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ABSTRACT

This research seeks to develop non-invasive burn depth evaluation methods from

non-contacting visible and near-infrared spectroscopic measurements. In previous years,

we demonstrated that features of the optical reflection spectra of burn wounds can be

correlated with the depth of burn. An imaging system was built which determined, with

accuracy equal to or better than that of a skilled burn surgeon, the probability that burn

sites would heal within three weeks from date of injury. Our goal for the current project

is to investigate the optical reflectance properties of burns, utilizing the techniques of

multivariate analysis, in order to improve the reliability of this instrument.

Excellent progress has been made toward achievement of the goals of this project.

In the first year a commercial spectrophotometer was purchased and modified to make

optical reflection measurements in both the visible and near-infrared regions (450-1800

nm). A library of reference spectra was acquired with this instrument.

During the second year, experiments were conducted to understand the major

components of the reflectance spectra of human skin in vivo. Two dynamic processes

which influence in vivo spectra were studied to improve our knowledge of burn

physiology: temperature and ischemia. These were modeled in healthy human subjects.

The spectrum of pure water, which is highly temperature dependent and dominates the

spectra of biological tissues, was mathematically analyzed for the purpose of

compensating for water absorbances in tissues.

Thirty four patients at Harborview Burn Center were studied, and the reflectance

spectra of their burns analyzed with multivariate statistics. An unexpected absorption

band correlating to burn depth was observed at 630 nm and was identified as arising from

methemoglobin. Based on the foregoing results, a more reliable algorithm was developed

for the imaging system. The new algorithm incorporates wavelengths which measure this

methemoglobin absorption. It has been tested by simulating imaging system responses

from spectrophotometer data. The new model predicts the healing potential of 110 burn

sites with 88% accuracy, significantly better than simulated responses from the old

imaging system (79%).
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INTRODUCTION

Burn injuries affect more than two million American victims each year. Two

hundred thousand of these will require hospitalization and 10,000 will die.' Skin grafting

has significantly reduced infection, mortality, and disfigurement in patients with deep

wounds. Shallow wounds, however, produce smoother skin when they are allowed to

heal on their own. As a general rule, only burns which do not heal in 21 days benefit

from grafting 2'3. An accurate diagnosis may be obtained by waiting for 3 weeks before

deciding to operate, but it has been shown that grafting within the first few days produces

better surgical results and reduces hospital stay*2. This has been the driving force behind

the development of methods to predict potential healing times.

For a wound to heal well (and within 21 days), it must re-epithelialize from

remnants of epithelium in the lining of ducts and hair follicles. No one has yet proposed

a method to predict healing by measuring the abundance of epithelium. Instead, most

estimate the depth of irreparably damaged tissue with respect to the total thickness of the

dermis.

Many hospitals today use a technique called clinical assessment which combines

visual inspection with simple tests, such as the wound's sensitivity to touch4. Data

collection, even for the largest and most variegated wounds, requires less than 15

minutes and does not cause excessive pain, neither from the tests themselves or from

prolonged exposure of the wound. However, the accuracy of this technique is highly

dependent on the experience of the assessor. Other techniques, including

histopathological inspection,5 '67 topical application of dyes,8 radio isotope studies, 9

ultrasound,' 0 thermography, '"2pulse oximetry,13 laser doppler flowmetry,14,15

and multispectral photographic analyzers, 16' 17 have proven to be slower, more painful,

or less reliable and are less commonly used.
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The Bum Depth Indicator

In 1980 we built the Burn Depth Indicator (BDI), a hand-held probe which

illuminated a 3 cm2 area of wound with pulsed light from three LED chips and measured

the reflected light. This technique proved to be as fast as clinical assessment, less

painful, and significantly more reliable.'8' 19 We developed a similar instrument in 1986,

which provided spatially resolved burn wound diagnosis. This device, the Imaging Burn

Depth Indicator (IBDI), produces a color-coded image of a wound. 2' 21.2

Selection of the wavelengths used by the BDI (green (550 nm), red (640 nm), and

near infrared (880 nm)) was based on the visible appearance of burn wounds and the

discovery that near infrared light is reflected more by deep burns than shallow."' 6 Van

Liew interpreted the BDI measurements in terms of blood volume, blood oxygenation, and

eschar thickness. The results of his model agreed well with both the measured data and

the expected physiology.-19,23

Spectroscopic Oximetry in vivo

Measurement of blood oxygenation by spectral analysis of reflected or transmitted

light is a well established method. Visible (400-700 nm) and short-wave near infrared

(700-1100 nm) light have been employed. Hemoglobins have 7r - nr*, d -- d* and f -- f

electronic transitions in this region. Oxidation and ligand binding influence the spectrum

substantially (Figure 1). A non-invasive oximeter, the Pulsed Oximeter, 24 now common

in hospitals, uses transmission of 660 and 920 nm light through a finger tip. Its results

correlate well with arterial blood 02 saturation measured by conventional, invasive

methods. 25 The success of this method has stimulated research on other non-invasive,

spectrophotometric oximeters. These new instruments measure either transmitted or
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reflected light and have been applied to the head,26'27 brain,28 heart,"28 and

skin. *28 29 These methods are rarely calibrated to give absolute values, due to the

unavailability of reference data, but they are quite useful for clinical trend monitoring and

kinetic studies, where relative changes are important.

Near Infrared Spectroscopy

Near infrared light (700-2500 nm) is absorbed by other biological components

besides hemoglobins. Most near infrared (NIR) absorbances are due to overtones and

combination bands of vibrational transitions, primarily C-H, N-H, and O-H. This region

has been used in the agricultural and food processing industries to determine, for

instance, protein, oil, and moisture content.30,31 Samples are frequently analyzed in

solid or powdered form by diffuse reflectance. The resulting absorption bands, despite

the high degree of light scatter in the samples, are often linear with concentration.

However the spectral bands are broad and overlapping, making analysis difficult.

Calibrations are therefore based on empirically observed spectral behavior rather than on

first principle considerations.

Multivariate Statistics

The key that has unlocked the potential of NIR spectroscopy is multivariate

statistics, mathematical methods for analyzing data sets which include multiple

measurements for each sample. For spectroscopy, each filter or each monochromator

setting is used to obtain different information, producing a response vector for each

sample. Multivariate statistics assists the analyst to find an empirical mathematical model

which will best reproduce the values of one or more constituents, given the response
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vectors of a set of calibration samples. Once the model is obtained, it may be used to

estimate values for prediction samples, those whose constituents are unknown.

