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INTRODUCTION

The theory of self-organized criticality (SOC) introduced by Bak, Tang, and Wiesenfeld (ref 1)
(BTW) provides a description of the dynamics of spatially extended dissipative systems. The principal
conclusion of BTW is that dissipative dynamical systems tend to organize themselves into a critical state
where chain reactions of a/ sizes in time and space propagate through the system.

The absence of characteristic length and time scales in the self-organized critical state of large
dissipative dynamical systems has important consequences: fractal structure and a "l/f noise power spectral
density. Thus, SOC provides a unified, coherent explanation for the routine observation of 1If noise and
fractal structure in nature. A collateral consequence of SOC is power-law dependencies of numbers of
occurrences on energies released, chain-reaction lifetimes, and cluster sizes.

A subsequent paper by Jensen, Christensen, and Fogedby (ref 2) (JCF) clarified the underlying
ideas in BTW and made explicit the important connection between the power-law dependencies and the
power spectral densities suggested by BTW. Kadanoff, Nagel, Wu, and Zhou (ref 3) extended the theory
to apply to SOC phenomena occurring in systems of (spatially) finite extent.

SOC has been the focus for many recent investigations. For example, computer simulations and
laboratory experiments on sandpile dynamics (ref 4), coarsening of cellular magnetic domain patterns in
garnet films (ref 5), and models of domain pattern development on magnetic tape (ref 6) show
"fingerprints" of SOC. The most spectacular example of the power law characteristic of SOC is the
Gutenberg-Richter law for the distribution of earthquake magnitudes (ref 7).

The physics of the Barkhausen effect make it a good candidate for description in terms of self-
organized criticality. The magnetic characteristics of a ferromagnet are determined by its magnetic domain
distribution and the response of these domains to applied magnetic fields. For small fields, the kinetic
barriers permit only small, reversible, domain-wall changes and the system remains magnetically elastic.
As the applied field increases and approaches the magnitude of the coercive force, the specimen
magnetization increases very rapidly and th,. response is characterized by large and irreversible domain-
wall jumps along with magnetization rotations within domains. At saturation, the entire specimen is
magnetized in the direction of the applied field. The intermittent changes in magnetization that
characterize the Barkhausen effect are detected as voltage pulses in a pickup coil near the specimen. The
stochastic nature of the domain responses arises from the complicated character of local fields, internal
stresses, and bulk and surface defects. Barkhausen rearrangements tend to occur as clusters of domain-
wall jumps comprising a chain reaction initiating at a single domain. Thus, many characteristic features of
the vertical portion of a magnetic hysteresis loop are similar to those seen in model simulations of the self-
organized critical state.

Support for this description may be found in the Barkhausen-effect literature. The coarsening of
cellular magnetic domains in garnet films (ref 5), which has been interpreted in terms of SOC, can be
viewed as a special case of more general Barkhausen phenomena. Furthermore, spectrum analyses of
Barkhausen noise generally show 1/f dependence that is thought to be a key indicator of SOC. (Various
alternative explanations (ref 8) for this behavior have been presented.) The present study is directed at
examining the fingerprints of SOC in the Barkhausen effect in a ferromagnetic metallic glass and tests
whether a consistent description of the phenomena is possible in the light of References 1-3.



EXPERIMENTAL DETAILS

Ferromagnetic amorphous alloys are well suited to a search for SOC in Barkhausen noise: The
high resistivity of amorphous phases significantly lowers eddy-current damping of domain-wail motion.
Hysteresis loops are rectangular, so that Barkhausen noise originates in regions of essentially constant,
high permeability. Furthermore, their coercive force is small (-0.1 Qe), so that samples may be cycled
through the hysteresis loop with small external fields.

The particular alloy selected for study was Metglas 2605S-2 ribbon supplied by Allied-Signal,
which has the additional advantage that its domain structures have been described by Livingston and
Morris (ref 9). The domains are distributed as a fine network of complex patterns in unmagnetized
specimens in the as-cast state, while the domains can be large (of the order of sample dimensions)
following annealing.

