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ABSTRACT

Velocity analysis by normal moveout encounters problems in handling dipping
reflectors or lateral variation of velocity. Prestack migration provides a powerful
tool to do velocity analysis, which is based on the following principle: the imaged
depths at a common location are independent of source-receiver offset when the
correct velocity is used. Conventional approaches, such as depth focusing analysis,
generally involve iteration, which requires repeated prestack migration. In this
paper, a residual moveout method for velocity analysis on multi-offset data is
presented that needs only a single prestack migration. A number of theoretical
problems in this method are studied. When the velocity has a lateral anomaly,
we derive a formula to calculate the interval velocity from the stacking velocity by
perturbation theory. A suggested data processing technique based on our method
is composed of prestack migration with a constant velocity, velocity analysis,
residual moveout, stacking, velocity conversion, and poststack residual migration.

INTRODUCTION

Normal moveout, typically used to do velocity analysis in seismic data processing,
is robust when reflectors are flat and velocity is laterally invariant. However, this
method encounters difficulty when reflectors are dipping or velocity varies laterally.
Some geophysicists, therefore, have concentrated on doing velocity analysis by migra-
tion, such as the focusing analysis and common location imaging methods (Jeannot,
1986; Al-Yahya, 1989). When the background velocity is correct, the imaged depths
at a common location are independent of source-receiver offset. Otherwise, if an in-
correct background velocity is used, the imaged depths at a common location change
with offset. In this situation, a residual moveout is observed in common-location

images of migrated data. The principle of velocity analysis is to choose a background
velocity so that the common-location images are close to a horizontal alignment.
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Conventional methods use iteration to correct velocities. In each step of iteration,
prestack migration is required. Consequently, the total computation is so huge that
application of this method is limited.

It would be desirable to estimate velocity directly from the residual moveout. If
this is successful, only one prestack migration is required. To make this estimate, we
need a quantitative relationship between the residual moveout and the error in back-
ground velocity. Some geophysicists applied this idea to velocity analysis (Doherty,
1976; Deregowski, 1990). However, no general formula was derived.

In this paper, the residual moveout is used to do velocity analysis on multi-offset
migrated data. By means of the reflector equation, we derived a general formula for
the residual moveout. Theoretically, an arbitrary background velocity can be used to
do velocity analysis. However, we prefer using a constant background velocity so that
the residual moveout is an explicit function of the velocity error. Furthermore, we may
use Stolt migration for constant velocity; this is much faster than other algorithms.
Under the assumption of a small offset, we obtain an analytic expression for the
residual moveout that is an explicit function of background velocity, curvature of
unmigrated data, and slope of unmigrated data. Furthermore, this residual moveout
is independent of the dip of the reflectors when the true velocity is a constant. Parallel
to NMO velocity analysis, we can use a semblance and velocity scans to do RMO
velocity analysis. Therefore, the program for RMO velocity analysis is similar to the
existing program for NMO velocity analysis, except in the residual term.

After velocity analysis, we obtain the stacking velocity that is assumed to equal
RMS velocity for a laterally invariant medium. However, when velocity has an
anomaly, this assumption is invalid. Lynn and Claebout(1982) proposed a formula
that gives a relationship between the anomaly of the stacking velocity and the anomaly
of the interval velocity. But this formula requires a stratified medium. In this pa-
per, we derive a formula that is valid for arbitrary velocity. This formula computes
the anomaly of the interval velocity from the anomaly of the stacking velocity by an
integral equation.

We have two ways to do migration: residual prestack migration or residual post
stack migration. We prefer the latter because poststack migration runs much faster
than prestack migration. The residual moveout, stacking, and residual poststack
migration are recommended to obtain the final structural image.

REFLECTION EQUATION

Seismic signals consist of amplitude information and phase information. Under the
high frequency assumption, phase information is simplified to traveltime information.
Therefore, seismic signals can be described approximately by traveltime-offset curves.
A traveltime-offset curve in seismic record corresponds to a specific reflector in the
earth. Given a reflector, we can compute the traveltime-offset curve by modeling.
On the other hand, given a traveltime-offset curve, we also can compute the reflector
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position (subsurface) by migration. Now, we will show how the geometry of reflector
is determined by the geometry of the traveltime-offset curve.

