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1. INTRODUCTION

Gun tube heating from multiple firings continues to be a subject of concem to ordnance engineers.
A number of investigators have modeled the heating. Some recent publications include: Artus and
Hasenbein (1989); Chandra and Fisher (1989a, 1989b); Talley (1989a, 1989b); Rapp (1990); Chandra
(1990); Gerber and Bundy (1991); and Conroy (1991). In these studies, the thermal conductivity, density,
and specific heat of the metal were taken to be constants, and the resulting problems were linear.
However, the conductivity and specific heat are, in fact, functions of temperature.

During the heat transfer process from a single gun firing, the temperature of the metal near the bore
surface can rise more than 500 K. The specific heat and thermal conductivity will vary significantly over
such a large temperature interval. According to Fourier's heat flux principle, we expect an increase in the
conductivity with temperature to augment the resulting heat transfer, and hence further increase the
temperature over a scenario in which the conductivity is constant, On the other hand, &n increase in
specific heat with temperature will have the opposite effect—it will tend to diminish the subsequent
temperature rise. Thus, it is difficult to discem, a priori, what effect temperature-dependent thermal
properties will have on gun tube heating. We propose to answer this question by solving the nonlinear
heat transfer problem with a finite difference solution, using the Crank-Nicolson implicit scheme with
iteration. Application of the Kirchhoff transformation, described in Section 3, will render the problem
more tractable,

We choose to apply the model to gun barrel heating in tank guns, specifically, the 120-mm M256
cannon for the M1A1 tank. A tank gun is ammunition-limited by the onboard stowage restrictions. This
imparts an upper limit to the firing-induced barrel temperature change for tank guns that does not hold
for unlimited-fire guns, such as small-caliber chain guns or large-caliber artillery guns. Consequently, we
do not treat the broadest possible temperature range for all types of guns; nevertheless, our findings cover

a substantial temperature span. The findings indicate that the inclusion of teinperature dependence in the
modeled thermal properties docs not have a significant impact on the barrel temperature predictions over
the range investigated.




2. THE HEATING MODEL

We shall compute the gun barrel heating for multiple firings by an extension of the model used in
Gerber and Bundy (1991). The following assumptions apply here:

(1) Temperature gradients in the axial direction are neglected in comparison to those in the radial
direction.

(2) Temperature is axisymmetric in the plane normal to the bore axis. This implies axisymmetric heat
input, as well as the neglect of gravity, barrel thickness variation, and other effects that would causc
azimuthal dependence.

(3) Feedback of barrel heating to flow in the gun bore is neglected, so that the same bore temperature
and convective heat transfer coefficient histories (for a single round) furnish the input data for every round
calculated.

(4) Friction heating is neglected.
(5) Thermal expansion of the barrel is not considered to have an effect on the heat transfer process.
(6) ‘I'he density, p, of the gun barrel metal is constant (= 7,827 kg/m®).

(7) 'The thermal conductivity, k, and the specific heat, c,, of the metal are functions of the
temperature, T, as shown in Figures 1 and 2, respectively. (Figure 1 is based on data from the Material
Properties "ata Center [1973); Figure 2 is based on data provided by Joseph Cox, Benet Weapons
Laboratory [1990].) Also indicated in the figures are the constant values used by the authors for k and
¢, in a previous study (Gerber and Bundy 1991): k = 38.07 J/(m s K) and C, = 469.05 J/kg K. The
particular constants chosen are within the range of values spanned in the course of a typical firing
scenario,

The abrupt changes in the curve of Figure 2 are associated with the phase transiuon of steel from a
body-centered crystal lattice strucwure (ferrite) to a face-centered lattice structure (austenite). Even though
we adjust the k and c, to account for phase transition in the conduction equation, we shall not (in this
report) further modify the conduction equation to account for the latent heat. effects of the phase transition.

2
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3. FORMULATION OF THE PROBLEM

3.1 Statement of the Problem. We state our problem in terms of cylindrical coordinates: r, 6, and z.
The radial coordinate, r, is zero on the axis of the gun tube (z2-axis), and varies from R, to R,, the radii
of the concentric inner and outer walls, respectively (Figure 3). As implied in Section 2, the azimuthal
angle, 6, does not enter the problem. The axial coordinate, z, is taken to be zero at the gun's breech. The
barrel ismperature, T(r,z,t), where t is time measured from the initiation of the first round, is determined

by the following differential equs‘lon of heat conducdon for a stationary, homogeneous, isotropic solid
with no intemal heat generation (Ozisik 1968, 353, or see ADDENDUM):

p ¢, 3T/3t = div [k grad T) .
Under the assumptions made in Section 2, this equation reduces to
(1/0) 3T/t = [T/ + (1/r) IT/Ar] + (dk/AT) AT , m
where & = k/(p c,) is the thermal diffusivity, now a function of T as shown in Figure 4.