Barkhausen data were obtained from as-cast and annealed samples. The magnetic annealing
involved heating to 400°C and immediately cooling at rates of 25°C/min in a field of 120 Oe. Sample
widths were 5 mm for as-cast specimens and 1 mm for annealed samples; lengths ranged from 2 to 4 cm;
the thickness was nominally 25 I~m but varied by 30 percent, due to nonuniformities in the casting process.
Narrower specimens were employed to compensate for the smaller amplitude of Barkhausen pulses, which
is a consequence of permeability and eddy-current-damping effects in magnetically annealed alloys.

A 300-turn pickup coil was wrapped closely around the central region of the ribbons. A Pacific
Instruments preamplifier was used with a factor-of- 1000 amplification. The driving field for the as-cast
specimen was provided by a rotating permanent magnet in the proximity of the specimen. For the
annealed case, the specimen and its pickup coil were placed inside an air-core solenoid with the long axis
of the specimen aligned parallel to the alternating field. There was no detectable difference in pulse trains
with the two methods. The field was varied slowly (1 Oe/sec) to maintain separation of individual
Barkhausen events. Trains of Barkhausen pulses were recorded in a random fashion on a Nicolet digital
storage scope from which the time duration and integrated areas of individual events were obtained.

RESULTS

Barkhausen noise pulses, typical of those obtained in the present study, are shown in Figure 1.
The pulses are generally comprised of a chain of individual events manifested as multiple peaks within a
pulse. The observed pulse shapes differ from the rectangular forms assumed in the JCF analysis; however,
the associated single-pulse autocorrelation functions may be reasonably approximated by the triangular
JCF autocorrelation function shape. There is clear separation of the major pulses. Pulse durations and
areas were obtained from random selections of typically 5-ms trains of such pulses; direct measures of the
power spectral density were obtained from typically 40-ms trains of such pulses.

Large errors are inherent in the measurement of the distribution of lifetimes for low-intensity,
short-duration pulses, since the large number of small pulses eventually blend into a low-level background
noise. Thus, pulses having lifetimes T less than 50 gis were not included in the present analysis.
Employing this criterion, a maximum of 2763 (1324) pulses were selected for analysis in the as-cast
(magnetically annealed) samples. The data were organized into 20-bin linearly spaced histograms. We
varied the minimum T between 50 and 90 ps in order to provide an estimate of the uncertainties in the
deduced fitting parameters. The occupation of the bin centered at T is denoted N(T). The intrinsic
distribution of lifetimes P(T) in the Barkhausen noise is assumed to be proportional to the measured
N(T).
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Employing the Nelder-Mead downhill simplex algorithm (ref 10) to minimize the square

deviations in N(T), the data were fit to the form

P(M) oTexp (-TlIT.) (1)

and N(T) -P(T)
where a and T, are constants. As the minimum T was varied between 50 and 90 pts, the fit parameter a
varied between -1.83 and -2.61 (-1.98 and -2.60) and T, varied between 351 and 1274 ps (420 and 1074 ps)
in the as-cast (annealed) samples. (For a few values of the minimum T, best fits were pure power-law
forms with a - 3.0; these values were not included above or in the determinations of mean values, etc.)
The parameters were strongly correlated (larger magnitude of a occurring with larger T.) and
a = -2.26 t 0.35 (-2.37 -- 0.30), <To> = exp[mean{ln(T0 )}J = 844 Ips (730 ps) in as-cast (annealed)
samples. A typical plot of N(T) versus T and the fit curve are shown in Figure 2.

The form in Eq. (1) is compatible with the JCF analysis. A physical interpretation for the
exponential term with constant T. can be found in the finite-size scaling discussion of Kadanoff, Nagel,
Wu, and Zhou (ref 3). The parameter To, which is of the order of the maximum pulse length observed for
a given specimen, may be interpreted in terms of the size-effect SOC model. The agreement of the
parameters in the as-cast and narrower annealed specimens indicates that the size effect is determined by
defect distributions rather than by macroscopic physical boundaries as in sandpile experiments (ref 4) and
simulations (refs 1,3).

