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1 Introduction

This document is the final report for the Honeywell ProtoTech1 (Prototyping Technologies)
Phase I contract2 . In this document, we define our understanding of ProtoTech's mission,
and we outline the work undertaken by the Honeywell/U. of Maryland team addressing the
overall ProtoTech goals.

2 ProtoTech Objectives

Formal DARPA ProtoTech contracts were started in early 1990 based loosely around the
requirements specified in [11, which separated the requirements into those for a prototyping
language and environment. The original five ProtoTech teams have worked as a community
to address both language and environment concerns, develop a common understanding of
what prototyping is, how it is used, and have evolved each of the teams' baseline technolo-
gies. Collectively we have defined prototyping as:

Prototyping is an experimental activity intended to expose properties of a po-
tential product before design decisions are carved in stone.

The purpose of our program is to help users understand what experimental
questions to ask, to streamline acquisitions of their answers, and to organize use
of this information in developing and evolving the product.[17]

This definition recognizes that prototyping is not an end goal in software engineering, but
rather contributes toward the attainment of another goal. Prototyping is part of many

1ProtoTech was previously known as the Common Prototyping Laguages (CPL) program.

'This work sponsored by DARPA via ONR contract N00014-90-C-0015.

3
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software engineering methodologies, and is practiced in different phases of the software
lifecycle, even though it tends to be most heavily used in the earlier tasks (i.e., requirements,
specification, and design). Therefore, prototyping must fit within the software engineering
lifecycle that it is to support. With this fact in mind, it is helpful to restrict the domain of
interest to a subset of the many possible software engineering processes. Such a restriction I
was formally provided in January 1992 when the ProtoTech community was tasked with
determining:

"What should be the ubiquitous elements of the future directly supporting
components-based software engineering?" - Bill Scherlis[17] 5

Components-based software engineering (a.k.a. megaprogramming or reuse) is the disci-
plined approach of codifying an understanding of domain-specific knowledge into software
artifacts, some of which are executable, (e.g., architectures and components), with the ex-
pressed intent that the components be usable in multiple contexts. The cost for developing a
particular artifact is amortized by increasing the artifact's reusability and thereby increasing 3
its value. Megaprogramming not only requires that software engineering be cost-effective,
but suggests the approach of using hierarchical decomposition and architecture specification
to achieve this result. i
Thus, the ProtoTech goal is to maximize the effectiveness of prototyping within a megapro-
gramming-based software engineering lifecycle, not only in the application of prototyping to
the construction of component-based systems, but also in the construction of components
for such systems, and in the maintenance and evolution of both the components and the
composite systems.

An interesting perspective is to view megaprogramming as an effort to capitalize[21] the
results of software-intensive concurrent engineering. The current DARPA "Domain Specific
Software Architectures" (DSSA) contracts are clear examples of this approach. The DSSA
program includes, for example, multiple, multi-disciplinary teams addressing realization 1
of control theory in actual operating products. The teams consist of not only domain
specialists and software engineers, but also people doing foundational work. 3
3 Assumptions and Interpretation of Goals i
In this section, we describe Honeywell's perspective on the ProtoTech goals, and explain
why prototyping is an important aspect of megaprogramming.

From Honeywell's perspective, there are two undeniable facts:

1. Software is expensive to construct. 9
2. Customers don't buy software, they buy functionality.

Honeywell 4 Honeywell I
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The goal then is to minimize the amount of n .w software construction needed to achieve
a given level of functionality. This simple reasoning is the basis of megaprogramming -

assemble systems, don't construct them. There are however two more undeniable facts:

3. Product functionality that is competitive today, isn't tomorrow!

4. Software components that weren't designed to work together, don't!

The design and architecture of a system (or group of systems) must be amenable to change,
and must satisfy a sufficiently large group of users to support the cost of production. The
inevitability of change, coupled with the nearly insatiable customer demand for increased
functionality, pushes vendors to be increasingly responsive. The large amount of detail
needed to specify a unit of user-level functionality requires good designs to partition con-
cerns, and an economy of scale to justify the investment in the construction of the system.
This can be achieved either by a very large single-product market, or more likely, by a
market for a related set of products - a product family - sharing a large fraction of their
artifacts (architectures and components), and hence amortizing the aggregate cost across
products and time.

The primary obstacle to constructing architectures supporting product families is that ar-
chitectural decisions usually require broad understanding of a domain, but products must
exist prior to the accumulation of this knowledge. This situation exists because the demand
for functionality almost always precedes the in-depth analysis necessary to understand the
domain - airplane manufacturers want to use computer-based flight control systems before
there is a universally accepted theory of how the control system will interoperate with the
remainder of the functions on the airplane3 . The result is that systems usually provide
only partial solutions to domain problems. Increasing a software system's coverage of a
problem domain requires not only further analysis of the domain, but realization of the
increased understanding in software. Furthermore, the less well-understood and refined a
system architecture is (i.e., immaturity), the higher the likely cost of making changes 4.

The most significant prototyping effort will be expended in contexts where architectures
are immature. If the domain was mature, then analytical methods with a higher degree
of coverage would exist. It is therefore the nature of prototyping to be used in less well-
understood application domains, where change is more rapid. It is also an implication
that prototyping is not likely to result, by itself, in broad problem domain solutions. It
is therefore important to realize that prototyping should be focussed at addressing specific
issues within a larger problem solving/reasoning activity.

Domain theories are necessary to architect product families since variability is one of the
additional attributes of an architecture that megaprogramming requires. It should be noted

'They of course will only fly the plane if they are sure the system will do what they want, and will not
interfere with other onboard systems, but how it will integrate with the gate scheduler in not known, and
hence left to human control.

'Note that architecture maturity and system maturity are not equivalent.

Honeywell 5 Honeywell
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Ad hoc Components Automatic Code
Based Generators

Figure 1: Domain Maturity

that during the time when prototyping is used most heavily, namely during initial lifecycle
phases, we don't expect the domain theory to be represented in a particularly formal lan- I
guage. Rather, domain theory will likely be represented in informal conceptual structures
that model the domain. We expect the representation to be primarily structured text, pri-
marily because prototyping will yield results which will only be understood and placed into
context (in a megaprogramming sense) after some period of reflection. We strongly believe
that information capture is necessary to this activity. 3
Thus, prototyping should be properly viewed as an experimental process whose results drive
the evolution of a domain theory. A difficulty in the state of the practice is that prototyping
is often viewed as aiming to answer isolated questions relevant to an individual product - the I
results of prototyping are not being folded into an evolving domain theory which supports
a family of products. The prototyping activity, or experiment, should be as focused as
possible to minimize the expense, and to enable accurate analysis of the results when they
are obtained. Simply stated, software prototyping is an application of the scientific method
to the development of domain theory for software-intensive systems. Following from the
scientific method, experiments should only be carried out to refute, or to confirm, stated
hypotheses. Repeatability of experiments, to the extent that the resulting analysis can
be repeated, (i.e., capturing the environment in which it was performed) is important for
future analysis since by definition, the results will only be provisionally valid.

The primary goal of megaprogramming within a given domain is to permit problems in
the domain to be resolved with a minimum of programming effort. To achieve this result,
megaprogramming must be based on a codified set of artifacts (i.e., domain-specific archi- I
tectures and components) which are derived from fundamental, common domain principles.
Domain specificity places bounds on the context in which these artifacts may be reused,
thereby increasing the likelihood that they can be specified in a reusable manner.

The goals of ProtoTech can thus be stated in terms of a domain's *maturity model" (see
Figure 1). The maturity of a particular domain is measured by the degree to which there
is common understanding of the principles governing the domain, and the degree to which
there is general agreement about solutions for broad classes of problems in the domain, and
the degree to which these decisions have been codified in reusable software architectures
and components.

Within the maturity model, the main prototyping effort will be performed for problems in

Honeywell 6 Honeywell a
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domains which are closer to the "Ad hoc" end of the maturity scale, as typified by one-of-a-
kind or unprecedented implementations. The lessons learned during a prototyping exercise
should be useful not only in resolving the current problem (i.e., feeding the results into
the main line of development), but should also aid in the movement of the domain theory
towards the "Components-based" end of the maturity scale, where the principles of the
domain have been codified as a set of architectures and components.

Previously, we stated that the ProtoTech goal is to maximize the effectiveness of prototyp-
ing within a megaprogramming software engineering lifecycle. From the maturity model
perspective, the goal of prototyping can be restated as accelerating the "rightward" motion
in figure 1 per unit of energy (e.g. dollars) spent.

4 Honeywell ProtoTech Strategy

In this section, we provide a historical perspective on this project, describe abstractly how
various users of a megaprogramming environment could benefit from prototyping technol-
ogy, and show how our technology thrusts will aid them. Finally we present our plans for
future work.