Constituents are usually chemical concentrations, but may also be physical

properties, e.g. crystallinity of nylon yarns, or abstract properties, e.g. the loaf score of

flour (the volume, appearance, texture, and spring of bread made with that flour) (31).

The proper', needs only to have some systematic relation to the spectra. Multivariate

statistics can be used to analyze the spectra of burn injuries to estimate healing potential,

blood oxygenation, and other properties. Further, the results of these analyses and a

more precise understanding of the spectra of burned skin can be used to optimize the

algorithm currently used by the IBDI.

EXPERIMENTAL

Human Subjects

Forty-three patients were studied at the Northwest Burn Center, Harborview

Medical Center in Seattle, Washington, over a 13 month period. One fifth of the injuries

were selected by the research nurse.to give a representative sample of typical superficial,

shallow partial, deep partial, and full thickness burns. The remainder were chosen

because they were indeterminant or unusual. The medically fragile, including elderly,

hemophiliac, and mentally ill patients, were excluded. Children were also excluded.

Patients were examined on the third day post-burn as was done in previous

studies.."8 A few of the unusual injuries were studied on the fourth day, because the

patients were transferred from other hospitals and were not available on the third day.

Two to five sites were chosen by the research nurse, often with the

recommendation of the attending physician. After routine cleaning and debridement
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(removal of loose dead tissue), these sites were wrapped in cellophane to prevent drying

and infection. Large wounds were rebandaged, except for the selected sites. The patient

was then returned to his own room and positioned either in bed or in a chair. The

cellophane was removed prior to spectral data acquisition.

One spectrum was acquired from each site, using an LT Quantum 1200

spectrophotometer 32 which was modified for this project. Site locations were recorded

on polaroid photographs. This procedure generally took 15 to 30 minutes, including the

time required to position the patient and to remove the equipment afterwards. If the

patient was willing, IBDI images were also acquired, generally requiring another 10 to 20

minutes.

The injuries were followed by visual inspection for one month. The sites from

which spectra had been acquired were classified according to outcome into three

categories: Shallow (healed in less than 21 days), Deep (healed in more than 21 days),

and Unknown. Most sites which were grafted were classified as deep. Those which were

clearly shallow but were excised due to their proximity to a more severe injury were

classified as shallow. If an injury was not grafted, it was inspected by the research nurse

on or near the 2 1st day to determine if it had healed. When that was not possible, the

information was obtained by phoning the patient. Sites for which there was insufficient

information were classified as unknown and were excluded from analysis.

Of the sites whose outcomes were known, 34 were deep and 76 were shallow.

The most common etiology was flame (52%), followed by scald (22%), chemical (8%),

flash (8%), contact (6%), and grease (4%). The mean age of the patients was 33 years

and the mean TBSA was 6%. There were 3 hispanics, 2 blacks, and 1 oriental. Burn

locations included face, arms, hands, palms, backs, sides, legs, and feet.
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Mathematical Methods

The multivariate mathematical methods needed to interpret data include

preprocessing, calibration, and classification techniques. The goal is to find a useful

relationship between a sample's spectrum (r) and the values of its constituents (c).

Constituents are usually chemical concentrations, but may also be physical properties,

abstract properties, or classifications. The property needs only to have some systematic

relation to the spectra.

The notation used will be as follows: Matrices will be written in bold, upper case

(A, B, C), row vectors in bold, lower case (a, b, c), and scalars in normal italic (A, B, C,

a, b, c). Column vectors will be written as the transpose of row vectors (aT, bT, CT). Each

spectrum will be referred to as a response row vector r, with length J, where J is the

number of discrete wavelengths contained in each spectrum. I spectra grouped into a

matrix will be R, with dimensions I by J. The elements of R will be written as r1j. The

matrix C, will be I by K, where K is the number of spectrally distinguishable constituents.

The elements of C are cik.

Preprocessing

Preprocessing transforms the spectra such that the spectral features which

correlate to the constituents are maximized and the remainder are minimized. The first

step is usually linearization with respect to constituent concentration. Normally the

logarithm of instrument response (R) is used for linearization:

R =/I/ (1)

where I/ is the intensity of the light incident on the sample and I is the intensity of the light

that returns from the sample and is measured by the instrument. The sample absorbance
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(A) is

A = -lOglo(R) (2)

and is proportional to analyte concentration (c) under certain conditions. The Beer-

Lambert law is

A = abc (3)

where b is the path le I•gth, the distance the radiation traveled through the sample, and

a is the molar absorptivity, a constant characteristic of the analyte. For a more complex

sample, the sample absorbance (Ai) is a linear sum of the absorbances of all

components:

Ali m -logo0(lij / Io) (4)

ii= intensity of radiation returned from the Pth sample at the 1th wavelength

10,j = intensity of incident radiation at the jth wavelength

Ail = XI Aiik = bi (,F ajk Cik) (5)
Al= iU sample absorbance at the j wavelength

Alk= absorbance of the kth component in the ih sample at the ie wavelength

aik= abeorptlvtty of the km chemical component at the 1th wavelength,

bi= path length of light through the 4~h sample

Cik = concentration of the kth analyte in the P sample

It is assumed that all of the radiation travels the same distance through the sample so that

b, is constant for all rays. For diffuse reflectance, this is not strictly true, but it is often a

useful approximation.

Other common transformations include mean centering, baseline subtraction, and

derivatives. The equation for mean centering is

(riT)m.an centered = r-T" 1 /J .(rV) (6)

where rJT is the column vector of log(l /R) for the i4h wavelength and all samples. Baseline

subtraction is
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(ri)b cseinecorrected = ri- riJb (7)

where r, is the spectrum for sample i and ri,Jb is the absorbance at the Jbth wavelength.

An estimation of the second derivative using a finite difference function is

f, = (tjo - 2f j + ) /g 2  (8)

where f, is the intensity at the jth wavelength and g represents the gap size of the

derivative.

Calibration

Calibration is used for continuous constituent values, such as chemical

concentrations or physical properties. Calibration models must be validated before they

may be used for prediction. In calibration, a model is developed that relates the spectra

data matrix (R), composed of the spectra vectors ri, to the constituent matrix (C),

composed of the elements Cik, for a set of samples, called the training set or the

calibration set (designated by the subscript c). A second set is used for validation. The

model is used to predict the constituent values of the second set. Poor prediction

indicates that either irrelevant data, such as instrument noise was included in the

calibration model (overfitting) or that there is variance in the validation set that was not

present in the training set, such as a new component. Once the model has been

validated, it may be used to predict the constituents of unknown samples (designated by

the subscript P).