The initial and boundary conditions do not change in form from those for constant properties. Let
T,. designate the ambient temperature of the atmosphere, assumed to be constant. The initial condition is

T =T, , t=0,R,Sr<R, (z=const). (2)

The boundary condition at the inner wall is Newton's law of cooling:
-kdTor=h (T,-T), r=R,, t>0 (z=const), 3
where T, (1,z) is the cross-scctional average temperature of the flow in the bore, and h, (1,2) is the

coefficient of heat transfer oetween the gas-particle mixture in the bore and the inner wall of the barrel.
T, (t.z) and h, (t,z) are known from interior ballistic computations and thus constitute input.

The boundary condition at the outer wall, which includes both gonvective and radiative cooling (Ozisik
1968; Equations 1-28 and 8-137c), is
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-koTPr=h_(T-T)+Fo (M -T. r=R,,t>0(z=const), @)

where h, ~ h (2) is the coefficient of convective heat transfer between the barrel wall and the surrounding
amosphere. F is the radiation interchange factor between the barrel outer wall and the environment (in
our case, assumed = 0.95), and ¢ is the Stefan-Boltzmann constant [= 5.669 x 10° J/(m? s K%)).

3.2 Kirchhoff Transformation. Equations 1, 3, and 4 show that the heat conduction problem is
nonlinear in T. Introducing the Kirchhoff transformation (Ozisik 1968, 353; Boley and Weiner 1960,
141), '

u(T) = [Tik(e1de, )

will gimplify the conduction equation and boundary conditions. U has the dimensions of temperature,
Here, T, is an arbitrarily chosen lower integration limit, namely, a data point in our table for k;
T, = 33.4512 K and k, = k(T,) = 12,801 J/(m s K). We shall solve the problem posed in terms of U and
then evaluate T(U) from the inverse of the Klrchhoff transformation.

The variable coefficients k(T), ¢,(T), and a(T) are avallable in tabular form. For a particular
argument, the function value is evaluated by 3-point interpolation. U(T) is obtained in tabular form by
numerical integration; it is the solid curve in Figure 5.* The problem now has the form

(1/o) dU/BL = *U/P + (1/r) dU/or (6a)
-k, QURr = h [T, ~T(U)] r=R,t>0 (6b)
&, 0Udr=h (T-T)+Fo(T*-T.4 r=R,,t>0 (6¢)

UsU.=UT) tS0, RStSR, (6d)

* It was necessary Lo extend ths tables of k and U in Figures 1 and 5 by extrapolation to higher tamperatures (2,000 K) because
of extremely high surface temperatures attained briefly in the chamber,
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The diffusivity, o = o[T(U)], is a function of U, shown in Figure 6; thus, Equation 6a is still nonlinear.
However, the highly nonlinear term containing k and its derivative no longer appears. In order to render
the finite-difference algorithms for the boundary conditions linear, we introduce two linearizing
approximations.

For the first approximation, let t® denote the ma time step of the calculation, when the solution is
known, and t*! the next time step, when the solution is to be found. Atr =R, we assume that

| TR, ™) =T R, ™ | << TR, V).
Then Equation 6c, at r = R, and t = t®*!, is approximated by
k, oU/r + [h, + 4Fo (T®)’) T**' = h, T, + Fo [T + 3(T®)Y] . )

This is & reasonable approximation because the temperature changes most slowly at the outer wall;
furthermore, the time increment At = ¢! — 1™ can be decreased to ensure the above inequality condition.
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The second approximation consists of expressing the T in Equations 6b and 7 as a linear function
of U. The dashed curve in Figure 5 shows that this can be accomplished with reasonable accuracy by the
use of two straight line segments. Thus T = b,U + b,, where

» 0332223 if Us2,159.2 b, = 96.34025 if U<2,159.2
w 04191495 if U»2,159.2 = -91,33484 if U>2,159.2 .

