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warping was established. A revelation from these closed-form solutions is
that, elastic coupling lowers the first coupled frequencies (in fact a
significant amount of coupling could reduce the first frequency to almost
zero. The discovery of the closed-form solutions for the free vibration
‘ which seems to mark the first time such solutions were ever obtained, not
only led to answers to a number of previously unanswvered questions but also

‘raised new unanswered questions such as "Does the aeroelastic divergence or
flutter problem of such wings have any closed-form solutions".

During the secoud year of the first phase investigation was concerned with

essentially how to find the answer to the above mentioned question. Ac-
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efforts were concentrated on determining the possibility of finding closed-form solutions to
the divergence problem. The investigation led to two possible methods of obtaining such
solutions. These methods are (a) the "elimination" approach (which was used for the free
vibration) and (b) the method of Laplace transformation. Although it’s already known that (a)
works, (b) was implemented in formulating the analytical expressions for the closed-form
solution of the divergence problem due to an anticipated relative ease. In the beginning of the
2nd phase, the closed form divergence and vibrations results which have and are still being
extracted are being studied very carefully to establish physical trends in the constraint of
warping phenomena. In particular, the computed results are being studied in order to evolve
the basic mechanism by which the constrained warping model may be used to explain the
concept of aeroelastic tailoring. Preliminary results that are being evolved seem to indicate
thatin free vibration, if the elastic coupling is varied, there are some circumstances when the
first two coupled modes may diverge from one another and other circumstances when they
may approach coalescence. The big question therefore is "would such coalescence result in
instability” even in absence of air (or at low air speeds)? Another question whose answer is
being searched also is "what is the role of such coalescence or diverging potential in
aeroelastic tailoring"? The answers to these questions seem to be evolving gradually as the
investigation continues. For example, it is seen as shown in this report that coalescence of
modes may not result in stabilities (even at very low flight velocities).

In the most recent investigations, efforts have been concentrated on the unsteady
aerodynamics. This was considered necessary especially since this research program plans
to eventually look at the aeroelastic behavior of wings in transonic flow - a non-linear, very
complicated flow regime. It is recognized that problematic phenomena at low subsonic

speeds can potentially be disastrous at transonic speeds. Hence a new discovery by the




principal investigator in non-linear fluid dynamics is employed to establish some closed form
solutions for 2-D unsteady non-linear flow applicable to transonic regime which are expected
to be eventually used for aeroelastic analysis. Some of the results have been compiled and
published in the AIAA Journal. In the process of studying the unsteady 2-D nonlinear
transonic flows, what seems to be a major breakthrough was discovered: this breakthrough
is the discovery that the 3-D steady non-linear transonic flow equations can be transformed
into a linear hodograph equivalent. This discovery essentially reverses a hundred years state
of thinking and belief in the scientific and mathematical community that the hodograph
method was limited to the 2-D flows. The results of this discovery have been written up and

published in the AIAA Journal.

In addition another paper AIAA 92-257 which presents practical shock free 3-D wing for
transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics
Conference in Palo Alto, California. This research program seems to be seeing the beginning
of what seems to be another breakthrough, perhaps even more significant than what we have
seen thus far. This is what seem to be a discovery that transformations methods can even
be used to effectively study the ultimate set of equations in continuum gas dynamics known
as the Navier Stokes set of equations. This new finding could be the key to effectively
unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,
which have been blurry at best thus far. This finding has resulted in a preliminary paper
accepted to be presented at an international conference to be held in Colorado in August of
1992. It is being proposed that the investigation of these new findings be pursued in a
proposed next phase of research. This is because if the findings are correct this could be the

start of a new era of fiuid or gas dynamics analysis.
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1.0 ABSTRACT

The investigation of an aeroelastically induced constrained warping phenomenon for
a composite, supermaneuverable type aircraft wing has continued in this second phase of the
study. The first phase investigation was concentrated mainly on the static phenomena and
the search for closed form solutions for free vibration of aircraft wings having constrained
warping in the presence of elastic coupling. The wing is analytically modelled as a straight
flat laminated plate. Various forms of highly simplified aerodynamic loads are employed in the
analysis. The free vibrations and stability aspects of this phenomenon are examined to obtain
some physical insights and to determine its importance and/or design implications. Analytical
tools employed include an affine transformation concept which was formulated previously (by
the present principal investigator) as well as a non-dimensionalization scheme. With the help
of these tools, an evolution of effective warping parameters with which to study this
phenomenon was carried out. The virtual work theorem and variational principles were used
to derive the equations of motion based on the assumed wing displacements. The existence
of closed-form free vibrations solutions for composite wings with elastic coupling and
constraint of warping was established. A revelation from these closed-form solutions is that,
elastic coupling lowers the first coupled frequencies (in fact a significant amount of coupling
could reduce the first frequency to almost zero. The discovery of the closed-form solutions
for the free vibration which seems to mark the first time such solutions were every obtained,
not only led to answers to a number of previously unanswered questions but also raised new
unanswered questions such as "Does the aeroelastic divergence or flutter problem of such
wings have any closed-form solutions.”

During the second year of the first phase, investigation was concerned with essentially

how to find the answer to the above mentioned question. Accordingly in the first quarter,




efforts were concentrated on determining the possibility of finding closed-form solutions to
the divergence problem. The investigation led to two possible methods of obtaining such
solutions. These methods are (a) the "elimination” approach (which was used for the free
vibration) and (b) the method of Laplace transformation. Although it’s already known that (a)
works, (b) was implemented in formulating the analytical expressions for the closed-form
solution of the divergence problem due to an anticipated relative ease. In the beginning of the
2nd phase, the closed form divergence and vibrations results which have and are still being
extracted are being studied very carefully to establish physical trends in the constraint of
warping phenomena. In particular, the computed results are being studied in order to evolve
the basic mechanism by which the constrained warping model may be used to explain the
concept of aeroelastic tailoring. Preliminary results that are being evolved seem to indicate
that in free vibration, if the elastic coupling is varied, there are some circumstances when the
first two coupled modes may diverge from one another and other circumstances when they
may approach coalescence. The big question therefore is "would such coalescence result in
instability” even in absence of air {or at low air speeds)? Another question whose answer is
being searched also is "what is the role of such coalescence ar diverging potential in
aeroelastic tailoring”? The answers to these questions seem to be evolving gradually as the
investigation continues. For example, it is seen as shown in this report that coalescence of
modes may not result in stabilities (even at very low flight velocities).

In the most recent investigations, efforts have been concentrated on the unsteady
aerodynamics. This was considered necessary especially since this research program plans
to eventually look at the aeroelastic behavior of wings in transonic flow - a non-linear, very
complicated flow regime. It is recognized that problematic phenomena at low subsonic

speeds can potentially be disastrous at transonic speeds. Hence a new discovery by the




principal investigator in non-linear fluid dynamics is employed to establish some closed form
solutions for 2-D unsteady non-linear flow applicable to transonic regime which are expected
to be eventually used for aeroelastic analysis. Some of the results have been compiled and
published in the AIAA Journal. In the process of studying the unsteady 2-D nonlinear
transonic flows, what seems to be a major breakthrough was discovered: this breakthrough
is the discovery that the 3-D steady non-linear transonic flow equations can be transformed
into a linear hodograph equivalent. This discovery essentially reverses a hundred years state
of thinking and belief in the scientific and mathematical community that the hodograph
method was limited to the 2-D flows. The results of this discovery have been written up and

published in the AIAA Journal.

In addition another paper AIAA 92-257 which presents practical shock free 3-D wing for
transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics
Conference in Palo Alto, California. This research program seems to be seeing the beginning
of what seems to be another breakthrough, perhaps even more significant than what we have
seen thus far. This is what seem to be a discovery that transformations methods can even
be used to effectively study the uitimate set of equations in continuum gas dynamics known
as the Navier Stokes set of equations. This new finding could be the key to effectively
unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,
which have been blurry at best thus far. This finding has resulted in a preliminary paper
accepted to be presented at an international conference to be held in Colorado in August of
1992. it is being proposed that the investigation of these new findings be pursued in a
proposed next phase of research. This is because if the findings are correct this could be the

start of a new era of fluid or gas dynamics analysis.
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parameter that measures the location of the
reference axis relative to mid-chord

= bending and torsional stiffness, respectively
= wing box depth

= affine space bending and torsional displacement,
respectively

elastic coupling and warping stiffness, respectively

elemental stiffness parameter
= Strouhal number

= affine space running aerodynamic lift and moments,
respectively

= affine space half-span for the wing

= affine space mass per unit span

= differential aerodynamic pressure distributions in
physical and affine space, respectively

= time

= virtual work expressions in physical and affine space,
respectively

= flutter speed
= physical and affine space coordinates, respectively
= displacement shape functions

= generic nondimensionalized stiffness parameters




Bo = affine mass ratio parameter

T = Poisson ratios and generalized Poisson’s ratio,
respectively

A, = divergence parameter

PiPa = affine space material and air density, respectively

0 = twisting displacements

w = displacement

w = vibration frequency



3.0 INTRODUCTION

In the late 1960’s designers began to investigate the possibility of exploiting the directional
properties of composite materials to improve aeroelastic characteristics of lifting surfaces. For
example, superfighter designers may aeroelastically tailor a wing so that it deforms to the
optimum camber under maneuvering loads.

For instance, a wing can be tailed so that its leading edge will twist downward under the
stress of a tight turn, thereby decreasing the wing’s angle of attack and hence reduce drag.

Exploitation of the directional properties of composite materials to solve aeroelastic
instability problems (known as aeroelastic tailoring) may enhance the performance of future
high performance military aircraft, particularly the super-maneuverable concepts. This stems
from the need for future military weapon systems to exhibit high performance and minimum
vulnerability (e.g.: minimum radar cross-sectional area). These requirements may lead to
unorthodox aircraft configurations which in turn result in unorthodox aeroelastic instability
problems (e.g., the X-29 primary mode of instability, called the ‘body freedom’ flutter).

Perhaps the aeroelastic tailing concept would have been discovered much earlier if the
physics of anisotropic aeroelasticity were more apparent. This inherent physical intractability
is large!y due to the existence of numerous variables, e.g.,; flight parameters, several
composite directional properties, fiber orientation angles, etc., which are not even truly
independent, in the anisotropic system. This state of affairs is therefore analogous to that
which existed in the basic rigid body aerodynamics before the advent of the similarity rule
theory. This theory clearly revealed that, the utilization of non-dimensionalized groups of
variables, e.g.: Reynolds, Mach, Strouhal, Froude numbers etc., provide significantly superior
physical insight to the problem than the individual physical variables. The new methodology

that is being used as the basic tool in this research program is basically the aeroelastic



equivalent of the aerodynamic similarity rule. The expected superiority of this new approach
over the state-of-the-art (SOA) counterpart, which utilizes individual physical variables,
especially in terms of physical insights, has been demonstrated in references 1-10. For
example, a high-aspect-ratio composite wing could behave aercelastically like a low aspect
ratio wing and vice-versa. Similarity parameters can expose conditions for which this might
happen. This is significant, (for instance) in the light of the important role played by the wing
aspect ratio in the aerodynamics approximations for an aeroelastic analysis. This result may
therefore be suggesting some new form of coupling between the elastic and aerodynamic
equations in composite wing aeroelasticity. A fundamental aspect of this new methodology
has been used in studies at Purdue University '' and MIT'2,

In this rescarch, an investigation of a wing’s spanwise sectional distortion (warping)
resulting from aerodynamic forces and its influence on the wing’s free vibrations, as well as
(aeroelastic) stability, is being carried out. In particular, St. Venant's torsional/twisting theury,
which is currently widely used for estimating the wing’s twisting displacements has been
examined with the help of the new methodology, to determine its limitations, when applied
to wings fabricated of composite materials. The relevance and significance of this study for
the newly emerging supermaneuverable type aircraft may be seen in the light of the fact that
(a) supermaneuverability is characterized by high angle of attack which implies high twisting
aerodynamic forces, and (b) most aircraft designers believe future aircraft will be fabricated
of 40-70% composite materials.

When the St. Venant's torsional theory is used to estimate a wing’s twisting displacement
and/or forces, the fact that the wing’s root section’s distortion is relatively small compared
to that of other sections is ignored. However, previous investigators have determined that

such an unrealistic assumption may iead to only little errors if the aspect ratio of the wing is




very high.

The research has shown during the first phase that the conclusions reached by previous
investigators are basically true for wings fabricated of metals or isotropic materials. A set of
new theories is therefore being postulated in this research effort for accurately estimating the
twisting displacements, vibrational frequencies and instability boundaries for wings fabricated
of composite materials.

In the second phase, the mechanism of instability is defined as the main target of more
detailed investigation. This is partially because some new findings during this research
program seem to indicate that composite wings undergoing free aeroelastic oscillations exhibit
some unique phenomena not known to occur in metal wings. One of this phenomena is what
we have referred to as a "damping like behavior” (in absence of actual damping) brought
about by the presence of asymmetric coupling. This among other things presents opportunity
for a merging of two modes during a free vibration. The natural question is therefore "would
such a phenomenon lead to instabilities” as has been well documented for other aeroelastic
systems? Of primary interest to an aeroelastician is "how does this phenomenon connected
to aeroelastic tailoring? These are some of the questions that we are searching for answers
to in this second phase of this research. Itis beginning to be apparently evident that modal
coalescence is possible. Furthermore it is also evident that this modal coalescence may lead
to some form of instability at low flight velocities which we are still trying to discern properly
and carefully.

in preparation for more sophisticated flutter or divergence analysis, a new discovery by the
principal investigator in nonlinear unsteady fluid dynamics is being refined to enhance and help
expose the physical nature of aeroelastic instability of composite wings with elastic coupling

and warping restraint. Some of the preliminary results have just been published in the AIAA




Journal. A copy of this publication is included in this writeup. Furthermore, the study of the
unsteady transonic fluid dynamics has led us to some new findings. In the process of
studying the unsteady 2-D nonlinear transonic flows, what seems to be a major breakthrough
was discovered: this breakthrough is the discovery that the 3-D steady non-linear transonic
flow equations can be transformed into a linear hodograph equivalent. This discovery
essentially reverses a hundred years state of thinking and belief in the scientific and
mathematical community that the hodograph method was limited to the 2-D flows. The
results of this discovery have been written up and published in the AIAA Journal.

