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ABSTRACT

An optimisation method is proposed to reduce the vibration of
thin-plate structures. The method is based on a finite-element shell
analysis, a modal analysis, and a structural optimisation method. In
the finite-elernent analysis, a triangular shell element with 18 degrees
of freedom is used. In the optimisation, the overall vibration energy
of the structure is adopted as the objective function, and it is mini-
mised at the given exciting frequency by varying the thickness of the
elements. The technique of modal analysis is used to derive the sen-
sitivity of the vibration energy with respect to the design variables.
The sensitivity is represented by the sensitivities of both eigenvalues
and eigenvectors. The optimum value is computed by the gradient
projection method and a unidimensional search procedure under the
constraint condition of constant weight.

A computer code, based on the proposed method, is developed
snd is applied to design problems using a beam and a plate as test
cases. It is confirmed that the vibration energy is reduced at the
given exciting frequency. For the beam excited by a frequency
slightly less than the fundamental natural frequency, the optimized
shape is close to the beam of uniform strength. For the plate, the
optimum shape is obtained such that the changes in thickness have
the effect of adding a stiffener or a maas.

INTRODUCTION

The machine design process generally has several steps. A key
step is the evaluation of a preliminary design to determine whether
or not the planned performance features are achieved. A decision to
change or approve the design is then made. Although these steps
depend on the designer, an optimization technique can aid in obtain-
ing a satisfactory solution. The process of design optimisation con-
sists of two stages: the first is the formulation of the design
mathematically, for example, the minimisation of weight. The sec-
ond stage is the process of solving the problem. Considerable
research bas been done in these fields (Atrek, 1989), and the signi-
ficance of optimum design has increased. In connection with analy-
sis, the first author has reported the optimum statical design of a
plate based on maximisation of its bending rigidity (Inoue, 1988).
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Takatsu (1991) and Lim et al. (1989) conducted research on the
vibration of gear systems. The gearboxes used in these studies were
made of steel plates, One technique that is often used to avoid
resonance shifts the natural frequency for the purpose of controlling
and reduring the vibration of structures like gearboxes. A mass or
stiffener is added at some position on the structure to change the
resonance. Although effective, it is difficult to select the position
and to estimate a suitable shift of natural frequency. Another tech-
nique to avoid resonance reduces the dynamic response, or transfer
function. The dynamic response is used as the index of vibration in
this technique. However, it is not always the best index for evalu-
ating the overall vibration of the structure because it is usually
evaluated at a specific point. The first author adopted the vibration
energy as the index and proposed a method to design a plate (Inoue
et al., 1990). In this research, the method was refined and a com-
puter program was developed for the optimum design of thin-plate
structures. The program primatily uses finite-clement and modal
analyses. The latter is used successfully to derive the sensitivity of
the vibration energy with respect to the design variable. The pro-
posed method is applied herein to some beam and plate design prob-
lems in order to demonstrate the optimization process. The
application to the design problem of shell structure is discussed in
another paper (Inoue et al., 1992).

OPTIMIZATION BASED ON THE MINIMIZATION OF
VIBRATION ENERGY

Modal Analysis of Forced Vibration

An elastic structure is divided into finite elements and discre-
tizsed to N degrees of freedom. The equation of mation of the struc-
ture is given in matrix form as

M)} + [CHa()} + [Kiu()} = {1y) (1)

where [M] is the mass matrix, [C] is the damping matrix, [K]| is
the stiffness matrix, {u(t)} is the displacement vector, and {f(t))
is the exciting force vector. When proportional damping is assumed,
the damping matrix is represented by the linear combination of the
mass matrix and the stiffness matrix




(Cl = o[M] + 8(K] @

where a and § are the coefficients that define the proportional
damping matrix. The solutions of the eigenvalue problem are
obtained easily from the eigenvalues and eigenvectors of the
undamped vibration problem with the same matrices [M] and [K]}.

The eigenvector has orthogonality in a broad sense. Let {4}
be the eigenvector normalized with respect to mass matrix

{‘r}TM{¢'} =6y (3)

where &, is Kronecker’s delta, and r and s define the r*® and
s® mode. The modal matrix (8] is defined by the assembly of
these eigenvectors

®] = {94}, {85}, --s {$}] (4

where n indicates the number of eigenvectors considered. From the
normalised orthogonality of eigenvectors, any displacements {u(t)}
can be represented approximately by their linear combination

() = Ele,(t)w,} = B} (5)

When the structure concerned is excited by a harmonic force of
angular frequency w,

{1(t)} = (F)elt ©)

where {F} is the exiting force amplitude. The vibration of the
structure is written by the same form

{u(t)} = {U)el*t = P]{£)el )

where {U} indicates the amplitude and is represented by the modal
matrix. Subsmutmg Eqgs. (6) and (7) into Eq. (1) and premulti-
plying it by [0] , b independent a{gebruc equations are obtained
to evaluate the vector {£}. The r** component is given in the
following form by solving the equation:

T
&= {4 (r = 1,2,.,n)  (8)

(A = @?) + jw(a + BA)

In the expression, A, denotes the 't eigenvalue. Consequently,
the amplitude {U} for the vibration displacement is obtained by
substituting {¢} into Eq. (7).

