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SUMMARY

A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic
research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal,
making it difficult to perform diagnostic studies. Several possible sources and factors contribut-
ing to the unwanted components of the vibration signal were investigated. Sensor mounting
location was found to have a major effect on the content of the vibration signal. In the presence
of unwanted vibration sources, modal amplification made unwanted components strong. A
sensor location was found that provided a flatter frequency response. This resulted in a more
useful vibration signal. A major rework was performed on the fatigue rig to reduce the influence
of the most probable sources of the noise in the vibration signal. The slave gears were machined
to reduce weight and increase tooth loading. The housing and the shafts were modified to
reduce imbalance, looseness, and misalignment in the rotating components. These changes
resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant
component in the signal. Also, with the unwanted sources eliminated, the sensor mounting
location giving the most robust representation of the test-gear meshing energy was found to be
at a point close to the test gears in the load zone of the bearings.

INTRODUCTION

Drive train diagnostics is becoming one of the most significant areas of research in rotor-
craft propulsion. The need for a reliable health-monitoring system for the propulsion system can
be seen by reviewing some rotorcraft accident statistics. An investigation of serious rotorcraft
accidents that were a result of fatigue failures showed that 32 percent were due to engine and
transmission components (Astridge, 1989). Also, 60 percent of the serious rotorcraft accidents
were found to occur during cruise flight. Civil helicopters need a thirtyfold increase in their
safety record to equal that of conventional fixed-wing turbojet aircraft. Practically, this can
only be accomplished by the development of a highly reliable, on-line health-monitoring unit.
Diagnostic research is required to develop and prove various fault-detection concepts and
methodologies. NASA Lewis Research Center has recently initiated a program to use some of
its gear fatigue test facilities for diagnostic research while also continuing fatigue research. This
paper documents the analysis and modification that was required to convert a single-mesh gear
fatigue rig for diagnostic research.



Single-mesh gear fatigue rigs at NASA Lewis have been used for nearly 20 years to
supply data on the effect- of gear materials, gear surface treatments, and lubrication types and
methods on the fatigue strength of aircraft-quality gears. A schematic diagram and cutaway
view of the fatigue rig are shown in figure 1. The test rig is a four-square type with power
recirculating through the slave gears. Resisting torque is provided by hydraulically actuated
load vanes inside one of the slave gears. The motor provides only the power required to over-
come frictional forces. Until recently (Zakrajsek, 1989) this rig was exclusively used for fatigue
studies, where only the overall root-mean-square vibration level was monitored as an indicator of
failure.

The most critical part of any diagnostic monitoring process is the ability to obtain
vibration data that accurately represent the dynamics of the component that is being monitored.
In a previous study (Zakrajsek, 1989) a major problem was identified in using this fatigue rig for
diagnostic studies. The vibration signal from this rig was found to contain a number of fre-
quency components that were unrelated to the test gears. A typical vibration spectrum from the
fatigue rig is given in figure 2. This spectrum was a result of time-synchronous averaging of the
signal over 100 revolutions. Time-synchronous averaging reduces the components of the vibra-
tion signal that are not coincident with the shaft rotational frequency. Even with time avera-
ging the vibration signal is saturated with vibration components at frequencies other than the
test-gear meshing frequency and its harmonics. These components mask the test-gear meshing
signal. Applying current diagnostic methods (McFadden, 1986, and Stewart, 1977) to this noisy
vibration signal results in confusing and erroneous predictions. The unwanted vibration compo-
nents of this signal, because they are dominant, have the major influence on the results of the
diagnostic methods. A way was needed to obtain a "cleaner" vibration signal that accurately
reflects only the dynamics of the test gears before meaningful diagnostic research could be per-
formed with this fatigue rig.