We shall denote by X a 2-D vector, X = (x, z) . Let x, be source position and x,
be receiver position located on the horizontal datum surface L with y the midpoint
and h the half-offset:

x.=y-h, x 7=y+h.

For any point X below the surface, r,(x,, X) and 'r,(X, x,), respectively, denote trav-
eltimes from x, to X, and from X to x'.

Suppose we know the total reflection travetime T(y, h) and a background velocity
c(x, z). Then, for each half-offset h, the reflector is determined such that

r.(x,,X) + r,(X,x,) = T(y,h), (1)

4(2)

where X = (x, z) is the point on the reflector. Equations (1) and (2) show: if we know
the traveltime-offset curve T(y, h) (therefore, OT/8y) for some h, we can compute a
imaged depth z for a fixed location x. If c(x, z) equals the true velocity, then the
imaged depth z is independent of offset h; otherwise, for wrong background velocity,
z varies with offset h. Consequently, the imaged depth provides us information on
velocity.

Equations (1) and (2) are for the common offset case. Similarly, we have the
reflector equation

r.(x., X) + r,(X, x,) = T(y, h), (3)

a -'' (4)

for the common shot case; the equation

r.(x.,X) + r.(X, x,) = T(y,h), (5)

0;: O (6)

for the common receiver case; the reflector equation

r.(xX) + r,(X,x') = T(y,h), (7)

OT, Oro _ OT= &r (8)
Oh Oh Oh'

for the common midpoint case. Among these cases, only common offset has a sym-
metric imaged-depth function, which allows for the possibility of approximating the
imaged-depth function by a hyperbola.
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Specifically, when the background velocity is the constant, c, then

r.(xXa) = Pa/C, r,(X,X7 ) = pp/c,

where
PS = (Xai)2+ Z2, Pr =(X -X) 2 + Z2 _

For this case, equations (1) and (2) are simplied to

pa + pr = cT(y,h), (9)
5P ay = C y (10)

Next, we will study the quantitative properies of z(h) when c(x, z) differs from the
true velocity.

RESIDUAL MOVEOUT

When the background velocity c(x, z) differs from the true velocity, there is a
deviation between the imaged depths of different offsets; i.e., a residual moveout from
a horizontal alignment is observed. We expect that this residual moveout can be used
to measure the error of the velocity and be independent of the dip of a reflector.

Constant Velocity and Horizontal Reflector

Suppose that the true velocity and background velocity are constants and the
reflector is horizontal. In this special situation,

T2 (y, h) = T 2(y, 0) + 4h2/v 2,

Pa = p, = (z 2 + h2) = 2T(y,h),

so that

z2 (h) = -T (y, h) - h= -T2(y,O) + (c2/v 2 - 1)h2 = z 2(0)+ (c2/v 2 - 1)h2.
4 4

That is, the moveout is the hyperbola

z 2(h) = z2(0) + (c2 /v 2 - 1)h 2. (11)

Equation (11) shows that the residual moveout is the exact hyperbola for constant
velocity v and horizontal reflector. This result is parallel to that of moveout in

unmigrated data.

General Case

For general velocity or arbitrary reflector, one should not expect a simple expres-
sion such as (11). Instead of that, we consider the asymptotic expression under the
assumption of small offset.
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First, because z is a symmetric function of h, we get

dz Ih= 0, d3z Ih=o= 0, etc.dh Idho 0

This implies the Taylor series expansion

z2 (h) = z2(0) + 1 d2Z2 Ih=0 h2 + 0(h4 ). (12)

Now let us try to estimate the second derivative,

d2z Ih=0-
dh2

For fixed x, the midpoint y and the imaged depth z are functions of offset h.
differentiating equation (1) with respect to h, we have

rO O~r]dy _.Or] [Or, +r,] dz OT dy 8T
'-r + .- r,. ILY I 7---+ a,- -+- (13)Oy + OyJ + A O A Ah +[z + iaz] d"h- =yd A Ah

Using (2), we get ET. T 1 dz OT r Or, 1
-z Oz -h O h " (14)

Notice that y is symmetric in h, so

dy ih=o= 0.
dh

Lemma. Suppose that f(x, y, z) is a smooth enough function. For any function
y = y(x) and z = z(x), if

dy dzdx -0 , dx -o=o

then
d OfdXf (X, (X), Z(X)) bffi0= O I,=o.