Another method of validation, leave-one-out cross validation, is useful when there

are only a few spectra available. Instead ul dividing the set in two, half for the calibration

set and half for the prediction set, all samples except one are usea for the calibration set
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and the remaining sample becomes the prediction set. This is repeated I times, leaving

out and predicting each spectra once. The result gives an estimate of the accuracy of

the model that uses all I samples. S.ince the spectra acquired from different sites on the

same wound may be highly correlated, this approach was modified: all spectra from a

single patient were left out and predicted together.

Classical Least Squares

The calibration model generally consists of a vector of matrix of coefficients (S) that

relates the constituent matrix to the spectral matrix. The coefficients are typically

estimated by least squares or similar methods. The most straight forward methods

calculate S assuming the Beer-Lambert relationship.

Classical least squares (CLS) is a direct calibration technique based on the Beer-

Lambert law, which in matrix form is

R = C S + ER" (9)

where S is the estimated pure component spectra (sj, k ajk bij) and ER is the matrix of

spectral errors. The S matrix is determined by

S = Ro C (10)

where Rc and Cc are the spectral and concentration matrices of the training set. C+ is

the Moor-Penrose pseudoinverse:3

C = (CT C)"' CT (11)

By solving these equations, ER is minimized in a least squares sense. The estimated

concentrations (6pT)i of all k components in the ph unknown sample with spectrum (rpT),

is

(cPT)i = (rpT), s5 (12)

It is often useful to include constraints, such as requiring all elements in S and (6pT)i to
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be greater than or equal to zero.

Multiple Linear Regression

When the sample spectra cannot be approximated as a simple sum of pure

component spectra, either because some of the components are unknown or because

Beer's law is inapplicable, indirect calibration in used. The basic model is

C = R P + Ec (13)

where Ec is the error in the concentration matrix and P is the I by J matrix of coefficients,

similar to S. C may be any constituents, not just chemical concentrations. The equation

is solved to minimize Ec, and prediction is

(CpT)i = (rpT), P (14)

Since estimating P involves calculating the pseudoinverse of R., J must be small. If the

spectra originally contain a large number of wavelengths, there are two methods of

simplifying the spectral data: selecting a few relevant wavelengths and factoring the

whole spectrum.

Multiple linear regression (MLR), also known as inverse least squares 3 and the

P-matrix approach"5, is an inverse least squares model that uses the spectral data from

a small, selected set of wavelengths. The model isc;

CkT = R pkT + ec (15)

where pkT is the vector of regression coefficients for the kth constituent and 0c is the error

in the concentration matrix.

The most common method for choosing the wavelengths to use in the MLR model

is to calculate the correlation coefficients between all wavelengths and the constituent of

interest. The wavelength with the greatest correlation in chosen as the first wavelength

for the model. The variance associated with the correlation is removed from the spectral
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and constituent data and a second wavelength is chosen, and so on. Other methods

also exist.

Principal Component Regression

Principal component regression (PCR)='37 uses the same fundamental definition

as MLR but decomposes the full spectral matrix R into two factor matrices T and P,

R = TP + ER (16)

which can be calculated by singular value decomposition:

R =VSUT + ER (17)

where V is I by A, S is A by A, and UT is A by J, and A is the number of factors (principal

components). T and P are VS and UT, respectively. The matrix T contains "scores,"

linear combinations of concentration data, and P contains "loadings," linear combinations

of spectral data. Scores and loadings are difficult to interpret in terms of the individual

components. The concentrations can be estimated from the scores,

c =Tq + e (18)
c= RP AT t1+ c, (19)

where q is the vector of coefficients that relates c to T and is estimated as T* c,. If cP

is not calculated, this method is known as principal component analysis (PCA) and does

not require any constituent values. This method is useful as a classification technique,

particularly when constituent values are unavailable.

Classification

When constituent data is discrete, such as the place of origin of the samples or

"acceptable" and "unacceptable", classification algorithms are used. The most common

is K Nearest Neighbors (KNN). The samples are treated as points in a multidimensional
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space and their "nearness" to each other are calculated:

Dji = Uri - r11 (20)

where D,, is the distance between samples i and j, and ri and rj are the spectral or score

vectors for the two samples. It is assumed that samples within a class will be closer to

each other than to samples in another class.

Like calibration, KNN classification requires a training set of samples whose

classifications are known. However, there is no matrix of regression coefficients, an

unknown sample is simply compared to all samples in the training set, one at a time. If

K = 1, the unknown sample is assigned to the class of the training set sample that it is

closest to. Otherwise the classifications of the K nearest training samples are considered.

The data used for KNN is often scaled (weighted) so that the variables which have

the largest correlation to the classification are bigger than those which are less relevant.

One common method of determining which variables are relevant is the variance

weight,a which is the ratio of the intercategory variances to the sum of the intracategory

variances. The equation is

Wab = 2 * [(1/Na)z.a2 + (1/Nb)yXb 2 
- (2/NaNb).XaZXb] /

[(1/Na)Z(Xa-Xam) 2 + (1/Nb).(Xb-Xbm) 2] (21)

where Na and Nb are the number of samples in classes a and b, x are the values of the

variable in question, and xam is the mean of x for samples in class a.

RESULTS

Case Study

A case study is included here to illustrate typical results for shallow and full

thickness burns. Patient #14 had a small scald burn on her foot. Hot water had run
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down into her high-top boot, producing a shallow partial thickness burn at the top and

a deep burn where the water pooled at the bottom. In the spectrum of the shallow partial

thickness burn (Figure 2a) the oxy- and deoxy- hemoglobin bands (400-600 nm) are very

intense, because the epidermis was absent and the wound was inflamed. In the near

infrared region (700-1800 nm) there are three absorbance bands that arise from the

overtones of O-H stretching modes of water (960, 1150, and 1450 nm). The discontinuity

in the spectrum at 900 nm is an instrumental artifact, caused by a filter change.

The spectrum of the deep burn (Figure 2b) was markedly different. The baseline

was considerably higher and the water bands in the near infrared were less intense. The

cause of these differences is unknown. The 560 nm hemoglobin bands are also less

intense, as there is less blood in the injured skin. All of the above had been expected.

