...,~zx),
and can be implemented by using the same weights and the negative of threshold used to
implement f. The outputs of the two dual méurons are then combined into the neurons of
the next layer using a weight and its negative. From then on, the function implemented
by the network is forced to be even in the variables z,,...,z . These constraints on the
neurons of the first two layers must be taken into consideration in the learning process
when examples of f are given. For instance, if we apply gradient descent, we cannot treat
all the weights as independent variables any more.

Being an even function is much simpler than the invariance hints we ure likely to
encounter in pattern recognition. It may not be as easy to come up with a structure
of the network that automatically guarantees a complicated invariance, such as elastic
deformation. We will develop a unified method for incorporating any invariance, not in
the structure of the network, but rather in the gradient descent method itself.

The key idea is expressing the hint itself as a set of examples. Suppose we are dealing
with a function f : {~1,+1}¥ — {-1,+1}, which is invariant under cyclic shift of the
input bits, e.g., f(x;) = f(x2), where

x31=-1-14141-141-1+4+1-1-1-1-1,
x2=-1~1~-1-1+4+1+1-1+4+1-14+1-1-1.

The condition f(x;) = f(x2) is an example of the hint as much as f(x) = +1 would be an
example of the function. Just like f(x) = +1 can be enforced as a minimization of (y -1)2,
where y is the output of the network when the input is x, f(x,) = f(x;) can be enforced
as a minimization of (y; — y2)?, where yi and y; are the outputs of the network when the
inputs are x; and x;, respectively. The gradient descent perturbation of the weights in
this case would be

Aw; x —é%j(yl-yZ)z = =2(y1 - y2) (%-%) ’
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which is similar to the perturbation due to two examples of f.

The same idea is valid for all invariances and all descent techniques. It makes it
possible to incorporate in a regular algorithm for learning from examples what would
otherwise be a hard-to-implement invariance. The initial layers of the network can be
dedicated to learning the invariance (the learning counterpart of the aporoach of Figure
I1.2).

A look at the expression for Aw; reveals that we do not need the actual value of f in
order to compute the perturbation of the weights due to an example of the invariance hint.
This makes it possible to generate an arbitrary number of (possibly artificial) examples of
the hint for the learning process without having to compute f (or even without the need
to know which f we are learning). Such resource may be valuable if we have a limited
number of natural examples of f.

This observation can be formalized within the framework of Vapnik and Chervonenkis
(1971). If the set of candidate functions is signific: . 'iy reduced by the constraint that they
must satisfy the invariance property, the numbe: .. examples of f needed for the learning
process decreases accordingly (Abu-Mostafa, 1989).

I1.3 COMPLEXITY ISSUES

The process of learning an unknown function f in a feedforward network can be con-
sidered a search in Euclidean space for a set of weights and thresholds that implements the
function. Indeed, without restricting the domain of functions and networks, the learning
problem is NP-complete (Judd, 1988). Other, apparently simplistic, learning problems
have also been shown to be NP-complete (Valiant, 1984).

Does the incorporation of hints in the learning process reduce the time complexity of
learning? It is plausible that a hierarchical decomposition of the search space that results
from learning different hints independently will reduce the search time. However, we were
unable to show a meaningful instance of a hint that rendered an NP-complete learning
problem polynomial-time. We will report on an interesting hint that did not change the
NP-completeness of the problem.

Consider the general problem of learning in a feedforward network with hard thresh-
olds. Assume that, as part of the input to the learning process, we are given the signs of
a set of weights that does implement the function in question. This hint is biologically
motivated. In actual neurobiological systems, certain synapses are predisposed to be in-
hibitory and others to be excitory. Only the magnitude of the weight, not the sign, is left
to the learning process.

10




The problem remains NP-complete as it turns out to be polynomially related to the
old problem. To see this, we replace each synapse of the old network by the subnetwork of
Figure 11.3a. There are clearly choices of the weights with the prescribed signs that leads
to an arbitrary equivalent weight for the original synapse.