In addition another paper AIAA 92-257 which presents practical shock free 3-D wing for
transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics
Conference in Palo Alto, California. This research program seems to be seeing the beginning
of what seems to be another breakthrough, perhaps even more significant than what we have
seen thus far. This is what seem to be a discovery that transformations methods can even
be used to effectively study the ultimate set of equations in continuum gas dynamics known
as the Navier Stokes set of equations. This new finding could be the key to effectively
unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,
which have been blurry at best thus far. This finding has resulted in a preliminary paper
accepted to be presented at an international conference to be held in Colorado in August of
1992. it is being proposed that the investigation of these new findings be pursued in a
proposed next phase of research. This is because if the findings are correct this could be the

start of a new era of fluid or gas dynamics analysis.
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4.0 RESEARCH OBJECTIVES

The overall goal of this phase of the research program is twofold: first, is to formulate
closed-form solutions to the aeroelastic divergence and flutter of aircraft wings with warping
constraint and elastic coupling, and use these to study the effects of constrained warping on
aeroelastic response; second is to develop new plate-beam finite elements and use in modal
analysis of vibration and flutter to provide an independent check on the closed-form solution
results.

During a preliminary investigation of the constrained warping under aeroelastic forces,
a phenomenon being studied in the current research program sponsored by the AFOSR, the
Principal Investigator discovered (for the first time), that there are closed-form solutions to the
free vibrational and divergence problem of composite aircraft wings having warping
constraints and elastic coupling [2]. In this study these newly discovered techniques are to
be extended (and expanded) and used for continuing the formulation of closed-form solutions
to the aeroelastic flutter and dynamic response problems of aircraft wings with the constraint
of warping and elastic coupling. This process is expected to involve determining the
necessary symmetries that exist in the flutter and dynamic response equations (by comparing
them to their free vibrations and divergence counterpart) to permit the extraction of their

characteristic roots for elastically coupled deformations of the wing under the influence of

aerodynamic forces.

Experience from the free vibrational and the ongoing divergence investigations has
shown that the computations involved in extracting the eigenvalues from the closed-form
eigen expressions derived using the new techniques are very challenging. For example, it is

difficult to determine how to eliminate or minimize the numerical errors resulting from the
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of dynamic response problems are to be evolved with the help of the experience gained from the
study of the vibrations and divergence. The closed-form solutions thus extracted, are to be
thoroughly studied to understand the physics of the constrained warping phenomena. In
particular, the computed results used to determine the basic mechanism by which the constrained
warping model can be used to explain the concept of aeroelastic tailoring. This is necessary
because the basic mechanism of aeroelastic tailoring seems to be still rather elusive. For
example, it seems to be generally accepted that tailoring occurs because ply angles are "properly”
oriented. From our ongoing research, tailoring seems to be more than just a ply angle
orientation. Careful study of the data generated are expected to be carried out to try to unfold
this apparent mystery. In other words, by using a figure similar to Fig. (1), how can tailoring

(higher flutter speed) be explained?

PR3
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2
Figure 1 Ve; = flutter speed
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5.0 STATUS OF RESEARCH EFFORTS
5.1 INTRODUCTION
During the reporting period, the research program progressed according to plan resulting in
the accomplishment of the goals defined for the period. These goals, which have been defined
in Section 4 of this report, basically are to extend and utilize some of the newly developed
important tools in the current ongoing research program which is being sponsored by AFOSR
to investigate the constrained warping phenomena of aircraft wings fabricated of composite
materials having elastic coupling and subjected to aeroelastic forces. The proposed study is
basically comprised of the investigation of (a) the basic mechanism of instability and dynamic
response, (b) the mechanism of modal transformation in flutter and dynamic response, and
(c} nonlinear and transonic instabilities.

in the first and second reporting period during the preliminary study, Prof. G. A. Oyibo
started the investigation of the basic mechanism of aeroelastic instability of composite aircraft
wings with restrained warping and elastic coupling. Following a realization that proper
understanding of the mechanism of aeroelastic instability particularly the dynamic instabilities,
require some sound analytical tools, a review of the important tools developed for the
divergence and free vibration for composite wings with warping restraint and elastic coupling
during the last phase was started. During this review, a thorough study of the preliminary
data generated were carried out. The understanding gained during this review provided the
necessary background necessary for properly formulating the instability mechanism problem.
Consequently an expansion or extension of these earlier tools started. First, the major
scientific revelation to the scientific community made possible (through the help of these
tools) by this research program was properly reexamined. The revelation is that a composite

wing having a restrained warping
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in the presence of an asymmetric elastic coupling (in absence of damping) exhibit a "damping-
like" behavior. This new discovery which should be critical to the proper understanding of the
mechanism of aeroelastic tailoring is still being thoroughly investigated. The latest results
show that modal coalescence is possible. These results are seen to show that such a
coalescence could lead to instability (even at low flight speeds). More careful investigations
are now being carried out in order to "fine tune” the conclusions of these results and to
recommend possible experimental studies to verify them. In addition, a refinement of a new
discovery in nonlinear/transonic fluid dynamics by the principal investigator was initiated in
anticipation of more realistic or sophisticated flutter/divergence analyses to further the goals
of this research. Some of the preliminary results have been compiled and published in the
AIAA Journal. In the process of studying the unsteady 2-D nonlinear transonic flows, what
seems to be a major breakthrough was discovered: this breakthrough is the discovery that
the 3-D steady non-linear transonic flow equations can be transformed into a linear hodograph
equivalent. This discovery essentially reverses a hundred years state of thinking and belief
in the scientific and mathematical community that the hodograph method was limited to the
2-D flows. The results of this discovery have been written up and published in the AIAA
Journal. In addition another paper AIAA 92-257 which presents practical shock free 3-D wing
for transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics
Conference in Palo Alto, California. This research program seems to be seeing the beginning
of what seems to be another breakthrough, perhaps even more significant than what we have
seen thus far. This is what seem to be a discovery that transformations methods can even
be used to effectively study the ultimate set of equations in continuum gas dynamics known
as the Navier Stokes set of equations. This new finding could be the key to effectively

unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,
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which have been b.lurry at best thus far. This finding has resulted in a preliminary paper
accepted to be presented at an international conference to be held in Colorado in August of
1992. It is being proposed that the investigation of these new findings be pursued in a
proposed next phase of research. This is because if the findings are correct this could be the
start of a new era of fluid or gas dynamics analysis.

The investigation of the numerical method for efficiently and accurately extracting the
eigenvalues for the vibration and divergence problems continued. New numerical methods for
handling some problem regions of these problems are also being examined. Prof. T. A.
Weisshaar is also continuing his investigations into how a new beam-plate finite elements may
be formulated to capture the constraint of warping effect in order to provide resuits which
may be used to independently check the closed-form solutions which have been, and are

being generated.




5.2 ACCURATE DIVERGENCE THEORY FOR COMPOSITE SUPERMANEUVERABLE
AIRCRAFT WINGS
5.2.1 INTRODUCTION
Modern supermaneuverable aircraft concepts benefit a great deal
from, among other things, significant advances in materials
technology and the availability of more accurate aerodynamic pre-
diction capabilities. Supermaneuverability as a design goal in-
variably calls for an optimization of the design parameters.
Optimization may be partially accomplished for example, by using
composite materials to minimize weight. 1Indeed, it has been known
that these composite materials can be tailored properly to resolve
the dynamic or static instability problems of these types of air-

craft. The concept is referred to as aeroelastic tailoring.

While aeroelastic tailoring has tremendous advantages in the design
of an aircraft, the analysis which provides the basis for the
aeroelastic tailoring itself is generally very involved. This. is
rather unfortunate since a good fundamental physical insight of

the tailoring mechanism is required for accurate and reliable re-

sults.

In this investigation an attempt is made to look at some dynamics
theories that can be used to understand the aeroelastic tailoring
mechanism. Specifically, the accuracy of the St. Venant torsion
theory which is relatively simple and frequently used in aeroelas-
tic analysis is examined with particular reference to the effects

of the wings aspect ratio as well as other design parameters.




R TN

LT L TP S-SR R F Y TN GEVL- SRR L L S T e g B2 B S o AMLAPREL et eE i e - X T

An accurate torsion/twist theory is particularly significant for
supermaneuverable aircraft wings since supermaneuverability is

basically characterized by high angle of attack.

Although earlier studies (1,2,3) have indicated that the St. Ve-
nant's torsion theory is reasonably accurate except for aircraft
wings with fairly low aspect ratios, the theory supporting that
conclusion was based on the assumption that the wing is construc-
ted of isotropic materials. Basically the St. Venant's torsion
theory assumes that the rate of change of the wing's twist angle
with respect to the spanwise axis is constant. This assumption
is hardly accurate particularly for modern aircraft construction
in which different construction materials are employed and the
aerodynamic loads vary significantly along the wing's span. How-
ever, References 1-3 have shown that (in spite of such an inac-
curate assumption) the main parameter that determines the accur-
acy of the St. Venant's theory is the wing's aspect ratio. Thus,
it was determined that the theory is fairly accurate for moderate
to high aspect ratio wings constructed of isotropic materials.

In recent studies (4,5,6) however, it has been shown that for
wings constructed of orthotropic composite materials, the con-
clusion of References 1-3 need to be modified. Rather than using
the geometric aspect ratio of the wing to determine the accuracy
of St. Venant's twist theory, it was suggested that a generic
stiffness ratio as well as an effective aspect ratio which consid-
ers the wing's geometry and the ratio of the principal directional

stiffness should be considered in establishing the accuracy of St.

Venant's theory.
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The present investigation is related to the studies that were ini-
tiated in References 5 and 6. In this study the first task was to
examine the role of coupling (both mass and elastic coupling) on
the accuracy of St. Venant's theory applied to static problems.

It was discovered that coupling plays a very significant role on
the accuracy of St. Venant's twist theory. The second task was to
investigate the torsional vibration for a flat plate model of an
aircraft wing fabricated of composite materials in which the con-
strained warping phenomenon is more realistically represented,
with particular emphasis on higher frequencies and to compare re-
sults with those from a representation based on St. Venant's

theory.

5.2.2 FORMULATION

Consider an aircraft wing fabricated of composite materials and
mathematically idealized as a cantilevered plate subjected to an
aerodynamic flow over i;s surfaces. The mathematical statement of
the virtual work theorem for such a plate model is well known and
documented. It is also known that such mathematical statements

of the virtual work theorem for a laminated plate model are char-
acterized with the existence of so many variables (in the state-
ment), reflecting the various directional properties for the lamin-
ated plate model, which would tend to interfere with any physical
insight that might be desired from a phenomenological analysis
employing such a mathematical statement. The newly discovered af-
fine transformation concept (5,6 and 7) was developed principally

to resolve such a problem.




This new corncept therefore can be used to evolve the mathematical

statement of the virtual work theorem in an affine space given by

the following equation.
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Dij are the elastic constants, p, is the material density, Ap
is the differential pressure distribution, w is the displacement,
t is the time, A integrals represent area integrals and h is the

wing box depth.

Equations (1) and (2) therefore form the basis of the newly de-
veloped methodology. The equations of motion of a plate model of
an aircraft wing can now be derived by prescribing a realistic

wing displacement and using Equation (1).

When Equation (1) is compared to its physical space counterpart,

it is seen that Equation (1) has fewer variables. It is also seen
that Equation (1) contains only non-dimensionalized stiffness quan-
tities (compared to dimensional stiffness quantities in its physi-
cal space counterpart). Another feature of this new methodology
which makes it unique is that the non-dimensionalization (a conse-
quence of the affine transformation) is accomplished before assum-
ing the wing deformations. This means that the non-dimensionaliza-
tion is independent of how the wing deforms. A non~dimensionaliza-
tion scheme that depends on a particular assumption of the wings
deformations could lead the analyst to an incorrect physical inter-
pretation of results, since the wing's deformations assumptions
have inherent errors because they are based on the analyst's judg-
ments and experience. This observation may become clearer during
the evolution of a warping parameter with which to study the ef-
fects of the warping constraint phenomenon on the status and dyna-

mics of a wing fabricated of composite materials later in this study.
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If the chordwise curvature is neglected in an initial approxima-

tion, the wing's deformation may be assumed as follows:

wltoxguyg) = ho(ty ) + x a (ty ) (3)

where ho and a, are the bending and twisting displacements, re-

spectively.

It can be shown that when Equation (3) is substituted into Equation
(1) and the variational calculus is carried out for arbitrary ho

and e the following equations of motion are obtained:

iV iii .o .o
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5.2.3 EVOLUTION OF WARPING PARAMETERS

The evolution of the warping parameter with which to study the con-
strained aeroelastic warping phenomenon for wings fabricated of
composite materials is a process that depends on the sophistication
of the wing's mathematical model; whether coupling effects are in-
cluded, whether the wing's chordwise curvatures are included and

so on. Therefore, any warping parameter is as good as the corres-
ponding wing's displacements assumptions. However, Equation (1)

makes it possible for the analyst to determine its effective inde-

pendent variables even before the displacement assumptions are made.

By non-dimensionalizing the spanwise space variable in Equation (4),
depending on whether one is interested in the static, dynamic,
coupled or uncoupled displacements, one of the following warping

parameters may be useful.
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where:

o =0(-¢) i &G (10)
0

(lo/co) is defined as the wing's effective aspect ratio and Do*
and L are the generalized stiffness and coupling ratios, respec-

tively (defined in earlier work such as References 5 and 6).

Equations (7) thru (9) represent the appropriate warping parame-
ter for dynamic deformation, static displacement with elastic
cross-coupling, and static deformation with "geometric" coupling

(e # 1), respectively.