In order to compute the distribution of weighted lifetimes, G(T), as defined by JCF, it is necessary
to determine the joint probability of pulses of lifetime T and areaA P(AT), which can be expanded in the
form P(A, T) = P(T) P(A I T), where P(A I T) is the conditional probability for a pulse of lifetime T to
have area A. Figure 3 is a log-log plot of pulse area A versus lifetime T for a "random" selection of pulses
of various lifetimes for the as-cast sample. Similar plots were obtained for annealed specimens. In
principle, such data could be used to precisely determine the conditional probability P(A I T); however, to
compute the parameters in the JCF expression for G(7), we take P(A I T) - S(A - A, 7?) with g = 1.45
(1.34) for the as-cast (annealed) case from least squares fitting to

A(T) -T9 (2)

The distribution of weighted lifetimes G(T), as defined by JCF, is then determined as follows:

* -t

G(T=fdAP (AT) [A/T]2=P(T)fdAP(AI17 [A/2] 2  (3)
0 0-P (T) T 2 (-1) -N( T) T 2 (-1) -T 2 (-1) exp (T/IT O) .

The parameters a and T. in the JCF expression,

G(7) -Texp (-T/TO) (4)

can then be evaluated, yielding ai = 2 (g - 1) + a - -1.59 (-1.46) for the as-cast (annealed) case.
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According to the JCF analysis, the parameters a and T, in G() determine the form of the power

spectral density:

S(f)o(1/f)' for f > 1/T o  (5a)

where
E = 3 + a for a < -1,

= 2 for a Z -1,

and

S(f) = constant for f < lIT,. (5b)

Hence, the JCF analysis yields a 1/f noise spectrum, modified by finite-size effects (ref 3), with E = 1.41
(1.54), with transition to f-independent form below 1185 Hz (1370 Hz) for the as-cast (annealed) samples.

We can also determine S(f) directly from autocorrelation functions measured for trains of
Barkhausen pulses. Figure 4 is a log-log plot of the power spectral density So, obtained by Fourier
transformation of the autocorrelation function (Nyquist theorem) determined directly (from the digitized
output) from a train of about 40 ms, versus frequencyf for an annealed sample. The jagged curve
includes every tenth point of twn-point-running averaged data. The data are averaged to smooth out the
large fluctuations that characterize discrete numeric Fourier transforms of such data.

Least-squares fitting of the data in Figure 4 to the form in Eq. (5) for f > 2 kHz yields E = 1.244.
The data in Figure 4 become frequency independent below about 1,000 Hz; similar data were obtained for
an as-cast specimen. Results for fifteen least-squares fits for minimumf ranging from 1 to 20 kHz yielded
E = 1.11 -- 0.05 (1.26 - 0.07) for as-cast (annealed) specimens.

Some specimens exhibited several large pulses which were closely related to the magnitude of the
external field rather than randomly distributed as expected in SOC. Examination of domain-walt motion
in these specimens using the Bitter powder method with a ferrofluid showed corresponding repetitive
domain jumps adjacent to cut edges. We believe that these pulses are produced by the breaking free of
strongly pinned domains and are not representative of the bulk of domain jumps.

CONCLUSIONS

The Barkhausen effect in magnetically annealed and as-cast specimens of Metglas 2605S-2 ribbon
exhibits all the attributes of SOC behavior enumerated by Bak, Tang, and Wiesenfeld (ref 1): The
weighted distribution of discrete Barkhausen pulse lifetimes follows a power-law distribution, modified to
account for finite-size effects as suggested by Kadanoff, Nagel, Wu, and Zhou (ref 3). The directly
measured power spectral density has the form of flicker noise, with exponent and form consistent with
those to be expected from the weighted distribution of pulse lifetimes in the light of the work of Jensen,
Christensen, and Fogedby (ref 2).
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Figure I. Typical Barkhausen pulses observed in a 5-mm-wide as-cast ribbon of Metglas 2605S-2.
There are three relatively large events comprised of clusters of pulses which are well
separated by many smaller events. The small pulses can be difficult to distinguish
from the background. Time units are milliseconds.
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Figure 2. Plot of measured distribution of Barkhausen pulse lifetimes T for T > 59 Ls
in as-cast ribbon. The curve is the result of least-squares fitting of the
data by Eq. (1); the fitting parameters are a = -2.36 and T, 611 ps.
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Figure 3. Log-log plot of 125 samplings of pulse area A (in Vs) vs pulse duration
T (in ILs) in as-cast ribbon. The straight line is a least-squares [it to
the data.
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Figure 4. Log-log plot of every tenth value of the power spectral density in (VWs2) averaged
over ten values (obtained via discrete Fourier transform) vs frequency (in Hz) of a 40-
ms train in magnetically annealed ribbon. The straight line, which is least-squares fit
forf > 2 kHz, has a slope of -1.244.
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