Proof. By the definition of the total differential,

df of [Of dy [Of dz OfI
d' 2= Ox + L 'J I,:0 + Iz= o 5 =o.

This completes the proof.

Using this lemma, and

dy 0, dz

dh I-h hh=0=O,
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we get

(I r a2t 8T r 2r T. r 1713
d- - [Oh+ h JI== -h2 I=o - - - =0 (15)

Also, from 4- h=o= 0, we have

d [(Or, + oT,.) dz] Ih= or + r,) d2 ZlI h0_(--o.- (16)
Th z az Th [Oaz az dh_2 1 h

Differentiating equation (14) with respect to h, and using (15) and (16), we set up
the following equation for d2z/dh2 Ih=O

[ r8 Or&z 2T [02; (17).+ d--, Ioh=O=o - L o *] Jh=O. (17)

Equation (17) holds for any velocity function v(x, z), any background velocity c(x, z),
and an arbitrary reflector. Now we will simplify equation (17) for the laterally invari-
ant background velocity.

Suppose the background velocity is the constant, c. Then

r, = /z2 + (x -y + h)/c, r. = z2 + (x - y - h)/c.

After calculation,
Or = or. z

z - (9z - p'
02T a2r, z 2

Th- Iho= j- Ih=0= c-12

where
p = ¢Z2 + (X - y)2_

We have

oz Oz J Ih=O= 2 -

az CZcp 3O92ro '. 2z2 2 2(x-y)2
A2 Oj Ih=o= Cp3- = Cp

Using these results, equation (17) is simplified by

[2z d 2 z. 9 OT 2(x - y)2  2 (18)

"P '1 Ih=o =  I1=o + p3 cp

Furthermore,

2z d I2Zh= h=O,
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p = cT Ih=O,

(Y - X) = 0aTh"
p 2 ay

Thus, we obtain the result

d2Z2  C Ta a)2
-jIh=- I -j [T- h+y- T- = -2, (19)

or

1o=o 2 + ) 2 ] h_- 8 (20)

where 7- is the migration time.

From equation (19), we conclude that after migration, the the main part of the
residual moveout is determined by the background velocity c, traveltime T, curvature
of unmigrated data 02T/0h2 , and slope of unmigrated data OTlOy. This is true for a
constant background velocity c, any velocity function v(x, z), and arbitrary reflector.
In addition, the stacking velocity is defined by

[I -+ y Ih=o, (21)
[C~tk] 4 ah2  cfi,/

which can be directly estimated from the residual moveout. Compared to NMO, we
have the new term, OT/8y. In the follow examples, one will see this term removes
the dip effect in RMO velocity analysis.

For a small gradient velocity c(z) or a small dip of the reflector, equation (20) can
be modified to

d272  OT fT28
- =o= 2 T-5h + J k=o [E)]12 , (22)

where c , is the root-means-squared velocity of c(z).

Examples For Constant Background Velocity

We use constant background velocity for these examples. For arbitrary c(x, z), the
residual moveout formula will become too complex to do velocity analysis. Further-
more, prestack migration is fastest for constant velocity. In addition to the normal
moveout formula (11), we now compute residual moveout by the formula (19) and (20)
for several special cases. These results are similar to normal moveout, except that
the former is insensitive to the dip of the reflector.
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1. Constant velocity and dipping reflector

Suppose that the true velocity is a constant, v, and the reflector dip is 0. In this
case,

T 2(y, h) = 4y 2 sin 2 9/v 2 + 4h2 cos 2 O/v2.

We have,
[T] Ih=o= 4cos2 O/v2,

Ih=O= 2 sin O/v.8y

Therefore,
d2z2

h2 Ih=o= 2(c/v2- 1) (23)

z 2(h) = z2 (O) + (c 2 /v 2 
- 1)h 2 + O(h4 ). (24)

or
r 2(h) = r 2(0) + (1/v 2 - 1/c 2)4h2 + O(h4 ). (25)

Equation (25) shows that the residual moveout is independent of the reflector dip
and the stacking velocity is v, when the true velocity v is a constant.