At 630 nm, however, the is an unanticipated band. The intensity of this band, evident as

a shoulder on the oxy-/deoxy- hemoglobin peak, suggested that it was due to another

form of hemoglobin. The band was attributed to the acid form of methemoglobin which

has a band at 630 nm (Figure 1 a). This compound is relatively well known and is present

in normal subjects at the 0.5-1.0% level. Other hemoglobin derivatives may also be

present in smaller quantities.

Principal Component Models

Raw Spectra

The spectra from all of the burn wounds are shown in Figure 3. Twelve spectra,

acquired from discolored (black, brown, or green; n =10) and first degree (n = 2) burns

contain spectral features that are not relevant to the discrimination of shallow and deep

burns. They were not included in any of the calibration models, to avoid making the

models more complicated than necessary, but were included in predictions to
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demonstrate that they would not be misclassified. These spectra are shown in Figure 3

and subsequent figures as dotted lines.

The spectral regions which correlate to burn depth were located by calculating the

variance weights (Equation 21) for the absorbances at each wavelength (Figure 4). There

is some correlation between 550 and 580 nm, but little or none (variance weight = 2)

anywhere else. This indicates that the hemoglobin absorbances (550-580 nm) have some

correlation to burn depth, which is in accord with one of the fundamental tenets of clinical

assessment, that the darker pink a wound is, the more likely it is to be shallow. The low

correlation in other portions of the spectra indicates that the baseline offsets are unrelated

to burn depth and are probably caused by irreproducibility in the source / sample /

detector geometry.

Since the major spectral features do not correlate strongly to burn depth, the

spectra were analyzed by Principal Component Analysis (Equations 16-19) to locate minor

features which might be more relevant. The spectra would be expected to display at least

four major types of variation, corresponding to baseline offsets, multiplicative factors (path

length and total blood concentration), oxygenation of the blood, and methemoglobin

concentration. Minor variations, representing minor chemical components or spectral

non-linearities would also be expected. The first four principal component loadings

(spectral domain, Figure 5a,b) show that there are indeed at least four significant types

of orthogonal spectral variance. The next four (Figure 5c,d) model only a small amount

of the total variance. It is possible, but unlikely that these later factors are significant.

The principal component scores (concentration domain, Figure 6) show that the

first two factors, are dominated by irrelevant effects of sample/instrument geometry.

Similar effects have been observed in the diffuse reflectance spectra of other irregularly-

shaped samples.N The third and fourth principal components, however, are correlated
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to burn depth. The variance weights for the first eight principal components are 2.3, 2.5,

2.7, 3.2, 2.5, 2.3, 2.0, and 2.0.

The distinction between "shallow" and "deep is a somewhat arbitrary division of a

continuous variable, the fraction of dermis destroyed. It might be expected that in a

multidimensional space, the scores for shallow burns might be located on one side and

those for deep burns on the other, with the borderline injuries inbetween (Figure 6b).

Shallow burns would most likely be closest to other shallow burns, etc., so KNN should

give reasonable results. The KNN algorithm in Pirouette4° successfully classified 100

(91%) of the 110 spectra, using 4 principal components. The optimal number of

neighbors to consider was found to be 2. Cross validation, leaving out one patient's

spectra each time (MATLAB program written by the author), successfully classified 101

(92%), using 6 principal components and considering 3 neighbors.

Assuming that there is only one continuous variable which relates to burn depth,

another possible method of classification is to define a multidimensional plane between

the two classes. All scores on one side of the plane should represent shallow burns, and

all scores on the other side should represent deep injuries. This plane may be found by

rotating the axe, r- that the first axis corresponds to the direction of the variance in the

data which most clk (ly distinguishes between the two classes. The discrimination plane

is then perpendicular to the first rotated axis.

The algorithm used for single-plane discrimination involved 5 steps. The first step

was to mean-center*3 the scores. Then the mean-centered scores were range scaled '3

and feature weighted,.39 according to the variance weight. The scaled data was then

rotated, two dimensions at a time, starting with those which have the greatest variance

weights. The best rotation was defined as that which produced the largest variance

weight for the first of the two dimensions. Once the best rotation was found, the
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discrimination plane was defined perpendicular to the first axis, located so that the

number of misclassified calibration samples was minimized. The samples were classified

according to which side of the discrimination plane their rotated scores were located. The

MATLAB code for these programs are in Appendix A.

The scores, rotated in the first four dimensions, are shown in Figure 7. The

discrimination plane is also shown, projected as a line. All but 7 of the samples are

correctly classified by this plane. Including more than four dimensions does not improve

classification, since only the first four principal components contain much relevant

information. Cross validation, using 4 principal components correctly classified 102

(93%). The single-plane discrimination is slightly better than KNN because only one

dimension contains relevant information. The model is simpler and less influenced by any

single calibration sample.

The loadings, rotated in the same manner (Figure 8), show that there is a strong

positive correlation between the absorbance at 630 nm and the depth of the burn. This

is probably due to the absorbance of methemoglobin which appears to be characteristic

of deep burns. There is also a strong negative correlation at 570 nm, where

oxyhemoglobin absorbs. It is reasonable to assume that the more healthy, oxygenated

hemoglobin a wound contains, the more likely it is to heal quickly. The first rotated

loading is small for the wavelengths 650-700 nm indicating that this region, which contains

little hemoglobin absorbance, is not useful for prediction. This further supports the

previous results indicating that the baseline offsets are unrelated to burn depth.

Subsequent rotated loadings (not shown) are not correlated to burn depth (variance

weights < 2.2).
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Baseline subtracted spectra

Since the baseline offsets are useless, they can be removed without losing

information, approximating the baseline by the apparent absorbance at 700 nm (Equation

7, Jb = 700 nm). Among the resulting spectra (Figure 9) the snectral differences between

the two classes are more obvious. The intensity of the hemoglobin absorbance (520-580

nm) is, on the average, greater for shallow injuries than for deep, but this variable alone

is insufficient for diagnosis. Considering only the intensity of the absorbance, what the

eye sees, only 69% of the injuries, at best, could be correctly classified. Clinical

assessment considers a few other variables and is potentially more accurate.