It was discovered in this study that evolving the warping parame-
ter in a manner shown in Equations (1) thru (3), should enable
one to investigate the effects of warping on the composite wing's
dynamics (or the accuracy of St. Venant's theory) effectively.
From the lamination theory for composites it is known that while
Do* and (lo/co) are always positive, L and 52 can be positive or
negative. However, from Equations (1) and (3), it is clear that
whether a composite wing has positive or negative coupling, the

warping effect (in terms of Xé) is unchanged.




Using the Laplace transform method on the divergence form of equa-
tions 4 in which strip aerodynamic theory is used, the following

Laplace function becomes important in the divergence problem,
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Equation 50 is therefore expected to rep- "sent the closed-form ex-

pression for the divergence eigenvalues,

merical methods are now

being used to extxact tl :se eigenvalues in order to obtain the

divergence sveeds.
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RESULTS

The results obtained so far seem to verify existing results and
establish new trends. Due to the fact that the evolution of
these new trends are yet to be fully completed, only a summary

of these results are presented below.

The results obtained by solving equation 50 were carefully to
evolve the nhysical insight into the mechanism of divergence in-
stability in the presence of warping restraint and elastic coupo-
ling. This study revealed the following, as can be seen from

figures 1-7.

First, it is seen that the view held by many analysts that elas-
tic coupling plays a significant role in aeroelastic divergence

tailoring is verified.

Second, it is seen that another view that, higher aeroelastic
divergence stability boundaries are feasible with negative elas-
tic coupling (than vpositive elastic coupling), is basically true,
but up to a point. It is further seen that there seems to be a
limit to how negative the elastic coupling can be made to obtain
better stability boundaries - after such a limit, a further nega-

tive increment of elastic coupling would seem to lower the stabil-

ity boundaries.

Third, it is found that the effective aspect ratio defined in the

"first phase of this research program (Ac), for simpler models can

still be used in this relatively more complex model, to measure

3%
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the effect of warping restraint on the phenomenon of divergence
instability. The results show that ignoring the warping re-
straint would lead to conservative estimates for the divergence
instability boundaries. It is also seen that the restraint of
warping effects are more significant for small effective aspect

ratio (AC) and/or large elastic coupling.
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5.3

Exact Solutions to Aeroelastic Oscillations of Composite Aircraft

Wings with Warping Constraint and Elastic Coupling+

* *
Gabriel A. Oyibo and James Bentson

Polytechnic University
Farmingdale, New York
Abstract
Exact solutions within the framework of standard aeroelastic

bending and twisting assumptions are found to the free oscilla-
tions of composite aircraft wings having warping constraint and
elastic coupling. The problem is treated as a regular boundary
value problem consisting of two fourth order partial differen-
tial equations coupled by the presence of elastic coupling.
This system, which is linear, therefore is equivalent to an

. eighthorder ordinary differential equation . Classical linear
"operator" method is therefore used to extract fundamental solu-
tions which are superimposed appropriately to obtain an exact
functional form for the mode shapes. These mode shapes are
therefore made to satisfy the necessary boundary conditions, a
process that leads to the formulation of the required eigenvalue
problem. The eigenvalues are extracted numerically by using ap-
propriate ordering of the eight roots of the operator equation.
The bending-torsion frequencies obtained as a result of this an-
alysis are compared favorably with existing results. New in-

sights made possible by these results which are preliminary, ap-

+Research sponsored by the Air Force Office of Scientific Research
. (AFOSR) , under Contracts F49620-85-C-0090 and F49620-87-C-0046.
w ,

* . 3
Associate Professor Dept. of Aerospace Engineering
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pear to be that (a) the first coupled frequency decreases with
increasing coupling and (b) the phenomenon of modal transforma-
tions found by earlier investigators is explainable in terms of

some conservative inter-modal energy transfer.
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5.3.1 NOMENCLATURE

a.
1

c’,c
o' o

D..
1]

e

EI, GJ

(ho,ao)

K,So

(XIYIzv)r (XO,YO,ZO)

Yi'di'ei

r,Ll,LZ,D*aD*OI

chordwise integrals
affine space half-chord and chord, respectively
elastic constants

parameter that measures the location of the (
reference axis relative to mid-chord

bending and torsional stiffness, respectively
wing box depth

affine space bending and torsional displacement,
respectively

elastic coupling and warping stiffness, respec-
tively

elemental stiffness parameter
Strouhal number

affine space running aerodynamic lift and mo-
ments, respectively

affine space half-span for the wing
affine space mass per unit span

differential aerodynamic pressure distributions
in physical and affine space, respectively

time

virtual work expressions in physical and affine
space, respectively

flutter speed

physical and affine space coordinates, respec-
tively

displacement shape functions
generic nondimensionalized stiffness parameters
affine mass ratio parameter

Poisson ratios and generalized Poisson's ratio,
respectively

divergence parameter




affine space material and air density, re-
spectively

twisting displacements
displacement

vibration frequency




5.3.2 ¢
Introduction

Perhaps one of the more elusive aspects of supermaneuverabil-
ity as a design concept is its aeroelastic implications. One gen-

erally accepted definition of supermaneuverable aircraft is that it

is designed to operate at high angles of attack. Strictly speaking
high angle of attack problems are nonlinear. However due to the
high degree of complexities involved in dealing with nonlinear aero-

elastic problems,an average aeroelastician would prefer to deal with

a linearized version of the problem (at least as a first approxima-
tion). If linear aerocelastic equations are used under such condi-
tions, at least it should be assumed that the high angle of attack
would introduce large twisting displacements which would imply that
terms containing twisting displacement should be retained. Even
under low angle of attack assumptions, the early works of Reissner
and Stein1 and later works of Libescu et al2 have shown that for
metal wings there are conditions under which the so called St. Ve-
nant's torsion principle is inapplicable. This is when the res-
traint of warping effect is important and a more accurate analysis
would need to include a higher order term involving the twisting
displacement. Although the retention of such a 'term implies solv-
ing fourth order (instead of second order) differential equations
for the twisting and bending displacements, the equations can be
easily decoupled for metal wings. However for composite wings, the
decoupling of these equations is neither easy practically nor is it

. . . 3-7
even desirable from aeroelastic tailoring standpoint. These stu-

dies have also shown that the restraint of warping is very important




in composite wings. Therefore it would seem that an aeroelastic
analysis of a supermaneuverable (high angle of attack) aircraft
wing fabricated of composite materials would need to consider
the effects of restraint of warping as well as elastic coup-
ling.

Previous investigation of this latter problem (free vibra-

3.4 used analytical methods to solve the decoupled

tion) at MIT
problem, while numerical methods were utilized to solve the cou-

pled problems. Consequently general results were presented for

the decoupled problem while representative results were presen-

ted for the coupled problem.

In this paper the coupled free vibration is treated analyti-
cally as a pair of coupled fourth order (differential equations)
boundary value problem to which exact closed form eigen-solutions
are sought. The enforcement of the necessary boundary conditions
resulted in a fairly complicated transcendental function to be
used to determine the required eingenvalues from which the natur-
al frequencies are to be obtained. This transcendental function
was complex in contrast to its decoupled counterpart (which is
real). That should be indicating the presence of the phase angle
that exists between the twisting and bending displacements. A com-
parison with a damped (decoupled) system in which complex determin-
ant signifies phase angles between damping and other forces, led us
to the formulation of an explanation for the "modal transformation"
phenomenon which was reported in studies at MIT3”land Purdue8 (which
seemed to have lacked explanation until this study). The explana-
tion is that the modal transformation may be viewed as a

form of steady state conservative (energy stays in this system




since there is no damping) inter-~

modal energy transfer between the vibration modes. 1In fact
. work currently in progress at Purdue8 seem to support and con-
firm this explanation. The results which favorably compared

with those obtained at MIT,3’4

also revealed that coupling has
a tendency to lower the first coupled natural frequency of a

composite aircraft wing. 1In fact it is seen that a substantial
amount of coupling could reduce the first coupled frequency to

almost zero (hence a possibility of coupling with rigid body

modes) .

5.3.3
Problem Statement

For a composite aircraft wing cantilevered at the root as
shown in Fiqure 1, the virtual work theorem in the physical

space is given by

t

— § 2

U = 0 = -é—fff[[)ll(w,xx) + 2D12 w,xx W,yy
0A

_ ) .
+ D22(w'yy) }+ 4D16 Wrxx w’xy + 4D26 w'yy (1)
t

2 -8 b wldxdydt
+ 4066 (w'xy) dxdydt ff[fp Yy
t 0" A
-r‘rfjApéw dxdydt
0 A

D.. are the elastic constants, p, is the material density, Ap
i

where:

is the differential pressure distribution, w is the displacement,

t is the time, A integrals represent area integrals and h is the

wing box depth.

. Using the following affine transformation of variables;
D,, 1/4
. = . - 2
X = (Bii) X, ; Y =Y, ; z z, (2a)
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then in affine space the virtual work theorem becomes:

= t 2
GUO =0 =2 ﬂ ’ (w.x x )C + 2D* [(J.-e) (w,x v )2
A o"o ofo

(2b)

where
1/4
g =i(32_3) . e o D12 * P66
o D D ' - 1/2
() 22\l (Dy3D35)
. . D¢
d 1/2 1 3/4 1/4
(Dy;D5,) (Dy1) 7" " (Dyy)
(3)
4D, ¢ Ap ofi
L, = H Ap = H o) = ———
2 (011)1/4(022)3/4 © Dy, © Dy,

If the affine space equivalent of the standard aeroelastic

displacement assumptions is made, i.e.,

W(Xo.yo.t) = h_(y ,t) + xouo(yo,ﬁ) .o (4)
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where hO and a, are the bending and twisting displacements re-
. spectively, then it can be shown through the use of the calcu-
lus of variations that a coupled set of aeroelastic equations
of motion for the composite aircraft wing, in which the re-
straint of warping and elastic coupling effects are accounted

for is given by

TN

LR}

iv iy - i Y. . .
3hg T+ 2,9 1%t Pt t Pe%% Lo
. , y (5)
iv iii .o aZ 3.0 4+ h =
at yo =

' with boundary conditions

h, = 0, h} =0, oy =0, al =0 | (6)
at Yo = lo

ajal + ajhl" - Lyajal = 0, a,h; -agal + aza’o’ =0
azao"’+ alh;” - asa:)' 0

a2h’o” + a3a"‘ + ash’o’ - a4ac’, =0




where:

a, = ‘e .dx a =fao X gx
i SQCO 0 ; 2 QEO (o] 0
¢ -
(] 2 C -
a, = J‘_ X “dx . a, = 2 o D (1-€)dx
3 et 0 o : 4 j;Eo 0
c 4
= 0 - 0 |.dx
Lo feéo 4v,%, j %s IeE 270 (7)
o
Eo
" * J‘_ X 4 P9
ec,
- 5o
-ﬂ<€<0 (Y cot l'e
/ z c_a._O ¢ a
() 2y, () = 3¢

For free vibrations, if a, (through the geometric construction

of the wing) is made to be zero, equations 5 reduce to

iv  ~p » .
alho aga, + poalho = Lo
(8a)
iv o, , s o
a3ao + asho a0 + ooa3ao = Mo

with boundary conditions

Sb




at y =0,

= £
at yo o
alh;"= asag”= 0, alh;' - asg' =0 (8b)
a3ao + asho = azo. = 0

It may be stated here that the restraint of warping effect is rep-

resented by the product of otV and aj while the elastic coupling

effect is represented by the ag terms.

5.3.4
Methods of Solution

Two methods for solving equations 8 are examined in this pa-
per. These are (a) an "exact closed form" approach and (b) a "semi-

exact closed form" approach. The exact closed form approach is de-

fined here as one in which explicit expressions are derived for
the eight roots of the eighth order operator equations represent-
ing equations 8a, and through the superimpositioh of fundamental
solutions corresponding to each of the eight operator roots, the
boundary conditions 8b are satisfied. The semi-exact closed form ap-
proach is the same as (a) except that the roots of the operator
equation are determined numerically through the usage of some
standard root extraction subroutines.

In either case, to solve for the operator roots of equation

8a, it may be rewritten in operator form as follows,

st




B = x n 1,2,3,4

and ;n can be obtained either from the numerical solution of

equation 11 or according to the method described in Abramo-

witz and Stegun,lo as follows

Define

/30 Bor -2
3 - x _ 2
AC = (zo/co) 2 Do AC = (Lo/co) 7(Do 2 )
I R IO W AT 2
P1 = A ¢ c c ‘¢ 27
1 2.2 . k°
P, =% (32ICAC +3)

141
2.2 3. 2|2
s, = 2k| ke, + (K°p,* - 8p,")
: 1/2)1/3
.. 2 2 3
s, = 2K {#Pl-(k p,° - 8p3) ]
—2
K
uy =85 *5 "3
-2
1 . /3 _
u2 =- 3 (Sl+52)' § + 1 V) (Sl 52)
~2
1 _k 3 (o
uy = - 7 (51#8;) -3 -1 3 (§;-8;)
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(15)

(16)
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1
212
- _ 2 — ~4 _
f3'4 - BAC + [64AC + Ui + k]
1 (18)
u, u, 412
_ i i, 2 k
fs,6 =27 ¢ [‘T) 'z]
- 2
S _Tfyt /e - af,
1,2 2
(19)
_ -£, + Jf 24
3,4 2

where u, (i = 1,2,3) is the root that makes f all real.
1 3'4'5'6

5.3.5
Consistency Conditions

From equations 12(a) and 12(b) it is seen that there are six-
teen arbitrary integration constants as opposed to the expected
eight constants. The additional eight constants have been intro-
duced superflwusly as a result of the differential operation
which was done in order to eliminate one of the dependent varia-
bles in the two coupled differential equations (equations 9). 1In

order to get rid of these superfluous solutions it is necessary to

enforce some consistency conditions. This may be accomplished by
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substituting equations 12(a) and 12(b) into one of the equations
9 and requiring the equation to be satisfied identically. This
procedure shall establish a set of explicit relationships be-
tween the constants AL and B in which A, can be determined in
terms of B, or vice-versa.