Sirce it is necessary to choose one of the two line segments a priori at time t = t®*!, we base the choice
on the U (inner or outer wall) at time t = t°,

3.3 Trensformed Radial Coordinate. We introduce a transformation r = r(¢) for 0 < & < 1 (Gerber
and Bundy 1991) so that the constant increment A% will cluster the nodal points closely together near the

inner wall, where T and U gradients are the largest. We define the transformation in the following two
steps:

CE)=v8+(1-7)&, (0Sys1,p>2),

r=D{ +R ®




where Dw R, - R, and ¥ and P are chosen constants. We chose values of ¥ = 0.092 and § = 2.25, which
provided a suitable distribution of nodes, Note that r = R;, R, correspond to § = 0, 1, respectively. The
actual computations are then carried out in the &, t space; a restatement of the problem in & and t is
provided in Appendix A,

4, INPUT DATA

A detailed discussion of the input to the computations is given in Gerber and Bundy (1991). Briefly,
however, T, is computed at chosen stations along the bore from the NOVA code (Gough 1980) and h,
is computed from the Veritay code (Chandra and Fisher 1989a, 1989b), which uses T, and other NOVA
variables to determine h, by the method of Stratford and Beavers (1961).

Figures 7a and 7b show representative T, and h, histories at two stations on a 120-mm M256 gun
barrel. It is seen that T, and h, remain constant until the base of the projectile passes the given station
at time tm t,, At this time, these variables rise suddenly to a peak, then they decroase gradually, with h,
decaying significantly faster than T,,

All the computations reported here were performed for a 120-mm M256 tank gun firing a DM13
round.* The density of the gun barrel metal is taken to be p = 7,827.0 kg/m®, The thermal conductivity
and specific heat are supplied by tables that are plotted in Figures 1 and 2, respectively. The value for
h. = 6.0 J/(m? s K) was obtained from experiments conducted by Bundy on a shrouded M256 barrel,

5. FINITE-DIFFERENCE CALCULATION

For the finite-difference calculations, the interval 0 € § < 1 (corresponding to R, € r € R)) is divided
by equally spaced nodal (or grid) points into NI subintervals. The constant § increment is A% = 1/NI, and
the locatlon of the nodes is glven by § = (j = 1) A§ = 1,2, ... NI + 1), Derivatives at node j are
approximated as follows:

* Table 1 of Gerber and Bundy (1991) describes the shape of the gun barrel,

9
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@URY), = (3 U + 4U,,, = U2 A (i =1) (%8)

(QUAR) = (U = U240 (=2,..,ND (9b)
(OURL) = Uy = 4U,, + U2 AY) (= NI+ 1) (%)
(3"-’/3;'); ~ (UM - ZUJ + Um)/(&)’ 0 - 2! seey ND- (9‘!)

If we let the time increment be At = t**! = *, then, in the Crank-Nicolson scheme employed here (Ozisik
1968, 402) to obtain the solution at time t = t**! (j m 2, ..., NI),

(U™ - U = (A12) [QUARN® + QURY™Y, . (10
By Equation A-4a, Equation 10 becomes
UM - (A2) H™ = UR + (A12) H, an

where
H w (a/D? [,(3) PURE + £,8) 3U/RS),

and f,(3) and f,(}) are defined in Equations A-3,
The finite-difference approximations to the equations and boundary conditions are produced by
substituting the derivative approximations of Equation 9 into Equations 11, A-4b, and A-4c, and then

collecting the terms. The following set of equations for U™*! may then be written:

NI}
F; AU =d (a=1,2,..,Nl4+) (12)

The coefficients A, and d, are given in Appendix B. The d,'s involve U values for the previous timestep
t = t*, In most cases, we have used NI = 100.

11




The coefficients A, (j = 2, ..., NI) are linear functions of a(U) in Equations (B-3) in Appendix B,
and are not predetermined constants. A successive approximation procedure is used to solve Equation 12.
First, an initlal estimate is made for the a's, e.g., (0*")"" = ", which are known. These a's, when
substituted into the A,,'s, make Equation 12 a linear system, which is solved for (U™*)'* by a standard
FORTRAN routine. The next & approximation is (o™*)* = a [(U**")'*]. Then (U**!)** is the solution
to Equation 12 when the (oy™*!)™ are substituted into the A,'s; and (q**')*® w of(U*)™). This
procedure is repeated until convergence is obtalned; i.e.,

| QUM% = U | < Coes (= 1,2, N D

where C,,, 18 a chosen arbritrarily small positive constant, Three iterations have been required, on the
average, for our calculations,

The computer program contains a subroutire prescribing At as a function of t within a firing cycle (see
Appendix C). The At is made sufficiently small early in the cycle to resolve the highly transient
phenomena; then it is increased to minimize computation time. The Crank-Nicolson method is stable for

all values of At, and there are no restrictions on the relative sizes of At and A%,

Afier the problem is solved for U, T is found by inverting the Kirchhoff transformation. This step
is accomplished by applying three-point interpolation in the stored T, U table.