4.1 Historical Perspective

From the start of our ProtoTech contract, our basic belief was that what distinguished
prototyping from "software development" was the process undertaken. Clearly, a proto-
typing activity satisfied a different set of constraints than a development activity, since
prototyping's purpose was information gathering. We assumed that this information would
primarily be embodied in a MIF representation of the prototyping "results" garnered from
an experimental prototyping platform. The results would be integrated into the mainline
software development process through the configuration management engine controlling the
project development. In this way, the incremental nature of the results would be apparent,
and traceability of prototyping-based decisions would be maintained. We postulated an
environment to support this activity, specifically the Environment for Software Prototyping
(ESP), shown in figure 2. Prototyping would be carried out concurrently with the develop-
ment activity, in an "accelerated development" mode, i.e. a prototyping experiment would
be carried out fast enough that results could be fed back to the main line of development
in a timely manner.

This view was not workable for a number of reasons. First, few prototyping efforts have
a clean "question goes in, answer comes back" call/return style interface with the larger
development effort. There will be a frequent exchange of data and control between the
two. The question furnished to the prototypers must be embedded in a context of previous
decisions, discoveries, and constraints, and the answer which is exposed will be part of a
network of answers to derived questions and a history of efforts to answer those questions.

Honeywell 7 Honeywell
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Component I

Shelf

Workbench

Figure 2: Early ESP conceptual overview 1
Secondly, viewing the results of an experiment as being communicated by the configuration
manager's representation of the software artifacts misses the fact that most of the results
must be incorporated into the evolving design, of which only one representation is the col-
lection of software artifacts. A simple record of the evolution of the prototyping apparatus
(the prototype) is inadequate, even if it records the transformations from a specification to
an executable. A large amount of the knowledge accumulated is in the form of deliberations:
questions, problems, proposed solutions, arguments about those solutions, and the applica-
tion of issue-resolution methods (e.g. prototyping) to choose solutions. Some representation
of the issues and their resolutions is necessary to facilitate reasonable traceability between
software artifacts, designs, specifications, and requirements, and to communicate questions
and results between the prototypers and the developers. Thirdly, although prototyping I
processes have characteristics which distinguish them from non-prototyping processes -

most importantly their goals - and consequently require different sorts of controls, it is no
less important that the integrity of the results be maintained. Having process support in I
place to facilitate the management of the complex issue resolution process appears to be a
key point in successfully managing prototyping efforts. 3
5 Our approach i
We have chosen to address prototyping in a megaprogramming environment via four coop-
erating technology areas: 3

1. Module Interconnection Formalism (MIF)

A way of expressing architectural and interface concerns in a highly parameterisable 3
manner, including type parameters, functional parameters, and constraint parameters.
The formalism must be both hierarchical and incrementally specifiable.

Honeywell 8 Honeywell
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2. Lab Notebook (LN)

A mechanism to foster more complete analysis of design decisions, and to record
them in a manner that facilitates communication. The LN embodies a disciplined
(i.e., structured) approach to the scientific method which organizes information and
manages the myriad details that often increase the cost of prototyping and effective
information interchange.

3. Process Management (PM)

A two pronged approach to providing computer assistance during system engineering.
Part one is a set of tailorable process definitions which provide a methodology for
integrated experimentation, domain analysis, and component/architecture develop-
ment. Part two is a subsystem which provides assistance, guidance, and measurement
to facilitate cooperative work via computer mediated activity coordination.

4. Change and Configuration Management (CCM)

A substrate technology linking the other three. The MIF interface specifications defiUe
configurations. LN provides an abstracted view of changes through a system's lifecycle
and aids in change notification. Software process guides system builders through the
steps necessary in order to migrate systems from one set of configurations to another.

CCM is also the basis for doing technology transfer. The most explicit software pro-
cess, record capture, and artifact management capabilities come from an organizations
CCM system. If the technology is to be successfully transmitted to users, it must be
integrated into their basic support infrastructure.

These four capabilities, when taken together, provide for the representation of engineering
decisions in an executable format (MIF), in a format suitable to human understanding
of decision interplay and system evolution (LN/CCM), and provide the necessary active
guidance to increase the likelihood that it all will actually be used (PM).

The following sections describe each of the above technologies in somewhat greater detail,
point out the relationships between them, and provide references to working documents
containing our latest thoughts on the items.

Honeywell 9 Honeywell
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5.1 Module Interconnection Formalisms (MIF) 5
Two complementary camps have emerged within the ProtoTech Community with respect
to MIF research and technology: the architecture representation language (ARL) camp and
the configuration packager camp. Those in the AR.L camp are focusing on the theory of i
architectures and design of notations/languages in which software system architectures can
be formally described. Those in the configuration packager camp are focusing on technol-
ogy necessary to automate the translation of fully instantiated architectures into source I
code. Of course, the line between these two camps is often fuzzy as they are addressing
complementary aspects of a more general problem we refer to as MIF in the ProtoTech
Community. I
The Honeywell/University of Maryland (UMD) Team has members representing both camps.
Honeywell is primarily a member of the ARL camp and has been investigating the require-
ments and use of ARLs with the Honeywell and IBM DSSA teams and David Garlan of
CMU.

UMD, as founding members of the configuration packager camp, have been developing MIF !
technology that will provide a basis for implementation of ARL-based design/development
tool sets. The UMD software bus technology developed to date has demonstrated the
viability of the module interconnection language and configuration packaging concepts and 3
supporting run-time system[18].

5.1.1 Approach i

Our Perspective of the MIF Problem A generally anemic aspect of software engi-
neering is that of software architecture; the art/science of planning and building software
systems. General principles and theory of software architecture simply do not exist. Lack-
ing formal architectural principles, methods and tool support, we build software systems
based on ad hoc and implicit architectures. The results are as expected. I
An architecture is a representation of a set of decisions which purport to solve a set of is-
sues/constraints raised by a system construction which leaves, to the largest extent possible,

other issues open for later resolution with a minimum of additional constraints. The set of
resolved issues and the constraints imposed by the architecture are a critical component of
the architecture. 3
A software architecture is a hierarchical structure representing levels of design decisions
which organize the set of software components that comprise the system and expresses
constraints on the components and interactions between them. I
We observe the following symptoms in Honeywell's software development businesses and

attribute these to the lack of a formal basis for software architectures:

9 Generic CASE architecture tools are applied to the requirements and design phase for
describing boftware architectures but the results are typically under whelming; these

Honeywell 10 Honeywell !
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CASE tools have been abandoned by some in favor of generic graphics tools due to
their inflexibility, lack of expressiveness or inappropriateness with respect to the tasks
at hand.

In particular, the lack of domain specificity has been cited by divisional software
engineers as a reason not to use tools such as STP5 , Teamwork6 , etc. That is, they
don't map cleanly onto the problem domain and the gap between a CASE-specified
design and the eventual software architecture is too great.

Regardless of how software blueprints have been rendered (i.e., back-of-the-envelope
sketches verses more formal software architecture drawings/descriptions produced us-
ing commercial CASE tools), the translation of these software architecture descrip-
tions to software designs is largely viewed as a black art. Software engineers do not
share a common understanding of the process of translating software blueprints into
designs. The low fidelity of the translation process is evidenced by multiple, inconsis-
tent and often incorrect translations of the same architectural concepts even within
the same system.

" The mapping between the software blueprint and other representations of the system
(requirements, detailed design, source code, regression tests, etc.) deteriorates over
time. The source code itself becomes the only authoritative document of the system's
architecture as the system evolves. Any existing software blueprints act merely as
hints as to what one might expect to find in the source code for the system. Therefore
the software blueprint is rarely consulted nor kept up to date over time lending to
further deterioration of the mapping between this and other representations of the
system.

And even when blueprints are kept up to date, they contain only information about
the end product itself; nothing about why the design is the way it is as opposed to
other ways.

The problems of architecture representation, interpretation and maintenance must be ad-
dressed and the impact of solutions to these problems may be profound. Point solutions,
focusing on pieces of these problems are already being developed by various groups within
Honeywell. Application generation technology is being applied within the displays domain
of several Honeywell avionics divisions. A group within the Air Transport Systems Divi-
sion developing avionics simulation software is developing code generation capabilities for
a commercial CASE tool used for specifying software architectures.

The DARPA Domain Specific Software Architecture (DSSA) Community is also working
on solutions to these problem; each DSSA team is responsible for developing architectures
for their respective application domains. 7

OSTP is a registered trademark of IDE
6Teamwork is a registered trademark of CADRE
7 The DSSA Infrastructure Tiger Team has developed a fou-layer model oef areitecture acems: archi-

tecture schema, architecture representation language, the refrence architecture ad prod ct a citecture.

Honeywell 11 Honeywell
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Our Approach to the Software Architecture Problem Our approach to solving
this problem involves the design of an architecture representation language (ARL) based
on a formal theory for software architectures, the development of an effective engineer-
ing methodology based on ARLs, and a minimal tool set which supports the ARL-based
methodology.

An ARL is a language for describing architectural elements: components, component-to-
component connections, component subarchitectures (i.e., hierarchical composition relation-
ships) and constraints on these objects.8

The design of ARLs is a collaborative effort currently in progress. We are working with
members of the DSSA community to develop requirements for ARLs. Based on the require- I
ments derived from this effort, we will be either adopting or designing an appropriate ARL.

It is not clear at this time as to whether a single ARL can be designed or exists which
satisfies the entire set of requirements. Current wisdom suggests that multiple ARLs will I
be required and that existing specification languages must be extended[5, 7].