Since the variance due to the offsets has been removed, fewer principal

components should be needed to describe the data set. The first four loadings (Figure

10) are similar to those from the raw spectra (Figure 5). The subsequent loadings,

however, contain more noise. The second and third principal components are most

highly correlated (Figure 11), rather than the third and fourth (Figure 6), and the variance

weights for the principal components are greater, 2.5, 4.6, 2.9, and 2.2 for the first four.

Prediction results from KNN and single-plane discrimination are not significantly better,

but the model is simpler.

Normalized spectra

Although the amount of blood visible in a wound is a good indication of its viability,

it is an unreliable indicator. Edema (inflammation) and hematoma (bruising) both increase

the amount of blood without increasing the healing potential. In this study, the diagnostic

errors made by the physicians were caused either by injuries that were outside the range

of their experience, such as an unusual chemical burn, or by deep injuries that appeared

pink instead of white. To correctly diagnose these wounds it is helpful to focus on the



20

second factor which relates to burn depth, the methemoglobin content.

To remove the variance caused by variable amounts of blood in the skin, the

spectra were normalized to the maximum of the average spectrum (570 nm was chosen).

The normalization equation is

(ri)nmalized = (ri)bawine subtractd / ri,57Onm (22)

where ri,5,7om is the apparent absorbance of the 1th spectrum at 570 nm. The

methemoglobin absorbance at 630 nm is clearly visible in the normalized spectra (Figure

12).

The removal of the multiplicative factors is inaccurate since this normalization is

somewhat simplistic, so the rank of the spectral data set does not decrease. But since

the data is simplified, the correlation to burn depth increases (Figure 13). The loadings

(Figure 14) are similar to those of the baseline-corrected spectra (Figure 10), but the

scores of the first two principal components (Figure 15) are more highly correlated. The

variance weights for the first four principal components are 3.5, 5.3, 2.8, and 2.2.

Prediction results are nearly identical to those from the baseline-corrected data.

Hemoglobin Spectra Model

Single Layer Model

The above results suggest that there is a single spectral feature or single

combination of interrelated features which is indicative of the depth of a burn wound.

Further, in the normalized spectra, the 630 nm absorbance, attributed to the acid form of

methemoglobin, correlated to burn depth. This suggests that the concentration of acidic

methemoglobin in the skin, relative to the total blood volume, is proportional to the

amount of tissue damage and, hence, to the length of time required for healing.

Unfortunately, there is no way to test this hypothesis directly. Even if the patients
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consented to having skin samples removed for analysis, conventional methods of

hemoglobin speciation are not applicable to solid tissue samples.

One alternative is to attempt to reproduce the observed reflectance spectra,

starting from the spectra of pure hemoglobins. Assuming that (a) the particles in the skin

scatter light isotropically, (b) the hemoglobin is uniformly distributed, (c) there is no

specular reflectance or stray light, and (d) the only absorbing compounds in the skin are

hemoglobins, then the reflectance spectra of the skin could be modeled as a linear sum

of pure hemoglobin spectra, using Classical Least Squares (Equations 9-12). None of the

assumptions are actually true and the hemoglobins used to acquire the basis spectra

were not 100% pure, so the model is not expected to fit the data precisely. The spectra

of the hemoglobins (the matrix S) are shown in Figure 16, including oxyhemoglobin,

deoxyhemoglobin, acid methemoglobin, base methemoglobin, and a baseline. The

spectra were fit to a reflectance spectrum of a burn wound, and a new spectrum was

reconstructed from the estimated hemoglobin concentrations. This was repeated for all

burn spectra.

Two examples are shown in Figure 17. The reconstructed spectra are not exactly

the same as the measured spectra, since the assumptions are incorrect. This simplistic

model does, however, give an estimate of methemoglobin in a burn, information which

has previously been unavailable. The resulting predictions are less accurate (79%) than

those from the empirical PCA models, indicating that the methemoglobin concentration

alone is insufficient to predict healing or that the fitting errors were too large, probably

both. However, the success of this model in discrimination does strongly support the

hypothesis that oximetric information correlating to burn &-,pth can be obtained from the

spectra.
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Two Layer Model

Of the assumptions used in the above model, two are approximately true, one

might be true, and one is definitely false. The hemoglobin is not distributed

homogeneously; in most cases there is a layer of bloodless, dead tissue (eschar) at the

surface. This layer reflects incident light, reducing the amount that interacts with the

blood beneath. The reflectance from a non-absorbing layer is dependent on light

scattering and is a function of wavelength.

If the amount of light of wavelength j, reflected from the sample is Ij, and the total

incident light is o',j, then the instrument response (Robs.) is

Robj =Ij / Ioj (23)

RObSj = (Is,j + /rj) / (Iogj + 1rj) (24)

where Iri is the intensity reflected from the non-absorbing eschar layer, ISj is the intensity

of the light that passes through the first layer and enters the second, blood-filled layer,

and I.J is the intensity of the light returning from the second layer. The fraction of the

incident radiation that would be diffusely reflected from the second layer, if there were no

specular reflectance and if the first layer were removed, is RJ,

R, 1 = ,.i / ISo.1 (25)

and is related to the absorbance of the blood in the second layer (A,,,),
ASI z log(1/Rs,j) (26)

It can be estimated from the instrument response:

R ,J = (loJ Robsj - /,j) / (lo'j - Ir,j) (27)

Rsj = (Tob,j - Sj) / (1 - Si) (28)

sj = /rj / /o,j (29)

if Si is known.

For the burn spectra, S is not known. Instead, S was approximated by a second
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order polynomial, a function of the wavelength (.):

S = so f(X1) + s, f('X ) + S2 f(X 2) (30)

R. should be, approximately, the product of the transmittances (Tk) of the hemoglobin

species (k) times their concentrations (Ck).

RS = kl (Ck Tk) (31)

And therefore

(T•,j - S,) / (1 - S) = kl (ck Tk) (32)

There are 3 + k variables which must be solved simultaneously (s0, s 1, s2, C1, C2, ... ck) by

using a non-linear curve fitting algorithm and minimizing the spectral fitting error:

error = (Tobi - S1) / (1 - S ) - k1l (Ck Tk) (33)

The Gauss-Newton algorithm supplied by Mathworks 41, gave satisfactory results, under

the following constraints:

ck 0 (34)

0<SJ< 1 (35)

The reconstructed spectrum (Aob) is then

TOJ= T, (1-S J) + S, (36)

AOJ lZ -Iog(To,,) (37)

The transmission spectra of hemoglobins and the functions f (.), f(X1 ), and f(X 2)

are shown in Figure 18. The reconstructed spectra for the two examples are shown in

Figures 19 and 20. In general, the fit was not improved if S was assumed to be & order

with respect to wavelength (s, = 0 and s,= = 0). When S was lt order, there was

significant improvement; nearly all of the systematic distortion was accounted for. Adding

the 2 •d order improved some of the more unusual spectra, but generally had little effect

on the "typical" spectra. The 1 t order model indicated that deep burns usually have more

than 9% acid methemoglobin (Figure 21) and correctly classified 90% of the injuries.
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Skin Temperature Model

In the second year, spectra were acquired from the forearms of healthy volunteers.