In order to improve the vibration signal for diagnostic research, several steps were taken
to analyze and modify the single-mesh gear fatigue rig. The first step involved trying to identify
possible sources and factors contributing to the problem. Following this, some analysis was
performed on an existing rig to determine the effects of sensor mounting location on the vibra-
tion signal. Another rig was then physically modified in an effort to reduce the unwanted
vibration components in the signal. The two rigs used in this study were identical in both
physical construction and dynamic response. The modified rig was then analyzed to determine
how the vibration signal changed. The following sections discuss each of these steps in more
depth. Some conclusions based on the results of this study are also presented.

PROBLEM SOURCE IDENTIFICATION

In order to reduce the amplitude of undesired vibration frequencies, several possible
sources and factors had to be identified. Resident rotor and gear dynamics experts, general
information from the literature, and specific rig geometry information were all used to establish
a list of the most probable sources and factors that might result in the unwanted noise. Two
methods can be used to reduce this noise: Either eliminate the sources of the noise or minimize
the transmission to the sensor. In those cases where the sources cannot be eliminated, reducing
the transmission to the sensor of the unwanted components may be the only feasible option.
The most probable sources and factors are listed here. The first factor listed can be investigated
without modification to the rig.
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(1) The accelerometer may not be mounted in an optimum location. Two issues affect
the optimum location. First, the optimum location should give the strongest representation of
the test gears being monitored. In the case of rolling-element bearings a bearing defect in a
helicopter tail rotor gearbox was easier to detect when the accelerometer was closest to the
bearing and located in the bearing load zone (Hollins, 1988). Because the vibration must be
transmitted through the bearings to the case, it is expected that the gear vibration will also be
strongest in the bearing load zone. Second, the vibration signal at the optimum location should
have the test-gear meshing frequencies as the dominant components.

(2) The slave gears may be too lightly loaded. The slave gears are also spur gears; how-
ever, unlike the test gears the slave gears are oversized to ensure that they do not fail during the
test. The normal operating load of the rig results in the slave gears being loaded to approxi-
mately 10 percent of their design load based on tooth contact stress, and to 8 percent based on
tooth bending stress. Lightly loaded spur gears have a tendency for excessive vibration and
noise (Rebbechi et al., 1992). The nonlinear nature of gears losing contact during meshing
results in a vibration forcing function that is broadband (i.e., a function that requires a wide
band of frequency components to characterize the time signal).

(3) Imbalance may exist in the rotating components. The slave gears and the shafts are
balanced separately and then assembled. Even though both are balanced separately, an im-
balance could exist after the parts are assembled unless the axes of rotation of both parts are
exactly concentric. The vibration due to imbalance will be limited to the first several shaft
harmonics.

(4) Misalignment may exist in the rotating components. A bent or misaligned shaft can
result in a high level of vibration. The vibration due to misalignment usually results in a large
number of shaft harmonics in the spectrum.

(5) Mechanical looseness may exist in the rotating components. The fatigue rig has been
in operation for nearly 20 years, and many of the rotating parts now fit loosely due to wear.
Bearings fit loosely in the housing, and slave gears fit loosely over shafts. Mechanical looseness
is generally characterized by normal sinusoidal vibration inLerrupted by a mechanical limit. The
machine response will be nonlinear, exhibiting a time domain signal containing truncation and
impulses. This nonlinear nature of the vibration due to mechanical looseness results in a vibra-
tion forcing function that, like that of the lightly loaded slave gears, is broadband (Lyon, 1987).

(6) Slave gears are too massive. The slave gears are roughly 51/2 times more massive than
the test gears. Excessive slave-gear mass can amplify unwanted vibration sources due to
misalignment and imbalance.

ANALYSIS OF UNMODIFIED RIG

Before modifying the test rig some analysis was performed on an existing rig to deter-
mine what effect sensor location alone has on the vibration signal. Sensor location is the only
one of the six sources and factors identified that can be changed without physically modifying
the test rig.