2. Constant velocity and diffraction from a scattering point

Suppose that the true velocity is a constant, v, and a scatterer is located at the
point (x*, z*). In this case,

T(y, h) [IYhx2 )+ (y + h X-2 + (Z-2] /V

We have,

7)2T ] 
4 

( z ) 2OWD ;-== 2 (y - X-)2 + (Z*)2,

(^y) 2 lo=4 (y - X*)2

Therefore,
d2z 2

-d-I-h=0= 2(c 2/v 2 - 1). (26)

z2(h) = z2(O) + (c 2/v 2 - 1)h 2 + O(h4 ). (27)

or
r 2 (h) = r 2 (0) + (l/v 2 

- 1/c 2 )4h2 + O(h4 ). (28)

Again, equation (28) shows that the residual moveout is independent of the lateral
offset from the point scatterer and the stacking velocity is v, when the true velocity
v is a constant.
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3. Laterally invariant velocity and horizontal reflector

Suppose that the true velocity is a laterally invariant function, v(z), and the
reflector is horizontal, with depth z ° . In this case,

T 2 (y,h) = T 2 (y, 0) + 4h 2/[v 1 (z°)] 2 + O(h 4).

We have,

T 8 h=o- 4/[v,.... (Z*)1 2 ,

0T lhfo- 0.

Therefore,
d22 ([V(Z.)]2 - 1). (29)

z 2 (h) = Z2(0) + (2 1 ) 2 + O(h4 ). (30)

Notice that z(0) z*. That is, in depth migration, the imaged depth is inconsistent
with the desired point at which the root-mean-square (RMS) velocity is determined

from the residual moveout. However, if we let

2 "z ds
S-- 2 ,v(s)

then

r 2(h) = T2(0) + (v,.°.)]2 2 + O(h 4 ), (31)

and r(0) = r*. Therefore, time migration can give us the correct location at which
the RMS velocity is determined by the residual moveout.

Equation (31) shows that when tl e true velocity is laterally invariant, the stacking
velocity determined from RMO is consistent with RMS velocity at the imaged time.

4. Laterally invariant velocity and dipping reflector

Suppose that the true velocity is a laterally invariant function, v(r), and the
reflector is a dip, with angle 0. In this case,

T(y,0) = j0T" (1 _ p2v2(,)) - 1/ 2 d",

a 2T 4
8h2-" Iho=- f0" v2(1 - p 2v 2 )- 3/2dc'

fT kh=o 2p,
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where -r is the vertical time at the reflection point and

sin0
P '

Therefore,
T + 2  h== 4 ff(1 -p 2 v2 ) 3 /2 da

+ Oh2  -y fjv 2(l p 2v2)32da  (32)

The stacking velocity is estimated by
[co,,,l f =f v2 (a)(1 - pv 2(a))- 3 /2d(3

J0(1 - p2 v2(o))- 3/ 2do3

Notice that Culk does not equal the RMS velocity v2 that is defined by

2 J1 v2(a)do. (34)

In fact,

(ctkl2 = + - v2)p2 + o(p 4 ), (35)
where

V fr j, v4(s)ds.
v4 is always greater than v2 and they are equal only if v(z) is a constant. Therefore,
c,j, is always greater than v2 and they are close for small p or a small gradient of
v(z). Furthermore, the imaged time, r(O), is different from r*, and

1 2 -
[t,2(r(0))12 = v2(r) + 1(v 2() -c2)(v2(r) - v2(.r*))p 2 + O(p 4). (36)

Usually, v is bigger than v2 , so v2(r(O)) is bigger than v2(Tr) when c is smaller than
v2('r*). If c is chosen suitably small, Catk may be a good approximation to v2(r(O)).

we conclude that for a suitable background velocity, the stacking velocity from
RMO velocity analysis may approximate the RMS velocity at the imaged time.

Higher Residual Terms

The residual moveout is hyperbola-like only for small offset. In fact, offsets should
not be too small so that we can have a high resolution in velocity analysis. (See Liu
and Bleistein.) Therefore, we require an error estimate for formulas in nonzero offset.
This work is partially implemented in Mathematica.