When the superfluous solutions are eliminated, equations 12
can now be used to satisfy the boundary conditions for this prob-
lem (equations 8b). Consequently the condition for nontrivial so-
lutions is enforced to obtain the transcendental functional ex-
pression for determining the eigenvalues of this problem.

5.3.6

Eigenvalues

. The following steps and definitions are carried out in order
to obtain the transcendental functional expression for determining
the necessary eigenvalue (for this eighth order boundary value

problem) from which the coupled natural frequencies may be ob-

tained
Define
_ a4 _ k2 a2 _ 1
h,=8,-3 i t, =8, 52 L
n (20)
h h
R = 0. h” = 1
n 3 n 8
Bn n
T 16 (2 2-% %) g2 n+l h_L‘ (8.2 + (-1)™162 2]
n (21)
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51

61

71

81

52

62

= -h’a

h3+h2 . _ h4—h2 . _

— — 17 - — 35 =

h,+h, h,+h,

hy+h, W o 3Ty o -

= = 26 T 28

hy+h, hy~h;

hy-hy I Y

e 48 - = =

h,=h, hy~h,

-8 3a sinhB,+8 3a sinBf.,+8 3sinhB
1 715 1 72 735 2 73

B 3 oshB, -8 3a cosB,+B 3coshB
1 226€ 17°2 %46 27P3 3

3 . 3 . 3 .
81 al751nh61-82 a3751n82+84 51n84

3

3 _a 3
B1 a28c05h61-82 a48c°582 B4 cosB4

hla

1 15sinhB1-h£a355in82-h351nh83

1 26coshBl+h£a46cose2—h3cosh63
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=1

=1
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1

!
=

=

3

l
=
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72

82

53

63

73

83

54

64

74

84

—hlal751nh81+h2a37sin82-h;sin84

-hia28c05h81+h’2'a48c0582+h‘;c0584
-tlalscoshﬂl—t2a3scosBZ+t3coshB3

tlaZGSlnhBL-tZad65in82+t35inh83

tlal7cosh61+t2a37cos82—t4cosB4
(24)
tlazasivhBl—t2a4asinBZ—t4sinB4

tlalscoshs1+t2a35c0582-—t3cosh83

-t aZGSinhB1+t2a465in82-t3sinh83

1

-t,a

1 17cosBl—t2a3.’cosBz+t4cosB4

—tlazssinh81+t2a4Gsin82+t451n84
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Fe1F72F62F71 _ Fe1Fg27Fg2Fs1

a = a =
37 Fg Fey=Fe, Fey °8  Fg Feo=FgoFey

(25)
o - 52F117F51F70 . '52F817Fs51Fg)
67 Fg Fgy=FgoFgy 68  Fg Fey~FgyFgy
Then, En are given by the roots of
F = (Fgiag5y+Fgag +F)3) (Fg agetFeacg+Fg,) -
(26)
(Fgqa59+Fg4ag7%F7y) (FgiaggtFeage+Fgq)=0

Equation 26 is therefore the exact closed form transcendental
functional expression from which the eigenvalues Eh may be ex-
tracted. The coupléd natural frequencies are related to these

eigenvalues by the following expression,

w = (—=£) —= (A, X /A ... (27)

5.3.7
Computations

The extraction of the eigenvalues frdm the exact-closed form
transcendental expression in equation 26 proved to be a very chal-
lenging computational exercise due mainly to its complex nature,
the existence of branch points, the necessity to order the opera-

tor roots appropriately and the existence of numerical noise.
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The characteristic roots for the equations of motion, x ,
' were extracted in two different ways in order to assure accuracy:
one method was by using a Jenkins-Traub computational method from
the IMSL library. The second method was by using an exact-closed
form approach outlined in Abramowitz and Stegun.lO When these
roots are being extracted numerically, they do not necessarily
come out in a continuous manner. Therefore a subroutine that re-
orders them so that they become continuous with respect to the
eigenvalue En is also employed. Once this reordering of these
roots is completed, the parameters needed for coﬁbuting the trans-
cendental function, F, in equation 26 are computed. Finally, the
transcendental expression itself is computed and the roots, E;,
are found numerically.
One interesting result is that the values of F are complex
. here. 1t is known, however, that each of the two uncoupled prob-
lems (bending or torsion) when treated separately has a real
transcendental expression for extracting the eigenvalues. This be-
havior of the transcendental expression for extracting the coupled
eigenvalues (i.e., being complex as opposed to being real) was the
first hint that led the first author to examine any possible math-
ematical similarity between the problem at hand (a coupled non-
damped oscillations problem) and simple damped oscillations prob-
lem in which the expression for determining the eigenvalues is in
general complex due to the need to determine the oscillation fre-
quency and the amount of damping in the mode, etc. In the coupled

problem the complex nature of this transcendental expression for

‘ extracting the eigenvalues seems to be basically a reflection of
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the phase that normally should exist between the bending and tor-
sional modes. Realizing that in the damped case, there is a non-
conservative energy transfer between the oscillating system and
its environment as well as intermodal energy transfer, it became
clear to the first author that in the undamped coupled system
there may be a conservative energy transfer in the oscillating
system. At the time of this thought it seemed to the first auth-
or that if it made sense, the idea should provide an explanation
for the modal changes which were noticed during the studies at
Purdue and MIT3'4 as coupling in the system was changed. This
prediction which turns out to be useful and confirmed by other
recent studies from Purdue Universit;gshall be discussed in more
detail below.

The most convenient way to obtain the eigenvalues, Eh, was
found to be by graphical means. Thus the values of the real and
imaginary parts of the complex transcendental function F are
plotted against the values of El on the same curve as shown in
Figure 2. The values of En at which the real and imaginary parts
of the transcendental function are simultaneously equal to zero
corresponds to the desired eigenvalues for this coupled problem.

One of the problems with the computational model described
above is that, when the coupling parameter, Ly, becomes identical-
ly zero, the coupled system of equations becomes computationally

ill conditioned and unsolvable. To circumvent this the results

for the uncoupled case (XC/AC = 1) are obtained from a series of

calculations using successively smaller values for the coupling

i es of eigenvalues
parameter, LZ' This led us to accept the valu g
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for zero coupling as the value corresponding to the limit as the
. coupling approaches zero. Although this continuity assumption

seems to make s-~se, it is not backed hy a rigorous mathematical

proof. Luckily it was possible to check these results with re-
sults generated for an isotropic/metal aluminum/wing by MIT,3'4
and the agreement was found to be good for the cases checked.

5.3.8
Results and Discussions

The natural frequencies W for the coupled bending-torsion
oscillations for a composite aircraft wing in the presence of
elastic coupling and warping restraint is found (as shown by
equation 27) to be a function of the ratio (Dzzlp?/z, the length
20 and the nondimensionalized frequency parameter En for the

‘ wing. In this problem, En' is a function of only two parameters,
i.e., AC which may be considered as an effective nondimensional-
ized aspect ratio and XE/AC’ which in a way, measures the amount
of elastic coupling in the wing (XC/AC = 1 for zero coupling;.

It is therefore seen from equation 27 that in order to increase

w one needs to make 20 as small as possible and/or make (Dzz/p)
and En as large as possible. Such an exercise may be necessary
when a tailoring of the frequency is needed to avoid instabili-
ties (e.g., very low structural frequencies may provide an atmos-=
phere for a coupling between the flexible modes and rigid body
motions, which in turn has a potential to result in instability).

This kind of tailoring is made convenient through the use of equa-

tion 27 in which, for a particular wing configuration and compos-

‘ ite material, every variable in the equation shall be known ex-
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cept En and D Obviously if we want high w_, as we said earli-

22°
er, D22 should be made to be as high as possible (and of course p
as low as possible). Once this is done the only other parameter
to be tailored is En'

The plot of El as a function of A_ and Xc is shown in Figure
3 for all configurations having low camber to twisting coupling,
and all values of bending to twisting coupling. The results com-

puted at MIT,3'4

which were used to verify the present results,
are shown in Figure 3 as well. The important trend made visible
is this investigation as shown in Figure 3, is that Ei (and hence
wl) decreases with increasing nondimensionalized coupling L2'
which perhaps may be a more effective way to actually measure and
compare elastic couplings, D16 and D26' For example, the results

from MIT3’4

which were computed for some representative configura-
tions, in dimensionalized form seem to represent systems with a
fairly significant variation in coupling D,e Or Dy¢ (depending on
the coordinate system). However when nondimensionalized, the re-
sults as shown in Figure 3 seem to show little variation in coup-
ling. 1In fact they appear to be so close to the zero coupling
case (XE/AC = 1) or isotropic (or metal) case, that Ei for a metal
or isotropic wing should be a good approximation (if it was nec-
essary to make an approximation). The low value for the effective
coupling was also evident in the nondimensionalized results from
MIT3’4 where the bending frequency hardly varied with material

changes. The question that could be asked is therefore "Do all

possible composite wing configurations result in very low effective

nondimensionalized coupling, (Tc/kcal)?" If the answer is "yes",

’
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then it may be proposed that for ) _>.5, El (AC,XC/AC) may be ap-
proximated as El(Ac,l), which is also the isotropic or metal
value. For this case it is seen that the computation of the na-
tural frequencies of composite aircraft wing having aeroelastic
oscillations, merely requires the computation of (Dzz/p) for a
given wing half span 20, since En (AC,XE/AC) is approximately
equal to En (Ac,l) which is approximately equal to a constant

(3.5) for n = 1. This result should make frequency computations

for the bending mode significantly easier.

The probleia with an affirmative answer which may likely bé
a "practical" answer, to the question posed above, is that there
doesn't seem to be a theoretical or rigorous analytical reason
(to the best of the author$' knowledge) why TE/AC must always be
approximately 1. Therefore, if on the other hand, the answer to

our question is negative, then the following observations may ke

made: (a) significant variation in Fl is possible with variations
in effective nondimensionalized coupling (XC/AC). In fact it can
be seen from Figure 3 that if XC/AC approaches zero, kl {(and hence
wl) approaches zero. (b) The values of El vary significantly with
Ac for low Ac but approach asymptotic values for large Ac.

(c) The highest values of El is for isotropic (metals) or quasi-
isotropic configurations. (d) For large values of Ac' there ap-
pears to be a simple approximate (hopefully linear relationship)
between ?1 and XC/AC (or a measure of coupling). (e) For very

large coupling (XC/AC+O), El approaches zero, which may provide

the ingredient necessary for coupling between the elastic and ri-

gid motions.
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Perhaps a number of implications of some of these observations
should be examined: Observation (c) seems to imply that the high-
est first frequency would correspond to isotropic or quasi-isotrop-
ic configurations if (Dzz/p) and ZO are the same. It is known how-
ever the metals have lower values of(Dzz/p) than composites. It
therefore means that quasi-isotropic or orthotropic configqurations
are desirable for such a design goal. Observation (e) would seem
to imply that if a designer, interested in tailoring the wing fre-
quencies, arbitrarily introduces large effective nondimensionalized
coupling (Xé/kc+0)' then El (and hence wl) would approach zero.
This may result in coupling between flexible and rigid motions
which may or may not lead to instabilities. Could this have hap-
pened in the case of the X-29 Forward Swept Composite Wing Aircraft
for which one of the primary modes of instability results from the
coupling between flexible and rigid body motions? In other words

was "too much" coupling (effective) inadvertently built into the

wing during the design process? If that is the case, is there an
alternative, equivalent design without any penalties (weight or
otherwise) that could have been explored? Although the answers to
these questions can, strictly speaking, only be possible after car-
rying the necessary aeroelastic analysis in which unsteady aerody-
namic forces are considered, it appears from Figure 3 that a rough
idea of the final picture may be obtained from the natural fre-
quency analysis. Afterall, it is a common belief that the phenom-

ena that actually lead to aeroelastic instabilities are linked to

damping and coupling.
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Earlier in this paper it was mentioned that previous studies
by other investigators have found what appeared to be some kind
of modal transformations as ply orientation was changed in a de-
sign process for a composite wing. While variation in ply orien-
tation may change several directional stiffness parameters for
the wing, the coupling stiffness parameter, L,, may be singled
out as a significant design parameter, because it may vary con-
siderably (orthotropic configurations have zero values while it
may be fairly significant in other configurations). Furthermore
it should be remembered that the main reason for ply orientation
variation is for 'tailoring', which is believed to be primarily
tied to couplings (D16 and D26)' The absence (or the presence)
of these couplings is basically what differentiates orthotropic
configurations from anisotropic configurations. From these ob-
servations, and the fact that the entity that ties the bending
and torsional equations is the coupling, it became clear that
the role of coupling in modal transformations should be signifi-
cant.

In order to see the role of coupling therefore in this stu-
dy, the modal assumptions for the coupled problem were made sim-
ilar to those noimally made for the uncoupled problem (e.g., the
frequency was assumed to be real) so as to provide an opportun-
ity to compare, contrast and discern the final results easily.
When this was done and the eigen-problem was formulated result-
ing in a complex transcendental expression from which the eigen-
value are to be extracted, a careful examination began.

A significant difference between the coupled and uncoupled
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problems was that (as shown in Figure 2) the transcendental ex-
pression from which the eigenvalues are extracted is complex for
the coupled problem while it is real for uncoupled problems.

The complex nature of this transcendental expression basically
reflects the fact that the bending and twisting oscillations are
generally out of phase. Therefore the resultant coupled frequen-
cy that represents both the bending and twisting oscillation may
be viewed as some kind of vector representation of the individual
contributions. In order to formulate some explanations for the
phenomenon of modal transformation in coupled (conservative) sys-
tem, it may be necessary to compare and contrast coupled systems
with damped systems. Damped systems, by definition are noncon-
servative, i.e., the system experiences a net loss or gain in en-
ergy. It is well known that in a damped system the transcenden-
tal expression for extracting the eigenvalues is complex, again,
due to the phase angle that exists between the damping force and
the conservative forces in the system. It is also known that

some damping (desirable types) would tend to reduce the oscilla-
tion of the system (the non-desirable type tend to make the oscil-
lations diverge). Therefore since damping is linked to some ener-
gy transfer which in turn tend to lead to a change in the oscilla-
tion frequencies, it was thought that the complex nature which is
common to the coupled and damped system determinants (transcenden-
tal functions) from which the eigenvalues are extracted may be a
similarity that may provide some explanations to the modal trans-
formations in coupled systems. Using the similarity argument, the

coupled system which for the present problem, is conservative, may
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be viewed as having some conservative inter-modal energy trans-
fer within the system when the coupling is changed, resulting
in steady state changes or transformations of the modal energy
content of a coupled mode compared to the uncoupled case. It
may be worthwhile to point out that some results recently ob-
tained at Purdue University8 and communicated to the authors

seem to strongly support this hypothesis.