For diagnostic studies the optimum sensor location is that point at which the test-gear
meshing frequencies dominate the signal and are more prominent than at any other location. As
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shown in figure 2, the main problem is obtaining a vibration signal that is not masked by the
other components in the signal. It is believed that these unwanted components in the v'bration
signal are a result of the natural modes of the vibration transfer path, from the gear mesh to the
sensor, being excited by the sources identified previously. Those sources that result in a
broadband vibration (e.g., mechanical looseness and lightly loaded slave gears) are capable of
exciting most natural modes of the transfer path in the frequency range of interest. The range
1 to 10 kHz is defined as the frequency range of interest, as it contains the primary mesh fre-
quency of the test gear (4741 Hz) and its second harmonic. Therefore, it is possible to reduce
the effects of the various sources on the vibration signal by locating the sensor at a point where
the modal properties of the transfer path have minimal effect on the signal.

In order to determine the optimum sensor mounting location, frequency response meas-
urements were conducted at 18 locations on the test rig, as illustrated in figure 3. An instru-
mented modal hammer was used to apply an impulse input on the shaft where the test gear
mounts, in the direction that the actual meshing forces act on the shaft, as depicted by vector I
in figure 3. A common practice used in modal analysis is to analyze the spectrum of the input
impulse and determine at what frequency the amplitude drops by 20 dB. The impulse suffi-
ciently excites all the frequencies in the structure up to that point. This is commonly referred to
as the 20-dB dropoff rile. Using this rule, the applied impulse was found to excite frequencies
up to 9 kHz. Frequency response measurements were taken between the common impulse
application point (point 0) and each of the 18 locations on the test rig. The magnitude of the
frequency response function, or the system gain factor, was recorded at each point. The system
gain factor is given as

SH(f) I Y(f)I X(f) t

where I Y(f) = output amplitude and I X(f) = input amplitude.

In order to measure the quality of the frequency response function obtained, the coher-
ence function was calculated for each frequency response function. The coherence function is a
measure of the amount of the output signal that is directly related to the input signal at any
specific frequency. A coherence value of 1.0 at a certain frequency indicates that the output at
that frequency is a direct result of the input signal at that frequency. The measured coherence
was at or very close to 1.0 for all frequencies up to approximately 7.5 kHz. Above 7.5 kHz the
coherence dropped off rapidly. Figure 4(b) shows an example of the coherence function obtained
for the frequency response measurement of figure 4(a). Thus, the frequency response functions
obtained were considered only up to 7.5 kHz, because of the uncertainty of the measurement
beyond that point.

Frequency response results are given in figures 4 and 5 for sensor mounting locations 6,
10, 3, and 16, respectively. Of all the locations examined, locations 6 and 10 were found to
exhibit the flattest frequency response functions. Locations 6 and 10 are probably coincident
with nodes of the housing. Location 3 is the traditional accelerometer mounting point and was
used in the previous study (Zakrajsek, 1989). As shown in figure 5(b), location 3 appeared to be
more modally active than locations 6 and 10. Location 16 represented the optimum point with
respect to previous studies (Hollins, 1986). This position was on the bearing end plate at one of
the closest points to the test-gear mesh. As shown in figure 5(c), location 16 was found to be
one of the most modally active of the 18 positions analyzed. Other locations on the bearing end
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plate that are just as close to the test gears (15, 17, and 18) exhibited nearly identical frequency
response results as that found at location 16. The advantage of location 16 over the other
locations is its close proximity to the center of the bearing load zone (within 130). Owing to
geometric considerations the center of the bearing load zone is approximately 210 clockwise from
the line of action of the test gears. On the basis of transfer function measurements, locations 6
and 10 were the points found most likely to reduce broadband noise source amplification in the
vibration signal.