It is interesting to note that the problem also remains NP-complete if we are given
the absolute values of the weights and need only to find the signs! The reason is that
each synapse can be replaced by the subnetwork of Figure I1.3b. The prescribed moduli of
the weights in this subnetwork can be given a pattern of signs that leads to an arbitrary
equivalent weight (of finite accuracy) for the original synapse. Since we never need more
than a polynomial number of bits for the weight (Hong, 1987), the polynomial equivalence
is established.

11.4 CONCLUSION

Hints are pieces of information about an unkown function that we wish to learn,
ranging from input-output examples to a complete implementation of the function. In-
variance hints can be incorporated into descent methods of learning from examples, with
possible gains in information and complexity. Certain strong hints do not' change the
NP-completeness status of learning.

Several directions of investigating the subject of hints remain open. To name a few,
the compatibility of the hints with the desired implementation of f and with each other
and how this affects their complexity value, the quantification of the information value
of a hint in terms of the change in the V-C dimension, and finding natural examples of
NP-complete learning problems that become polynomial-time using plausible hints.
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III

AN UNSUPERVISED LEARNING TECHNIQUE
FOR ARTIFICIAL NEURAL NETWORKS

III.1 INTRODUCTION

One of the most important features in neural networks is its learning ability, which
makes it in general suitable for computational applications whose structure is relatively
unknown. Pattern recognition is one example of such kinds of problems. For pattern
recognition there are mainly two types of learning: supervised and unsupervised learning
(refer to [1]). For supervised learning the training set consists of typical patterns whose
class identities are known. For unsupervised learning, on the other hand, information
about the class membership of the training patterns is not given, either because of lack of
knowledge or because of the high cost of providing the class labels associated with each of
the training patterns.

A number of neural network models for unsupervised learning have been proposed,
for example Grossberg’s adaptive resonance (2] and Kohonen’s self-organizing maps [3].
In pattern recognition problems the pattern vectors tend to form clusters, a cluster for
each class, and therefore the first step for a typical unsupervised learning technique is the
estimation of these clusters. The clusters are usually separated by regions of low pattern
density. We present here a new method for unsupervised learning in neural networks
(see also [4]). The basic idea of the method is to update the weights of the neurons in
a way to move the decision boundaries in places sparse in patterns. This is one of the
most natural ways to partition clusters. It is more or less similar to the way humans
decompose clusters of points in three or less dimensions visually. This way contrasts with
the traditional approach of the adaptive resonance and the self-organizing maps, whereby
the estimation of the membership of a pattern vector depends only on respectively the
inner products and the Euclidean distances between this vector and suitably estimated
class representative vectors.

II1.2 THE MODEL

Let x(1,...,x(N) represent the training pattern vectors. Let the dimension of the
vectors be n. The training patterns represent several different classes. The class identities

15




of the training patterns are not known. Our purpose is to estimate the number of classes
available as well as the parameters of the neural classifier. Let us first consider the case
of having two classes. Our neural classifier consists of one neuron (see Fig. III.1) with n
inputs corresponding to the n components of the pattern vector x to be classified. The
output of the neuron is given by

y= f(wa+ w,)

where w is a weight vector, w, is a threshold and f is a sigmoid function from -1 to 1 with
f(0)=0, e.g.

fw) =15

Positive output means class 1, negative output means class 2 and zero output means

undecided. The output can be construed as 'indica.ting the degree of membership of the
pattern to each of the two classes; thus we have a fuzzy classifier.
The decision boundary is the hyperplane

wix+w,=0

(see Fig. II1.2). Patterns near the decision boundary will produce outputs close to zero
while patterns far away from the boundary will give outputs close to 1 or -1. Assuming
liw|l < a, where a is a constant, a good classifier is one which produces an output close
to 1 or -1 for the training patterns, since this indicates its "decisiveness” with respect to
the class memberships. Therefore, we design the classifier so as to maximize the criterion

function:

J= %gmw XD+ w,) - [ Ef(w X0 4 )]

subject to ||w]| < a, where ¢ is a positive integer (for best results we take q=2). The
first term is a measure of the decisiveness of the classifier with the given test pattern set.
Regarding the second term, it has the following purpose. The first term is maximized if
the decision hyperplane is very far away from the patterns resulting in the output being
very close to 1 for all test patterns (or close to -1 for all patterns), i.e. all patterns are
assigned to one class only, which is a trivial solution. Incorporating the second term will
prevent this trivial solution because if f(wTx( +w,) = 1 for all j (or —1 for all j), then J
will be nearly zero. However, J is non-negative for any w and w, because of the following,

J= —ij%w x +w) - ()™
2 szf’(w xD + w,) - (f)’
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where

f= %;f(w'rx(j) + w,).

The inequality follows because f, the average of the outputs, is less than one in magnitude
and ¢ 2 1. Then we get

J > le-gj:[f(waU) +wo)-f]’20

and hence the trivial solution of assigning all patterns to one class only is ruled out because
it corresponds to a minimum not a maximum for J.
We iterate the weights in a steepest ascent manner in an attempt to maximize the
defined measure,
oJ
AW = p—
P ow

= p.]gv.Z[f(wa(j) +w,) - q(f)ﬁc-llf'(wa(i) + w,)x'P
J

and

aJ

=p5-u-)—°-

= 2 W Tx 4 1,) — g(YH] (WD + )
J

Aw,

where p is the step size. The iteration is subject to the condition |jw|| < a. Whenever
after some iteration this condition is violated, w is projected back to the surface of the
hypersphere ||w|| = a (simply by multiplying by a/||wl|). The term f'(w7x() + w,) in
the update expression gives the patterns near the decision boundary more effect than the
patterns far away from the decision boundary. This is because f'(u) is high whenever u
is near zero and goes to zero when the magnitude of u is large. Thus, what the method
is essentia.llyigﬁ_.n; is iterating the weights in a way to move the decision boundary to a
place sparse i patterns. The relative importance of patterns near the decision boundary
increases for large a. This is because w tends to go to the surface of the sphere j|jw|| < a.
Large a will therefore result in the argument of f’ being in general higher than for the case
of small a, thus resulting in a smaller strip with high f' around the decision boundary.
Of course without the constraint w could grow in an unbounded fashion, resulting in
f(wTx) 4+ w,) being very near 1 or —1 for all j for most possible partitions and we obtain
therefore possibly bad solutions.
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II1.3 EXTENSIONS

We have shown in the previous section a method for training a linear classifier. To
extend the analysis to the case of a curved decision boundary we use a higher order neuron,
i.e. the output is described by

Y=fWot D wii+ ot Y WipigTiy e Tiy)
i

0 < <ig

where z; denotes the i** component of the vector x and L represents the order. Higher
order networks have been investigated by several researchers, refer for example to [5],[6]
and [7]. They achieve simplicity of design while still having the capability of producing
fairly sophisticated non-linear decision boundaries.

The decision boundary for the higher order neuron is given by the equation

wo+zwi1-'.+..‘+ E w"x...iin""zl.L =0'
1

i1 < <ig

The higher order case is essentially a linear classifier applied to augmented vectors of the

form
L _L-1
(11,“',.’13,., Y 2RY 2 32""135)
(the superscripts denote here powers) using an augmented weight vector

(wh ey Wyttt W11, W12y 00 1wn---nn)°

We can therefore apply basically the same training procedure described for the linear
classifier case on the set of augmented vectors, i.e. we update the weights according to

Awiy..y = p NZ[f(u,) o) f ()22
Ao = o2 T [f() - o) u5)
J

where f(u;) is the output of the neuron when applying the pattern x(9, j.e.

u; = w, +Z“’ 2D 4t <Z< Wiyigg® o 2
l1 l;

