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CHAPTER ¢4

UNCERTAINTY AND THE CONDITIONING OF
BELIEFS'

Henry E. Kyburg, Jr.

Abstract--Uncertainty 1s part of the human condition. Whether we will or no, we must
act, we must make decisions, in the face of uncertainty. Some authors have proposed
that uncertainty be regarded as essentially a subjective matter. Our first goal is to
draw the teeth of tne ctassical subjectivistic argument that one must be prepared to
meet all bets on the basis of one's "degrees of belief.” The Dutch book theorem, which
purports to have this as a consequence, is stated and criticized. Other criticisms of
logical and subjective probability are considered. This leads to the consideration of
alternative conceptions of how to represent epistemic uncertainty. A variety of
alternatives have been offered, including, recently, Glenn Shafer's theory of belief
functions. An exposition of Shafer’s theory is offered. We then relate Shafer’s theory
of belief functions to a theory that represents (and updates) uncertainty in terms of
convex sets of classical probability functions. Finally, we discuss the question of the
decision principles that can be employed in the case of both the convex set
representation and the belief function representation of uncertainty.

1. BACKGROUND

It is a fact of life, whether we applaud it or deplore it, that we
must decide and act in the face of uncertainty and on the basis of

'Research on which this work is based was partially supported by the U.S. Army
Signals Warfare Center.
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78 Acting Under Uncertainty: Multidisciplinary Conceptions

incomplete information. It is argued by some philosophers that if we
had complete information, we would not have to act in the face of
uncertainty; but it has also been argued by others (and by philosophers
of quantum mechanics in particular) that even if we had full
information, we would not be able to eliminate uncertainty.

It is true that if complete knowledge included knowledge of the
future we would not have to face uncertainty if we had complete
knowledge. We mortals have been seeking that kind of knowledge for
centuries: in the stars, in chicken entrails, in science. We have not
found it. When, long ago, we believed that the gods knew the future and
told the truth, we also understood that the oracles spoke in riddles.
Thus, though we had been told what the future would bring, our
interpretation of what we had been told introduced a new level of
uncertainty.

Although probability theory has developed only in very recent
historical times, people have had some understanding of the practical
aspects of .ncertainty for as long as gambling has been a pastime. Itis
an important and interesting modern question to ask to what extent the
gambling model of action in the face of uncertainty has general validity.

A number of authors, philosophers, statisticians, and probability
theorists, have drawn a distinction between the kind of uncertainty that
characterizes our general knowledge of the world, and the kind of
uncertainty that we discover in gambling. This distinction appeals to
intuition. If the dice are fair, the chances of two ones on a roll of two
dice is 1/36. But what is the chance that the dice are fair? That seems
quite a different question.

Taking the distinction seriously has led to two dominating views
concerning probability and uncertainty. One identifies probability with
long-run relative frequency. This view was given explicit articulation by
John Venn (1866)--though Aristotle, who said that what was probable
was that which happened for the most part, might also be taken as a
frequency theorist. Its best known advocate was the positivist, Richard
von Mises (1928). This view appears to account for the assessment of
the chances of getting the sum two in a roll of two dice: that result
happens about 1/36 of the time in the long run; therefore the probability
should be taken to be 1/36.

On the other hand, dice can be more or less fair; and there is no
well established and agreed upon relative frequency with which dice are
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Uncertainty and the Conditioning of Belief's 79

unfair. This scems to be quite a different problem. And so a different
conception of probability has been devised to deal with it.