Their skin temperature was varied from 9 to 35 0C and measured with a thermistor at the

surface. The spectra, after second derivative transformation, were analyzed by Multiple

Unear Regression (Equations 13-15) and were found to correlate to the skin temperature

(correlation coefficient R = 0.982), with a standard error of prediction of 1.4 0C. This

42atowaexperiment is described in the previous report. The equation was

t = 22.7 + (1.21x10 8) r'i1015nm - (1.44x10 6) r"107 3nm - (3.85x10 5) re'1 5enm (38)

where r"'1015nm is the second derivative (Equation 8, gap=23) at 1015 nm and t is the

temperature in 'C.

The model for estimating skin temperature in normal skin was used to estimate the

temperature of the burn wounds. The results suggest that deeper burns are cooler than

shallow burns (Figure 23). The average estimated temperatures were 32 ± 7 and 27 +

7 for shallow and deep burns (P < 0.01). Thermography, using emitted infrared light, has

also shown that deep burns are cooler than shallow,,11. 1 2 but that such measurements

are extremely sensitive to cooling caused by evaporation of surface water. NIR

reflectance should be less sensitive to surface effects, since it measures that temperature

within the skin and below it. The model used here is not optimal; it is derived from

healthy skin. A more accurate model could be obtained empirically, if the temperatures

of wounds could be measured by a contacting or invasive probe, or theoretically, if the

spectral non-linearities were better understood.

Although several features in the NIR spectra, including water temperature correlated to

burn depth, none were as useful as the hemoglobin bands, nor did they improve

prediction. It is likely that there is still much useful information in these spectra, but in the

absence of physiological reference data, this information could only be extracted by
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rigorous application of diffuse reflectance theory.

BDI and IBDI Simulations

Now it is possible to explain the predictive ability of the old Burn Depth Indicators

(imaging and non-imaging). Both instruments used baseline-subtracted, single-

wavelength normalized data. The baseline offsets were approximated by the instrument

response of the NIR LED (880 nm) or filter (880-1100 nm) and the remaining data was

normalized to the response of the Green (560 nm). The methemoglobin concentration

was then, inadvertently, approximated by the normalized response of the Red (640 nm).

The exact mathematics are slightly different, because instruments used the instrument

response (R) rather that log(I/R), but the principle is the same.

In order to compare the prediction results from our spectrophotometer with

predictions from the Burn Depth Indicator (BDI) and the Imaging Burn Depth Indicator

(IBDI) built previously, the BDI and IBDI responses were simulated from our spectra. The

emission spectra of the light emitting diodes (LED's) in the BDI were simulated as

Gaussian-shaped peaks with maxima at 550, 640, and 880 nm and band widths (fwhm)

of 70 nm.*21 *2 The spectra of the IBDI filters (Figure 24b) were obtained from the

literature. .2 The responses for the near infrared LED and filter are somewhat uncertain,

because our spectral data between 750 and 890 nm is unreliable and was not used. The

simulated results (Figures 25a and 25b), however, are reasonably close to those obtained

in previous work..'*22 For the few wounds for which IBDI images were acquired, the

simulated results agree with the images. The burn sites used in this study seem to have

a slightly wider range, both for the Red/NIR and Green/NIR ratios, than those used in

previous studies, which is consistent with our attempt to select the widest variety of

injuries. The accuracy of the BDI and IBDI simulations for prediction burn depth was
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about 77 and 79%, respectively. VanLiew and Moore reported 79 and 84% accuracies

for different sets of indeterminate burns for the two instruments."18,'*2

Proposed Model for New Imaging-Burn-Depth-Indicator

These results show that the model used for the Burn Depth Indicators was

essentially sound and from the perspective of burn physiology, basically correct, though

its explanation was erroneous. The choice of wavelengths, however, could be

substantially improved. First, the filter originally selected for baseline subtraction (880-

1100 nm) measures a large absorbance band at 970 nm (Figure 24) as well as the

offsets. This band arises, in part, from the water in and on the skin. The water

absorption is variable but not well correlated to burn depth. The 880-1100 nm filter also

measures the absorbances of hemoglobins (Figure 1 b), but the path length in this region

is much longer than in the visible region. It is uncertain whether the blood in the volume

sampled is representative of the blood in the skin or primarily below the skin.

Furthermore, the BDI and IBDI simulations produced comparable results, in spite of the

fact that the wavelength ranges used for baseline correction were significantly different.

Therefore, little relevant information is lost and some interference is avoided by moving

the baseline-correction filter to 650 or 700 nm, where the absorbances are significantly

lower.

Second, the normalization filter could be narrowed and shifted to produce a more

reliable response. There is a pronounced, non-linear distortion of the spectra which

affects the 550-580 nm region where the hemoglobin absorbance is particularly strong.

In the spectra of whole blood (Figure 1 a), the two oxyhemoglobin absorption bands (535

and 570 nm) have similar intensities. In the burn spectra, however, the 535 nm band is

decreased relative to the 570 nm band, and the degree of distortion is unrelated to burn
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depth. The distortion is probably caused by scattering, and scattering is highly

wavelength dependent. Therefore, the scattering at 630 nm is likely to be more similar

to that at 570 nm than 535 nm, and the former should give a more accurate normalization

for the 630 nm methemoglobin band. Simulations of fixed-filter instruments using various

possible normalization filters confirm this. The normalization LED for the BDI had a 80 nm

band width and was at 560 nm, sampling both oxyhemoglobin bands equally. The filter

in the IBDI at 540 nm was worse, sampling only the most distorted portion of the

oxyhemoglobin spectrum. A filter with a narrower band width, 30 nm or less, and located

at 570 nm should give a more reliable normalization.