Using the rule of differential for a compound function in equation (14) and setting
c constant, the fourth order derivative of z with respect to h satisfies

d4z fO (p. + p ) C [ 4 T d2y e T - a(p. + P,)[h= 0
dh4 I "Oz c- + - ' thfofi h

r d~ 03p. p~ 1 dly 03(p. + pr)l-6 z a (p + ± ) ] ji h0- 3  _ lh=+ J (37)

10
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For a constant velocity v and a dipping reflector with angle 0, we can obtain

d47 2  24(1/v 2 - 1/c 2 ) sin 2 20
7h-4" h=O - (z*)2  , (38)

where r is the migration time and z* is the reflection depth. Therefore, from (38)
and (23), a more accurate expression for the residual moveout is

r 2 (h) = r2 (0) +4 1 - h2 
_ (1/V 2 - 1/c 2 )sin2 2h4+ O(h6)

- (0 2 )2 ( 2

2 (O)+4(' - h2 i ) sin2 2 ) O(h6 ). (39)

For a constant velocity v and a scattering point at (x*, z*),

d4 ,r2  24( 1/v 2 - 1/c 2 ) sin2 20
dh4 h=0 = - (Z*) 2  , (40)

where 0 = arctan y - X

ZO

By the way, for the unmigrated data, the higher residual term is

a4T 2  
_ 24 sin2 20 cos 2 0

8h 0 v2(z*) 2  (41)

Equations (38) and (40) show that when the true velocity is a constant, small higher-
residual terms of moveout are obtained for a closed background velocity, small ratio
of offset to the imaged depth, and the dipping angle that is near 0 or 90 degree.

For laterally invariant velocity and a horizontal reflector with depth zo,

d4'r2  
_ 24(v -v)

dh-' Ih=0= t~v ' (42)

where to is the zero-offset time, and

2 = 2(s)ds'

V4 to

The result in (42) is the same as in the unmigrated data.

Equation (42) shows that when the true velocity is laterally invariant, a small

higher-residual term is obtained for small gradient of the velocity.
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VELOCITY CONVERSION

In the previous chapter, we show how stacking velocity is obtained by moveout
methods. However, an interval velocity function is required for migration and inver-
sion. Usually, we assume that the stacking velocity equals the RMS velocity. Then
the interval velocity is computed by Dix equation or other algorithms. Unfortunately,
this assumption fails when the velocity has a lateral anomaly. Now we will give an
equation to solve for the laterally varying interval velocity. This equation requires
the small lateral variation and horizontal reflector.

Suppose the true slowness w(x, z) can be written as

w(x, z) = t(z)(1 + a(x, z)), (43)

where z2(z) is a reference slowness and a(x, z) is a small perturbation. We obtain the
equation

bw,(y, z) =fzr+ a ( Iids~ ++1 ()] da_ (44)T013(z) J Lax 2  ii,(z) ) T2(Z) J =V

where 6w, is the anomaly of the stacking slowness, T0 is the zero offset time, and V, is
the RMS velocity from the referenced velocity. When a and tD are depth independent,
the result in equation (44) is the same as that of Lynn and Claerbout. Equation (44)
shows that the second derivative of a determines the anomaly of the stacking velocity;
the anomaly of the stacking velocity at a depth results from the anomaly of the
interval velocity above this depth. Furthermore, f' Vds increases as a decreases, so
the anomaly of the interval velocity near the surface has the largest effect.

Applying Fourier transform, with respect to y, to equation (44), we obtain

( z) + (I+-2() (4d)6w,(k.,) = Iz) )ja(k 2 , I__ 2) [-± ) k,2 (45)

Equation (45) is a First-kind Volterra integral equation that is ill-posed. Therefore,
the recursive alogrithm for equation (45) is unstable. To obtain a stable solution, we
may apply the damping least-squared method to equation (45).

