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ABSTRACT Takatsu (1991) and Lira et al. (1989) conducted research on the
vibration of gear systems. The gearboxes used in these studies were

An optimization method is proposed to reduce the vibration of made of steel plates. One technique that is often used to avoid
thin-plate structures. The method is based on a finite-element shell resonance shifts the natural frequency for the purpose of controlling
analysis, a modal analysis, and a structural optimization method. In and reduring the vibration of structures like gearboxes. A mass or
the finite-element analysis a triangular shell element with is degrees stiffener is added at some position on the structure to change the
of freedom is used. In the optimization, the overall vibration energy resonance. Although effective, it is difficult to select the position
of the structure is adopted as the objective function, and it is mini- and to estimate a suitable shift of natural frequency. Another tech-
mised at the given exciting frequency by varying the thickness of the nique to avoid resonance reduces the dynamic response, or transfer
elements. The technique of modal analysis is used to derive the sen- function. The dynamic response is used as the index of vibration in
sitivity of the vibration energy with respect to the design variables. this technique. However, it is not always the best index for evalu-
The sensitivity is represented by the sensitivities of both egenvalues ating the overall vibration of the structure because it is usually
and egenvectors. The optimum value is computed by the gradient evaluated at a specific point. The first author adopted the vibration
projection method and a unidimensional search procedure under the energy as the index and proposed a method to design a plate (Inoue
constraint condition of constant weight. et a., 1990). In this research, the method was refined and a com-

A computer code, based on the proposed method, is developed puter program was developed for the optimum design of thin-plate
and is applied to design problems using a beam and a plate as test structures. The program primarily uses finite-element and modal
cases. It is confirmed that the vibration energy is reduced at the analyses. The latter is used successfully to derive the sensitivity of
given exciting frequency. For the beam excited by a frequency the vibration energy with respect to the design variable. The pro-
slightly less than the fundamental natural frequency, the optimized posed method is applied herein to some beam and plate design prob-
shape is close to the beam of uniform strength. For the plate, the lems in order to demonstrate the optimization process. The
optimum shape is obtained such that the changes in thickness have application to the design problem of shell structure is discussed in
the effect of adding a stiffener or a mass, another paper (Inoue et al., 1992).

INTRODUCTION OPTIMIZATION BASED ON THE MINIMIZATION OF
VIBRATION ENERGY

The machine design process generally has several steps. A key
step is the evaluation of a preliminary design to determine whether Modal Analysis of Forced Vibration
or not the planned performance features are achieved. A decision to An elastic structure is divided into finite elements and discre-
change or approve the design is then made. Although these steps tised to N degrees of freedom. The equation of motion of the struc-
depend on the designer, an optimization technique can aid in obtain- ture is given in matrix form as
ing a satisfactory solution. The process of design optimization con-
sists of two stages: the first is the formulation of the design
mathematically, for example, the minimization of weight. The sec- [IM{ii(t)) + JC]{fi(t)} + jKJ{u(tl) = (f(t)) ()
ond stage is the procein of solving the problem Considerable
research hes been done in these fields (Atrek, 1989), and the sign- where [M is the mass matrix, JCJ is the damping matrix, [KJ is
ficance of optimum design has increased. In connection with analy- the stiffness matrix, {u(t)) is the displacement vector, and {f(t))
sia, the first author has reported the optimum statical design of a is the exciting force vector. When proportional damping is assumed,
plate based on maximization of its bending rigidity (Inoue, 1988). the damping matrix is represented by the linear combination of the

mas matrix and the stiffness matrix
aNeriesi a Lews Researh Ceat. IIR 1.1kw.
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(CI =-(M + PIKI (2) WO) = jwlhi{Cfeiw (10)

where a and 0 are the coefficients that define the proportional From Eqs. (9) end (10), the vector {C} is given by
damping matrix. The solutions of the eigenvalue problem are
obtained easily from the elgenvalues and eigenvectors of the
undamped vibration problem with the same matrices Ml and [K]. { } = (11)

The eigenvector has orthogonality in a broad sense. Let (}
be the eigenvector normalized with respect to mass matrix Therefore, the real and imaginary parts of rth component are

obtained as follows:

{ = (3)
(a + P ,){ r}T{F}

where 68 is Kronecker's delta, and r and a define the rt h and ( + Ar) (Or TfF_ _ _

Sth mode. The modal matrix J#] is defined by the assembly of I (Ar  2)
2 + (a + PAr) 2

these eigenvectors (12)
I"] =[{~d{~2} () ~A -

2 ){(}T{)

I (A+_ ( + a r 2

where n indicates the number of eigenvectors considered. From the .2
normalized orthogonality of eigenvectors, any displacements {u(t)}
can be represented approximately by their linear combination where R and I are the real and imaginary parts and T..

denotes the transpose matrix.