Third, the methemoglobin filter should be optimized. The filter used previously had

a 80 nm band width and was centered at 640 nm. The methemoglobin absorbance peak

is at 630 nm, and for the normalized spectra, the wavelength that correlates most to burn

depth is 625 nm (Figure 13). The band width of the methemoglobin band is

approximately 40 nm. A narrower filter, 40 nm fwhm or less, centered at 630 nm should

give more precise estimates of methemoglobin absorbance.

One possible filter selection might include three 20-nm band pass filters at 650,

570, and 630 nm. If the apparent absorbances (log (1/R)) of the three filters are A6.,

A570, and Am respectively (Figure 26), then the burn depth (D) is estimated by

D = (A•.wo- A&%o) / (A570- A•.w) (39)

The discrimination point, calculated the same way as the discrimination plane for the

rotated PCA scores, was found to be 0.104. Injuries for which D is greater than 0.104

were deep and the rest were shallow. One hundred one (92%) of the sites were correctly

classified by this model, and 97 (88%) were classified during cross validation. This model

was significantly more accurate (88%) than the IBDI simulation (79%) for the 104 sites

simulated (P<0.06 for paired data). Small variations in the band width or mean
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wavelength of the filters do not significantly affect prediction ability, indicating that an

instrument using this algorithm would be relatively tolerant of manufacturing variations.

Although binary predictions (shallow or deep) are convenient, it is often useful to

rank injuries on a continuous scale, so that the size of the burn and patient comfort often

may be weighted against the estimated healing potential. The proposed algorithm can

be used to produces a continuous scale (D) as well as binary predictions. For sites

which were known to have healed in the third and fourth weeks post burn, there is

roughly a linear correlation between instrument response and healing time (Figure 27).

The estimated number of days required for healing (H) is

H = 30D + 15 (40)

This relationship is not applicable to sites which heal in less than two or more than four

weeks, but such information would rarely be important in management decisions.

For sites which heal between 14 and 28 days, the error in this model (± 3 days)

is comparable to the uncertainty of the reference method (± 2 days). Whether or not a

wound was healed (entirely reepethilialized) is difficult to determine precisely. Even

among the Burn Center staff, opinions differed by a day or two. For wounds whose

outcomes were described by patients over the phone or extrapolated from the nurses'

last observations, the uncertainty was about ±3 days.

CONCLUSIONS

With the LT spectrometer we are able to observe absorbance bands from most of

the major constituents of skin. The instrument is sensitive enough to monitor changes

as small as those induced by only a few degrees elevation in surface temperature. The

techniques used are completely non-invasive, non-contacting, and non-destructive and

require only a few minutes, making them suitable for use on burn patients.
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In spite of the non-linear effects of light scattering and multiple layers, hemoglobin

speciation can be estimated from visible reflectance measurements of burn wounds.

Further, these estimates correlate to the depth of the injury. Severely elevated levels of

methemoglobin have been observed in deep partial thickness and full thickness burns.

This suggests that the Imaging Burn Depth Indicator estimates burn depth by analyzing

the small color changes caused by the presence of methemoglobin. The IBDI, initially

designed to measure deoxyhemoglobin, can be significantly improved by optimizing its

filters to detect methemoglobin. The resulting instrument would be fast, accurate, non-

invasive, and non-contacting and could produce a map of a wound, color-coded to

indicate healing potential. This improved instrument could be used as a practical guide

for burn treatment decisions and may assist in the study of burn physiology.
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Appendbix A
MATLAD Code for Rotation and Single-Plane D1scriminat~n

function (XmneanScale.Rotaj - spinc(X.C,Optlons)
"% X =all data (samples by variables, more samples than variables)
"% C aclass vector. containing 1 's and 2's only, O's for ignored data
%OUTUNE
% mean center
% scale
% rotat
%SUBROUTINES NEEDED
% std, varwt, fishwwt
%OPTIONS
% 1 scale (Range, Auto, Variance, Fisher, none)
% 2 rotation steps
% 3 number of rotate variables to calculate
%function P(mean,ScaIe,Rotaj - spincQ(C,Options)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%SETUP

.*m.*a%,*.***m,***u* CHECK SIZES *~

%CHECK SIZES
[m,n] a slze(C);
If in- -=1 & n -- 1, error ('Rotation: Too many constituents.'), end
if n>m, C-C'; [m,n]-uize(C); end

Inp,niw - sizeQ)Q;
if np- -m & nv- -in, eroi'('Rotation: Incompatible matrices'), end
If nyu -in- , X-X'; (np,nvj aslzeQ)Q; end

clear m n

If any(C- a-I & C- -2 & C- -0), error('Rotatlon: Bad constituent values.'), end
nl - find(Cm- 1);

If length(nl)<2, erorC'Rotation: Too few of class #1'), end
n2 - flnd(C - a-2);
If Ienqth(n2)<2, error('Rotation: Too few of class #2), end

If -any((1 2 34 51 - - Options(1)),
error('Rotatlon: Not a valid scaling option.')

end
If lengthi(Options)<3, Opftln(3)-nv-1; end
If Optlons(3)>nv.1, Options(3)-nv-1; end

%SETUP MATRICES '

%SETUP MATRICES
PhISftpSize a I /Optlons(2);
Rota -eye(nv); %Main rotation matrix
cycle -0;

% PREPROCESS DATA

%**m.* MEAN-CENTER '

%MEAN-CENTER
Xmean - moienft)
Datsa X -ones(np,1)'Xmean;
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% ****aaa* a***aaa***a..* a SCALE a

%SCALE (Sharaf,Ul1man,Kowalski; "Chomnometrics'. p. 193)
if Optlons(1) -=- 1. %____ _________ Range scaling __

for I - :nv, Scalesl) - I max(aba(Data(:,i))); end
eIWelOptlons(i) - -2.%________________ Autoscalling___

for I - 1:nv, Scale(I) - 1I std(Deta(:,l)); end
elsei Optlons(1) =--3. %_ _________ Variance weights

for I - 1:nv, DetaTmp(:.i)-Oata(:,i)/max(ab&(Data(:,i))); end
(Scale)] - varwt(DataTmpC);
for i - :nv, Scalv@ - Scalesl)/max(abs(Data(:,i))); end

ellself Options(1) - -4, %______________ Fisher weights __

fortI- 1:nvv, DataTmp(:I) -Data(:,I/max(abe(Data(:,i))); end
[Scale) - flshsrwt(DftaTmpQC;
for I - 1:nv, Scalo) -Scale0)/max(abs(Da1ta(:,i))); end

elseif Optln(1)- -5.
%no scaling

end

for i-1:nv, Oata(:,i)-Data(:,iQaScale@i; end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%

for vanl a 1:Optlons(3),
for var2 w (varl + 1):nv,

%****m aaaaaa aaaaa TWO-VECTOR SUB-MATRICES
%Choose vectors
Data2 - Data(:,jvar1,var2j);
RoWa - Rota(:.[var1.var2]);
Axis - Wqv(2) * (-1 1 -1 11 *max(max((Oata2)l);