More accurately, two different conceptions. For an early hope,
articulated by John Maynard Keynes (1921), was that it should be
possible todefine alogical conception of probability that would measure
the degree of uncertainty of any hypothesis on any evidence. (Others
had already conceived of a notion of probability that would be
epistemic--i.c., that would determine the rational degree of belief of an
agent possessed of given evidence.) Thus, given what we know about
dice, soctal customs, physics, the interests of our friends, the state of the
economy, and so on, there would be one logically fixed probability for
the hypothesis that a given die is loaded to a given degree. Keynes
suppoced that there was such a probabilily, {ixed and determined by
background knowledge and evidence, but he did not assume that it was
a real number in the interval {0, 1]. In particular, he thought there was
good reason to suppose that sometimes probabilities were not
comparable: taking what I know about the world as evidence, I cannot
say whether rain tomorrow is more probable than, less probable than,
or as probable as, the occurrence of heads on the next toss of this coin,
This is not through any failure of logical insight, or weakness of
intellect. Itis simply that the abstract objects we call "probabilities” are
not simply ordered, but only partially ordered. They form a lattice,
whose supremum and infimum are 1 and 0, but in which there are many
non-comparable pairs.

The idea of a lattice of probability values was pursued briefly by
B. O. Koopman (1940), and then disappeared uatil the late 1950’s, to be
revived under a different name.

Meanwhile, a number of writers continued to pursue the idea of
probability as a logical relation. Foremost among these was Rudolf
Carnap (1950). The idea here is this: given a formal language, there is
an intuitively correct assignment of real-valued measures m to its 77
sentences such that if 4 is an hypothesis, and e is our total store of - J-—---'-—‘-:
evidence, the probability--legislativef or rational belief--of Aconditional E
on e is m(h & e)/m(e). This is Keynes’ vision, formalized and . H
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Acting Under Uncertainty: Multidisciplinary Conceptions

and general language. The only feasible way of doing it seems to be to
parametrize the language (number of one-place predicates, impact of
canonical evidence on a canonical assertion, etc.). But then, if the
assignment is to be "rational”, and defensible as rational, we must ask
the question: Why should these parameters have the values we have
given them? The answers have been hard to find.

Shortly after Keynes had proposed his logical view of
probability, Frank Ramsey, a colleague of Keynes’ at Cambridge,
criticized it from the point of view of what has come to be called
personalistic Bayesianism (Ramsey, (1931] 1950). Ramsey argued that
there was no point in saying that something was "legislative for rational
belief” unless you could measure belief. Ramsey devised a pragmatic
(or operational) method for measuring belief according to which there
was a clear argument (we leave aside here the question of its validity)
that beliefs should be real valued and should coaform to the probability
calculus. He could find no argument that they should satisfy any other
constraints. Thus he rejected the logical conception of probability in
favor of a subjectivistic conception.

Bruno de Finetti (1937), and L. J. Savage (1954), both
statisticians, also endorsed the view that such probabilities as the
probability that the die is biased, could only be subjective. Of course
this is not to say that such probabilities do not depend on evidence; it is
only to say that it is some individual who evaluates the evidence, and
that there is no reason that you and 1 should both evaluate the same
evidence in the same way. From their views a very lively tradition has
evolved. Itis called "Bayesianism”, though it is not Bayes theorem that
is at issue.

Bayes theorem is a theorem of the conventional probability
calculus. It says that the probability of a hypothesis, relative to some
evidence, is the prior probability of that hypothesis, multiplied by the
probability of the evidence on the supposition that the hypothesis is
true, divided by the prior probability of the evidence. If we can suppose
that we have a number of exhaustive and exclusive alternatives that can
be taken as hypotheses, the prior probability of the evidence can be
taken as a sum of terms consisting of the prior probability of an
alternative hypothesis, multiplied by the conditional probability of the
evidence, given that hypothesis. Since it is generally (but perhaps ill-
advisedly) supposed that the probability of a piece of evidence, given a
statistical hypothesis concerning evidence of that sort, is unproblematic,
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the serious question for the Bayesian point of view is the source and
status of the prior probabilities of the hypotheses.