{u(t)} = n (5) The vibration energy T of the structure is given by

When the structure concerned is excited by a harmonic force of T = 1 T

angular frequency w, 2

= li.I)IA0()(13)

{f(t)) = F}eiwt (6)

where {F} is the exiting force amplitude. The vibration of the
structure is written by the same form

where (0) and ((*I show the conjugate complex of (C| and

{u(t)} = {U)e Jiw = IOJ{}ej 'i (7) ((). The energy is, therefore, represented by the following
expression;

where {U) indicates the amplitude and is represented by the modal
matrix. Substituting Eqs. (6) and (7) into Eq. (1) and premulti- T = 1 ( e (14)
plying it by #]T, n independent aJebraic equations are obtained 2 r R
to evaluate the vector {f). The r component is given in the
following form by solving the equation:

The sensitivity of the vibration energy with respect to the design

(8) variable x, (i = 1,...,m) is given by
= (A # } { }(r = 1,,...,n) ()

(Ar - W3) + jw(a + PAr)

'= £(r r _l 0r j (15)

In the expression, Ar denotes the r"h elgenvalue. Consequently, [ell
the amplitude (U} for the vibration displacement is obtained by
substituting {} into Eq. (7). Since a, ., w, and {F} in Eq. (12) are independent of the design

variable, the sensitivity of the vibration energy is represented by the
Sensitivity of Vibration Eneruy function of the sensitivity of the eigenvalue and the sensitivity of the

The velocity (4(t)) can be expressed in a form similar to eigenvector. The evaluation of the sensitivities of both eigenvalue
Eq. (5). The vibration velocity is given by and eigenvector is based on the method proposed by Fox and

Kapoor (1968).

{((t)) = {r3}eit --- J{}ei Wt  (9)

However, the velocity can be derived directly by differentiating the
displacement in Eq. (7):
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Search for the Optimum Value The program was implemented on Digital Equipment Corpor-
The optimization design problem is expressed as follows: ation VAX computers at the NASA Lewis Research Center. It is
Minimize T({x}) executed interactively for small models. In the case of a larger

model like a three-dimensional structure, the program is submitted
Behavior constraint g((x}) = W - W(x}) = 0 to the Cray Research Corporation XMP 4/28 computer. The pro-

Side constraint hl({x}) = xi - xg. _> 0 (16) gram is written in FORTRAN 77.

APPLICATION TO THE OPTIMUM DESIGN OF BEAM AND
h2({x}) = X. - Xi 2 0 PLATE

Design variables {x} = (x1, x2, ... ,xm)
T  In order to demonstrate the optimization process, the proposed

method is applied to the optimum design problem of beams and
plates. These constants were used in this research: modulus of

where W and W({x}) are the prescribed weight and the function elasticity in tension = 206 CPa, Poisson's ratio = 0.3, mass dens-

of the structure weight, respectively. The behavior constraint gives ity = 8000 kg/m 3 , and the coefficients for composing the pro or-
the design of constant weight. The element thickness is adopted as tional damping matrix ure a = 1.0 sec - and = 5.0x10- sec.

the design va~iable. The side constraints limit the thickness within
the given minimum and maximum. Optimum Shape of Simply Supported Beams

In the optimization process, the design variables are modified The element used in this research is not a beam element ut a

along the feasible direction vector (d( k) } to reduce the objective shell element, and it is not best suited for the analysis of beams.
function, and the new design variables are obtained in the following However, a sufficiently narrow-width plate may be approximated as

form: a beam. The pattern of the mesh is shown in Fig. 1. The element
numbers are from 1 to 40 as shown in the figure. The beam has
dimensions of length L = 200 mm, width B = 10 mm, and the ini-

X Ix + 81d() tial thickness to = 5 mm.
The calculated lower four natural frequencies and their errors

(compared to the theoretical values for a simply supported beam)
are 288.9 Hz (0.5 percent), 1172 Hz (1.9 percent), 2704 Hz