SYNTHETIC DATA EXAMPLE

To test the residual moveout method, we applied this method to synthetic seis-
mograms computed for a subsurface model in which velocity increases linearly with
depth z, according to v(z) = 1.5 + 0.8z km/s. The model, shown in Figure 1, consists
of five reflectors, each with a dipping and horizontal segment. Dips for the dipping
segments range from 30 .o 90 degrees in 15-degree increments. The seismograms
contain 10 offsets, ranging from 100 m to 1900 m in 200 m increments. Because of
dipping reflectors and depth dependent velocity, the stacking velocity in equation (33)

12
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and the RMS velocity are not same but close each other. The error between the both,
shown in Figure 2, increses with depth and dip.

After prestack migration with the constant velocity, c = 1.5 km/s, one of the
CDP gathers is plotted in Figure 3. Because the background velocity is lower than
the true velocity, all event locations increase with offset. The velocity scan for this
CDP is plotted in Figure 4. Unlike the velocity scans in NMO, velocity peaks here
are single-valued. After residual moveout, &l events are corrected to horizontal ones
(in Figure 5). The stacking result is shown in Figure 6, which is equivalent to the
poststack migration with the constant velocity, c. By using the interval velocity
converted from the stacking velocity, poststack residual migration gives the correct
reflector positions (in Figure 7).

Model
0

0.5-

" 1.5-

2.0-

2.5 6 65 1o 1.5 2'0 2'.5 30 3'5 4.0

Midpoint (kin)

FIG. 1. Subsurface model used to generate synthetic seismic traces.

CONCLUSION

Velocity analysis by prestack migration can handle dipping reflectors. Conven-
tional approaches use iteration, which results in larger computation than the method
proposed in this paper. Using the relationship between the residual moveout and
the error in the background velocity, we can estimate directly the true velocity with-
out iteration. Furthermore, stacking after the residual moveout provides a partial
migration output. With this output, a residual post migration should yield a more
accurate structural image. Using a more general background velocity, we may handle
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Dip (degree)
0 30 60 90

E 0

2-\
Contours of Velocity Error

FIG. 2. The relative error between the stacking velocity and RMS velocity. The
difference of contours is 0.002. The arrow direction indicates increase of the error.

Offset (kMi)
0.5 1.0 1.5

2.

Common location Images (CDP : 161)

FIG. 3. One of the CDP gathers after the migration with the constant velocity.
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Velocity (m/sec)
1500 2500 3500

1 .......... .. .. ' u i ...........0

3-

Velocity Spectrum CDP 161

FIG. 4. Velocity analysis for the CDP gather in Fig. 2.

Offset (kin)
0.5 1.0 1.5

0

I. :_____,_t . : - .L.] .i...ii-i .m U. . 3...!

Residual moveout CDP=161

FIG. 5. Residual moveout for the CDP gather in Fig. 2.
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Midpoint (kin)
-10123

0

0-

E
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the lateral variation of velocity, but it will require a complicated algorithm. The
perturbation method here is suggested to handle the lateral variation of velocity.
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APPENDIX A: DERIVATION OF EQUATIONS (35) AND (36)

From Taylor's expansion,

(1 - p2 v2 ())- 3/ 2 
- 1 + 3v2(0,)p2 + O(p 4 ),

so that

342jo v2 ()(1 - p2 v2 (a))-3/2da = j v2 (a)du + p2 j v 4 (oj)da = 7",(v; + _v4p2),
10

r  3 0V1 2 4

( -pV 2 (a))-3 2do = r-(1 + 3v2p2).

Using these results and the definition in (33), we obtain

"r*(vl + 3/2 vp 2 ) 3 4
[c r2 "(1 +3/2 v~p2 ) = 2+ (v4 - v )p + (p4 ). (A-i)

This completes the proof of equation (35).

From the Taylor's expansion,
2_.,dv 2

v2(-) = ,(r) + (T - -'-2 I,=- +O((r -. )

= v22(r) + (r/r" - 1)(v 2 (r " ) - v2 (r*)) + 0((r - T*) 2), (A-2)

where we use the fact that

d 
2V2 I,= ,- (v 2 ( .r ) _ v ( " )/ .