Ramsey’s solution is that rationality imposes no constraint. A
man may have whatever degrees of belief he will, provided only that
they satisfy the constraints of the probability calculus. Some writers
suppose that prior probabilities are determined by some general
principle (e.g., the maximum entropy, or least information, principle
--E. T. Jaynes, 1968), but the application of the general principle
depends on the "formulation of the problem,” which is again a relatively
subjective matter. Logical theorists, as already noted, require the
specification of parameters in order to determine the prior probabilities
of hypotheses.

By Ramsey’s Dutch book argument, these are all the alternatives
there are. Ramsey’s argument is that you should have degrees of belief
such that you could accept all bets offered at odds corresponding toyour
degrees of belief without having a Dutch book--a set of bets that entails
that you lose whatever happens--made against you.

It follows that probabilities are real-valued. And it follows that
they must be updated by Bayes theorem: i.e. that there must be prior
probabilities for every hypothesis. But these probabilities must then be
subjective (Ramsey’s view) or they must be obtained systematically,
according to general principles (the logical view, the maximum entropy
view). But in the latter cases there are important parameters that are
just as subjective as Ramsey’s degrees of belief.

To avoid this conclusion, and the arbitrariness it embodies, we
must draw the teeth of Ramsey’s argument (or find compelling rational
principles that do not require subjective judgment).

Although the issues involved can be complex (see Fahiem
Bacchus, Kyburg, and Mariam Thalos, 1989), the basic idea is simple.
To be sure, it is irrational to accept a set of bets according to which you
lose something you value no matter what happens. But this fact about
rationality says nothing about degrees of belief. The crucial connection
to degrees of belief is the part of the argument that identifies one’s
degree of belief in a statement S with the least odds at which one would
bet on §. But it is not at all obvious that one has degrees of belief, or
that they are associated with the odds at which one is willing to bet in
the way that Ramsey suggests.

Specifically, while it seems reasonable to say that the least odds
at which [ am willing to bet on § represent a kind of lower bound of my
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belief 1n S, and similarly for the greatest odds at which [ am willing to
take a bet on &, it is not at all obvious that these two sets of odds should
be complementary. If [ am unsure about S, I may well offer odds of 1
to2 on S, and odds of 1to 2 against S, without being willing to offer any
intermediate odds on either.

Another approach to determining the basic properties of
probability is the analytic approach exemplified by Richard T. Cox
(1961). It turns out that the most innocuous and harmless-sounding
conditions imposed on uncertainly can be shown to lead directly 1o the
conventional probability calculus. Among these conditions is, of course,
something akin to simple order among probabilities.

One should remember, at this point, the basic distinction that
has given rise to these problems: the distinction between probabilities
that can be construed as frequencies, and probabilities that cannot be so
construed. We shall see later (in section IV) that this is not as simple
a distinction as it appears to be.

{1l. VARIANTS ON PROBABILITY

There are a number of objections to the classical probability
calculus as a representation of uncertainty. Among them are these:

1. Strictly speaking, frequencies only apply to classes or
predicates. One can speak of the frequency of heads on
tosses of this coin, but not usefully of the frequency of
heads on the next toss of this coin.

2. Many of the events whose probability we wish to
speak of (the probability that an individual exhibiting a
unique background and cluster of symptoms has a
certain disease) are not related in any obvious way to
statistical knowledge.

3. Subjective and logical interpretations of probability
give us numbers, but they are arbitrary. The numbers
provided by a logical view reflect arbitrary general
assignments to the sentences of an artificial language.
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The numbers provided by a subjectivistic view may (for
all the theory can say) reflect mere whimsy.

4. None of the theories provides a representation that
can indicate directly that a probability is unknown or
poorly known: that is, that can indicate the difference
between the probability of heads on the next toss of a
well tested coin, and the probability of heads on a
totally unknown coin: both may be represented by the
number 0.500. (The difference is indicated indirectly by
the conditional probability of heads given heads).

5. Bayesian and logical views often require the
assignment of probabilities to a greal many entities.
Thus in computing the conditional probability of H
given E, we may require the probability of E on every
alternative hypothesis to H.