An ARL-based engineering methodology is being developed by the Honeywell ProtoTech
Team. There are several related projects at Honeywell SRC from which elements of this a
methodology are being derived; in particular, the Honeywell DSSA project and an internal
software reuse initiative focused on the domain of avionics flight management systems. Both
projects focus heavily on software architecture issues and suggest the need for a formal I
methodological basis[2].

A collection of integrated tools will be required to support the AL-based engineering
methodology. The tool set must minimally provide the following capabilities: I

" Generate/synthesize systems from architecture representations. The architecture will 5
contain unbound parameters for which the user must supply arguments to generate a
system.

" Support architecture analysis (i.e., architectures as formal, machine processable enti-
ties). Architecture analysis tools apply analytic techniques to architecture represen-
tations. 5

" Support reuse of architecture objects (i.e., support for persistent objects in the ARL).

" Support user-definable architecture objects 1

It is our goal to prototype a system with these capabilities and test the effectiveness of
the supported methodology. Much of technology required to build this prototype already I
exists in the DARPA community (e.g., persistent object bae and graphical user interface
technology) allowing us to focus primarily on ARL design issues. 1

'The architectural elements described here were identified by the DNSA ARL T*p Tema. This po'p is

currently analysing requirements for ARLs. 1
Honeywell 12 Honeywel i
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Having accomplished this goal, we can then turn to establishing integration requirements for
MIF technology and tools with the other elements of our prototyping environment, namely
the lab notebook, process management and change and configuration management systems.

5.1.2 Future Plans

Our current plans for MIF research include the following action items:

e Publish a summary of DSSA ARL Tiger Team ARL Requirements Analysis to the
DSSA and ProtoTech Communities.

9 Continue research on ARLs. We will be leveraging the efforts of other researchers in
the DARPA Community showing progress on this research topic.

e Develop and refine our ARL-based software engineering methodology.

9 Prototype and demonstrate tools supporting the ARL-based software engineering
methodology. The prototype demonstration will:

1. Test the prototype tools internally on toy prototyping problems.

2. Show the applicability of the prototype to the Honeywell DSSA system, replacing
their current approach for representing architectures.

3. Identify a divisional project in which the MIF technology may be further tested
and refined.

e Continue the MIF dialogue with the MIF Working Group of the ProtoTech Commu-
nity.

Honeywell 13 Hosnel
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5.2 Lab Notebook 3
The ProtoTech community's characterization of prototyping as "an experimental activity
intended to expose properties of a potential product before design decisions are carved in
stone" has two key aspects. First, prototyping is an experimental method for learning in I
the absence of more formal analytic methods. Second, since the results of a prototyping
effort typically drive future design decisions, these results must be effectively communicated
to those who will use the information. I
The ESP Lab Notebook (LN) supports the learning and communication activities invo'ved
in prototyping. In particular, the LN provides two main functions. First, it captures a
design rationale which records the artifacts produced by a prototyping effort (i.e., what) I
and the deliberative process which produced those artifacts (i.e., why). Second, it provides
a means of viewing that rationale. Increasingly, evidence suggests that knowledge of why a
system does something contributes more to understanding than knowledge of what a system I
does, and that deep understanding requires knowledge of both [22, 12]. A LN must manage
the following complexities: 3

" Since prototyping is often carried out by a group, the LN must facilitate the learning
activity in a group setting. n

" Learning during prototyping (both in group and individual settings) emerges from a
series of deliberative processes during which positions are taken, methods for gathering
data are selected, data is interpreted, and decision criteria are selected.

" Deliberative processes give rise to extremely complex webs of discourse which obey
regular structures (e.g., [11, 14, 3, 20]).

" Learning may be facilitated by managing and preserving these deliberative discourse
structures (e.g., identifying when a topic has been left unresolved, when arguments U
are being repeated, etc.)

" Communication may be facilitated by transferring these deliberative discourse struc- I
tures, perhaps edited for different needs, to later users of the information. The struc-
ture itself provides a means for navigating within the information, while the infor-
mation captured during design deliberation may be expected to be much richer than I
that captured after the fact (as in traditional technical reports).

* To effectively communicate design rationale, the LN must support multiple views at 3
various levels of abstraction (e.g., [3] describes what happens without such a capabil-
ity). 3

" The LN must strike a careful balance between human usability, machine usability, and
expressiveness, all of which are interrelated [10]. n
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* Above all, the LN system must get used if it is to fulfill its functions. This means
that it must provide some utility and value added both to the extended design team
(if it is to communicate), and to the local prototyping team (if it is facilitate learning
and capture design rationale in the first place).

5.2.1 Activities

To date, LN activities have primarily focused on a literature search to identify related work.
We have recently begun to produce a concepts document which will more fully describe a
LN capability within the context of ESP.

5.2.2 Approach

Prototyping as Deliberation Prototyping, and system design in general, is inherently
a deliberative process. Issues are raised, alternatives are defined, lines of reasoning are
formed and debated, and ultimately, decisions are made. Experiments or trials are run
and data is collected, but even this process is fraught with debate about the appropriate
questions to be asked, the appropriate methods for testing hypotheses, the interpretation of
results and how results should be integrated into the overall design. Such a process provides
an effective means of learning about the problem domain and the solution space, and for
communicating results. Since the deliberative process is the means by which decisions are
made, a record of it shows how the decision was arrived at.

Deliberative processes of this nature obey a loose, but nevertheless real structure known
as a discourse grammar (19, 13]. Just like the more familiar verbal grammars, any given
speaker may violate grammar rules (either intentionally or unintentionally) with any given
utterance, but communication is facilitated by proper use of the grammar. A variety of
researchers [3, 20, 15] have proposed models of deliberative grammar structures which, we
believe, can be used to structure a tool for capturing the deliberations which occur as a
part of the prototyping process.

There are at least five benefits to providing a tool for structuring and recording deliberative
processes and the design rationale which results from them:

o A structured deliberative process helps identify incompleteness or inconsistency in a
line of reasoning (i.e., gaps, missing arguments in the grammar structure).

o A structured deliberative process helps focus discussions on relevant issues and helps
expose fallacious arguments (i.e., by identifying issues over which there is dissension
and arguments which are logically inconsistent).

* A structured deliberative process is likely to both be and to appear to be more *fair" to
all participants. Everyone's issues are recorded and addressed. Reasons for decisions
are explicit and retrievable. Records are kept of decisions and thus, memory for
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group decisions is less subject to individual interpretation. All of these factors should
contribute to greater group satisfaction with the decision process and, hence greater I
efficiency.

" Design rationale captured during the deliberative process serves as a group memory I
which facilitates recovery of previous discussions and the context in which they were
held. It also enables users to determine why a decision was made without replaying
the discussion. 3

" Design rationale is useful (and necessary) across the entire project lifecycle and helps
users understand both why a system is constructed a particular way and why it is not
constructed another way.

In short, a structured deliberative process leads to a quicker, more complete, and less error
prone understanding of a problem domain and potential solutions and a design rationale
serves as an effective vehicle for communicating results.

LN as a Structured Deliberation Support Tool We, therefore, conceptualize LN as
a tool which supports and captures deliberations which occur during the prototyping pro-
cess. LN will provide and encourage the use of a deliberative structure. By so doing, it will I
improve the quality of the deliberative process. LN will capture the process of a particular
deliberation (or series of deliberations) during prototyping by instantiating a deliberative
structure. This instantiated structure thus becomes a record of the deliberative process. LN U
will enable inspection of the instantiated deliberative structure, thereby improving commu-
nication between groups and "memory" (i.e., retrieval of information) within a group. We
will also explore methods of translating or summarizing information captured during the £
deliberation process for transfer to other users, as well as methods for using the structure
itself to manage and critique the deliberative process.

General Characteristics We have identified six dimensions which characterize all ex-
isting and proposed design record capture tools. These are not orthogonal dimensions, but
are related in complex ways which we are beginning to understand. We believe that any I
LN tool will be characterized by a set of tradeoffs along these dimensions and our future
work will be directed at identifying the optimal set of tradeoffs for utility in the ProtoTech
environment.

* Structure - The degree to which interactions with the LN must obey a pre-determined
format. There are two different sources of structure: discourse structure and vocabu- I
lary structure.

Discourse structure refers to control over when and (generally) what information is in- 3
put, but not necessarily over how it is input. Systems which use a question and answer
format are generally imposing some sort of discourse structure, but those that permit
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answers to questions in free text are generally imposing only discourse structure and
not vocabulary structure. An important aspect of discourse structure is the explicit
representation of goals, assumptions, constraints and their interrelationships which
serve to describe expectations about the context in which a prototype is developed
[14]. They also serve to prune the solution space.

Vocabulary structure refers to control over how information is input (i.e., control over
the vocabulary of input). Systems which use a feature set language to input new
information strictly control "language" structure. Vocabulary structure is important
in preserving a common frame of reference.

Generally, increased structure facilitates the input of information by 1) constraining
the space of needed inputs to a manageable set, 2) implementing a framework within
which input is expected, and 3) making inputs incremental (rather than writing the
final report at the end of the project). It also facilitates retrieval of information
by imposing a navigable framework through which information can be traced later.
However, structure can also interfere with design by imposing restrictive levels of order
too soon on the sometimes nebulous creative process, or by limiting the vocabulary
with which ideas can be discussed, thereby increasing the difficulty of recording of
early, ill-formed thoughts.