The superscript (k) means the kth iteration in the optimization (4.5 percent), and 4982 Hz (8.3 percent), respectively. When the
process, and s is the step. If the variables are in the feasible beam center is excited by a unit harmonic force, the frequency
region, the feasible direction vector is given by the steepest descent response of the vibration energy is evaluated at every 10 Hz, based
vector and is composed of the sensitivity of vibration energy with a on these lower four modes, and is illustrated by the dashed curve in
minus sign. After the design variables reach the intersection formed Fig. 2. The abscissa indicates the exciting frequency. The peak in
by the constraint surfaces, the vector is projected on the inter- the figure approximately represents the resonance at the fundamen-
section. This procedure is the gradient projection method (Rosen, tal natural frequency of 288.9 Hz. If this beam is excited by a
1961). The method can be applied to problems with linear or non- unit harmonic force (1 N) at 270 Hz, the energy level of about
linear constraints. Since the constraints for the design problem dis- 0.207X10 - 3 J is considerably high because of the influence of the
cussed in this research are linear, the feasible direction is easily resonance. The optimum design program was executed to minimize
determined. In order to obtain the step s in Eq. (17), the region the vibration energy at the resonant frequency. The upper and
which includes the relative minimum of the energy is searched by an lower limits of the thickness are given as I < t < 10. The process of
iterative interpolation process. Once the region is found, the ener- energy convergence, which is represented by the ratio of the initial
gies are evaluated at the limits and the middle point of the region. energy, is shown in Fig. 3. The energy decreases rapidly and con-
Next a quadratic expression is obtained so that it goes through these verges to about one-tenth of the initial energy after four iterations.
points. The step size is determined to obtain the minimum of the The frequency response of the optimally designed beam is indicated
expression. The region cannot be found every time because the by the solid curve in Fig. 2. The fundamental natural frequency
objective function frequently decreases monotonously. In this case, shifts to 319.7 Hz.
the search procedure is stopped if the minimum is not obtained after The optimum shape of the beam is illustrated in Fig. 4. The
10 iterations. Then the step at the last iteration is used, the sensi- thickness is maximum at the center and decreases gradually toward
tivity is calculated again, and the optimum is searched. The value the supported ends. The shape is compared with the shape of a
of the energy at the last iteration is stored and used to determine beam of uniform strength in Fig. 5. The uniform-strength beam is
convergence. The convergence criterion is 1/1000 relative variation, well known as the optimum shape of the static maximum stiffness

design (Huang, 1968). A similar design performed by using a fine
OPTIMUM DESIGN PROGRAM mesh of 20 by 2 by 2 gave a shape approximately the same as the

aforementioned optimum shape in Fig. 5.
A computer program was developed based on the procedures In the optimization, the thicknesses of four elements in every

described in the previous sections. The program consists of two section are forced to be equal. If the constraint is eliminated, the
main parts. One part is the analyzer, which is composed of the optimum shape illustrated in Fig. 6 is obtained. Most of the ele-
finite-element method, the eigenvalue analysis, and the evaluation of ments reach the higher and lower thickness limits. However, the
the vibration energy by means of modal analysis. The other part is tendency for the element thickness to decrease toward the support-
the optimizer which includes the sensitivity analysis and search pro- ing ends is the same as in the previous example. The element thick-
cedure for the optimum value. ness variation is summarized in Table 1. The element thickness in

Several finite-element programs are available; however, in this each section is very close to each other in the first few steps of the
research, the program is written to make the program as compact process and then the difference increases gradually. The frequency
and flexibl- as possible. A triangular shell element with 18 degrees response and the energy convergence are shown in Figs. 7 and 8,
of freedom is used. The element is formed by the combination of respectively. Compared with ihe former example, more iterations
elements for plate bending and plane problem analyses, and both are are needed until the energy converges, and the energy greatly
given in Zienkiewicz and Cheung (1967). The consistent mass reduces. The beneficial effect of this method on the reduction of
matrix is evaluated by using the method of numerical integration, vibration is confirmed by the vibration amplitude shown in Fig. 9.
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Figure 1.-Pattern of mesh used for the optimum design of Figure 4.-Optimum shape of simply supported beam. Excitation

beam. Length L = 200 mm, width B = 10 mm, initial frequency fex = 270 Hz. (The thicknesses of four elements in

thickness to 5 mm. every section are forced to be equal.)
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Figure 2.-Frequency response of simply supported beam due
to unit exciting force. Excitation frequency fex =270 Hz.
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Figure 5.-Comparison of the optimum shape with the shape of
the beam of uniform strength.
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.01 I I I I I I I I Figure 6.-Optimum shape of simply supported beam. Excitation
0 1 2 3 4 5 6 7 8 9 10 frequency fox = 270 Hz.