5.3.10
Empirical Relations

A careful study of Figure 3 has led the authors to propose
the following closed form asymptotic relationship that may be

useful for some preliminary design consideration:

k. = X . 8
-kl 3.5 (Xc/lc) ' Xc>3 0 28)

Equation 28 was derived from Figure 4. Equation 28 as well as
equation 27 show that the first coupled frequency decreases with
increasing coupling, a trend that seems to be supported by new
results from Purdue University8 and the data from MIT.3 In ref-
erence 3 for example, the first nondimensionalized frequency com-
puted by Raleigh-Ritz (in which coupling is zero) had a value of
3.52, which is consistently higher than those computed by finite
element method in which coupling is finite (not equal to zero).

Equations 27 and 29 which are closed form (generally rare for an-

istropic systems) should be easy to use.
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Before this discussion is concluded, it is probably necess-
ary to explain why only the results of the first mode are shown
in this paper. First of all it should be pointed out that some
second mode data have been generated but are still being studied
very critically to understand the general trends. It may also
be pointed out that the extraction of the eigenvalues is a little
challenging since some care is needed in ordering the roots of
the operator equations.

5.3.11
Concluding Remarks

This paper has attempted to present exact closed form solu-
tions to the coupled bending-torison vibration problem for a
simplified model of composite aircraft wings with war ping con-
straint. 1Increasing the coupling was found to decrease the first
coupled frequency. A comparison between the coupled problem and
a sample damped problem led the authors to propose some explana-
tion to the "modal transformation" phenomenon found by earlier in-
vestigators. Some simplified closed form expressions are provi-

ded for the first coupled frequencies which may be useful for fast

applications.
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5.4 INVESTIGATION OF THE BASIC MECHANISM OF AEROELASTIC INSTABILITY
FOR COMPQOSITE AIRCRAFT WINGS
. It is well known in aeroelasticity that the mechanism of instabil-
ity is governed by the interaction of aerodynamic forcing functions
and the vibrational modes of the structure. The aerodynamic forces
generally provides ingredients such as damping and coupling to such
an interaction. As a result, the structural modes may loose damp-
ing and/or stiffness which may result in some form of coalescence
of two or more modes leading eventually to instability which may or
may not be catastrophic. Physically therefore it is sdnsible to say
that some of the main ingredients of aeroelastic instability are

damping and coupling.

Crispl has shown that the necessary condition for instability may be
studied by investigating the matrix form of the aeroelastic equa-

tions of motion. Thus

(Al {d,} + (8] {q,} + [c] {a;} =0 (1)

where g, are the mode shapes and A,B,C, are the mass, damping and

stiffness matrices, respectively. He considered

t=1/2 la;) @A) fq)

1/2 gy [B] {q;! (2)

!
1]

U=12 lg;] K€ {g;!}

where 1 and U are some generalized kinetic and potential energies,

. . . .2
. respectively. F is basically the Rayleigh's dissipation function .
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[A]l, [B] and [C] are symmetrical for elementary metal mechanical
systems but the addition of the aerodynamic and dampings spoils
this symmetry for metal or isotropic systems for the last two. 1In
the case of composite anisotropic system, aerodynamics is not even
needed for asymmetric ([C], since such asymmetry can be provided by
elastic couplings. Crisp has further shown in the case with non-
symmetric [B] and [C] they may be decomposed into symmetric and

skew- symmetric portions or

[B]

(B,] + (B,] (3)

([C]

;1 + Ic,]

where lBl], [Cl] are the symmetric portions and [BZ], [CZ] are the
skew-symmetric portions. By considering the total energy for the
system 1 + U = E, Crisp obtained the folloving expression for work

done on this system,

dE _ _ . e
g =~ g1 Byl {g5) - 1§, (6,0 {4} (4)
It is then seen that without damping ( [B] = 0), a composite wing

can exhibit a "damping- like" behavior as was shown in section 5.4
probably for the first time in aeroelasticity. This investigation
is being continued in order to search for the explanation for aero-
elastic tailoring. A preliminary plot of the second mode is pre-

sented in Figure 1. Figure 2 also shows that modal coalescence
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is also a reality. Further studies have also shown that such a

coalescence could lead to instability. We are currently exam-

ining the necessary physical ingredients for such an instabil-

ity and its implications. Figure 3 shows a typical flutter in-

stability evolution process. Figures 2 and 3 therefore display

some interesting resemblance. We are in the process of discern-

ing the striking resemblance.
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W = displacement
h = wing box depth-

affine space bending and torsional dis-

o
¥}
(o]
it

placement, respectively

c;, c, = affine.space half-chord and chord, res-
pectively

£, = affine space half-span for the wing

e = parémeter that measures the location of

the elastic axis relative to mid-chord

m = affine space mass per unit span
W = vibration frequency
5.5.2 Introduction

The performance of modern supermaneuverable aircraft can be made
to benefit a great deal from, significant advances in materials
technology and the availability of more accurate aerodynamic pre-
diction capabilities. Supermaneuverability as a design goal in-
variably calls for an optimization of the design parameters. Op-
timization may be partially accomplished for example, by using
composite materials to minimize weight. Indeed, it has been known
that these composite materials can be tailored to resolve the dy-
namic or static instability problems of these types of aircraft.

The concept is referred to as aeroelastic tailoring.

Wwhile aeroelastic tailoring has tremendous advantages in the design

of an aircraft, the analysis which provides the basis .for the aero-

elastic tailoring itself is generally very involved. This is ra-

ther unfortunate since a good fundamental physical insight of the

tailoring mechanism is required for accurate and reliable results:
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In this paper an attempt is made to lcuok at some dynamic theories

that can be used to understand the aeroelastic tailoring mechan-
ism. Specifically, the accuracy of the St. Venant torsion theory
which is relatively simple and frequently used in aeroelastic
analysis is examined with particular reference to the effects of

the wing's aspect ratio as well as other design parameters

Although earlier studiesl'z’3 have indicated that the St. Venant's
torsion theory is reasonably accurate except for aircraft wings
with fairly low aspect ratios, the theory supporting that conclu-
sio? was based on the assumption that the wing is constructed of
isotropic materials. Basically, the St. Venant's torsion theory
assumes that the rate of change of the wing's twist angle with
respect to the spanwise axis is constant (foriconstant stiffness
and torque). This assumption is hardly accurate particularly for
modern aircraft construction in which different construction mate-
rials are employed and the aerodynamic loads vary significantly
along the wing's span. However, References 1-3 have shown tha£
(in spite of such an inaccurate assumption) the main parameter
that determines the accuracy of the St. Venant's theory is the

wing's aspect ratio. Thus, it was determined that the theory is
fairly accurate for moderate to high aspect ratio wings construc-
ted of isotropic materials. In recent studies .3 however, it has
been shown that for wings constructed of orthotropic composite
materials, the conclusions of References 1-3 need to be modified.
Rather than using the geometric aspect ratio of the wing to deter-

mine the accuracy of St. Venant's twist theory, it was suggested

that a generic stiffness ratio, as well as an effective aspect

. ratio which considers the wing's geometry and the ratio of the
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principal directional stiffness, should be considered in estab-

lishing the accuracy of St. Venant's theory.

The present paper is basically an extension of the studies that
were begun in References 4 and 5. In thi. study the task was to
examine the role of coupling (elastic coupling) on the accuracy
of Sst. Venant's theory applied to static problems. Ié was dis-
covered that coupling plays a very significant role on the ac-

curacy of St. Venant's twist theory.

5.5.3
Formulation

Consider an aircraft wing fabricated of composite materials and
mathematically idealized as a canti-levered plate subjected to
forces and moments. It can be shown that the equations of motion

for such a model can be described as follows.

iv iv

iii - .
alho + 2% + aSuo + poalho +
Po22% = Lo : (1)
iv iii iv_ ! .
ayh tV-agh TN+ aga - age T+ pgagdy
panhO = Mo
where
o le) . = o] 2dx R
a]_ = f _ dxo H az = f _ Xo dxo H a3 feE' X o '
eco eCo o
c N
a = 2 f ° D (l-e)dx (2)
4 - o]
ec
o) -
Eo S5
L, = I Apodxo i ag = IeE L,dx
ec o
c
o
Mo = [ _ xOApodxo
ec,
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and

—co<a<() H CO = 1:—5
(1= (=2 )
Yg 3t
1/4
D
g = U (_-22 .. . D1y * 2Dge
© Dy \ Dy PPt 172
: (D;1D,5)
D
12
eD* =
173 - (4)
(D}1Dy5)
L - 4;16 1, 4Dy6
3714 i7a F Ly~ 174 3734
(Dy;7" " (Dy,) (Dy) 7" " (Dy,) /

22 ° V22
Dij are the elastic constants, p, is the material density, Ap is
the differential pressure distribution, w is the displacement, t

is the time, and h is the wing box depth.

Evolution of Warping Parameters

The evolution of the warping parameter with which to study the
aerqelastic warping constraint phenomenon for wings fabricated

of composite materials is a process that depends on the sophisti-
cation of the wing's mathematical model; whether coupling ef-
fects are included, whether the wing's chordwise curvatures are
included and so on. Therefore, any warping parameter is as good
as the corresponding wing's displacements aséumptions. However,
the virtual work equation makes it possible for the analyst to

determine its effective independent variables even before the dis-
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placement assumptions are made. By non-dimensionalizing the
spanwise space variable in Equation (1), depending on whether one
is interested in the static, dynamic, coupled or uncoupled dis-

placements, one of the following warping parameters may be useful.

[ .
o) 3 _*
A e=c 73D (5)
c co 2 o
2
2 L
- _ o 3 * 2
Ac T e ' 2 (Do - E—) (6)
o
where
* x
Do =D (l-¢) ‘ . (7)

w
(Eo/co) is defined as the wing's effective aspect ratio and Do
and L are the generalized stiffness and coupling ratios respective-

ly (defined in earlier work such as References 5 and 6).

Equations (5) and (6) represent the appropriate warping parameter

for dynamic deformation, static displacement with elastic cross-

coupling. .

It was discovered in this study that evolving the warping param-
eter in a manner shown in Equation (1) thru (3), should enable one
to effectively investigate the effects of warping on the composite
wing's dynamics (or the accuracy of St. Venant's theory. From the
lamination theory for composites it is known that while D; and
(lo/co) are always positive, L can be positive or negative.
However, from Equations (1) and (3), it is clear that whether a
composite wing has positive or negative coupling, the warping ef-

fect (in terms of X&) is unchanged.

89




Computations

By using the evolved warping parameters defined in Equations 7 and
8 and appropriate boundary conditions, the boundary value problems
associated with Equation (4) are solved in a closed~-form manner to

determine the wing's static twist.

The wing loading conditions considered in this analysis are as
follows: (a) steady state distributed twist loads and (b). steady

state concentrated twist oads.

5.5.6
a. Steady distributed twist loads

For a wing with a constant uniformly distributed spanwise
twisting moﬁent, fo resulting from a steady state coupled
bending~torsion displacements, the_exact closed form‘so;gtions
for the mode shape a satisfying the approp£ia;e Soun@ary con-

ditions is given by

2 -2 . -
. sy = 6115013o Yy - ZQ_ ) 51nh4)\cyo
o -0 3,,-,2 o 2 -
c_ (4X) 4x, (8)
1 haT 1 T 5
—= (tanh4X  + ——=———) (cosh4l y_ -1)
4Ac 4Accosh4xc

Equation 8 is therefore a closed form coupled twist distribution

for a composite wing with the warping effects accounted for.

where
= 9
Yo = Yo/% (9)
When equation 8 {s evaluated at the wing tip and compared to an
equivalent expression predicted by St. Venant's theory, the fol-

lowing expression is obtained.

tanhd)\C 1

—

a (1 1
® b - 1- - L -1) (10)
p — =

o St.V ZXC 9N coshd)\c
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where a (1) is the wing tip twist given by equation 15 while

al (1) is the wing tip twist given by the St. Venant torsion

‘ ;‘.hgo_)].’y. A plot of equation 10 is shown in Figure 1.

b. Steady state concentrated tip twist loads

If the wing is under the influence of a concentrated
twisting moment, F_ at the tip as a result of a steady
state coupled bending torsion displacement, the exact
closed form twist distribution that satisfies these
equations of motion and their associated boundary

conditions is given by

_ 6FO£0 _— 51nh4kcyo tanh4Ac
%) =3 =77 (Yo +
c o(4Ac) 4Xc 4Xc
(11)

(cosh)\cy0 -1)
When the twist distribution given by equation 11 is evaluated at

‘ the wing tip and compared to its counterpart predicted by the

St. Venant's torsion theory the following expression is obtained.

ao(l) tanhdAc
38 =l —— (12)
%' st.v 4x,

it should be noted that the ratio given by equation 12 was plot-
ted for the real values of XE in references 5 and 6 and was shown
to rebresent conditions where any errors resulting from using St.
Venant's torsion theory are conservative (over-design rather than

under-design). In this analysis equation 12 is examined when Xé

is imaginary, which is possible if L2 is very large. Under

such circumstances, equation 12 becomes

DY
B (13)
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Figure 2 depicts the conditions given by equation 13. It is
therefore seen from the figure that there are certain ranges of
. A, for which nonconservative errors are possible by using the

St. Venant's twist theory.