Domain knowledge - The degree to which the LN uses domain-specific knowledge
in order to perform its functions. We refer here to knowledge about the domain of
design, rather than knowledge about deliberative interactions, or knowledge about de-
sign rationale capture. In a sense, structure (as defined above - particularly discourse
structure) may be regarded as the syntax of an interaction in which design rationale
is captured, while domain knowledge provides the semantics for the interaction. A
feature language vocabulary structure would require domain knowledge.

The presence of adequate structured domain knowledge enables a tool to be "smarter"
in interactions in that domain. Both discourse and vocabulary structures can be
sensitive to semantic aspects of the domain, rather than to the simple syntax of

interaction. Critiquing (see below) can be done on semantic rather than syntactic
levels as well. Incorporation of new knowledge (see below) can be done in a more
sophisticated fashion, since a knowledge organization already exists. However, domain
knowledge has huge overhead associated with it. It is difficult to capture, represent,
manage and utilize. Further, particularly for prototyping endeavors where the problem
is poorly understood initially, relevant domain knowledge may be unavailable.

I . Critique - The degree to which the LN can offer evaluations of the information
provided by a user. Critiquing can be done on both syntactic (e.g., structural) and
semantic (e.g., domain knowledge) levels. Clearly, the kinds of critique the LN can
provide depends of the available structure and domain knowledge.

Critiquing can provide a source of value added for LN users (and hence an incentive
for using the system), and can lead to better design and more accurate and complete

Honeywell 17 HoneywellI



I
HUMD ProtoTech Phase I Final Technical Report Honeywell SRC 3

record capture overall. Critiquing is arguably the best way to go about incorporating
new domain knowledge into the knowledge base of the tool as the LN asks questions
to flesh out its own knowledge base (see below). However, critiquing also incurs the
overhead of additional structure and domain knowledge, in addition to the overhead
of designing and constructing the critiquing functions themselves. In addition, un- I
solicited critiquing is often intrusive and can disrupt ongoing thought processes (see
below) thereby stifling the creative process. Further, incorrect or inappropriate cri-
tiquing is annoying, and critiquing without incorporation (i.e., learning), where the I
tool is wrong and stays wrong, is especially annoying. Users often avoid or ignore
annoying criticism and may miss valuable feedback as a result.

Intrusiveness - The degree to which the LN intrudes on the design process and
the thoughts of users as opposed to being a passive observer or off-line receptacle.
A traditional electronic lab notebook (i.e., an electronic medium for recording ad- 5
hoc notes, etc.) is the ultimate in non-intrusiveness. Any type of structured dialog
(e.g., Q&A) is necessarily intrusive to some degree, but the dialog phase itself can
be relegated to a specific time and place (e.g., enter the LN and sit through a Q&A 3
session) or can be ongoing and omnipresent (e.g., an interrogator subroutine running
on a CAD design tool). Critiquing is also necessarily intrusive, but again, it can be
request-driven as opposed to unsolicited. 5
Intrusion probably obeys some inverted "U-shaped" function with regards to amount
of information captured (i.e., there is a point of diminishing returns). No intrusion
is more or less the way documentation and reports are written now - wait until I
the end of the project and put down whatever you can remember as quickly and
painlessly as the customer and documentation tool will allow. Up to a point, a system
which frequently asks for information is more likely to get it than one that doesn't I
and a system that asks for information at or near the time the information is being
used/considered is more likely to get more of that information than one which waits
until the time is past. However, the act of intruding on thought processes is inherently a
disruptive - and therefore annoying. Ideas may be lout as the result of ill-timed

questions and enough disruptiveness may cause users to avoid the system. Of course,
the ability to actively disrupt thought processes means the system must be present I
and "conscious" during those processes (i.e., it must be *looking over the shoulder" of
the designers). This implies a much more complicated tool, with associated overhead.
The only practical application of this technique to date seems to be to make the tool I
a part of another tool which is itself a part of the design process (e.g., a CAD tool,
or an authoring tool).

* Incorporation - The degree to which the LN learns or redefines itself on the basis
of the information it captures during a design instance. Primarily, incorporation deals
with learning new domain knowledge, but the LN could learn structural knowledp as
well, maybe on a individual differences basis. For example, the fact that a particular
person is prone to bad counterfactual reasoning constructions may guide the type of
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advice or critique provided by the LN. Individual differences might also be important
for more semantic knowledge - knowing what side a person takes on an issue is
certainly important to how listeners evaluate his/her reporting of facts. Various ways
a system may "become smarter" include the growing of a design decision tree which,
minimally, helps to position later information, learning new domain knowledge for
later knowledge-based critiquing, and learning new keywords and/or links between
topics for later cross-referencing.

Incorporation is essentially a learning task and, therefore, many LN approaches using
incorporation would suffer the traditional machine learning problems. It is generally
difficult for a system to automatically determine the "correct" new information to
incorporate. In human-assisted learning, users frequently will not take the time to
"teach" a novice knowledge base what it needs to know. In either case, determining
the effects of new information on existing knowledge structures is difficult. Without
good information, the system will suffer from the problems described above (e.g., bad
advice, etc.). In contrast, some types of incorporation would be reasonable straightfor-
ward. In a vocabulary-structured LN, for example, enabling the system to recognize
and request definitions for new terms would be reasonably easy. By the same token,
automatically incorporating cross reference links based on key words would be a trivial
exercise in database management.

Integration - The degree to which the LN is integrated across the development team
and development process. To be maximally useful, the various artifacts captured in
the LN should be interrelated. In particular, the software artifacts should be tied to
relevant portions of the design rationale so that users have a direct link between an
artifact and information that describes it. Without direct linkage, users will be less
likely to lookup relevant information and the rationale will not effectively serve the
purpose of communication.

However, integration implies an information management overhead which, if carried
too far, can become too costly. The need for integration must be balanced against
the cost [6].

5.2.3 Future Plans

Future plans include the following:

" Finish up a concepts document that develops and refines the ideas presented here.

" Write an initial requirements document for the ESP LN that addresses the six dimen-
sions described above.

" Spec out a LN capability and prototype selected features to learn about necessary
features and the LN's ties to ESP and the prototyping process.
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5.3 Change and Configuration Management

Change and Configuration Management (CCM) is the collection of tools, techniques, and
facilities for managing change to complex systems of interdependent artifacts. CCM must
cope with several complexities: i

" The artifacts are both internally complex and highly interdependent. The trend is
for the artifacts to be finer-grained, which will increase the complexity of the web of I
relationships and thus the interdependence.

" The history of such an artifact is typically not a linear line of descent, but a DAG,
with branches and merges. I

" It is typically necessary to maintain more than just the "most current" version of an
artifact. Non-leaf versions are frequently still in active use; also it is often necessary I
to backtrack to an interior version.

" Frequently, multiple threads of development are active simultaneously - multiple
alternates are undergoing evolution. i

" It is useful to be able to specify a composite artifact at multiple levels of concreteness,
allowing the versions of components to vary in specified ways - all components may 1
be specific versions of artifacts, or some may be version-generic references which may
specify a rule for selecting an appropriate version of that artifact. n

" Change is typically performed by multiple agents, working in teams and subteams; a
logical change consists of a number of physical changes, and logical changes may be
nested.

Prototyping presents specific challenges to CCM; agile, lightweight CCM will be a key
support capability for prototyping. Prototypes evolve in complex ways. Due to the need
to quickly explore the relevant problem domain and solution space, prototypes must evolve
rapidly and radically. Even more so than "normal" software development, prototyping is an
iterative and tentative activity. Frequently a thread of development is abandoned when the
line of investigation fails, we backtrack to a previous version, and continue on in a different
direction.

Similarly, normal software development frequently has multiple alternate threads of devel- 5
opment ongoing simultaneously; this is even more significant in prototyping. Evolutionary
prototyping effectively presents the challenge of multiple overlapping interdependent life-
cycles - for instance, one version of the prototype may be undergoing experimentation, U
while a second is about to be fielded for the next round of experimentation, while a third
is undergoing development. Multiple threads of development is also a significant feature
of prototyping because it is often important to carry several designs forward - to explorei
development of several possible designs (in actual or simulated concurrency), rather than
freezing design decisions too early.
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5.3.1 Activities

* Based on previous work done at S&RC, we have produced some reference documents.

* In an attempt to leverage activities with the POB project, we participated in a
O00DB sponsored CM workshop, and provided inputs on the CM model that they
proposed. Unfortunately, there has been no followup activity on OOODB CM, and
no significant progress to date.

e As an alternative, we have been attempting to get a copy of the Artifacts system from
software options. Scheduling and release problems have resulted in some delays, but
we are hopeful that we will be getting a copy soon.

e We have been investigating the possibility of using a layered file system strategy to
incorporate object oriented file system capabilities into PM tools to facilitate process
enactment with a minimal impact on existing user environments.