A number of philosophers, including Karl Popper (1959),
Nicholas Rescher (1958), Carl Hempel and Paul Oppenheim (1945).
have offered measures of evidential or factual support. These measures
are not probabilities, though they are relatively simple functions of
probabilities. (For a table exhibiting their relations, and the ways in
which they are related to counventional probability measures, see
Kyburg, 1970.)

These measures are designed explicitly to guide our beliefs with
respect to general hypotheses: e.g., the hypothesis that the die is biased
in a certain way, the hypothesis that all A’s are B’s, the Newtonian
hypothesis (or theory) governing celestial motions, the hypothesis that
less than 30% of the A’s are B’s. Of course these are exactly the sorts
of hypotheses whose probabilities one needs tofeed into Bayes theorem.
What happens when we use these numbers in a decision theoretic
context?

As soon as we try to use such measures in a decision theoretic
context, Ramsey’s (or Cox’s) arguments apply full force. Here we have
no question of merely representing the open and vague and ambiguous
notion of belief; here we have a straighdforward matter of decision
involving (presumably) well specified utilities. It may well be that my
psychological state concerning whether drug 4 will relieve the symptoms
of patient P is best represented by a vector. But that is another matter.
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The most intuitive way of associating degrees of belief with
numbers, employed by Savage (1954), is this: What is the most you
would pay for a ticket that would yield a dollar if S is true? That is your
probability for S. On all of these variant views, the support of a
hypothesis is supposed to be real-valued, and normalized to the [0.1]
interval. If the numbers can be used to weight utilities, in a decision
theoretic context, then it follows from Ramsey’s arguments (among
others) that they must satisfy the axioms of the probability calculus.
That is, the measures purporting to be variants on probability cannot be
viable if they lead to a book being made against one. Or they cannot be
taken as guiding our decisions in the face of uncertainty.

A similar story may be told about Artificial Intelligence. Expert
systems, it is clear, must be capable of handling uncertainty. Various
systems have employed various representations of uncertainty. For
example, MYCIN (E.H. Shoruliffe, 1976) is an expert system designed
to provide assistance in medical diagnosis. The certainty factors of
MYCIN, for example, range from -1.0 to 1.0. where -1.0 applied to §
represents full confidence that S isfalse, and 1.0 applied to § meansfull
confidence that S is true. In the process of inference, certainty factors
are combined according to special rules.

Certainty factors are not probabilities. Not only is the range
wrong, but the rules of combination are inconsistent with the (Bayesian)
rules for the combination of probabilities. If they were to be used as
weighting factors in making decisions, in the same way that probabilities
are used, Ramsey’s arguments could be used to show that the decisions
would not be rational: in a sense. the physician could have a book made
against him. (There is no suggestion that certainty factors should be
used this way; there is no suggestion of computing expectations based
on certainty factors and using these expectations for arriving at
decisions. But the Dutch book argument provides a reason for
eschewing these suggestions.)

Another approach to the ireaimcat of uncertainty that bas
received much attention in artificial intelligence is Shafer’'s {1976)
theory of belief functions. This is a clear mathematical theory, based on
earlier work of Arthur Dempster (1967; 1968). It is designed to
overcome some of the discomforts that people have felt concerning both
the subjectivistic Bayesian theories and their logical variants, as well as
frequency theories.
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111. BELIEF FUNCTIONS

The basic building biock of the theory of belief functions is the
frame of discernment Q. Aframe of discernment may be thought of
as a set of possible worlds, to use philospher’s jargon, but they need be
construed in no more detail than concerns us in a given context. If lam
concerned with the outcome of a coin toss. there are only two possible
worlds that concern me: for cxample, one in which the coin lands heads.
and one in which it lands tails.

My belief's are represcented by an assignment of mass to sers of
possible worlds. including the possibility of assigning mass to unit sets
or singletons of possible worlds, and the possibility of assigning mass to
the set of all possible worlds. Masses are non-negative real numbers
between 0 and 1. The total mass assigned 1s 1.0.