6. ACCURACY CHECK
The condition of energy balance can be employcd as an accuracy check. We define two integral

functions: (1) Qu = net energy per unit length that has entered and exited the barrel since t = 0, and
(2) Q, = change in barrel heat content per unit length since t = 0,

Q = 21:R|£' h,(£)[T,() - T(R,)1d7 - 2un,£‘ h[T®R,t) - T.]dt

- 3.5619% 10FR, [ ' HTR, )M - T2]dt J/m a3

12




Q- 21Ep£°[£mc’('f)d'-l.‘] rdr Mm . (14)

A necessary, but n~t sufficient, condition for accuracy is that Q, = Q, at each time step.
7. COMPUTATIONS

Computations were performed to determine the heating of a 120-mm M256 gun tube firing DM13
rounds. We chose just two of the many possible firing scenarlos, The first chosen firing sequence
consisted of 16 rounds at 40-8 intervals, followed by 5 rounds at 30-s intervals. Figure 8a compares the
two outer wall temperature historles at z = 4,30 m, about 1 m from the muzzle. At the end of the firing
sequence (t = 780 &) there is a 3.8 K discrepancy between the two computations. This represents about
2.6% of the total outer wall barrel temperature change (total temperature change is defined as T(t] - T.)).
A full-scale plot in T vs. t at the inner wall would not reveal the differsnces between linear and nonlinear
output. Figure 8b shows a greatly magnified picture of the historles at one of the inner wall temperature
peaks, where the disorepancy maxima occur, The difference at this point is about 25 K, or about 3.4%
‘of the inner wall barrel tamperature change.

The main comparisons were made for our second firing sequence, namely, the one shown in Table 1,
which is almost identical t Scenario #2 in Table 1 of Artus and Hagenbein (1989). (Our final burst is
seven rounds; that of Scenario #2 is six rounds.) This scenario represents the case where all the M1Al
tank-stowed ammunition is fired as fast as possible, with two intermediate cooldown periods corresponding
to accessing different amimunition storage compartments, We have computed the change for 41 rounds,
whereas the M1A1 tank stows 40 rounds. Also, we have assumed that all 41 rounds are DM 13 (kinetic
energy [KE] rounds), whereas in actuality the M1A1 stores a mix of KE and HEAT (high- explosive
antitank) rounds,

The simulations were performed at two locations on the barrel, 4.30 m and 0.615 m from the breech,
for a high and a low ambient temperature: 322 K (120° F) and 233 K (40° F), respectively. These two
locations correspond to positions where the barrel is relatively thin and thick, respectively. The two
amblent temperatures correspond to frequently used Army hot and cold testing conditions. The initial gun
barrel temperature was the same as that of the surroundings.

13
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Table 1. Firing Sequence

... - .
1. 17 rounds at 7 rounds/min
2. 5 min cool down

3. 17 rounds at 7 rounds/min
4. S min cool down

§. 7 rounds at 7 rounds/min
6. Cool down

Figure 9a presents a comparison of the two inner wali heating predictions at z = 4,30 m for
T. = 322 K. (For convenience, T (R;) has been truncated at 600 K.) The largest difference occurs at the
end of each firing burst; at t = 1,000 8, for example, the evaluations differ by about 4.8% of the total
temperature change, similar to the results from our first firing sequence. Figure 9b shows a greatly
magnified picture at one of the temperature peaks. The relative diffsrence between maximum values is
about 3.3% of the total temperature change,

In Figure 10, the outer wall temperature calculations are compared for the two ambient temperatures
atz= 430 m, Attw= 1,000 s, shortly after the end of the final burst, differences are 4,5% and 2.5% of
total temperature change for T,, = 322 K and T, = 233 K, respectively.

The next two figures show heating results at z = 0.615 m, close to the breech, for the scenario of
Table 1. In Figure 11, the linear and nonlinear cilculations are seen to be almost identical, more so even
than at z = 4,30 m. However, the inclusion of temperature dependence results in a slightly higher, rather
than lower (as in Figure 10), outer wall temperature prediction. Figure 12 depicts the inner wall
temperature histories under cold and ..ot firing conditions; the linear and nonlinear curves are almost
coincident, at least for the cooling periods.