---------------- ROTATE Poop) m
%Spin about (0 01
for phistep- 1:Optlns(2),

% ..... ...4. . ...4. . ...4+ . ............ +.++..4.+.+.+.4.+..4..... Rotation Angle
%Rotae data
phi -phistep a PhiStepSizo (2*p1;
rot - (os(phl), -sin(phi); sin~phi), cos(phi)]:
data - Ots2 rat
rotas Rota2 *rot;

% ... 4..4..4..4..4..4..4..4..4.4.~.+.4..4..4..4.4..4..4.... Distance Between Classes
%Oistance between classes
Id,slgni varwt(data(:,1),C);
N sWgn - V.' d - -d; end
diut(phistap) - d;

end %for phisftep _____

%- - -- - - FIND MA)(IMUM ANGLEaa
%Maximize distance

%4 .............. +44 .++++4 ...... ++++.+4.4.4................... + Angle
maxphl - flnd( diet a - max(dist) );
if IenM(maxphl) > 1, maxphl - maxphl(); end

phi - maxphl PhlStepSlze * (2*pI;
rot - (coesphi), -sln(phi); sin(.phi), cos(phi)];

- aamam maa NEW SUB-MATRICES a
%Now, sub-matrices
%. ...... ...4. . ...4. . ...4.+ .+ ..4.4..4.++.+..4.+.+.... New Matrices .4.4..4.

daft - I&a rot:
rotas Rota2 rt
Oeft(:,(varl,var2j) - data;,
Rota(:j(vsrl,var2j) - rofta;

diep(['Rotaln Finishe variables ',Init2stjvsr1), and .Int2str(var2)1)
end %for var2 - ar1+ 1):nv
end %for varl -1: (nv-1)
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function lostaNewi - ,pnp(Xenw,Scale,Plota,Xp)
%funcdon tDastaewi - 20Pon(m~anScale-.RotS.Xp

(ip ,nvl - uizQ(Xp);

Data a Xp -ones(np,l)*Xnwan;
tfo I-1:flv, Data(:,I)-Data(:.i)*SaWISO; and

Dat - Dmai * Pta
for inilflv, Data(,)amData(:,I)/ScaleO); end
DataNew -Daft + on..(np,l)'Xnwwa;
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function [discPoint) - disc(0,C);
"% OISCc.m
"% Finds the most discriminating point to separate two classes
"% M.R.Balkenhol, 1/12/92

"% 0 = data in two columns, column 1 is for discriminating
"% C , clas vector, l's and 2's only

% minE - beat point Ondex and data value)
% E - number of misclassiflcations [index, classi, class2, both classes]

%function [discPoint] - disc(D,C);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INPUT and
SETUP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

minD , min(D(:,1));
maxO - max(D(:,1));
maxi 300;,
Error , 999onea(maxi + 1,1);
Error2 - 999"ones(maxi+ 1,1);
Index = zero*(maxi+1,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% LOCATION OF MOST DISCRIMINATING POINT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%... --.,------ Feweat Mispredictions .
for I- 1:maxl,
I - l'(mixD-minD)/maxi + minD;
al -sum(D(:,1)> -j & C=-I );
e2 , sum( D(:,l)< j & C- =2);
Errorp) = al + e2;

end

[minEs) = min(Error);
minis - find(Error- -minEs);

%*.t*.***.*t**.**a tt**.rnlwitm* Smalleat Sum-of-Squares Error
t-min(minis): max(minis);
for i-I,

I.- li(maxD-minD)/maxi + minD;
nl - find( D(:.1)> -j & C- - 1 );
n2 - find(D(:,1)< j & C- -2);
Error2() - sum( (([n1l;n21,1) -I )J2 );

end

[minEminij a min(Error2);
n - length(minE);
if n > 1, minE - minE( round(n/2), :; end

dlcPoint - mlnli(mexD-minO)/maxi + minD;
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function (Coat.epj - discp(disc.OpCp);
" DISCp.m
"% Sots a predictions set (Clasi < disc, Class2 > disc)
"V M.R.Balkenhol. 1/12/92

"% Op data In two columns, column I is for discriminating
". CP - class ector, I's and 2's only (optional)

% disc a discriminating point, minE(1.2) from disc.m

%function (Coati - dlscp(disc,Dp,Cp);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INPUT and
SETUP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(npnvj = sizo(Op);

%% % %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SORTING DATA POINTS with respect to DISC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for I 1-:np,

if 0p9,1) < disc,
C•sto) - 1;

elsifi Dp(i,1) > disc,
COMO) - 2;

else
Cest(l) - 0;

end
end
Cost - Cost';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DISPLAY (If Cp exists)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin > 2Z

errors - find( Cet -- Cp);
plot(find(Cost-- 1). Dp(Coet-=1,1). 'c6+-'..

find(Cost- -2), Op(Cost 2,1), 'rx',..
[1 np]. [disc discl, b:'V...
errors. Dp(erors,1), 'c5o')

op - longth(error);
end
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Figure 21. Relative acid methemoglobin concentration. (x) shallow and (o) deep
injuries.
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Figure 22.
Near infrared spectra of burn wounds. (a) shallow and (b) deep burns.
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Figure 24.a Burn Depth Indicator Simulation. --) a typical spectrum of a deep
burn, and .. • .) the LED output functions.
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Figure 24.b Imaging Burn Depth Indicator Simulation. (-) a typical spectrum of
a deep burn, and (. •) the filter transmittance functions.
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Figure 25. Simulated instrument responses. (a) the burn depth indicator, (b) the
imaging bum depth indicator. (x) are responses for shallow bums, (o) for deep
bums. (-) is the best discriminant line found by vanUew.
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Figure 26. Filters chosen for the proposed IBDI model. (-) filters and (..)
spectrum of a deep burn.
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