5.5.8
Results and Conclusions

The results are shown in Figures 1 and 2. Figure 1 shows a com-
parison of the static wing tip twist obtained in the present
study and that obtained via St. Venant's twist theory.in the pres-
ence of statically distributed forces and low to moderate
coupling. Figures 2 shows the trend for concentrated forces and
substantial coupling. 1In Figure 1 it is seen
that the presence of coupling makes the errors of St. Venant's
theory worse. This seems to suggest that the more sophisticated
theory is more important for wings with coupling (e.g., wings

‘ aeroelastically-tailored using elastic cross-coupling).

, a_ (1)
Figure 2 also shows that nonconservative erroxs (| O(l) |>1) are
a

o/

are possible. st.v

Using Figures 1 and 2, the following conclusions can be summar-
ized: (i) ignoring warping arbitrarily using St. Venant's theory
could result in very significant errors (as high as over 80% er-
rors) in analytical results for composite aircraft wings, (ii)
warping ig more important (St. Venant's theory is less accurate)
for wings with coupling, (iii) St. Venant's theory (which has al-

. 1,2),
ways been shown to te conservatlve( ! )), can be non-conservative

or St. Venant's approximation can lead to an unsafe design error

(under design rather than over design from a stability point of

. view) .
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Figures

B Figure l: Wing Tip Twist Ratios for Simple and More Involved

Theory (distributed load and low to moderate coupling)

.Figure 2: Wing Tip Twist Ratios Comparing Simple and More In-

volved Theory (with substantial coupling)
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Closed-Form Solutions for Nonlinear Quasi-Unsteady

Transonic Aerodynamics

Gabriel A, Oyibo*
Polytechnic University, Farmingdale, New York

The existence of exact closed-form solutions for nonlinear unsteady aerodynamics is established. The fell
nonlinear unsteady velocity potential equations for an airfoil are considered. Evidence indicating why the traditions!
hodograph approach is ineffective for solving these equations is provided. Therefore, s suitable mapping scheme is
employed in transforming these full nonlinear equations into the hodograph plane. A close examination of the
resulting hodograph equations reveals closed-form solutions can be obtained for the nonlinear unsteady aerodynamic
characteristics of sn airfoil in potential flow. The shockless tranvonic results presented in this inviscid analysis show
trends that are in sgreement with the results of previous investigators and avaflable experimental dats. “Dips”™ were
observed In the pressure distributions as the freestream Mach number is varied. It appears that there are finite
optimum redonced frequencies for the pressure distributions. This result might suggest a solution to the “transonic
dip” problems. Perhaps an important practical consequence of this study is the possibility of employing this
approach to solve an inverse problem of designing an airfoil section with given or desired serodynamic
characteristics. Desirable candidates for such & design procedure would include supercritical oscillating shock-free
or “transonic dipless” airfoil sections. Such airfoils, therefore, could be designed to meet both the performance and

VOL. 27, NO. 11

stability criteria simultaneously.

Nomenclature

b, = airfoil chord length and velocity of sound,
respectively

(x,2); (u,w) = Cartesian and hodograph coordinates,

. respectively

C,.Co = pressure and lift coefficients, respectively

kM = reduced frequency and Mach number,
respectively

q.P = resultant flow velocity and pressure,
respectively

J = Jacobian of the hodograph transformation

F..B, = hypergeometric function and arbitrary
constant, respectively

0.0 = velocity potential and stream-function
quantity, respectively

m,i = integer and square root of minus one,
respectively

.0 = air density and oscillation frequency,
respectively

Ly = time and ratio of gas specific heats,
respectively

oV = velocity potential and vector differential
operator, respectively

123 = transformed velocity potential and stream
function, respectively

(Do = affine space or nondimensionalized
quantities

(@28 =quantities at infinity

0 = angle inclined by velocity vector and
positive x axis

T = dimensionless velocity variable
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right © 1989 by G. Oyibo. Published by American Institute of
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Introduction

THE hodograph transformation has been established as a

very vital tool with which to analyze two-dimensional
nonlinear steady transonic flow problems comprehensively.
The significance of the hodograph representation results from
the fact that whereas the linearized equations in the physical
plane fail to explain certain observed transonic flow phenom-
ena. the nonlinear equations, which more accurately describe
the flow, do not seem to have simple closed-form solutions in
the physical plane. With the help of suitable mapping func-
tions, these nonlinear equations could be transformed into the
hodograph plane,'~'* where they become linear, resulting in &
possibility of obtaining closed-form solutions for them. Al-
though the hodograph approach could introduce difficulties
associated with involved boundary conditions resulting from
some practical problems, many investigators belicve that its
advantages, particularly in terms of physical insights, far
outweigh its disadvantages.

Outstanding contributions from various investigators have
been responsible for the development of the hodograph
method for solving nonlinear potential flow problems. The
early work of Motenbrock® and Chaplygin? was complemented
by the later efforts of investigators like Lighthitl® and Guder-
leg.* Consequently, researchers like Nieuwland,® Bauer,
Garabedian, and Korn,® and Boersteel” were able to establish
the hodograph approach as an cffective design tool for
efficient airfoils like the supercritical shockless sections. The
basic idea here is to suppress the boundary-layer separation
by “pushing” the shock waves on the wing toward its trailing
edge and eventually diluting (or weakening) them as much as
possible. Sobieczky®® and his collaborators have also pre-
sented interesting results more recently.

The hodograph transformation has been known and used
for over a century. Curiously, however, evidence from a
literature search seems to indicate that its use has largely been
restricted to the analysis of the nonlinear, steady, two-dimen-
sional flow problems like steady transonic flow.

The reasons for this restriction or why there has not been
an extension of this approach to unsteady two-dimensional or
three-dimensional flow problems also appear to be absent in
the literature as well. The implication, therefore, seems to be
that such an approach can only be used to solve steady-state
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airfoil problems like performance and not dynamic instability
problems (which require the unsteady flow solutions).

In transonic aeroelasticity, phenomena like the “transonic
dip” require nonlinear unsteady aerodynamics for their
understanding. The need to operate modern aircraft in the
transonic region, among other things, has been responsible for
the recent tremendous interest in transonic flow problems.
Aeroelasticians and computational fluid dynamicists have
been investigating these problems with a good degree of
success; Refs. 15-24 are just a few examples. As a result,
numerous computer codes are now available for computing
transonic aerodynamics, many of them using various approx-
imations of the full nonlinear potential equations. In spite of
this progress, however, recent publications and prcsentauons
like Ref. 24, seem to indicate that a great deal still remains to
be done to thoroughly understand aeroelastic phenomena like
the transomc dip. The author, inspired by a recent experi-
ence.? shares the view held by some investigators that a more
fundamental approach could provide some of the necessary
physical insights for improving our understanding of these
phenomena. Such insights may not be readily extractable
from an analysis in which big computer codes are used.

This paper presents the results of a preliminary investiga-
tion of the unsteady transonic aerodynamics in which the full
nonlinear unsteady two-dimensional velocity potential flow
equations are employed. Evidence indicating why the tradi-
tional hodograph approach is not effective for solving these
equations is presented. With the help of a certain mapping
scheme, the nonlinear equations are transformed into the
hodograph plane. A close examination of the transformed
equations reveals that if J, the Jacobian of the transformation,
is prescribed, ab initio, the hodograph velocity potential
satisfies a linear second-order partial differential equation.
The significance of this result includes the fact that the
following results appear to be possible for the first time:

) Exact closed-form solutions for the nonlinear unsteady
velocity potential can be obtained.

2) The solution of an inverse problem of designing an
airfoil section with given or desired unsteady aerodynamic
characteristics can be attempted.

These results, therefore, imply that it is possible to design an
airfoil that can meet both the performance and dynamic
stability criteria simultaneously.

The results shown in this paper are obtained by piecing the
fundamental solutions in a manner similar to Nieuwland's
approach.® From these results it appears that there are “dips”
in the pressure distributions as the freestream Mach number is
varied in the transonic region, a phenomenon that also has
been established (Refl. 24, for example) for the aeroelastic
stability characteristics. It also is observed that there appear
to be finite optimum reduced frequencies for the pressure
distributions. This, therefore, appears to agree with the trends
established by Marble?® for a quasi-one-dimensional flow.

Equations of Motion
By considering the concept of “control volume” for a fluid
flow, it can be proved from the first principles that the
physical principle of continuity of mass demands that the
following equation be satisfied for any arbitrary volume:

((%H.v)p”(v..,):o M)

where ¢ is the fluid-flow velocity vector, p is the fluid density,
and V is a differential vector operator.

Using a similar approach, the physical principle of the
conservation of momentum can be represented by the follow-
ing equation:

[;;Hv‘v)]m +poqV-@=-VP (2)
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By using Leibnitz's rule and Kelvin's theorem for an irrota-
tional flow as well as the assumption that a velocity potential
¢ exists, such that

g=V¢ 3)

in light of Eq. (1), Eq. (2) can be integrated to obtain the
following:

a V¢ -V » dP gq?
% Vo Vo [ 9P 4=

4
ot 2 p. P 2 @

“where () is a reference point quantity (e.g., infinity). Equa-

tion (4) is basically the Bernoulli-Kelvin equation.
By considering isentropic flow with the following relation-
ship between the pressure P and density

pp " =const (5)

and defining the quantity ¢ given by
2=— (6)

called the speed of sound, the Leibnitz rule can be employed
to derive the following velocity potential equation from Egs.
(1) and (4):
.- Z¢
a’vig — (V¢ V¢)+ 7 +V -V(Vé -Vé) |=0 (7)
When Eq. (7) is 2xpanded and the vector calculus is carried
out, the following nonlinear velocity potential equation in the
physical Cartesian coordinates is obtained:

9% 2¢ 9 3%
2 _ 2 _ 2 —_ —_
-0 e M ma T T M
52¢ 2%
R S 4 8
dzdt  or? =0 ®)
where
w 0
T Y ©)

Once Eq. (8) is solved for ¢, the Bernoulli-Kelvin equation
(4), along with Egs. (5) and (6), can be used to determine the
pressure P as a function of the velocity potential ¢. Therefore,
in terms of ¢, the pressure coefficient C,, defined by

P—-P
= 2 10
TN (19
can be expressed as
2 y—1
C, = —il-—z- [(l +—2— M;
riy—1t
{, 2] +2(a¢/am}) ,] an
9=
where M, the reference Mach number, is given by
2
M =9 (12)

Traditional Hodograph Methods and Exsct Solutions

Early investigators like Molenbrock' and Chaplygin? were
able to show that if the steady approximation of Eq. (8) were
mapped onto the hodograph plane using the Legendre trans-
formation, it is possible to determine the exact fundamental
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solutions (to this nonlinear equation). Of course, this was a
breakthrough in the study of transonic flow. However, noth-
ing seemed to have been said about the applicability of this
type of transformation for solving the unsteady problem. In
an effort to determine if the three-dimensional form of Legen-
dre’s transformation can be used for solving Eq. (8), the
following results were obtained.
Consider the transformation
d=x{+m+1t—y (13)
which is the Legendre transformation in three variables,
where

TR S
T ax " az’ )
o oy ox
= i > (4

Equation (13) transforms Eq. (8) into its counterpart in the
hodograph space given by

(CZ - Cz)[quln - l.z,J + 2(’7[111(111' - x(thvl
+ (CZ - "2)[1((1" - X?J - zﬂlqclm - 111-,11(]

= 20ltcc e = XenXeal = XecXn + X2 =0 (1%)
Obviously, by comparing Egs. (8) and (15) it can be seen that
Eq. (15) does not look easier than Eq. (8). This type of
comparison, therefore, explains why the traditional approach
is not effective for solving Eq. (8).

New Hodograph Mapping Scheme

Before formulating the new mapping scheme that can trans-
form Eq. (8) into its relatively easier counterpart in the
hodograph plane, a nondimensionalization scheme, which
uses the following set of affine transformations, is considered.

Affine Transformations
bty

t=-2

x =bx,, 2 = bz, (16)

¢ = qmb¢0v

©

Equation (16) transforms Eq. (8) into its nondimensionalized
counterpart in the affine space, given by

% a%¢ ’¢o
2_ 2 YO0 0 2_ ., Yo
(c5— up) oxl 2u°w°6x0620+(co wp) PP
2 2 2
_2,,064’“ M_w-_-o an

Txgdly 0 azedt, 012
Although b in Eqgs. (16) can be any arbitrary length quantity,
it is convenient, at least for computational purposes, to
choose b as the chord length of a wing section.

Equation (17) is, therefore, the nonlinear velocity potential
equation in the affine space, where

_9%o wo =20, =S (%)
0x, 3z, 9>
or
"o = . Wy e, Co=— (18b)
. 9 -

Hodograph Transformations
Consider ¢, to be a harmonic function of the form given by

bo(X020.00) = Do(Xo.20le ™, At —€< kty St —¢€

=Py(x9.29), M +€S ktgS(n+ )n —e¢ 19
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where ¢ » 0, n =0,1,2,3,.... This is essentially a quasi-unsteady
assumption. Therefore, it can be argued that this analysis is
not really unsteady. Clearly a response to that argument is
that the analysis is probably the first one in almost one
century to show that transonic (nonlinear) flows other than
two-dimensional or unsteady one-dimensional flows can be
studied in the hodograph space. It thus provides an aspect of
transonic flow that has never been seen before. If this assump-
tion seems crazy to some readers, it should be noted that it is
not without precedent. For example, this assumption is not
likely to be crazier than the famous von Karman-Tsien
assumptions that led to the definition of a gas known as
“Karman-Tsien” gas. This gas has the ratio of the specific
heats to be equal to — I, i.e., y = — L. However, the Karman-
Tsien's approximation did provide good benchmark results
that compared favorably even with experimental results. The
analysis received the blessing of such important scientists as
Sir M. J. Lighthill—particularly pp. 367-373 of Ref. 28.

A second example is the fact that the so-called small-distur-
bance theory approximation has been known to give good
results. Therefore, it would seem that the primary (most
important) thing in any transonic flow analysis is the preser-
vation of the flow’s nonlinear character. Every other thing
seems to be secondary.