= %Zf(“j)
J
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We have considered so far the two-class case. The extension to the multi-class case is
as follows. We apply the previously described procedure (preferrably the curved boundary
one), i.e. partition the patterns into two groups. One group of patterns S* corresponds to
positive outputs and represents an estimate of a collection of classes. The other group S~
corresponds to negative outputs and represents an estimate of the remaining classes. Then
we consider the group S+ separately (i.e. we use only the patterns in S* for training), and
partition it further into two groups S*+ and S*~ corresponding to positive and negative
outputs respectively. Similarly we partition $~ into S+ and S~~. We continue in this
hierarchical manner until we end up with the final classifier, see Fig. II1.3 for an example.
We stop the partitioning of a group whenever the criterion function J associated with
the partition falls below a certain threshold. (One practically observes that J in general
decreases slightly after each partition until one cluster remains whose partitioning results
in a relatively abrupt decrease of J.) The final classifier consists now of several neurons,
the sign pattern of whose outputs is an encoding of the class estimate of the presented
pattern. Note that the output of the neuron responsible for breaking up some group plays
a role in the encoding of only the classes contained in that group. Therefore, the encoding
of a class could have a number of don’t cares. Refer to the next section for a constructive

example of the extension to the multi-class case.
111.4 IMPLEMENTATION EXAMPLES

The new method is implemented on two two-class problems and a five-class problem.
In all examples the patterns of each class are generated from bivariate Gaussian distri-
butions. The first example is a two-class problem with a large overlap between the two
classes. Fig. II1.4 shows the resulting decision boundary when applying the new method
using a first-order neuron. One observes that the obtained partition agrees to a large extent
to that a human would estimate when attempting to decompose the two clusters visually.
Regarding the second example, we have two classes with equal diagonal covariance matri-
ces whose diagonal entries differ much, resulting in two long clusters. Fig. III.5 shows the
results of the application of the proposed method using a first-order neuron. In the last
example we have a five-class problem with the means being on the corners and the center
of a square. We used third-order neurons. Fig. 1I11.6 shows the results. We ended up with
four neurons partitioning the patterns. The first neuron is responsible for partitioning the
whole collection of patterns into the two groups S* and S—, separated by the boundary
B,; the second neuron partitions the group S* into the groups S*+ and §*-, separated
by the boundary Bj; the third neuron divides S*+ into S*** and $++- with boundary
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Bj; finally the fourth neuron partitions S~ into S~+ and S~~, the boundary being B,
(see also Fig. II1.3). One observes that the method partitioned the patterns successfully.
As a pattern classifier, the four neurons give the encoding of the class estimate of the
presented pattern. The codes of the five classes are + + +X, + + - X, + - XX, - XX+,
and ~X X —, where the +’s and —’s represent the signs of the outputs and the X means
don’t care.

II1.5 CONCLUSIONS

A new neural unsupervised learning technique has been proposed in this work. This
technique is based on the hierarchical partition of the patterns. Each partition corresponds
to one neuron, which is in general a higher-order neuron. The partition is performed by
iterating the neuron weights in an attempt to maximize a defined criterion function. The
method is implemented on several examples and is found to give good results. In the
second implemented example (Fig. II1.5) the method obtained a good solution, whereas
the traditional adaptive resonance method [2] and self-organizing maps (3] produced un-
satisfactory results. The method is fast, as it takes typically from about 2 to 5 iterations
to converge. Although the proposed method is prone to get stuck in local minima, this did
happen in our simulations in only very difficult problems and this problem could be solved
by using gradient algorithms for searching for the global maximum, like the Tunneling
Algorithm [8].
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Fig. I1I1.1: The model of a first order neuron with a sigmoid-shaped function.
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Fig. 111.2: The decision regions and the decision boundary of a first order
neuron example.
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Fig. II1.3: An example of the hierarchical design of the classifier.

Fig. II1.4: A two-cluster example with the decision boundary of the designed classifier.
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Fig. IIL5: A two-cluster example with the decision boundary of the designed classifier.
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Fig. I11.6: A five-class example showing the decision boundaries of the hierarchically
designed classifier. There are four neurons associated with the boundaries B,, B;, B; and
By.
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