Figure 13 shows comparisons for the spatial variation of temperature from fnner to outer wall for
T. =233 K. Atz =0.615 m, the barrel thickness is 95 mm, compared to 23 mm at z = 4,30 m, and the
temperature is not able to equilibrate as thoroughly during the S-minute cooldown periods as it does at
the thinner cross section. This behavior is reflected in the fact that T at the thicker section is still varying
significantly from the inner to the outer wall. Also, note that the differences between the linear and
nonlinear predictions are noticeably greater for thinner barrel cross sections than for the thicker cross
sections.
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8. DISCUSSION

This study investigated the "error" introduced into gun barrel heating cealculations by assuming
constant values of thermal conductivity and specific heat for the metal (linear model) vs. incorporating
temperature dependence into these thermal properties (nonlinear model), The constants k and ¢, chosen
are within the range spanned in the course of a typical firing scenario. Figures 1 and 2 show that the
constant values differ significantly from the more uccurate temperature-dependent k and c, at very high
temperatum say above 800 K. For tank guns, however, limitations on the firing rate and number of
rounds that can be. fired greatly restrlct the duration of extremely high temperatures so that drastic
differences need not occur between predictions of the linear and nonlinear models.

It is not feasible to conduct pamm}ter studies for a wide variety of parameters and firing scenarios.
We have concentrated oft what we believe to be the two cases ihat should show the greatest difference
between these two models: the rapid expenditure of all tank-stowed ammunition under very hot and very
cold initial barrel temperatures. We draw several inferencés from our limited computer runs:

(1) Use of variable t'hemhl properties can either increase or decrease the barrel temperature (e.8.,
Figure 13), depending on the case (that is, on the totality of the computer input parameters,
including T, and hy histories).

(2) Differences between linear and nonlinear model temperatures are greater for thinner barrel cross
sections (e.g., Figures 9a, 12, and 13). This may be due to tiie more fundamental fact that thinner
cross sections are cycled through a greater temperature range, as a result, the effect of
temperature-dependent thermal properties is larger.

(3) The differences between the outputs of the two models, constant and variable thermal properties,
are below 5% for the cases considered. For most tank gun applications, the constant value (or
linear) model should be acceptable. In fact, it might be preferred, since it requires roughly one-
third of the CPU time of the nonlinear model in each computer run,
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9. ADDENDUM: HEAT CONDUCTION EQUATION

In one dimension the heat conduction equation can be understood as follows. For a solid material
body, the heat entering per unit area, per unit time through the y-z plane at x, for example, will be given
by:

oT
= -k .
Q, = -kl

Likewise, the heat leaving the through the y-z plane at x+dx will be:

Q, = -k3L |

x +dx

The change in internal energy pet unit time, per unit volume, will be:

aT aT
1, %%, P wm e n

rn dx dx

Expanding the temperature gradient at x + dx about x, retaining terms up to first order in dx, then
substituting yields:

. oT .
du B(L.ﬁ‘t
T T ox

From thermodynamics, if the elements boundaries are fixed, then we are assured that u = u(T), and

du(T) _ du(T) dT - pc oT
pr e i L T

Hence, equating the last two expressions, yields:

aT
T a3
> i el

If these arguments were repeated in three dimensions, the results would lead to the heat conduction

equation of Section 3.1, viz.:

oT
’T « VAkVT} .
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APPENDIX A:
STATEMENT OF PROBLEM IN §, t VARIABLES
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We repext the transformation of Eghation 8:

G =v5 + (1 -NE  (U<rs1p>2) reDf +R,. (A1)
Then
di/dt m§ wy + B(1 - 8T, d/d§ w §V = BB - 1)(1 - y)§P
YO wy, MmE)=yepl-y)

Ml () =B@ -7 A2

We define f, and f;:

- A
f, = 1/(§' P, (A-3)
f, » (D/§)(DE + R) = § I(§' ).
The transformed problem for U is

dU/ot = (a/D?)[f,(§)*U/AE + £,(§)aU/3E) = H(§,t) (A-4a)
dU/9% = [h()DY/k,]1[bU + b, - T()] at§=0 (A-4b)
[k,/(DA,)]3U/3§ + bw,U mw, -bw, at§m| (A4c)
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where

w, = h_ + 4F0 (T ®)

w, s BT, + FO[Td + 3(T*)"] Ja&e=1, (A-5)