5.3.2 Approach

Although prototyping is tightly related to the larger effort which it supports (se Sec-
tion 5.4), a process with significant experimental intent needs very different change-man-
agement policies from a pure production-intent process. The production-intent process,
which is preparing a system for delivery to a customer, may have stringent requirements for
okaying changes, involving input from all the stakeholders; it may have rigorous qualifica-
tion requirements for promoting a version, etc. In a high experimental intent prototyping
process, the decision to make a change will typically be much lighter-weight, in the hands
of the prototypers, and guided by the deliberative nature of the process. The prototyping
process must have the appropriate disciplines for capturing the knowledge developed during
prototyping. The capture of the total evolution of engineering decisions is very significant in
a question-answering method like prototyping. Classical design record requirements (e.g.,
2167a) tend to assume pure production-intent processes (which may never exist); they spec-
ify that the design decisions at each level of abstraction must be recorded, but the tree of
false starts, unapplied discoveries, and fine-grained rationales is not captured

Our approach is to assume the existence of a higbly-configurable, lightweight CCM engine,
which cooperates strongly with a process management (PM) engine. The CCM engine
handles the complexities listed above. It captures the history of evolution of systems of
artifacts in a recoverable way, provides the building blocks for nestable long transactions,
and provides mechanisms for version-selection references using compatibility relationships.
The PM engine provides guidance, monitoring, assistance, and metrics-collection. The
process definition specify the appropriate CCM policies, which are implemeted by the
CCM and PM engines.

The CCM engine will rely on these PM engine capabilities:
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" Mechanisms to implement various flavors of change management policies and proce-
dures.

" Mechanisms to measure/monitor change processes and changing artifacts.

" Reified process state which provides knowledge of the intent of change events, to guide
change propagation.

Contrariwise, the PM engine needs these capabilities from the CCM engine: I
" The history of artifact evolution - status of artifacts, changes applied to them. 5
" Constructs for performing, manipulating, and reasoning about changes.

- Constructs for controlled cooperation among individuals and teams - long trans- 3
actions, workspaces, etc.

- A open change propagation interface for implementing policy.

- Mechanisms for evolving process definitions (artifact, agent, and activity tem-
plates).

- Constructs for dealing with evolution, concepts for dealing with change. To reify 5
process, one must reify change/evolution/history - one need terms representing
change (change as a first-class object).

We hope to acquire most of such a CCM engine, either COTS (commercial off-the-shelf) or
ROTS (research off-the-shelf), and use it in our experiments. Our definitions of prototyping
processes will include specifications of appropriate CCM policies. 5
5.3.3 Future Plans

We hope to acquire either a pre-release of the O00DB POB, or a copy of Artifacts to
enable more realistic experimentation with process enactment capabilities on top of a UNIX
platform. Our goal is to provide a tech transfer vehicle for our other technologies by either I
sliding underneath existing file system support, or integrating with existing CCM system
capabilities. We do not wish to expend large amounts of energy developing a full CCM
system ourselves, but we are finding it very time consuming to acquire the necessary support I
capabilities for or PM and LN work. We have not yet decided on a plan of action to resolve
this situation. 3
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5.4 Software Process Management

Process Management (PM) is the support and improvement of software engineering pro-
cesses through process definition, the use of a defined process to guide execution/enactment,
automated support for process monitoring and measuring, automated support for process
assistance/guidance, and the analysis of process metrics for project management and pro-
cess improvement.

To support prototyping in a megaprogramming environment, we believe a two-pronged PM
approach is needed. Part one is a set of tailorable prototyping process definitions which
provide methodologies for integrated experimentation, domain analysis, and architecture
development. Part two is an environment subsystem which provides assistance, guidance,
and metrics-collection to facilitate and coordinate cooperative work according to those pro-
totyping methodologies.

Prototyping is distinguished as a unique flavor of software development by its process. One
cannot tell whether someone is prototyping by observing what tools he/she is using; rather,
one must look at the process - in particular, the goals of that process. In prototyping
processes, a significant goal driving the development and exercising of the software is the
need to answer specific questions (experimental intent). We believe that the unique needs
of prototyping will not be satisfied by new tools but rather by process improvements (which
should be supported by tools!).

We have studied examples of prototyping within Honeywell, and available studies from other
companies. In particular we have focused on "prototyping-in-the-large", where prototyping
is used in the development of large long-lived real-world systems, typically involving multiple
teams. We have observed several recurring problems faced by prototyping-in-the-large,
which are candidates for process improvements:

Prototyping must be reasonably cheap and fast. As previously stated, development
of a prototype is not an end in itself, Prototyping efforts are elements of other efforts,
and have tight constraints on budgets and calendar time. Prototyping must occur
quickly, to find the needed answers before unacceptably delaying the larger effort.
Prototyping efforts are frequently difficult to scope, because they operate in areas
with many unknowns, which lack analytical question-answering methods. Further,
ongoing prototyping tasks may lose resources which get redirected to fight other fires
in the larger effort. Prototypes typically deal with situations where there are many
variables, but the state of the practice is that careful experimental design is underused
in software prototyping.

Prototypes evolve in complex ways. As previously stated (Section 5.3), prototypes
evolve rapidly and radically, with frequent backtracking, and with multiple threads of
development active concurrently.

The behavior of software systems is often too complex to analyze except through em-
pirical means. However, some organizations shun prototyping due to the difficulty of
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scoping and managing prototyping efforts, preferring to shoulder the risk f the un-
known design parameters that could have been revealed using prototyping techniques.
One curious effect of the difficulty of scoping and managing prototyping efforts is the
existence of "clandestine prototyping". Some organizations actually forbid prototyp- 3
ing because it cannot be accurately costed, and because their customer-mandated
CCM system is so ponderous that prototyping is simply infeasible; changes cannot be
performed rapidly - even changes to prototypes - since all changes must go through
the slow CCM system. In such organizations, clandestine prototyping occurs - pro- U
totyping is used, but under another name, without the support of tooling or process.

The question may be poorly posed. Frequently the question which is to be answered i
by a prototyping effort is poorly posed. This is particularly a problem when the team
posing the question (the development team) is distinct from the team answering it
(the prototyping team). Often .pecific sorts of information are desired, but inade-
quate effort is spent expressing these as the goal of the prototyping effort; the goal
is frequently expressed in terms of feasibility, leading to a million-dollar prototyping
effort which emits one bit of data as its result: "yes, it is feasible", "no, it isn't". I
The question statement may be too vague. It may not specify what kinds of infor-
mation the posers actually desire as answers. It may lack success criteria, so that
it impossible to judge when the effort is done and the answer should be used. It is
often necessary to evolve the question statement based on input from the prototypers
(and their initial exploration of the question), until it is properly posed. Poorly-posed
questions frequently result in answers that are difficult to integrate into the larger
effort and the product family's domain model.

The original question may be misplaced. Prototyping efforts are frequently working i
in less well-understood problem areas, where there are many unknowns, and the an-
swer to one question depends on answering a raft of other questions. The state of
the practice is that prototyping efforts often get off-track, concentrating on answering I
a derived or related question rather than the original question which prompted the
effort. 3

Choosing which derived questions to pursue. Answering one question depends on an-
swering others; further, in the process of answering a question one may discover other,
higher-priority questions previously unconsidered. Further, as noted above, the spec- I
ification of questions is often an iterative process - a question must be refined or
reposed to more accurately express the need. Thus a prototyping effort typically
deals with not one question but rather a growing network of questions that evolve 3
over time; typically there are more questions than there are resources to answer them.
Thus, the evolving network of questions and efforts to answer certain of them must be
carefully and dynamically managed. Resources (people, budget, calendar time, hard- U
ware, etc) must be allocated to the most pressing questions. Priorities will change
over time, as new questions are discovered and constraints inherited from the larger
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effort change; thus resources must be dynamically re-allocated. Prototyping processesI thus must be carefully guided, and must react nimbly to changing circumstances.

Associated knowledge may be lost. A prototyping effort frequently develops a consid-
erable body of relevant knowledge over and above the answer to the original question,
in the process of answering that question. The state of the practice is that this as-
sociated knowledge is often lost, and effort must be spent later to rediscover it. The
knowledge may be forgotten before the larger effort reaches the phase where that
knowledge is applicable; the prototypers and the developers may be different teams,
in which case the fact that that knowledge once existed may not be known to the

iai developers; the knowledge may be recorded, but in a form that is so difficult to locate
that the developers do a rediscovery effort anyway.

Resulting knowledge may be inadequately integrated back. At the end of one it-I eration of the canonical scientific method, the experimental results are related back to
the theory/model which prompted the hypothesis; by denying or tending to confirm
the hypothesis, the results enrich and extend the theory. This step is typically inade-I quately performed in software prototyping, particularly prototyping-in-the-large. The
results should be fed into a domain analysis activity which uses them to enrich the
evolving domain model. But the state of the practice is that the results are frequently
seen as relevant to only one issue in only one product; a decision is made on that issue,
the rationale is forgotten, and its relevance to the product family is not explored and
recorded.

The knowledge loss which often occurs due to these problems is particularly troubling in
a megaprogramming context, where the knowledge resulting from prototyping should be
contributing to an expanding domain model.

To address these problems, we are postulating prototyping process models (supported by
tooling) that are explicitly deliberative and that leverage MIF's ARL capabilities to incre-
mentally fix design decisions. This is described below.