A belief function, or support function, 1s a function whose
domain is sets of possible worlds (subsets of Q), and whose values he in
[0.1]. For X< Q, Bel(X) = Em(A), where m(A) is the mass assigned to
A C Q. and the summation extends over all subsets A of X, including X
itself.

Bel(X) represcnts the amount of belief 1 have 1n the possibility
X. It is one of the attractive features of this system, as opposed to
classical probability systems. that | can have very little belief in X and
at the same time very little belief in its denial, which we denote by
"~ X': that is. instead of P (~ X} = 1 - P(X). we can have both Bel(X)
= ¢ and Bel(~ X) = €. To express complete ignorance about
cverything, we can assign a mass of 1.0 to Q. and a mass of 0 to every
proper subset of Q.

It is easy to see how attractive this can be. Somehow, to know
the probability of something is to know something; 2 prchability of 0
represents, not ignorance, but certainty just as much as a probability of
1. But a probability of a half doesn’t seem to represent ignorance,
either. In the new system. belicf in § equal to 0 may represent
ignorance: it does so if belief in the denial of S is also 0.

Let us now consider updating--the way belief functions and mass
functions change with the accumulation of evidence. "Evidence” is
construed as a frame of discernment with a belief function defined on
it. Thisrepresents what has happencd to us--what we are taking account
of . If Q contains six subsets corresponding to the outcome of a toss of
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a slightly suspicious die, it might have masses of 0.1 on cach of those
subsets and a mass of 0.4 (representing ignorance) on 2 itself. Now let
us suppose we are told by a person of doubtful relhiability that the toss
resulted in an odd number of spots. This might be represented as the
same frame of discernment wi.. a mass of 0.7 on the set corresponding
to odd tosses, and 0.3 on Q.

Qur beliefs should now be represented as the result of
combining these two belief functions. (Note that we have not required
that the “evidence” be known with certainty.) The procedure is to
consider all the subsets of Q that have mass according 10 either belief
function: if § bears positive mass m,(5) according to the first belief
function. and T bears positive mass m,( 7 ) according to the second belief
function, then we assign a mass of m,(S) x m:(T) to the intersection of
S and 7, provided that intersection is not empty. If it 1s empty--i.e. if
it represents an impossible state of affairs, such as the toss landing two
and also being odd--then we assign it 0.0. To account for this lost mass
and to get back to a canonical belief function, we normalize by dividing
cach number by 1-k, where k is the sum of the products of the mass of
subscts that are inconsistent with cach other.

Thus we have, for our example: the mass assigned to the
intersection of ‘one’ and "odd’ is 0.1x0.7 = 0.07: the mass assigned to the
intersection of ‘one’ and Qis 0.1x0.3 = 0.03; ctc.. all normalized to take
account of the impossibility of certain intersections. The following table
illustrates the procedure,

odd Q
i 0.1x0.7 0.1x0.3
2 0.0 0.1x0.3
3 0.1x0.7 0.1x0.3
4 0.0 0.1x0.3
5 0.1x0.7 0.1x0.3
6 0.0 0.1x0.3
Q 0.4x0.7 0.4x0.3

The normalizing number is 1 - 3x0.07 = 1 - 0.21 = (.79. Thus we find
that the belief we should atiribute to “three’ s (0.1x0.7 +~ 0.1x0.3)/0.79
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- 1.127; the belief we should attribute to odd is 0.734;* the belief we
should attribute to Q (ignorance) 15 0.152: etc.

There is a special case that corresponds to Bayesian
conditionalization. If our evidential belief function assigns mass 1.0 to
a single subset of € (and perforce U to every other subset of Q), then we
may compute the updated probability of any subset of Q by means of
what Shafer (1976, p. 67) calls "Dempster’s rule of conditioning.” In this
X 1y arbitrary, and B i1s the set corresponding to the evidence (we
assume that the belief function for "not B” is positive. Bel(~ B) > U):

(1) Bel(X B) = [Bel(X v ~ B) - Bel(~ B)|/[1-Bel(~ B)].