From

T(y,0)(1 - 2c2p 2) + 0(p4),Tr(0) = T y 0 - p = ~ , ) 1

and I =I '22,T(y, 0) = - p2 v2(a))-/ 2d r(l -v 2p ) + 0(p 4 ),

we have
T(0) = r'(1 +-l(v2(r) -c2)p2) + 0(p4).2

Subsitituting the above formula into equation (A-2) and setting r = r(0), we obtain

v2(r(0)) = v2(r) + ((T) - c2)(V2(7-) - v2(r))p 2 + 0(p 4 ). (A-3)

This completes the proof of equation (36).
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APPENDIX B: DERIVATION OF EQUATION (44)

Suppose reflectors are horizontal and the true velocity v(x, z) can be written by

vx1 =z) 1 (1 + a(x, z)), (A-4)V(X, Z) Z

where V(z) is a reference velocity and a(x, z) is a small perturbation. Under the
assumption of the small perturbation, we can calculate the two-way traveltime by

T(h, y) = T'(h, y) + 2 o (A-5)

where 0 is the angle of the ray path from the vertical, ( , a) is a point on the ray
path, and

Th= y + tan Ods. (A-6)

Therefore,

82 T(h y) 2(hy) (z 02 (a(,') da (
kO h, ?) lh=o= Ih=o +2 - I I Ih== (A-7)

9Ohh 2  o Yh \ cos 0 V

From

02 f(o) O2t 1 oo /1 a2Oh7 cos 0 7= 0h cosO + A -. + Cr( ')' "h oh -+2 F ' ),,(A-8)

and
0 (1.) 1

cosO I=o= 1,

we have 2 (a( o,1 -2 0 ( jh=o. (A-9)
co7 Ih= ~ h=0 +a(Y'a)~ co-2A9

Notice that is a function of h, so that

2a a2a " 2 +a02(A-10)

Oih20.k h =~h (A-b) A

From (A-6), - y is an odd function of h; hence

87- 11h=0= Ih 0=o- 0.

This result and formula (A-10) give

02 a !21o C
- Ih= L IOh/ lo (A-11)
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Here we use the fact that - y at h = 0. To do the further calculation, we introduce
the slope parameter

sin0
t=(o),

which is independent of a. Then

=Y + z Pids

h z VP ds.1 F - -(p)2

These formulas imply that

.p =f (1 - (.Vp)2)3/2as
dhs

dh Jz 
1  V ds. (A- 12)dp fo (1 - (fjp)2)3/2d"(-2

O dh _f, ds
-h h== 8C Iho / dp / ho f ids"(A-13)

From
1 1

we have

82 1 82 ____

Oh2 co0) 1h2  (Vp)2

a2 ( 1 2) (LP)) + a f 1 2ap"- 7/17-(Dpp AOh +ap V1 /i(p) 2 ) ah2"

Again, p is an odd function of h, so that

82p jh=o= 
0.ah2

This result, formulas (A-12), and (A-14) give

Oh2 (c s0 I&=o" - ( pj) Ih=o (fz fds)2 = ( u ) 2  (A-15)

By formulas (A-9), (A-1I), (A-13) and (A-15), we obtain

h2 , cos0 ) lho- y2 ffUds 2 +a(y'a)(fds (A-16)
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Substituting this formula into equation (A-7), we have

a2_T(h, y) 2 2(h, y) o+ ( i d s 2) + ( rds)2] T"Ih=0-= 8h h + 9y o Os (oDd) V

The stacking velocity v, is defined by
1_ =_ 1 T,, 2T(h'Y)1
v -=i T(y,h) Ih=O (A-18)V2(y, z) 4 h

By using formula (A-5) and (A-17), we have

T ITO I h+-o 1 , +

2k y) 8a fz3ds2+ af2(a) da (A-19)

From

(A-19) becomes

v.2(y,) Z ~) - 2 fid J-
or

1 - +ad" TV, 1F [oz c (.0a fds 2 af32 (0) 1da (
w.(y,Tz) = T4. o T Ly 2 (f fdsj (fo ;ds)2J V

where we use the relation

w.(y,1 1 .(z)( 1 1 
v(y, ) i.(z) 2 2( y) - )

From

0 ids 2
equation (A-20) becomes

17v U~~~ s + r 2 3(a) 1da6.(y, Z) =Tz) 0 1 (1 + (A-21)
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