5.4.1 Activities

In addition to foundational investigations of process description, enactment, and process
improvement, we also are involved in a number of other activities;

" We are working with the Boeing STARS effort to transfer process definition and
enactment technology. A report of the work can be found in [8]. In addition, we plan
to use this technology in our later prototyping process experiments.

" We have been active participants in the ProtoTech community Impact and Process
Working Groups. In particular, we have participated in the efforts to explore the
space of prototyping processes, since an understanding of prototyping processes is

fundamental to our strategy of improving the process of prototyping.
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" We have developed an "IBIS mode" utility under GNU Emacs; we have used it in two
tasks in a related contract to exercise our model of deliberation-driven prototyping
processes. The IBIS mode is used in an issue-resolution activity, which is the master
activity driving other prototyping activities which coroutine with it. We will be
producing a short paper describing the results of these experiments.

* We have been fostering Honeywell divisional activities to see how process technology
can be transferred to divisional sites. We have been working with divisional CCM U
and Software Process groups, and have started ongoing discussions both face-to-face

and via email with two other operating divisions.

" Finally, we have been investigating the difficulties involved in getting organizations
to adopt process technology by instigating a set of strategic vision discussions within
our own research group at S&RC (approximately 40 engineers). It is our perception 3
that without a focused, process-oriented, strategic vision, organizations do not have
the understanding nor motivation to adopt process technology. Since our role within
Honeywell is largely to do prototyping-in-the-large, we have a testbed for real-world I
experimentation with the development and attempted adoption of our proposed pro-
totyping processes. We have decided to attempt this locally first, to see what obstacles
are likely to arise before attempting it in one of our operating divisions.

" We have been carrying out several small-scale process enactment experiments on
UNIX, and atop DEC COHESION on VMS. 3

5.4.2 Approach 3
We believe that the recurring problems of prototyping-in-the-large can best be answered by
prototyping processes that are explicitly deliberative and that leverage MIF's ARL capa-
bilities to incrementally fix design decisions. Few process models for software development
recognize its deliberative nature; only in the last few years is it becoming more common to
admit that there is a degree of experimental intent in most software engineering processes.
The long recognition of production intent has led to process components aimed at ensuring
that the "ilities" required by production intent are produced - reliability, usability, etc. The
recognition of experimental intent present (in varying degrees) in software engineering pro-
cesses must lead to process components which are aimed at ensuing the well-structuredness
of the experiments, the capture of the results, and the integration of the results to enrich
the domain model. 3
The management and guidance of a process with significant experimental intent Will lever-
age the reified deliberation structures. The process will be guided - at least in part - in
terms of questions being answered and derived questions being developed and chosen for
investigation. This contrasts with a purely production-intent process, where guidance is
be in terms of the requirements placed on the system under construction (the prototype)
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by the final delivery context. An evolutionary prototyping process combines both sets of
concerns.

In most existing software process models, the core artifacts are the specifications of the
software product - requirements, design, code, test plans, etc. But the evolution of these
artifacts occurs embedded in a web of deliberations; prototyping is used as one question-
answering (issue-resolving) method in these deliberations. Reifying the deliberations pro-
vides the appropriate handles for monitoring and managing the prototyping process, and
relates the development of individual products to the evolving domain theory of the product
family.

In our vision, definitions of deliberative prototyping processes will provide the guidance for
properly conducting prototyping experimentation and for integrating the resulting knowl-
edge into the product family's domain model. The structures and tools of ESP will be
fundamental components of these processes:

e MIF's component packaging capabilities will provide the breadboard for ESP, meet-
ing the need for prototyping to be reasonably cheap and fast by moving toward a
megaprogramming paradigm, where prototypes are constructed by assembling com-
ponents rather than by writing code.

e MIF's ARL capabilities will provide the ability to incremental fix parts of a design
- the architecture is used to record commitments, to capture the resolution of issues
/ answering of questions. The relationships between partially-determined versions of
a design and the network of deliberations records the rationale for the architectural
decisions made, and supports later evolution.

I The Lab Notebook will provide the structures to reify the deliberative process as a
structured network of semi-formal text. As previously mentioned, we view prototyping
as a question-answering activity; in ESP the Lab Notebook will provide the delibera-
tive structures that support question refinement, development of an answer strategy,
recording of an answer derivation (including alternatives considered and rejected),
answer interpretation, and answer refinement.

e A sophisticated underlying CCM engine - providing highly configurable, agile, light-
weight CCM - will support the rapid and radical evolution of prototypes, their mul-
tiple lines of development (carrying multiple designs forward), and the frequent back-
tracking. 'he CCM engine likewise will support the growing, evolving graph of de-
liberations which is tightly interwoven with the graph which is the evolution of the
prototype. Agile CCM is particularly necessary for evolutionary prototyping-in-the-
large, with it multiple interdependent overlapping lifecycles.

5 A sophisticated underlying process management (PM) engine wm provide guidance,
monitoring, assistance, and metrics-capture as the processes are carried out. The
structure of the LN directly reflects a process for question answering; process man-
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agement guides these deliberations, via deliberation-driven prototyping process defini-
tions informing a PM engine. PM is particularly important at the meta-control level,
for switching between interrogative modes. Thus both simple guidance (based on
defined processes for experimentation and deliberation) is helpful, as well as reactive
guidance based on monitoring and measurement of the prototyping process.

Megaprogramming requires consistent and long term investment in a particular domain.
Without adequate supporting information, it is difficult to maintain funding support, or to
improve the development process. The continued application of prototyping to megapro-
gramming will require both these metrics, and the traceability support from CCM. When
domains are on the "ad hoc" side of the domain maturity spectrum, there will be a larger I
number of unknowns, and consequently a much larger number of variables in the problem
solving process. Tools will be needed to track the large number of open issues, and aid in
systematic resolution procedures. Codification of this procedure should permit leveraged
application of similar problem solving mechanisms to different domains.

Given the experimental nature of the proposed problem-resolution strategy, it is important
to make sure that the experimental artifacts and apparatus is consistently recorded so
that the necessary metrics can be acquired. When the problem resolution methods are
appropriately codified, the "process specification" will be the basis for automation and 3
assistance.

PM and CCM are critical support technologies to the long term success of megaprogramming
in general, as well as to the effective use of prototyping as a question-answering method I
within megaprogramming.

We have developed a specific characterization of the ways prototyping processes could be
used within a megaprogramming-based development. We have been discussing these ideas I
both internally, and with the ProtoTech Impact working group. The results are encouraging,
but preliminary. A sketch of our current notes can be found in Appendix A. 3
5.4.3 Future Plans

Future plans include the following:

9 Produce a document that records initial insights from use of deliberation-bind proto. I
typing on the two tasks in another contract. Continue to experiment with deliberation-
based prototyping process models on SRC projects. (It wm probably be necessary to
move beyond the quick-and-dirty IBIS mode to more powerful support for delibera- I
tion, possibly COTS or ROTS; the deliberation facility must be integrated in some
way with the PM engine being produced for STARS.)

* Continue interaction with divisional Software Process and CCM people, to validate
our insights against their experiences.
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. Continue exploration of the space of prototyping processes in the Impact WorkingIGroup. Continue to mutually share insights about process support infrastructure
with the Process Working Group.
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5.5 Relationships g
5.5.1 Megaprogramming and ...

... MIF From one perspective, megaprogramming is simply a new word for an old idea, 3
software reuse. However, software reuse has mostly failed to yield the expected benefits
forcing software engineering practitioners and theoreticians to rethink software reuse issues.
From this perspective, megaprogramming can be viewed as a refinement of software reuse: I
a broad class of reuse methodologies based on techniques that facilitate programming at
the software component level rather than programming language statement level.

Megaprogramming requires a software engineering paradigm shift. Historically, software I
engineering has largely been viewed as a task of specifying a system's behavior, a line at
a time using a programming language. Megaprogramming requires a systems engineering
approach, in which systems engineers (megaprogrammers) specify a system's structure in
architectural terms and its behavior in terms of component selection rules. Software engi-
neering, in the megaprogramming paradigm, can be viewed as the application of software 3
engineering principles to construction of reusable software components, as opposed to just
software systems.

The result of the paradigm shift to megaprogramming is that both software architectures 1
and components become reusable patterns in the development of software systems. The
elements of a software architecture model define standard infrastructure for interconnecting
and composing components and standard component interfaces. Software architectures 3
become first class objects that can be reasoned about and analyzed separately from the
actual components that comprise a system. As explicit objects, software architectures form
a natural framework for automatically generating and synthesizing a system from a set of
software components.

The current wisdom on software reuse suggests that reuse methods are most successful
when applied to specific or narrow domains. For megaprogramming, this implies that the U
notion of software architectures must also be domain specific. The DARPA DSSA program
reflects this understanding. While the elements of an architecture model may be unique
per application domain, there exist underlying concepts that are common to all software
architecture models. ProtoTech MIF research addresses the common elements of domain
specific architecture models.

... LN To a large degree, effective megaprogramming relies on a deep understanding
of the principles underlying a given domain and the codification of those principles in an I
appropriate form (i.e., a domain model). Domain analysis is an evolutionary process of
identifying and organizing a domain model for a particular domain with the purpose of
making that information reusable. The results of prototyping activities are one source I
of input to domain analysis. That is, as new aspects of a domain are prototyped, the
results help to uncover now domain-specific information which is then used to fhu out an
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appropriate domain model.