Furthermore, it should be pointed out that as a conse-
quence of the assumptions in Eq. (19), if the steady-state
solution @q(xe,2,) has shocks, such shocks would be retained
in the quasi-unsteady solutions as well.

Finally, perhaps it also should be remembered that all of
the transonic flow equations (and, indeed, all mathematical
physics equations), including the Navier Stokes equations, are
all approximations.

The nondimensionalized frequency (or Strouhal number) k
is, as a result of Eqgs. (16), given by

k=2
9=

20

where @ is the circular frequency of oscillations. If Eqgs. (19)
and (20) are substituted into Egs. (17), the following equation
is obtained:

)

3
0z

2 2
a¢n a¢0 +(C(2)—

A, FY I + k2
F1% R AL S o

w5)

(c§—ud)
= 2ik(ui + wd) (21)

Equation (21) also can be written in the following manner:

al¢ 6245 az¢
2_ 039 9o . o 2_..29% .2
(co —ug) x 2“0“oax° 6z°+(Co wg) 322 + k%o
= 2ikqd (22)
where ¢,. the resultant velocity. is given by
gi=ud+w} 23
Now consider the following transformation:
Xo = g Xo + WoZo — bo (24)
where
20 xo
= == 25
0= 2uy 0= dwo (2
Xo = fe™" (26)

When Egs. (24-26) are substituted into Eq. (22), the
following equation in the hodograph plane must be solved to
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obtain the transformed velocity potential:

: % 3% 2’
2 _ =z A W ¢ — w2 —=
(@ - 305+ 2w s+ E =W 55
or ox
+k2.l[ﬁ5§+wéé—i]=0 @n
where
_ 30 )
H—E. W—a—zo (28)

and ¢ and J are the nondimensionalized steady-state velocity
of sound and Jacobian of the transformation, represented by
Eqs. (24-26), respectively.

From Eq. (27), it is seen that if the Jacobian J is prescribed,
ab initio, the resulting linear equation can be solved closed-
form to determine the exact fundamental solutions for the
transformed potential y and, hence, ¢. Consequently, these
solutions can be pieced together to determine the shape of an
airfoil. Notice that the familiar steady hodograph equation
can be recovered from Eq. (27) if k is set equal to zero. 1t also
should be noted that the presence of the Jacobian in Eq. (27)
should not necessarily be considered as an added problem in
comparison to the steady hodograph equation in which the
Jacobian does not appear explicitly, since its behavior must be
studied in both cases in order to ensure unique solutions.

Solution Methods

Although Morawetz?’ has shown that continuous solutions
for Eq. (27) (steady-state approximation was used to arrive at
this conclusion) for a closed body in the transonic regime do
not exist, investigators like Nieuwland® have shown that
fundamental closed-form solutions of the steady approxima-
tion of Eq. (27) can be pieced together employing the appro-
priate boundary conditions to obtain interesting transonic
flows over airfoils. In this paper an effort is made to obtain
closed-form fundamental solutions of Eq. 27, which are con-
sequently pieced together after the appropriate boundary
conditions are enforced to study some steady and unsteady
transonic flows.

Polar Coordinates
In an attempt to obtain fundamental solutions of Eq. (27),
it is helpful to transform this hodograph equation of motion
into a polar coordinate system.
Consider the following transformations:
@ = g cosf, w = § sinf (29)

Equations (29) transform Eq. (27) into the following polar
coordinate counterpart:

[ -

where J is now the Jacobian of the transformation into the
polar coordinates whose relationship to J can be seen as
follows:

_ xg.29)
J= Xin) (31a)
_ Hx0.20) (31b)
3.0
¥x2)  Hxezo) 94.0) (3?)

W) HGO) W)
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or
G0y J
J=J282 2
Aaw) g )

To study the fundamental solution of Eq. (30), consider a
flow in which

T=1@) (349
Therefore, a general solution of the form
1 = Q(g) cos(mB + ¢) (35)

can be assumed for Eq. (30) in order to obtain the following
equation for Q(g).

el -ro(eD
R

Equation (36) can be rewritten in a slightly different manner
if the following definition is employed:

M=

o | R

a7

where M is the local Mach number.
Equation (36), in light of Eq. (37), becomes

G0+ q[l -M*4 M’(k’ g)]g,
- [(1 —MYm?+ Mz(k2 ';_’)]Q =0 (38)

Equation (38) must be solved to obtain the transformed
velocity potential ¥ and, hence, the physical space velocity
potential ¢. A similar approach can be used to show that the
following equation must be solved to obtain the transformed
stream function given by

¥ = — ((g) cos(md + &) (39

ie,

G0y + «i[l +M24 M’(k2 é)]Q,,
—[(l —M’)m’+M’(k’§)]Q=0 (40)

In general, Eqs. (38) and (40) are hypergeometric and,
hence, can be satisfied by combinations of power and loga-
rithmic series. Finding solutions to the flow around a closed
body, therefore, becomes dependent on piecing these types of
series correctly. Employing such fundamental solutions to
construct the overall solution is obviously preferable to using
arbitrary series, since these fundamental solutions are “solid”
in that they satisfy the equation of motion.

In order to transform Eqs. (38) and (40) into the familiar
hypergeometric form, consider a reference ¢* given by

a_r+1
é= 54

*n

_V_E_'qz (41

and a change of independent variable given by

1/ a\2
f=$:l(l) (4)
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Equation (42) transforms Eq. (40) to the following

#(1 — D)0 +[l —(—’—'yz—_':il"—’ f]Q,

_'1’[,_0+1—2k21.,)]g=0

47 y—1 (43)

An exact fundamental solution of Eq. (43) can be given by
0 =B, i ™ F, (i) (44a)

where
J = B,,i™? F, () cos(mB + ¢) (44b)
where B, are arbitrary constants to be determined by the

boundary conditions of a particular flow problem, and F,(T)
satisfy the following hypergeometric equations:

o O 1 +k2J,\ ] oF,,
i(l—-17) 77 +[m+l——(m+l— — )t]g
+B(m+l)(m+k’.lo)F,,,=0 (45)

2
where

l
F=im

An F,, satisfying Eq. (45) is a hypergeometric function
given by

F.(®)=F@ab,d,9=1 +%f
d@+ 06+, 4
T2 d@drn (46)
where
a+b=m—p(l+k); 55=—§(m+|)
m+kily), d=m+i 47

In terms of the velocity potential, the fundamental solution
is

1=-—-B, ™ (1~ i)“'[F,,(f) +w]sin(m0 +¢é) (48)
m ot

Equations (44) and (48) represent some exact fundamental
solutions for the stream function and velocity potential, re-
spectively, in the hodograph plane. In the examples shown in
this paper, the stream function solutions were used in con-
structing the flow solutions.

Computed Examples

The examples computed in this paper consist of the pres-
sure variations with Mach numbers and Strouhal numbers
(reduced frequencies) for some chosen points on a flat plate in
a transonic flow and what may be considered as a preliminary
attempt to compute the steady and unsteady transonic pres-
sure distributions around a 70-10-13 supercritical wing section
designed in the carly seventies by Bauer, Garabedian, and
Korn.® The procedure basically consists of trying to construct
compressible (transonic) flows using incompressible flows
around an elliptical cylinder resulting in a shape different
from the cylinder with the help of the exact fundamental
potential flow solutions above. This procedure has been thor-
oughly documented by Nieuwland® for the steady flow prob-
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lem. Hence, no attempt has been made in this paper to
redocument the basis of this approach. Therefore, readers are
referred to Rel. 5. Suffice it to say that the approach involves
a lot of “bookkeeping™ and patience. Furthermore, it must be
pointed out that this procedure can (and should) be better
automated. This endeavor is currently in progress.

The fiat plate results shown in Figs. 1-6 have basically two
main features:

1) Dips in the pressure distributions when the Mach num-
bers are varied in the transonic regime seem to agree with the
general trends in the behavior of transonic characteristics such
as the lift coefficient, the so-called transonic dip, which is
basically the loss of aeroelastic stability at transonic speeds.

2) The pressure distribution at a particular Mach number
at a particular chord length seems to have an optimum
reduced (requency (Strouhal number).
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Marble?® has shown similar trends for a quasi-one-dimen-
sional flow. The result shown in Fig. 7 for a 70-10-13 super-
critical airfoil designed back in the early seventies,® which is
preliminary in nature, seems to indicate the feasibility of using
the approach outlined in this paper in designing unst.ead'y
aerodynamic characteristics for an airfoil. The pressure distri-
bution for the supercritical airfoil, 70-10-13 shown in Fig. 7,
is for a freestream Mach number oi 0.7 and a lift coefficient
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Fig. 7 Pressure distribution on a 70-10-13 supercritical airfoil.

(C,) =0.98, and the airfoil has a thickness ratio of 0.127. The
angle of attack for the steady computation was 0 deg. For the
unsteady computations it is assumed that k¢, = 0.1, and that
the airfoil is oscillating about the half-chord with a pitch
amplitude of 1 deg. The main significance of Fig. 7 is that the
approach outlined in this paper can be used to accurately
compute the pressure distributions for supercritical airfoils,
since these pressure distributions compare very well with the
results obtained in Ref. 6 for the steady flow and alsc
compare favorably with results of Ref. 15 for the unsteady
flow. Because of the fact that the analysis in this paper is
preliminary in nature, a more general set of conclusions would
have to await more refined computations that are anticipated
in the near future. Finally, it must be pointed out that the
results presented in this paper are basically shockless inviscid
results. Therefore, the plots shown for Mach numbers greater
than unity can only be approximations to the weak shock
solutions.

Concluding Remarks

This paper has attempted to establish the existence of exact
closed-form fundamental solutions to the two-dimensional
nonlincar unsteady potential aerodynamic equations. Evi-
dence indicating why the traditional hodograph approach is
not effective for solving the nonlinear unsteady two-dimen-
sional flow equations is presented. Therefore, suitable map-
ping functions are employed to transform the nonlinear
potential flow equations into the hodograph plane. An exam-
mnation of the transformed flow equations in the hodogranh
plane reveals that if the Jacobian of the transformation is
prescribed ab initio, the exact closed-form fundamental solu-
tions for the velocity potential and stream functions can be
obtained. It is seen that such Chaplygin solutions can be used
in conjunction with the incompressible flow around elliptical
cylinders to construct transonic flows over interesting shapes
with the help of a methodology developed several decades ago
by investigators such as Lighthill’ and Nieuwland® for steady
flows. Computations of the pressure distributions for certain
points on the flat plates seem to indicate that dips exist in the
pressure distributions as the freestream Mach numbers are
varied in the transonic regime. The results also seem to show
the existence of optimum reduced frequencies for the pressure
distributions. A steady and an unsteady pressure distribution
are also computed for a 70-10-13 supercritical airfoil designed
back in the early seventies.® Although the approach needs
more efficient automation, the results computed show that it is
feasible to use this approach to solve the inverse problem of
designing airfoils with desired unsteady aerodynamic charac-
teristics. This, therefore, implies the possibility of designing
airfoils that satisfy both the performance and stability criteria
simultaneously.
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FORMULATION OF 3-L :[1ODOGRAPH METHOD AND SEPARABLE
. SOLUTIONS FOR NONLINEAR TRANSONIC FLOWS t
Gabriel Oyibo*
Polytechnic University
Farmingdale, New York
Abstract
Formulation of a three dimensional hodograph technique for

transforming the full nonlinear potential transonic flow equa-
tion from the physical space into an equivalent linear counter-
part in the ?odograph plane is presented. A very careful exam-
ination of the governing nonlinear equations in the physical
space reveals that a mild constraint on the energy equation
(which may even enhance the accuracy of this nonviscous formula-
ticn) would permit the separation of the nonlinear flow equations

.for an aircraft wing into a sectional component and spanwise com-
poment. This separation of variables normally believed to be pos-
sible only for linear equations seems to have been possible (for
the non-linear equations) because of some inherent mathematical
symmetry of the 3-D nonlinear flow equations. The ccnsequential
"three-dimensional"” sectional equation is eventually transformed
into the hodograph plane where it becomes linear. A further
transformation of these linear hodograph equations into the char-
acteristic hodograph plane provides the opportunity of obtaining
the nonlinear flow field for a particular set of boundary condi-

tions by just solving a set of first order characteristic equa-

*Associate Professor, Acrospace Engr. Dept., Associate Fellow AIAA




tions. The necessary computations can easily be carried out on

a computer. Some preliminary computations show good agreement
with previously computed data. This verification therefore pro-
vides confidence that the new tool can perhaps be used in an in-

verse manner to design a new family of 3-D lifting surfaces with

great potential.

4 Research sponsored by the Air Force Office of Scientific Research
(AFSC), under Grant 89-0055. The United States Government is auth-
orized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright notation hereon.
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Nomenclature

3,b6,d,f,

B'-B——

cl
€]

S
-
<

q,6

;rn

coefficients of hodograph equation

complex constant and its conjugate, respectively
pressure coefficient and fraction of wing half
span (zero is wing root), respectively

speed of sound and 2-D component of 3-D speed of
sound, respectively

coefficients of separated plLysical equations
ellipse parameter and time, respectively

fraction of chord length (zero is leading edge)
term in hodograph equation

Mach number

Cartesian coordinates (flow, spanwise, and verti-
cal directions, respectively)

flow velocity components

2-D components of 3-D flow velocities

velocity potential and stream function, respec-
tively

transformed potential

section component velocity potential and trans-
formed potential, respectively

spanwise component velocity potential and separa-
tion constant, respectively

functions in the hodograph plane

flow speed, and flow angle, respectively

ratio of specific heats and maximum speed, respec-
tively

characteristic coordinates
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p.k

air density and circulation parameter,
respectively

reqular solutions in the complex characteristic
hodograph plane

hodograph variable and characteristic roots,
respectively

conjugate complex characteristics

freestream quantities
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INTRODUCTION

In the late 1800's, certain investigators'? discovered that the hodograph
transformation can be a very powerlul tool for studylng nonlinear inviscid fluid flow

14
were able to reveal that this method

probleuis. Subsequently, later lnvest,lgat,orss'
could be used to deslgn supercritical airfoils with superlor transonic performance
cliaracteristics. 'l‘lnese-dqvelopxtlexlts constituted a breakthrough In the study of transonic
flow problems, which are characterlized by equations which exhibit strong nonlinearitles.
‘I'he success of thls method was due to the followlng two characteristics of solutions
obtained from the hodograph equatlons as compared to solutions obtained [roin the

equapions In physical space. IFlrst, the hodograph equations are linear allowing solytions to

be superimposed, which is not possible in physical space due to the nonlinearity of ihe

soverntng  cquations. Secoid, the polential for formulating an Inverse problem In

hodograph space thereby allowing the desived Iuld tlow fleld (o be speclfied as input and

leading to the required geotnetry as the computed onutput.