Number of iterations

Figure 3.-Convergence of vibration energy.
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TABLE I.-VARIATION OF ELEMENT THICKNESS OF SIMPLY SUPPORTED BEAM

WITH VARIABLE THICKNESS AND WIDTH (d. FIg. 6)

Element Iteration

0 1 2 3 4 6 8 10 12 14 15

1 5.00 3.63 2.95 2.68 1.96 1.42 1.00 1.00 1.00 1.00 1.00
2 $.00 3.66 2.98 2.72 2.65 4.24 4.36 4.46 4.49 5.72 5.56

5 5.00 4.18 4.53 4.59 5.26 6.83 7.16 7.39 7.58 9.28 9.44
6 5.00 4.11 4.41 4.44 3.47 1.95 1.46 1.00 1.00 1.00 1.00

9 5.00 4.93 6.36 5.37 3.74 1.04 1.00 1.00 1.00 1.00 1.00
10 5.00 5.01 5.49 5.56 6.89 8.52 8.84 9.07 9.28 10.00 10.00

13 5.00 5.86 5.97 6.09 7.65 9.26 9.70 10.00 10.00 10.00 10.00
14 5.00 5.79 5.86 5.93 4.95 2.58 1.93 1.35 1.00 1.00 1.00

17 5.00 6.40 6.21 6.29 6.22 5.69 5.53 5.31 4.65 1.00 1.00
18 5.00 6.43 6.24 6.34 7.20 8.48 9.00 9.42 10.00 10.00 10.00

100 .loo f =ejwt

10-2 -

ii

104 -

10-4 -

." .210
-  -.

01
....... .... ... .e

------- Initial

IOptimized

10-8 f

10 1 1 I .001 I I I I I ,I

0 200 400 600 800 1000 0 2 4 6 8 10 12 14 16

Frequency, Hz Number of iterations

Figure 7.--Frequency response (due to unit exciting force) of Figure 8.-Convergence of vibration energy with variable thick-

simply supported beam with variable thickness and width. ness and width.

Excitation frequency, fex = 270 Hz.
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. . . "Figure 1 O.-Pattem of mesh used for the optimum design of plate

(a = 600 mm, b = 400 mm, initial thickness to =5 mm).

0 .2 .4 .6 .8 1.0

Position, x/(L/2)

Figure 9.-Displacements due to continuative vibration (initials; 10-2  - ------- Initial
uniform thickness, optimum 1, beam in fig. 4, optimum 2. Optimized
beam in fig. 6). 10--

Optimum Shape of Simply Supported P)%Its 10-4 ,
The plate (whose dimensions are a = 600 mm, b = 400 mum, *

and initial thickness to = 5 m m,vde 5no6 .y2b
elements as shown in Fig. 10. The thickness constraint is given as
2 < t < 10. The eigenvalue problem is solved first, and the lower 10 -  i
12 modes are used for the optimization because they fully cover the -
frequency response range considered in the optimization. 6 10-6 /

In the first example, the plate is excited by a central unit 0
harmonic force (1 N) with a frequency of 370 Hz, which is slightly / 
lower than the natural frequency of mode (3,1), 376 Hz. Mode (3,1) 10_7
means the mode shape has two nodal lines parallel to the y-axis.
The frequency response of the plate with initial thickness is eval-
uated at every 10 Hs up to 1000 Hz and is shown by the dashed
curve in Fit. 11. The energy at the exciting frequency is about 10- 8

0.338x10- J. The energy is considerably high because of the reson- if ei- t

ance influence. The energy convergence process is shown in Fig. 12.
The energy decreases sharply by the first optimization and converges 10-9

to about one-thousandth of the initial energy after eight iterations.
The final frequency response is also shown by the solid curve in
Fig. 11. The resonance peak under consideration shifts to about 100 I
520 Hs, which causes a large vibration reduction at the excitation 0 200 400 S00 800 1000

frequency. The optimum shape of the plate is illustrated in Fig. 13. Frequency, Hz
A marked change of the shape is the increase in thickness of the ele-
ments along the longer centerline which may function as a stiffener Figure 11.-Frequency response of simply supported plate due
and lead to the vibration reduction of mode (3,1). to unit exciting force. Excitation frequency fex -370 Hz.