In this context, the LN primarily serves as a communication link between the prototyper
and the domain analyst. The LN conveys an understanding of the prototyping activity by
including a description of the particular question under consideration, the context within
which the question was asked, the methods used to produce a result, alternatives consid-
ered, and rationale for why particular alternatives were accepted or rejected. This type
of information is valuable input to a domain analyst who is tasked with identifying and
organizing the common principles underlying a given domain.

... CCM CCM is a crucial support technology for megaprogramming. Megaprogram-
ming is characterized by long-term evolution of large systems, and heavy reuse of artifacts
between threads of development. In megaprogramming, complex webs of artifacts are be-
ing evolved over a very long-term period of time. Multiple threads of development are
ongoing, and backtracking occurs. Components and architectures produced in one thread
- and still evolving there - are used in other threads, which are also evolving over time.
The domain theory and the deliberations linking it to the software artifacts are similarly
evolving in complex ways. There are complex derivation, equivalence, and compatibility
relationships among all of these to be tracked. Support for version-generic references and
version-selection rules, to define abstract configurations, is key for specifying architecture
in the context of continuous evolution.

The CCM support for megaprogramming must be configurable, lightweight and agile, and
capable of handling complex networks of fine-grained artifacts with complex internal struc-
ture.

... PM The efficient and effective development and utilization of product families will
depend on a focus on quality and on continuous process improvement[4, 16]. We are investi-
gating the specific PM needs of megaprogramming. Our results ae very preliminary at this
time. While the development of process models and process definitions for megaprogram-
ming will be important, our focus will continue to be on developing models and definitions
for prototyping processes occurring in the context of megaprogramming. Similarly, we will
focus on enactment support for prototyping. The overall context that we are assuming for
megaprogramming is described in [9).

5.5.2 Prototyping and ...

... MIF The Honeywell ProtoTech team is exploring the relationship between proto-
typing ar d megaprogramming processes. We see several potential benefits of applying MIF
technology to prototyping. First, we envision architecture prototyping as a means of im-
proving the requirements and design phases of software development. If during them phases
of software development, the system's architecture can be rapidly assembled and analyzed,
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it would provide the customer an opportunity to map the system's requirements to a tangi-
ble model of the desired system and judge the consistency of the developer's and customer's I
understanding of the requirements.

Second, applying MIF technology to software experimentation holds potential for reducing
the cost and time required for creating executable prototypes. The behavior of software
systems is often too complex to analyze except through empirical means. However, soft-
ware developers often shun prototyping due to schedule and resource constraints preferring
to shoulder the risk of the unknown design parameters that could have been revealed us-
ing prototyping techniques. MIF-based tools for specifying architectures and components,
component selection, code generation and synthesis should simplify and accelerate software
experimentation.

... LN As an experimental activity, we view prototyping as essentially a question an- 3
swering activity. That is, individuals resort to prototyping when they have a question they
cannot answer via other means (e.g., reference, simulation, analysis, etc.). The LN provides
a prescriptive structure for guiding this process and recording the results. In particular, S
the LN supports question refinement, development of an answer strategy, recording of an
answer derivation (including alternatives considered and rejected), answer interpretation,
and answer refinement. Emphasis is placed on capturing the rationale for decisions made I
during this process. This structure helps ensure that the question is answered appropriately
and that the results are communicated back to the question asker in an effective manner. i

... CCM Prototyping has strenuous change management needs. Prototype systems
evolve rapidly, to return the answer in a timely fashion (under time and resource con-
straints), to react expeditiously to the growth of the graph of questions and derived ques- 
tions, and to backtrack in response to the failure of lines of investigation. In addition,
multiple threads of development are typically going on concurrently. CCM will be a crucial
support technology for prototyping.

... PM Prototyping processes have subtly different goals and drivers from purely pro- 3
duction-intent development processes, and operate under tight time and resource con-
straints. Thus careful guidance of the process, with nimble reactions to changing circum.
stances, are crucial. Prototyping must occur rapidly; the situation typically changes rapidly, I
as answers are accumulated, derived questions are uncovered, and the needs of the broader
development process change. Monitoring and guidance of the prototyping process is thus
crucial, including tracking of resources expended, allocation of priorities to the nodes in the I
graph of questions, and feedback from process measures. Prototyping plays a variety of roles
during the various stages of system development, and plays different roles depending oan the
maturity of the application domain. There are thus a variety of prototyping processes; we I
are participating in an exploration of the space of prototypig processes, to characteris
commonalities and determine the key needs of prototyping.
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5.5.3 LN and ...

... CCM Given that prototyping is an experimental question answering activity, one
expects that prototypers will frequently explore multiple paths, possibly due to a risk reduc-
tion strategy or due to encountering deadends. In the process of exploring alternatives, the
LN must manage the results of the prototyping process which are captured as a complex,
evolving network of interrelated artifacts such as questions, hypotheses, goals, assumptions,
deliberations, decisions, designs, experimental apparatus, and experiment results. In this
context, an answer, recorded as a LN entry, consists of a set of configurations where each
configuration represents an alternative line of thought leading to a partial or complete an-
swer to a given question. That is, an answer is really a set of potential answers each of
which is represented as a configuration of "the answer". The LN will rely heavily on CCM
capabilities to manage these artifacts.

... PM As previously mentioned, we view prototyping as a question answering activity
in which the LN supports question refinement, development of an answer strategy, recording
of an answer derivation (including alternatives considered and rejected), answer interpreta-
tion, and answer refinement. That is, the structure of the LN directly reflects a process for
question answering. The PM guides these deliberations. PM is particularly important at
the meta-control level, for switching between interrogative modes. Thus both simple guid-
ance (based on defined processes for experimentation and deliberation) is helpful, as well
as reactive guidance based on monitoring and measurement of the prototyping process.

5.5.4 CCM and PM

CCM and PM have complementary concerns. CCM is primarily concerned with character-
istics of the product - specifically, with ensuring the consistency of the product. PM is
primarily concerned with characteristics of the process - specifically, with the consistency,
results, and variability of the process.

CCM and Process Management (PM) are quite interdependent; see Section 5.3.
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6 Summary 1

The DARPA ProtoTech program consists of a community of academic and industrial teams, 3
whose collective goal is to identify and develop supporting technologies for prototyping
processes within a megaprogramming-based software engineering lifecycle.

This report presents Honeywell's view of software prototyping as an experimental process
whose results drive the evolution of a domain theory, the principles governing the engineering I
of software within a particular application area (e.g., avionics flight management systems
or cockpit simulators).

Current software engineering methods and tools provide inadequate support for prototyping.
System specification methods focus on modeling "what" the system is intended to do in
terms of a requirements model and "how" the system implements the requirements in terms I
of an architecture model. No current system specification techniques include formal methods
for organizing the rationale for the system's requirements and architecture (i.e., "why" the
system requirements and architecture are organized as they are.). Design rationale is an i
essential part of the results generated from a prototyping experiment.

Architectural specifications are also a critical aspect of an evolving domain theory. A
system's architecture represents a set of design decisions in which the requirements have
been packaged to achieve the desired system behavior. Prototypes are often built to answer
questions based on incomplete sets of requirements or a lack of understanding of the available
technology for implementing the requirements. The result of such prototyping is a reined
or extended set of requirements and a set of architectural considerations. Current design
methodologies provide little or no support for expressing or evolving architectural concerns.

Prototyping processes are inherently experimental in nature. System development processes

from which prototyping processes are usually spawned must be rigid and well-controlled.
The need exists for an integrated model of these two types of processes to control flow of
information between the two.

The Environment for Software Prototyping (ESP), a prototyping environment model, is
used to evaluate mechanisms to address these problems. The ESP model consists of a U
component shelf, a repository for architectures, components and implementations, and the

workbench, a workspace for conducting prototyping experiments.

Within the ESP framework, standard engineering methods and models are extended to I
address requirements unique to prototyping experiments.

The Lab Notebook is a structured deliberation support tool for guiding and capturing
deliberations which occur during prototyping processes. The methodology it supports ad-
dresses the problem of recording design rationale and integrating such information with the
requirements and architecture models. 3
The architecture representation language (ARL) provides the prototyper a notation for
describing the structure of experiments and generating and evaluating executable repr=.I
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tations on a breadboard, the software bus.

The process manager is loaded with a model of the chosen prototyping process and guides
the experiment, ensuring completeness and consistency of the software artifacts. The pro-
cess engine also supports transition of information between the system development and
prototyping process models.