The initial condition is

U=sU,=UT) t=0,08Es51. (A-6)
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APPENDIX B:
COEFFICIENTS OF EQUATION 12
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We first define v,(t) and v,(t):
V= 2 A& h|(t) D ‘Wkl' V; = vl[bl - T.(t)]v
where b, and b, are given in the last paragraph cf Section 3.2. Then,

Ay= - +byv), Ap=4, Ay '1}

d=v, (B-1)

. At the outer wall, where § = NP = NI + 1, the coefficients of the boundary condition are
determinzd by the following sequence of formulas:

w, m h, + 4 Fo (Tyy™)’

wym h T, + F6 [T.4 + 3 (Tp™"]
Mmy+Bl-9

q, =2 A% w, b, D AK,

G = 2 AL DA(w, = W, b/,

Avpnraa ™1y Appa =4 A =G +q) }

dyr = G, (B-2)

We next define four functions, py, py, Py, and G for 2 < j S NI:
Py = [fy,/(AR)] = /2 A3))

Py= 2 fu/(Ag)‘
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Py = [Fy/(AY] + [f/(2 AE)]

G = (0*/D%) [py U™ + By U + py U™,

where ), » f(§) and £, = f; (§) are defined in Appendix A. Then
Ay, o= -At ™! py/2 DY)
A= 1= At g™ p/2 DY
A = -At 0 p, /(2 DY

d= U + (AL2)G® .

All other A are equal to zero,
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APPENDIX C:
TIMESCALE
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Here, ime = t/ will refer to time within one firing cycle — t/= 0 at the beginning of the cycle.
Six constants are given: t,, t,, t/, ti, At| and Af;. Here, ¢, is the delay time for the rapid rise in T,

and h, from initial conditions, and t, is the time between successive firings. The time incrementAt (t')
is given by the following function:

At =t, - At/ 0st/ <t, - At/
At = At/ t,-At st/ <y
At=C, + Gt t/ St/ <y

At = At] Y <t

where

C, = (A - At)/(t; - t/) and C, = At;- Gty

Aft/+ At) >, set Atmt—t'),

A typical set of velues of the parameters would be the following:

t/ =0018s, t, =100s At] 0000255, At; =60s.

These values were chosen on the basis of experience from many empirical studies made with the
numerical parameters.
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LIST OF SYMBOLS

coefficient in Equation 12 for barrel temperature

constants in T = b, U + b,, see last paragraph of Section 3.2

specific heat of gun barrel [J/(kg K))

m (R, = R) = thickness of gun barrel [m, mm]

coefficient in barre: i~mperature equations, right-hand side of Equation 12
radiation interchange factor betweén barrel outer wall and envlromﬁem. Equation 4
given functions of &, Equation A-3

function defined in Equation A4

heat transfer coefficient - bore to gun barrel [J/(m? s K)]

heat transfer coefficient - gun barrel to ambient air [J/(m? s K))

index indicating radial location of a nodal point (j = 1 for inner wall, j = NP for outer
wall)

thermal conductivity of gun barrel [JAm s K))

k(Ty)

number of intervals in R, S r<SR,and 0 €S 1

=NI+1

increase in heat content per vnit length of barrel since t = 0 [J/m]

net quantity of heat per unit length that has entered barrel since t = 0 [J/m)
radial coordinates of inner and outer walls, respectively, of gun barrel (m, mm]
radial coordinate in transverse plane [m,mm] (r = O at axis of gun bore)
temperature in gun barrel (K}

temperatures in the bore and ambient air, respectively [K]

=T,

prescribed lower integration limit in definition of U (Equation 5)

Kh




t time from initiation of first round [s, ms])

t delay time at given z for rapid rise in T, and h, (s, ms)

t time interval between two successive rounds (s, ms) '
t/ time measured within a firing cycle [s, ms] .
u(m) Kirchhoff transformation function, defined in Equation $ [K]

y mU@=[-145

V. = U(T,)

z axial coordinate (z = O at breech) [m)

o(T) ® k/(p ¢,), thermal diffusivity of gun barrel [m?/s]

By prescribed constants in coordinate transformation, Equation 8

At computational tine increment = (t**! = *) [s)

AL = /NI, constant step size in (0§ S 1)

{ nyd+(1-98

) azimuthal coordinats in transverse plane

M M ¢ (8w 1), L/(1), defined in Appendix A

4 transformed radial variable, Equation 8; independent variable in Equation A-4a
p density of gun barrel metal [kg/m®)

c Stefan-Boltzman constant = 5.669 x 10 * J/(m? s K*)

Sucemcriot

m index of current time step, when solution is known

m+1 index of next time step, when solution is to be calculated
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