A simple support function is a belief function that resuits
from the assignment of mass to © and to a single subset of Q. 4
separable support function is a belief function that results from the
combination of a finite number of simple support functions. There are
other support functions, and indeed there are belief functions that are
not support functions, but the separable support functions represeat
quite a broad class. It is therefore of interest to note that there is a
procedure for expanding Q so that the result of updating by a simple
support fuaction can be represented as an instance of Dempster’s rule
of conditioning (Kyburg, 1987). It follows that updating by a separable
support function can be represented by a sequence of steps of Dempster
conditioning.

We have ageneral and attractive procedure for representing and
updating uncertainty here. It seems quite different from probability.
But one of the differences is not so nice: there is no obvious decision
procedure based on belief functions. In the case of any standard
subjective or logical probabilistic approach, we can apply the principle
of maximizing expected utility to decision theory. Herc we cannot.

*I'he measuresassignedto 1,3.and 5 are euch 0.1x0.7 + 0.1x0.3. or a total of 0.30. plus
the measure assigned tothe general class, odd. by the new information, multiplied by the
non-spectfic assignment provided by the old information, 0.7x0.4. This sum. 0.58, s
normalized by dividing by 0.79, which yields 0.734.
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1v. BELIEF FUNCTIONS AND PROBABILITIES

Dempster (1967; 1968) originally referred to "upper” and "lower”
probabilities. The idea, but not the terminology is preserved in Shafer:
the belief function gives the lower probability: there is a dual notion,
plausibility, that corresponds to an upper precbability. (The plausibility
of X, PI(X), is defined to be 1 - Bel(~ X).)

First, note that the space Q of possibilitics is just another way
of representing prupositions or statements. A subset of Q corresponds
to a statement. A probability function defined over Q consists in the
assignment of a number to each complete description of a state of
affairs--or each atomic possible world. A set of possible worlds,
corresponding to a disjunction of the atomic world descriptions, will
then receive as its measure the sum of the numbers assigned to its
atoms. The translation between statements and subsets of Q is
straightforward.

Shafer’s system does not require (but it allows) the assignment
of masses to the singletons (corresponding to the atomic worlds). We
can capture this aspect of the system by considering, not a single
assignment to the atomic worlds, but a set of assignments. For example,
consider a simple frame of discernment containing two states of affairs:
heads and tails. The subsets consist of @, which has mass 0, H =
{heads}, T = {tails}, and Q = {heads, tails}. Let us, to reflect our
uncertainty about the coin, assign mass 0.4 to H and to T, and mass 0.2
to Q. We can accomplish the same thing with a set of probability
functions: we can consider the set of all those classical probability
functions whose domain is {heads, tails }, and whose value for heads lies
between 0.4 and 0.6. For every function P in this set, P(Tails) = 1 -
P(Heads). Belief and plausibility are now most naturally thought of as
lower and upper probabilities, respectively.

This holds quite generally. Given any belief function defined on
a frame of discernment, there will exist a set of classical probability
functions, defined on the same set of possible worlds, with the property
that for any subset X of the frame of discernment, the belief assigned to
X, Bel(X), is the minimum of the values P(X) for probability functions
P in that set, and the plausibility assigned to X, PI(X) = 1 - Bel(~ X),
is the maximum. Furthermore, the set of probability functions with this
property is convex: If P and Q belong to the set of probability functions
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in question, so does the funciion PQ, where PQ(X) = a(P(X)) + (1-a)
(Q(X)),0cac=< 1.

Surprisingly, the converse relation does not hold. There are
sets of probability functions to which there corresponds no belief
function. Furthermore, these examples need not be bizarre.