Sensitivity of Vibration Energy
The velocity {i(t)} can be expressed in a form similar to
Eq. (5). The vibration velocity is given by

fa(t)) = {O)et = @ {g)et ©)

However, the velocity can be derived directly by differentiating the
displacement in Eq, (7):

(O} = jopl{ge (0
From Eqs. (9) and (10), the vector {£} is given by

@ = jwie) ()

Therefore, the real and imaginary parts of 2
obtained as follows:

component are

(a + A6} T{F)

L = o + (e + B)?
o (12)
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where R and I are the real and imaginary parts and {.. .}T
denotes the transpose matrix.
The vibration energy T of the structure is given by

= {o il
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where {(U°) and {£°} show the conjugate complex of {U} and

{€}. The energy is, therefore, represented by the following
expression:

( R .rl) (0

The sensitivity of the vibration energy with respect to the design
variable x; (i = 1,...,m) is given by

T_3 [é,n % +é1 %IIJ (15)
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Since a, B, w, and {F} in Eq. (12) are independent of the design
variable, the sensitivity of the vibration energy is represented by the
function of the sensitivity of the eigenvalue and the sensitivity of the
eigenvector. The evaluation of the sensitivities of both eigenvalue
and eigenvector is based on the method proposed by Fox and
Kapoor (1968).




Search for the Optimum Value
The optimization design problem is expressed as follows:

Minimise T({x})
g({x}) = W - W({x}) =0
by({x}) =% ~ xpn 20 (16)

Behavior constraint

Side constraint

hy({x}) = Xpax — %; 2 0

{x} = (xl,x,,...,xm)T

Design variables

where W and W({x}) are the prescribed weight and the function
of the structure weight, respectively. The behavior constraint gives
the design of constant weight. The element thickness is adopted as
the design va.iable. The side constraints limit the thickness within
the given minimum and maximum.

In the optimization process, the deslgn variables are modified
along the feasible direction vector {d( } to reduce the objective
function, and the new design variables are obtained in the following

form:
{x(““’} = [x(“)} + s{dm} (171)

The superscript (k) means the k™ iteration in the optimization
process, and s is the step. If the variables are in the feasible
region, the feasible direction vector is given by the steepest descent
vector and is composed of the sensitivity of vibration energy with a
minus sign. After the design variables reach the intersection formed
by the constraint surfaces, the vector is projected on the inter-
section. This procedure is the gradient projection method (Rosen,
1961). The method can be applied to problems with linear or non-
linear constraints. Since the constraints for the design problem dis-
cussed in this research are linear, the feasible direction is easily
determined. In order to obtain the step s in Eq. (17), the region
which includes the relative minimum of the energy is searched by an
iterative interpolation process. Once the region is found, the ener-
gies are evaluated at the limits and the middle point of the region.
Next a quadratic expression is obtained so that it goes through these
points. The step size is determined to obtain the minimum of the
expression. The region cannot be found every time because the
objective function frequently decreases monotonously. In this case,
the search procedure is stopped if the minimum is not obtained after
10 iterations. Then the step at the last iteration is used, the sensi-
tivity is calculated again, and the optimum is searched. The value
of the energy at the last iteration is stored and used to determine
convergence. The convergence criterion is 1/1000 relative variation.

OPTIMUM DESIGN PROGRAM

A computer program was developed based on the procedures
described in the previous sections. The program consists of two
main parts. One part is the analyser, which is composed of the
finite-element method, the eigenvalue analysis, and the evaluation of
the vibration energy by means of modal analysis. The other part is
the optimizer which includes the sensitivity analysis and search pro-
cedure for the optimum value.

Several finite-element programs are available; however, in this
research, the program is written to make the program as compact
and flexihi= as poesible. A triangular shell element with 18 degrees
of freedom is used. The element is formed by the combination of
elements for plate bending and plane problem analyses, and both are
given in Zienkiewics and Cheung (1967). The consistent mass
matrix is evaluated by using the method of numerical integration.

The program was implemented on Digital Equipment Corpor-
ation VAX computers at the NASA Lewis Research Center. It is
executed interactively for small models. In the case of a larger
model like a three-dimensional structure, the program is submitted
to the Cray Research Corporation XMP 4/28 computer. The pro-
gram is written in FORTRAN 77.