ESP is being used to evaluate the efficacy of these technologies. System development pro-
cesses and design methodologies used in an avionics systems development environment are
being modeled and adapted to test the effectiveness of these solutions to the problems
sighted.
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A PM notes on Experimental vs. Production Intent

A sketch of how experimental intent can be used as a distinguishing factor in characteriz-
ing prototyping processes. This is part of an ongoing discussion in the ProtoTech Impact
working group. It is, in part, a response to presentations from Dennis Heimbigner (U Col-
orado), Bill Carlson (Intermetrics), and Leon Osterweil (UC Irvine) made at the Winter '92
ProtoTech community meeting. 3

Elaborated thoughts on the characteristics of prototyping processes. The 3
handles are: consider prototyping's goals; consider the constraints on

prototyping processes. 1

o Definition of prototyping: (proposed new definition)

Construction of and experimentation with a model of a software system to
answer questions about the system's application domain (problem domain

and/or solution space).

o Model: shares some characteristics with the deliverable system. May
*be* the deliverable system itself -- e.g., in the case of an

evolutionary prototype. I
o Construction: this is a no-op if the prototype already exists.
o Experimentation -- does prototyping *necessarily* involve the
execution of the model and use of results? Probably so. I

o Problem domain and/or solution space -- the prototyping may be
exposing properties of a proposed system, or learning about the

domain / problem space that system addresses. It may be difficult or
impossible to tease apart the problem domain and the solution space
(e.g., in ''wicked'' problems.)

o One dimension for characterizing prototyping processes: degree of
interrogative intent.

1100% --------------- 0% production intent
10%---------------- 100%1I experimental intent

I \_ I

I \_. experimental l 1
I \. intent proportion
Iproduction I of intent
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I intent \__ I I

I\.. ... .... ..
-------------------------....

I--------------- I
tends to be used

in well-understood
domain

I -------------- I
tends to be used

in not well-understood
domain, or 'wicked' problem

(C) (2) (3)
Consider three example processes, plotted along the I-axis --

- process (1) is producing a precedented system.
- process (2) is an "evolutionary" prototype -- the plan is to

deliver the system under construction, but also use it as a
learning vehicle, via iterative development.

- process (3) is a "throwaway" prototyping -- the plan is to discard
the system under construction (or most of it).

o Production Intent: intend to deliver the system to customers.
o Building the system for customers to use it.
o Deliver to customer: the system.
o Important system characteristics: robustness, usability,
maintainability, documented.

o Need: coding standards, documentation standards, relatively
tight controls on changes.

o Interrogative Intent: intend to use the system to answer questions.
o Building the system to learn something before coit ent.
o Deliver to customer: an answer, and its associated knowledge.
o Important system characteristics: quick to construct.

estimable cost, answers the question, captures the associated
knowledge, reduces costs/risks of development.

o Need: scientific method support, ERC/comunication support
(deliberative), quick-construction support, instrmtation
support, loose controls on changes.
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o Mixed Intent: intend to answer questions, and to deliver it.
o Building system to deliver, but also using it as a platform

for learning something before commitment -- typically
iteratively.

o Deliver to customer: the system; capture the
answers/decisions and associated knowledge, too.

o Important system characteristics: same as production intent.
plus: support for periodic restructuring, captures the associated I
knowledge, reduces costs/risks of development, evolvability,
well-architected.

o Need: refinement languages? separate functionality from
optimization? lightweight CCM?

o Note that the proportion of intent of a process may change over time!. I
I will often start an effort over near the high-experimental-intent
end, and move toward the high-production-intent end as we progress
through the lifecycle.

o Note that a process may be at one place on the scale, but one of its
subprocesses may be at another! I

o For instance, a large process with high production intent may
have a subprocess (dealing with one subassembly) that has
mixed intent; and it may apply several small throwaway 1
prototypes to resolve certain issues (subroutine-calls to
high-experimental-intent subprocesses).

o So to say that process P is at point N on the scale doesn't mean
that its subprocesses P.Q, P.R are necessarily at that point, nor
that the process which P is a part of is at that point

on the scale.

o Note that I may choose to use an evolutionary strategy at any point
along the intent dimension! I
o If I am doing a throwaway (don't intend to every give to
customers), but intend to use it repeatedly over a long period, I
may design my throwaway for evolvability, and evolve it over a I
long period before chucking it.

o If I am doing a purely production-intent effort, I may choose to
apply an incremental development strategy -- design for I
evolvability, gradually add functionality over time -- motivated
by early testability, easier maintainability, etc.

o And of course if I am doing a mixed-intent prototype, I will want
some form of evolutionary strategy.

I
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o Note that ''pure experimental-intent'' and ''pure production-intent''
processes hardly ever occur!
o Pure production-intent processes get replaced by application
generators. If my design problem has *no* questions that need
empirical evidence to resolve, then if I must do this sort of
system often enough I'll write an application generator which
''cans'' the process.

o Pure experimental-intent processes probably only occur in
Clueless Prototyping (see below), at the ''immature'' end of the
Domain maturity model; in most other cases, I have some hope that
part of the spec, design, or code will be used in a product
later.

o Most software engineering processes are thus a mix.
Thus protototyping support (appropriate when you have
experimental intent) will be widely applicable.

o One dimension for characterizing prototyping processes: relation to3 domain model.

I p~ototype How do these three things
interrelate, for the given

m DELIVERABLE prototyping process?
SYSTEM

Domain
mModel

----------------------- I
Three categories of prototyping processes:

o Clueless Prototyping. I don't have a domain model at all. I am
exploring the domain to try to create an initial model.

o Getting a seat-of-the-pants impression.
o In the why-won't-the-car-start example, this is the strategy

which is (initially) appropriate for someone who's never even
opened the hood before. Poke around, try things randomly, think
about what happens.

o (This example is a debugging rather than a construction
example -- it's weak in that way.)

o I may be prototyping to formulate the problem rather than to
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find the solution -- in that case, it's likely that the
requirements and specification won't be known until the
system is pretty far along.

o This occurs more frequently at the 'Concept Definition /
Feasibility Analysis' far-front-end of the lifecycle.

o Needs: deliberation support (argumentative process is
appropriate, since I have no way to judge right/wrong, yet).

" Trial-and-Error Prototyping. I have a domain model, and I think I
have an idea about the answer, and I am checking it out.

o E.G., many "feasibility prototypes".
o In the why-won't-the-car-start example, this could be "I know

it's the fuel or the air or the fire, hum, let's check the
fire ... I

o This is undisciplined, when compared with Scientific
Prototyping. 3
o It is reasonable to do this if (a) I am pretty darn sure

of my supposed answer; (b) the cost of prototyping is
reasonably cheap.

o This is used toofrequently_. I am neither (1) carefully
guiding my steps (and recording them) according to the domain
model, nor am I (2) carefully relating my discoveries back to
the domain model, to enhance it. I.E., I am being sloppy.

o Scientific Prototyping. I have a domain model, and I am doing
disciplined hypothesis-testing with it.
o I may be doing the scientific method for one of two reasons:

o 1. I am using SM to develop/extend/validate a theory/model.
I am enhancing the domain model, learning more about the
general.
o E.G., in the why-won't-the-car-start example, I am

improving my domain model by testing if there are
other reasons why a car may not start.

o This is ''science'', as opposed to "mature engineering".
o My model need not be too good, but given an initial
model -- e.g. from Clueless Prototyping -- I can use
SM to enhance it (bootstrapping).

o 2. Alternately, I am using SM to answer a question / solve a
problem about a specific situation -- learning more about
the specific.

o E.G., in the why-on't-the-car-start example, I mI
carefully generating hypotheses as to why this car

I
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won't start, I am testing them out and using the
(recorded) results to guide the generation of new
hypotheses (pruning the tree of possibilities).

o This is engineering, as opposed to science.
o I am systematically leveraging the domain model to

attack the current problem.
o Needs: scientific method support -- experimental design,
focusing, support for integrating results back into domain model.
o Note that a different set of deliberative structures may be

appropriate for Scientific Prototyping versus Clueless
Prototyping. Specifically, the rule for selecting a position
as a winner is different. In Clueless Prototyping, I have an
unconstrained/unstructured problem, and I need argumentation,
and must use judgment as the selection rule. In Scientific
Prototyping, I use hypothesis testing as the selection rule
-- I use the experimental results to confirm or refute the
position.

o This relates to the Domain Maturity Model. Clueless Prototyping is
appropriate in immature domains, which lack domain models. As the
domain matures, Scientific Prototyping (and Trial-and-Error
Prototyping) become applicable and appropriate. To move toward
maturity, and away from ad-hoc, Scientific Prototyping is a key tool.

o We need to explore how both the "intent'' dimension and the
''relation to domain model'' dimension relate to the global structure
of the prototyping process (coroutine, call/return, etc).

o Experimental intent: question goes one way, answer comes back.

Production intent: spec goes one way ("build this"), system
comes back (''here it is'').

o Prototyping as Question-Answering. Prototyping is a question-answering
procedure. We may conceive of a generic question-answering routine

procedure answerQuestion (q) is
case type-of(q) ...

alreadyKnowAnswer

lookltUp

askSomeone
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cluelessPrototyping

trialAndErrorPrototyping

scientificPrototyping

o An interesting issue is the meta-control level: when do I switch

from one question-answering strategy to another?

o If I ask N people and no one knows, I don't keep doing that.
o At some point it becomes unreasonable to keep doing

cluelessPrototyping -- my model is good enough to switch
to scientificPrototyping.

o At some point it becomes unreasonable to keep doing
trialAndErrorPrototyping -- I'm getting nowhere, it's time to
bring in the big guns.

H
I
I
I
I
I
I
I
I
I
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