Consider a compound experiment’ consisting of performing a
mixture, in unknown ratio p, of two experiments: (1) tossing a fair coin
twice, or (2) drawing a coin from a bag containing 60% two-headed and
40% wwo-tailed coins, and tossing it twice. The outcomes of the
compound experiment that interest us are A, the event that the first toss
lands heads, and B, the event that the second toss lands tails. CPis to
be the convex set of possible distributions of outcomes on the compound
experiment. CP = {< ¥p + 0.6(1-p), Vap, Vip, Yap + 0.4(1-p) > p €
[0,1]}. Thisis a set of quadruples. The first parameter is the frequency
of HH, the second of HT, the third of TH, and the fourth of TT, on an
arbitrarily large number of repetitions of the compound experiment.
We are representing our knowledge of the long-run outcomes of the
experiment by a convex set of probability distributions. We call this the
convex set representation.

Let P,(X) be the least value of P(X) for P € CP. Then P (AU
B) < P,(A) + P,(B) - P.(A N B). We would like to identify P (X) with
Bel(X). But one of Shafer’s (1976, pp. 38-39) theorems requires that for
all belief functions, Bel(A u B) 2 Bel(A) + Bel(B) - Bel(A N B). This
shows that P, cannot be a belief function. We cannot represent this
uncertain situation by belief functions, but the convex set representation
is quite straightforward and intuitive.

Both representations are of interest, however. The belief
function representation is an easy one to manipulate; the convex set
representation is difficult to deal with computationally. The convex set
representation is intuitively clear; the belief function repiescntation
seems artificial. Furthermore, the two representations are mutually
enlightening.

As an example, let us consider updating in the light of new
cvidence. In the convex set representation, we can represent classical
Bayesian conditionalization. Given a single probability function P, the
conditional probability of a hypothesis H on evidence E, when P(E) >

This example was suggested by Teddy Seidenfeld in conversation.
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0,is P(H | E) = P(H&E)/P(E). If E represents our total increment of
evidence, the principle of confirmational conditionalization (Isaac
Levi, 1980) directs us to adopt as our credence function, P(H) =
P(H&E)/P(E).

Given a set of probability distributions CP, we can accomplish
the same end. Let CP be a convex set of classical probability functions.
Let our total new evidence be E. Then our new belief state should be
represented by CP’, where CP’ is the set of probability functions of the
form P(H&E)/P(E) = P(H | E), for P in the set CP, and P(E) > 0. It
turns out that when CP is convex, and there is at least one function P in
CP such that P(E) > 0, CP’ is convex, too.

Now a belief function can be represented by a convex set of
probability functions (but not vice versa), and, when E is a piece of
evidence we learn for certain, we can apply both Dempster conditioning
and confirmational conditionalization. It turns out that Dempster
conditioning imposes tighter constraints on our degrees of belief than
does confirmational conditionalization. Writing Bel(X | Y) for the
updated belief function and PI(X | Y) for the updated plausibility
function, we have the following relation, where the infimum (inf) and
supremum (sup) are taken over the set of functions CP’ (Kyburg, 1987):

(2) inf P(H | E) < Bel(H | E) < PI(H | E) < sup P(H | E),

In this, equality holds only in rather special cases, when certain
distributions are ruled out as impossible by a// the P’s in CP.