APPLICATION TO THE OPTIMUM DESIGN OF BEAM AND
PLATE

In order to demonstrate the optimization process, the proposed
method is applied to the optimum design problem of beams and
plates. These constants were used in this research: modulus of
elasticity in tensxon = 206 GPa, Poisson’s ratio = 0.3, mass dens-
ity = 8000 kg/m and the coefficients for composing the prol’)or-
tional damping matrix are @ = 1.0 sec™! and § = 5.0x10

Optimum Shape of Simply Supported Beams

The element used in this research is not a beam element but a
shell element, and it is not best suited for the analysis of beams.
However, a sufficiently narrow-width plate may be approximated as
a beam. The pattern of the mesh is shown in Fig. 1. The element
numbers are from 1 to 40 as shown in the figure. The beam has
dimensions of length L = 200 mm, width B = 10 mm, and the ini-
tial thickness t, = 5 mm.

The calculated lower four natural frequencies and their errors
(compared to the theoretical values for a simply supported beam)
are 288.9 Hz (0.5 percent), 1172 Hz (1.9 percent), 2704 Hz
(4.5 percent), and 4982 Hz (8.3 percent), respectively. Wkhen the
beam center is excited by a unit harmonic force, the frequency
response of the vibration energy is evaluated at every 10 Hz, based
on these lower four modes, and is illustrated by the dashed curve in
Fig. 2. The abscissa indicates the exciting frequency. The peak in
the figure approximately represents the resonance at the fundamen-
tal natural frequency of 288.9 Hz. If this beam is excited by a
unit harmomc force (1 N} at 270 Hz, the energy level of about
0.207x10™3 J is considerably high because of the influence of the
resonance. The optimum design program was executed to minimize
the vibration energy at the resonant frequency. The upper and
lower limits of the thickness are given as 1 < t < 10. The process of
energy convergence, which is represented by the ratio of the initial
energy, is shown in Fig. 3. The energy decreases rapidly and con-
verges to about one-tenth of the initial energy after four iterations.
The frequency response of the optimally designed beam is indicated
by the solid curve in Fig. 2. The fundamental natural frequency
shifts to 319.7 Hz.

The optimum shape of the beam is illustrated in Fig. 4. The
thickness is maximum at the center and decreases gradually toward
the supported ends. The shape is compared with the shape of a
beam of uniform strength in Fig. 5. The uniform-strength beam is
well known as the optimum shape of the static maximum stiffness
design (Huang, 1968). A similar design performed by using a fine
mesh of 20 by 2 by 2 gave a shape approximately the same as the
aforementioned optimum shape in Fig. 5.

In the optimization, the thicknesses of four elements in every
section are forced to be equal. If the constraint is eliminated, the
optimum shape illustrated in Fig. 6 is obtained. Most of the ele-
ments reach the higher and lower thickness limits. However, the
tendency for the element thickness to decrease toward the support-
ing ends is the same as in the previous example. The element thick-
ness variation is summariszed in Table 1. The element thickness in
each section is very close to each other in the first few steps of the
process and then the difference increases gradually. The frequency
response and the energy convergence are shown in Figs. 7 and 8,
respectively. Compared witk che former example, morc iterations
are needed until the energy converges, and the energy greatly
reduces. The beneficial effect of this method on the reduction of
vibration is confirmed by the vibration amplitude shown in Fig. 9.
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Figure 1.—Pattern of mesh used for the optimum design of
beam. Length L =200 mm, width B = 10 mm, initial
thickness to = 5 mm.
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Figure 2.—~Frequency response of simply supported beam due
to unit exciting force. Excitation frequency fox = 270 Hz.
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Figure 3.—Convergence of vibration energy.
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Figure 4.—Optimum shape of simply supported beam. Excitation
frequency fgy = 270 Hz. (The thicknesses of four elements in
every section are forced to be equal.)
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Figure 5.—Comparison of the optimum shape with the shape of
the beam of uniform strength.

Figure 6.—Optimum shape of simply supported beam. Excitation
frequency foy = 270 Hz.