In order to verify the transfer function study, a new set of test gears was installed in the
rig and the vibration signal was measured at the various sensor locations. Again, the signal was
time-synchronously averaged to remove all vibration components that were not coincident with
the shaft rotation. Figure 6 gives the vibration spectrum plots for accelerometer locations 6, 10,
3, and 16. Locations 6 and 10 gave the cleanest vibration signal, with location 10 being the best
of the two. The primary meshing frequency of the test gears and their first-order sidebands
dominated the vibration signal measured at location 10. In contrast to the relatively clean
spectrum at location 10, the spectra at locations 3 and 16 contained a number of frequency
components that were not related to the test gears. Many of these unwanted frequency compo-
nents were stronger than the test-gear meshing frequencies and therefore dominated the
vibration signal.

Of particular concern is the large vibration component that was present in the spectra
at locations 3 and 16, which was extremely close to a 3200-Hz rig vibration mode. This 3200-Hz
mode was dominant in the frequency response measurements at both locations 3 and 16
(figs. 5(b) and (c)). To a lesser degree the 3200-Hz mode was also represented in the frequency
response measurement at location 10 (fig. 5(a)). However, only a minor component near
3200 Hz can be seen in the spectrum at location 10 (fig. 6(b)) because the unwanted vibration
was not significantly amplified by the modal response. Location 10 is also further from the
unwanted sources. Sensor location was found to have a large impact on the components of the
vibration signal, with the least modally active point giving the best results in the presence of
unwanted vibration sources.

MODIFICATION OF FATIGUE RIG

The fatigue rig was modified to reduce the most probable sources and factors contribut-
ing to the unwanted components of the vibration signal. Most of the rework was focused on
restoring the fatigue rig to its original design specifications. As stated earlier, the fatigue rig has
been in operation for nearly 20 years, resulting in some wear and looseness in the rotating
components. In order to reduce looseness and misalignment, the housing was reworked by
adding material and remachining the bearing mounting holes. The slave gears were mated with
carefully chosen shafts to produce a slight interference fit for the nonactuating gear, as defined in
figure 1, and a line fit (zero clearance and zero interference) for the actuating gear. The slave
gears were machined to reduce mass and to increase tooth mesh loads. The weight of the slave
gear was reduced by 54 percent for the nonactuating and 37 percent for the actuating gear. The
tooth face widths for both slave gears were reduced by 50 percent. This reduction in face width
resulted in tooth contact stress being increased from 10 percent to 20 percent of the design
value. Tooth bending stress was increased from 8 percent to 16 percent of the design stress.
The slave gears were balanced after they were machined and then rebalanced after they were
mounted on the shafts. This reduced the amount of imbalance in the rotating components.
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Figure 7 shows results of the frequency response measurements on the modified rig for
locations 10, 3, and 16. Comparing this figure with figure 5 illustrates similar modal character-
istics for the modified rig and the existing rig. Location 10 exhibited a relatively flat frequency
response function on both rigs. Only two major differences can be seen. At all locations the
l.1-kHz mode on the existing rig shifted to 2.2 kHz on the reworked rig, and at location 16 the
large 7.3-kHz mode on the existing rig was absent on the reworked rig. The shift in the lower
mode from 1.1 to 2.2 kHz can be explained by the large amount of mass removed from the slave
gears on the modified rig.

RESULTS OF RIG MODIFICATION

In order to determine the results of the rig modification, a new set of test gears was run
on both the existing rig and the reworked rig. First, the gears were run on the existing rig for a
short time while vibration measurements were made at a variety of locations on the rig. The
same set of new test gears was then installed and run on the reworked rig, with vibration signals
recorded at identical locations. The vibration spectra from the existing rig were compared with
those from the modified rig with the same test-gear set for locations 10, 3, and 16, respectively
(see figs. 8, 9, and 10). As shown in these figures there was a definite improvement in the
spectrum of the vibration signal with the modified rig. At all locations the amplitude of
unwanted vibration components near the test-gear meshing frequency was reduced in the
reworked rig. The strong components near 3200 Hz at locations 3 and 16 on the existing rig
were reduced to negligible values on the reworked rig. The test-gear meshing frequency was
more prominent at all locations on the reworked rig as compared with the same locations on the
existing rig. These results strongly support the conclusion that the sources of the unwanted
vibration were greatly reduced, if not eliminated, as a result of the rework.