One response to this fact would be to be pleased that the belief
function form of updating leads to "stronger” results than generalized
Bayes. I believe that this response would be mistaken. We have given
no specific interpretation to the members of CP. In particular, they may
be purely objective chances or frequencies, or they may (as I would
usually construe them) be epistemic probabilities directly based on
knowledge of frequencies or chances. In either case, inf P(X) can
represent the value of a frequency or a chance. In adopting Bel(H | E)
asyour odds-determining measure, you may be ruling out this possibility
groundlessly. This corresponds to a well known difficulity in the theory
of belief functions--namely, that very ambiguous evidence can lead to
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L..‘ ‘snambiguous belief functions, in which Bel(X) = PI(X) (see Lotfi
7. deh 1979).
5 I refer to this as a difficulty, but of course whether it is or not
epends in part on what is at stake. One can imagine circumstances in
., lnch the greater precision afforded by Dempster conditioning more
jan offsets the security provided by conditionalization. For exampie,
in a situation in which the agent isforced to make book with all comers,
nd in which the real distributions in the world are unimodal, and in
which the decision rule has any of a number of plausible forms, it is
clear that someone following Dempster conditioning will probably (!)
‘come out ahead of someone who follows classical conditioning.
g We can also raise the question of whether or not
W conditionalization is itself rational. There have been a number of
arguments in favor of confirmational conditionalization (Paul Teller,
}1976; Bas van Fraassen, 1984). We do not find these arguments
pcrsuasxvc, and in fact have argued against them in Kyburg (1987) and
kin Bacchus et al. (1989).
b But what are the plausible forms of a decision rule? The
¥ relation between a representation by convex sets of probability functions
-, * and Shafer’s rcprcscntauon by belief functions gives us a handle on this
i question, but it is by no means settled.

V. DECISION THEORY

One of the most attractive features of classical probability--
and indeed what the whole approach of subjectivistic probability is
based on --is that it lends itself to a very simple and persuasive decision
rule: Maximize Thy Expected Utility. At the same time, one of the
interesting aspects of any alternative to a single classical probability
function as a representation of belief is the way in which it lends itself
to some form of decision theory.

The close relation between belief functions and convex sets of
classical probability functions suggest relations between the decision
theory appropriate for sets of classical probability functions and the
decision theory appropriate for belief functions. But what is the
decision theory appropriate for sets of probability functions?
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In the first place we can apply the classical Bayesian procedure.
When we have intervals of probability, we can consider the maximum
expected utility and the minimum expected utility of one decision, and
the maximum and minimum expected utility of another decision. If the
minimum expected utility of one decision exceeds the maximum
expected utility of another decision, we have a clear ordering of those
two decisions.

More generally and more precisely, let us say one decision
dominates another when the minimum expected utility of the first
exceeds the maximum expected utility of the second. In that case we
clearly have nothing to lose if we forget about the second possibility.
So, on perfectly classical grounds, we can ignore dominated alternatives.

Beyond this, the decision theory for convex sets of classical
probability functions reflects classical decision theoretical problems. It
is a theory that should take account of indeterminacy (as opposed to
uncertainty), but how to do this is an open question. In classical terms,
if X and Y are outcomes that are both possible and the utility of action
A exceeds that of action B if X is the case, but the opposite holds if Y
is the case we are faced with an indeterminate situation, unless we know
the probabilities of the alternatives that X is the case and that Y is the
case.

In such cases there are various rules that one might apply.
Minimax is one, minimax regret another. Levi (1980) has explored a
lexical approach based on a sequence of notions of admissibility. There
are no doubt any number of alternatives, almost none of which have
been adequately discussed. It is not my purpose here to defend one
particular approach to decision under these circumstances, but merely
to point out the relevance of classical decision theory to the case in
which uncertainty is represented by belief functions. The claim that
there is no decision theory to go with the uncertainty representation of
belief functions is clearly wrong. But there is no decision theory for
these cases on which all reasonable persons agree.

No more, of course, have the classical issues of decision in the
face of uncertainty been solved. But it is significant that for the classical
problem there are a number of alternatives that are considered worthy
of serious discussion. Equally, for the convex probability case, or the
belief function case, these alternatives should receive serious
consideration. It is hoped that further consideration will reveal some
principles that will enlighten our decision-theoretic concerns. In aay
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Went it 1s clear that there is a decision-theoretic framework that is
pplicable in the belief function framework, and it is also clear that its
pplication is not a matter whose principles are entirely settled.
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