TABLE 1.—VARIATION OF ELEMENT THICKNESS OF SIMPLY SUPPORTED BEAM
WITH VARIABLE THICKNESS AND WIDTH (cf. Fig. 6)

Element | Iteration
0 1 ] 3 | 4 6 8 10 12 14 15
1 500 | 3.63 | 295 [ 2.68 | 196 | 142 | 100 [ 100 | 100 | 100 | 1.00
3 5.00 | 366 | 298 | 272 | 265 | 424 | 436 | 446 | 449 | 5.72 | 5.56
5 5.00 4.18 453 4.59 5.26 6.83 7.16 7.39 7.58 9.28 9.44
6 500 { 411 | 441 | 444 | 347 | 195 | 146 | 200 | 100 | 1.00 | 1L.00
9 5.00 4.93 5.36 5.37 3.74 1.04 1.00 1.00 1.00 1.00 1.00
10 500 | 5.00 | 549 | 556 | €89 | 852 | 884 | 9.07 | 928 j10.00 | 10.00
13 500 | 5.86 | 597 | 609 | 765 | 9.26 | 9.70 | 10.00 | 10.00 |10.00 | 10.00
14 500 | 579 | 586 | 893 | 495 | 258 | 1.93 | 135 | 100 | 2.00 { 1.00
17 500 | 640 | 621 | 6329 | 622 | 569 | 553 | 531 | 465 [ 100 | 1.00
18 5.00 6.43 6.24 6.34 7.20 8.48 9.00 9.42 | 10.00 | 10.00 10.00
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Figure 7.—Frequency response (due to unit exciting force) of Figure 8.—Convergence of vibration energy with variable thick-
simply supported beam with variable thickness and width. ness and width.
Excitation frequency, fey = 270 Hz.
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Optimum Shape of Simply Supported Plate
The plate (whoee dimensions are a = 600 mm, b = 400 mm,

aud initial thickness t, =3 mm) is divided into 6 by 2 by 2
elements as shown in Fig. 10. The thickness constraint is given as
2 < t € 10. The eigenvalue problem is solved first, and the lower
12 modes are used for the optimisation because they fully cover the
frequency response range considered in the optimisation.

In the first example, the plate is excited by a central unit
harmonic force (1 N) with a frequency of 370 Hs, which is slightly
lower than the natural frequency of mode (3,1), 376 Hz. Mode (3,1)
means the mode shape has two nodal lines parallel to the y-axis.
The frequency response of the plate with initial thickness is eval-
uated at every 10 Hz up to 1000 Hz and is shown by the dashed
curve in Fig. 11. The energy at the exciting frequency is about
0.338x107 " J. The energy is considerably high because of the reson-
ance influence. The energy convergence process is shown in Fig. 12.
The energy decreases sharply by the first optimization and converges
to about one-thousandth of the initial energy after eight iterations.
The final frequency response is also shown by the solid curve in
Fig. 11. The resonance peak under consideration shifts to about
520 Hs, which causes a large vibration reduction at the excitation
frequency. The optimum shape of the plate is illustrated in Fig. 13.
A marked change of the shape is the increase in thickness of the ele-
ments along the longer centerline which may function as a stiffener
and lead to the vibration reduction of mode (3,1).

In the second example, the same plate is excited by 390 Hs,
which is a little higher than the natural frequency under consider-
ation. The solution converges to the optimum shape as iliustrated
in Fig. 14. The frequency response and the energy convergence are
shown in Figs. 15 and 16, respectively. In this example, the thick-
ness increases at the central portion of the plate and appears to
function ss a mass. Indeed, the natural frequency under considera-
tion is reduced by the optimization and shifts to about 314 Hs.

L |
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Figure 10.—Pattern of mesh used for the optimum design of plate
{a = 600 mm, b = 400 mm, initial thickness t, = 5§ mm).
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Figure 11.—Frequency response of simply supported plate due
to unit exciting force. Excitation frequency fgx = 370 Hz.

In comparison with the first example, the energy at 390 Hs is
higher than the former energy at the same frequency, thus demon-
strating that the minimum energy obtained in these examples is a
local minimum. The comparison aiso indicates that the natural fre-
quency shift to a higher frequency region is better than the shift to a
lower frequency region for the purpose of reducing the vibration.
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Figure 13.—Optimum shape of simply supported plate.
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Figure 14.—Optimum shaps of simply supported plate.
Excitation frequency fqy = 390 Hz.
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CONCLUSION

The vibration energy was selected as the index for vibration
evaluation for the purpose of designing low-vibration thin-plate
structures. A method was proposed to minimize the energy. The
method is based on a finite-element shell analysis, a modal analysis,
and a structural optimization technique. The vibration energy sensi-
tivity with respect to the design variable was derived and shown to
be expressed by the sensitivities of both eigenvalues and
eigenvectors.

The computer program was developed and applied to the
analysis of a beam and 2 plate to study the optimization process.
This method was demonstrated to be effective in reducing the energy
at the given frequency. In the design of a plate, the optimum shape
was obtained such that the increase in thickness functioned as a stif-
fener or a mass. If the optimization frequency is slightly lower than
the natural frequency, then this method shifts the natural frequency
under consideration to a higher frequency region. The opposite is
also true. Consequently, this method can control the direction of
shift of the natural frequency.
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