One adverse result of the rework was the increase in amplitude at the slave-gear meshing
frequency at locations 10 and 3 on the reworked rig. Unfortunately, even though the spectrum
was much cleaner and the test-gear meshing frequency was more prominent at locations 10 and 3
on the reworked rig, the slave-gear meshing frequency strength had increased to the point where
it was now the dominant component in the vibration Fignal. It is suspected that the tooth
deflection resulting from increasing the slave-gear tooth loading by a factor of 2 caused the
initial tooth contact to happen prematurely. Adding some form of tip relief to the presently
unmodified slave-gear tooth profile should correct this problem (Lin et al., 1989).

Another problem associated with the current rig was observed while comparing results
with the modified rig. Two different sets of new test gears were used to produce the spectra
illustrated in figures 6(b) and 8(a) for location 10 on the existing rig. Although two different
sets of gears were used, both spectra show the same pattern of lower amplitude for the test-gear
primary meshing frequency as compared with the corresponding first-order sidebands. This
pattern was not present at location 10 on the reworked rig even though the same gear set was
used. In fact, as shown in figure 8, no sidebands were detectable on the reworked rig. Strong
first-order sidebands are usually an indication of eccentricity. The problem was found to be a
badly worn shaft on the existing rig, with a 0.003-in. clearance between the shaft and the test
gear where a line fit is specified. The additional clearance provided by the worn shaft caused
eccentric mounting of the gear. The sidebands are a result of the once-per-revolution eccentrici-
ty being carried through the primary test-gear meshing frequency.

6



When extraneous vibration sources are eliminated, the optimum mounting location is
that point closest to the gear mesh being monitored in the load zone of the bearing.
Figure 10(b) illustrates that when the extraneous vibration sources were removed, location 16
(the closest to the test-gear mesh and in the bearing load zone) gave the strongest representation
of the test-gear meshing energy. Figure 10(a) also shows that in the presence of extraneous
vibration sources, location 16 was one of the worst locations. If the sources of the noise in the
vibration signal could not be eliminated or reduced, location 10 would be the optimum sensor
position. Even though the test-gear meshing frequency was not as robust at location 10, the
relatively flat frequency response of the transmission path at location 10 served to reduce the
influence of the unwanted noise sources to the point where the frequency components of the test-
gear mesh dominated the vibration signal.

CONCLUSIONS

A single-mesh gear fatigue rig was analyzed and modified to improve the vibration signal
for use in diagnostic studies. Poor accelerometer placement, mechanical looseness, imbalance,
and oversized and underloaded slave gears caused the test-gear vibration components to be
completely masked by other frequency components. The modifications reduced the unwanted
vibration and resulted in a vibration signal that is useful for diagnostic studies. Some significant
conclusions of this study are listed here:

(1) Sensor location has a major effect on the strength of unwanted components in a
vibration signal. A location free from resonant, amplification of the unwanted vibration compo-
nents is desirable. If there is no problem with unwanted vibration, the optimum sensor location
will likely be near a gear support bearing and in the direction of bearing loading.

(2) By minimizing imbalance, misalignment, and looseness in rotating parts, unwanted
components in the vibration signal can be reduced to negligible levels. Mechanical looseness is
especially destructive to a clean vibration signal. The nonlinear nature of the vibration due to
mechanical looseness results in a broadband excitation.

(3) Increasing the tooth load on the slave gears, which have unmodified involute tooth
profiles, results in an increase in slave-gear mesh vibration instead of the reduction that is
desired.
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to reduce weight and increase tooth loa ling. The housing and the shafts were modified to reduce imbalance, looseness,
and misalignment in the rotating components. These changes resulted in an improved vibration signal. with the test-gear
mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor
mounting location giving the most robust representation of the test-gear meshing energy was found t) be at a point close
to the test gears in the load zone of the bearings.
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