In the second example, the same plate is excited by 390 Hs,
which is a little higher than the natural frequency under consider-
ation. The solution converges to the optimum shape as illustrated In comparison with the first example, the energy at 390 Hz is
in Fig. 14. The frequency response and the energy convergence are higher than the former energy at the same frequency, thus demon-
shown in Fiip. 15 and 16, respectively. In this example, the thick- strating that the minimum energy obtained in these examples is a
am increases at the central portion of the plate and appears to local minimum. The comparison also indicates that the natural fre-

function as a mass. Indeed, the natural frequency under considera- quency shift to a higher frequency region is better than the shift to a
tion is reduced by the optimization and shifts to about 314 Hs. lower frequency region for the purpose of reducing the vibration.
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Figure 12.-Convergence of vibration energy. Figure 1 5.-Frequency response of simply supported plate due
to unit exciting force. Excitation frequency f., 390 Hz.

Figure 1 3.--Optimum shape of simply supported plate.
Excitation frequency f ex 370 Hz.
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Figure 14.-Optimumn shape of simply supported plate. Figure 16.-Convergence of vibration energy.
Excitation frequency f* ex 390 Hz.
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CONCLUSION Huang, N.C., 1968, "Optimal Design of Elastic Structures for
Maximum Stiffness,' International Journal of Solids and Structures,

The vibration energy was selected as the index for vibration Vol. 4, pp. 689-700.
evaluation for the purpose of designing low-vibration thin-plate Inoue, K., Kato, M., and Ohnuki, K., 1988, "Maximization of Bend-
structures. A method was proposed to minimize the energy. The ing Rigidity of Plates," Preprint of JSDE No. 4, pp. 17-24 (in Japanese).
method is based on a finite-element shell analysis, a modal analysis, Inoue, K., Kato, M., and Ohnuki, K., 1990, "Optimum Design of
and a structural optimization technique. The vibration energy sensi- a Plate on the Minimization of the Vibration Energy," Transactions,
tivity with respect to the design variable was derived and shown to JSME, Vol. 56, No. 529, pp. 2361-2366 (in Japanese).
be expressed by the sensitivities of both eigenvalues and Inoue, K., Townsend, D.P., and Coy, J.J., 1992, "Optimum
eigenvectors. Design of a Gearbox for Low Vibration," to be presented at the 6th

The computer program was developed and applied to the International Power Transmission and Gearing Conference, Phoenix,
analysis of a beam and a plate to study the optimization process. AZ, Sept. 13-16, 1992.
This method was demonstrated to be effective in reducing the energy Lim, T.C., Singh, R., and Zakrajsek, J.J., 1989, "Modal
at the given frequency. In the design of a plate, the optimum shape Analysis of Gear Housings and Mounts,' Proceedings of the 7th
was obtained such that the increase in thickness functioned as a stif- International Modal Analysis Conference, Society for Experimental
fener or a mass. If the optimization frequency is slightly lower than Mechanics, Inc., Bethel, CT, Vol. II, pp. 1072-1078.
the natural frequency, then this method shifts the natural frequency Mota Soares, C.A., ed., 1987, Computer Aided Optimal Design:
under consideration to a higher frequency region. The opposite is Structural and Mechanical Systems, Springer-Verlag, New York.
also true. Consequently, this method can control the direction of Rosen, J.B., 1961, "The Gradient Projection Method for Non-
shift of the natural frequency. linear Programming: Part 11 Nonlinear Constraints,' SLAM Journal

on Applied Mathematics, Vol. 9, No. 4, pp. 514-532.
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Atrek, E., ed., 1989, New Directions in Optimum Structural JSME, Vol. 57, No. 538, pp. 2126-2131 (in Japanese).

Design, John Wiley & Sons, New York. Zienkiewicz, O.C., and Cheung, Y.K., 1967, The Finite Element
Fox, R.L., and Kapoor, M.P., 1968, "Rates of Change of Method in Structural and Continuum Mechanics,

Eigenvalues and Eigenvectors,' AIAA Journal, Vol. 6, No. 12, McGraw-Hill, New York.
pp. 2426-2429.
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