Desplte the suceess of this work, use of the hodograph technique has unnecessarlly
sulfered from a major drawbacks that is, that there Is a genernl bellel that the hodograph
.echnique can only he applied o two-dimrnstonnl stemsly Tlow problems. ‘This implies that
neither unsteady two-dimensional flow nor steady three-dimensional problems can be

stucied using a hodograph approach aued thos jees limited the interest In, and application

of, Lhis powerful analysis tool.

However, recent research performed by Oyibo15 has shown that the

hodograph transformation is not limited to two-dimensional steady
The work reported in this paper is a direct cosequence of

flows.
that, contrary to the aforementioned

the discovery
general belief, the hodograph technique can be employed to trans-

form the nonlinear transonic flow problems with three independent

variables into an equivalent linear set of equati?ns in the hodo-

graph plane. ,,mbably

The derivation of these transformed equationsﬁmarks the first
time in fluid mechanics that the hodograph technique
has been extended beyond steady two-dimensional flow using full po-

‘antial equations. It is important to note that a straight-forward
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application of the usual hodograph (Legendre's) transformation for
the case of three independent variables leads to an equation (cf.
quation (4) below) which is even more nonlinear than its counter-

part in physical space. While Equation 4 is consistent with the

16

earlier research work published by Guderley ~ which was indepen-

17,21 using a different approach,

dently verified by Cole and Cook
small disturbance (not full potential) equations were used. The
primary achievement of the new method was to find an alternate way
of defining the transformation so as to result in a linear system

of equations. The resulting equations have tremendous significance
for the solution of both steady and unsteady fluid flow problems due
to a number of features of the hodograph method in general and the

new equations in particular.

IMirst, since the translormed equations are linear, they allow superposition of solutions.

This means thal any complete solution can be constructed from a combination of
fundamental solutions. This will enable an analytic determination of the Infiuence of the
input parameters on the solutlons and hence will lead to a betler understanding of the

flow physics. This is not possible with the nonlinear equations in
‘n physical space where, except for specialized cases, only purelyqu
numerical solutions are possible. These numerical solutions suffer
from the drawback that they are both approximate .and that it is dif-
ficult to understand ‘the effect that the important physical param-
eters have on the solution to the problem, since these effects have
to be deduced by studying the results from a number of different

cases,

o oo e+ =

Second, as shown below In Sectl_om T . 1.1, the form of the newly derived
hodograph equations for the both the unsteady 2-D case and the steady 3-D case are
similar to the steady 2-D hodograph equations In that the highest order (second)
derivative terms are identical for all three cases. The difference between the cases shows '
up in the Inclusion of lower order terms which are not present in the steady two-
dimeunsional hodograph equation. Since the computational solution techniques and the
characteristics of partial differential equations are usually determined by the form of the
highest derivative terms, and since that forin Is Icdentical to the steady 2-D hodograph

equations, then the solution techniques previously developed for steady two-dimensional
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—ﬁ&i?"shbula“b—é—dif'ecbij‘ appllcabie_ ta the 3-D steédy' case. ;l;hls Is partlculaﬁy lniport;mi'ln
he case ozrot,ransonlc flow due to the non-uniqueness of the solutions as proven by
Morawetz” . For the case of 2-D steady [low, Garabedian and Korn® have worked out a
systeimatic and efficlent procedure to enable "closed” bodles to be developed in a
straightforward manner. Since the new equations are so similar to the ones solved in [6],
this work Is directly applicable to the current problem and forms the bases for excluding

13
non-realistic solutions [roin the admissible set.

Finally, and perhaps the most Important polnt, is that the transformed equations allow
inverse solutions to be obtained, In which the pressure field Is specified and the body
geometry Is calculated from closed form solutions. From the polnt of view of design, this
i« the desired situation rather than the usual trial and error fnethod of plcking the
geomnetry and then examining the resulting calculated flow field. Thus solutions obtained
from the new hodograph method could lead to the design of new families of wing shapes
which should prove to have significantly reduced shock strengths and hence lower drag
when shocks appear at off design conditions. The fuel savings for the commercial airline
industry made possible by such an efficient wing design could ap-

_roach hundreds of millions of dollars annually and thus the pro-
posed technique as outlined in this paper could lead to immediate

and substantial industrial value.
In reference 15, the two-dimensional unsteady nonlinear transon=

low case was treated using the new hodograph method and shown

d to results in good agreement with previous computational

ic £
to lea

solutions. The ease of obtaining solutions to the new equations

was demonstrated by using a microcomputer to obtain these solu~

This should allow more room in big computers like the Cray
rather than just solving for the flow field.

tions.
for design optimation

Since that time, the derivation of the governing hodograph equa-
ee variables has been extended to the important case

It is the purpose of this proposed paper to
tions and to

tions in thr
of steady 3-D flow.
deélineate the formulation of the 3-D hodograph equa

minary study of their solutions for the case of

carry out a preli

steady flow around lifting surfaces of finite span.
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'EqﬁatianT(§1&)ﬂand»(17a) probably are among the very few (perhaps
the first set) of separable nonlinear equations. It can be seen

that as a consequence of equations (7q9either of the following con- .
straints on the .energy (or Bernoulli) equation become necessary.

2 2
u c,,
(—7: + Y:T) = 0 in three dimensions (ﬁ7f)
or (u_,c.) = (u_,c)A(a,y) (' Th)

For the constraints in Equation (7f) to be enforced, must
approach -1. This is either an interesting coincidence or
something is being said about the realities of the isentropic
assumptions in the potential flow formulations. This is because

= -1 is the Karman-Tsien gas which has been shown to be so
accurate that the results using this gas agrees very well with
experimental results. This agreement which is really excellent,
can.be seen in Figure F,5b in reference 19. Figure F,5b further
shows clearly that Karman-Tsien gas is very accurate even for
truly transonic flows (flows with supersonic bubbles). The
alternative constraint in Equation (7h) could be shown to work
provided that Up, G, represent the reference section free stream
velocity and speed of sound respectively.




Therefore, [or steady 3-D [lows, the hodograph eiqiufauon to be soived Is:

(@ —)xgg + (W= Xy + 200X5g — [ Xz — [aXg + Jax =0 (8)

...... -

. .= 0, Equatlon (rs) reduces to the familiar 2-D hodograph equation.

Equation (:8) Is shinllar to the 2-D hodograph equation which has been studied for
alinost a century. Therefore any methods of solution for the 2-D hodograph equations are
also applicable to this new equation. Due to the mathematical symmetry mentioned
previously, the solution 'takes on the separated forin given by IEquation (4.) and Equation
(*8) becomes the 2-D sectloual analog of the 3-D llow problem. From Eduatlon (?E) the

following form are feasible solutions for tlie spanwise component:

May) = ] Age®” (.9)
n=0

where a, are constants determined by the boundary conditions of the flow and y Is the

spanwise coordinale.

—_ —

- The general solutlons of the sectional commponent of Equation ('8) are in terms of
hypergeometric serles. These solutions may be used along with the method of complex
characteristics in which the flow is mapped into the unit clrcle in the characteristic
hodograph plane in order to obtain solutions for Equation ( 8). The goal Is then to obtain
the body stream function that encloses the particular wing section ( e.g. the root section).
Therealter the spanwlise component Is combined with this solution In accordance with
Equation ({‘-) to provide the flow field over the entire 3-D lifting surface.

li " Nonlinear Three-Dimensional Transonic F lo—v's:‘investigatiohv and

Construction

‘I'he fundamental exact solutions to-the new hodograph equations are hypergeometric
serles In the hodograph space. As mentioned above, the equation systein in the hodogrpph
plane closely rescinbles the two-dimmensional steady hodograph case for which
computational techniques are well established. It Is expected that thése solution
teclinlques will therefore be directly trausferable to the ligher diimensional cases. The
vechuiques that have been successfully applied in previous hodograph analyses fall
generally luto two categories, elther solutions obtained by superposition of a serles of
fundamental solutions as In the manuner of Nieuwland® and as was also done In Reference
or by converting the problem into an Initial value problem (or a

I5

¢ weteristic Initial value problem) by using the method of complex characteristics

- ‘10
developed by Garabedian.
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While either of the solution techniques can be used, the method of
cbmplex characteristics has more appeal since the location of sonic
lines and limiting lines appear more naturally in characteristic
cvordinates and thus this method is expected to be more promising
in this ongoing: study. ' However, in the present study the series
method way used for constructing the flows satisfying the necessary
boundary conditions for 3-D wings and to study the fundamental solu-
tions carefully to determine how to piece them together properly as
was done in Reference 15 for the 2-D unsteady case. The details of
this procedure are given in [15]. An alternate method, which fol-
lows the 2-D work of Garabedian, is expected to be the primary analy-
sis tool the next stage of the study, and consists of: (i) reducing the
linear hodograph equation into its canonical form, (ii) utilizing the meth-
od of complex characteristics to map the particular section flow on-
to the unit circle in the characteristic hodogfaph plane, (iii) ex-
amining the solutions to ensure that the body stream function en-

closes the particular .wing section.

For that purpose, Equation (:8) reduced to its canonlcal form, would lead to the

f~llowing system of [irst order equatlons:

ze + X;,_ze + -:_'_Ee =0, 2, + Xz, + g_ib',, =0 ()0)
U= A we=0, w,— MU =0 (1)
Xg ~ 2Wg — T =0 (12)
where £ and 7 are the complex characteristics and: |
2=Xxg + T=X5
Ay = SV ol (13) '
a
with:
T=-,b=uw,d=u 72 ()




Notice that the canonical systemm of equations (I0~'4) are first order equations
representing Equation (¢8) or (3 . One way to solve tliese equations Is to map the fiow
field In the physical space into the region luside a unit circle In the complex characteristic
hodograph piane and then use the incompressible solutlon to provide Initial data for
solving the characteristic lu'lual value problein resulting from the mapping. This approach
(thoroughly documented In [5]) is elficiently automated for the steady 2-D case In a
computer code which we have obtalned from Prol. Garabedian. We have extensively
exercised this code and are thoroughly familiar with it, and hence have a major part of th.e
necessary code [or the 3-D problem In haud due to the similarity between the 2-D and 3-D
equatlons. A full run of this code takes only 30 to 45 seconds on a Cray X-MP when run
with non-vectorized code. It Is expected that vectorization of the code which Is currently
underway will enable a fully optimized (shock-free) 3-D wing solu-
tion to be obtained in about 10 minutes which appears to be signi-

ficantly faster than the time current computational transonic 3-D

codes would require to obtain an optimal flow.

v

P Y - ——— -

L1.2.1 . Investigation of Fundamental Solution

In general either of the two methods outlined above can be exam-

ined and used. In that process, the fundamental solutions can be
larly to ensure the proper handling

imiting lines, which are the zeros

[

studied very carefully. particu
of the singularities like the 1
of the Jacobian of the transformation and the branch lines, where
the Jacobian is infinite.

is recognized that though the spanwise and sectional compon-
rately, the funda-

find smooth tran-

It

ents of the fl

antal problem of shockless flow is basically to
describing a 3-D ‘compressible

However, it is also

ow are (in a sense) considered sepa

ns for Equation (1),
1ifting surface of finite span.

sonic solutio

flow about a




-

recognized as shown by Morawetz
do not even exist for all sectional (2-D) shapes for the lifting

20, that smooth transonic solutions

‘rface (let alone for a 3-D lifting surface). The new hodograph
transformation helps us to overcome this difficulty by making it
possible to separate the 3-D flow into the two components mentioned
above and solve them as an inverse problem instead. 1If the span-
wise component is given by Equation (°9), then the sectional com-
ponent is to be determined from Equations (§0-f{4). In this study
therefore, we computed smooth transonic flow by piecing together the
hypergeometric series solutions to equations 18 as in reference 15
from a desired flow field and find the finite span lifting surface
which generates it. This procedure was used to find the necessary
a and hence the spanwise variation of the flow field. In order to
computé the sectional component of this smooth transonic flow by
the method of complex characteristics, the variables in Equations
(fﬂfﬁﬁ) can be extended into the complex domain where a characteris-
tic initial value problem along the complex characteristics may be
solved. While this procedure can be done in a purely analytic man-
ner, it can also be carried out conveniently on a computer. In the

ture work, we propose to use the computational approach by modify-
ing the existing code of Garabedian to include the additional terms
appearing in the sectional equation (Equation :8)). When this is
done as described below, the "3-D" section will be determined as
well as a which provides the unknown in Equation (n9) for the span-
wise component of the flow.

1Y - s

Considering Equation (J3), for real variables, for supersonic flow, A4 and \_ are real
and FEquatlon (58) IsAhyperbollc. This means that the initlal value problem, defined as
specilylng x and‘ z on any non-characteristic curve as well as the characteristic initial value
problem defined as one In which x or z Is specified on one characteristic of each family are
well posed. However, for subsonic flow, h; and X_ become complex conjugates and
Equation (i8) Is elliptical. Here, both the Inltial and the characteristic (nitlal value

problem are no longer well posed In the real domain, and hence boundary values are

generally needed for formulating a correctly set problem.

13 CREDIBILITY OF THE NEW HODOGRAPH METHOD

As has been mentloned earlier, the 2-D unsteady results haye been shown, In [15]
(which has been reviewed and accepted for publication in the ALIAA Journsl )
to be accurale when compared with

previousty published purely computational results.
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FFor the 3-D steady case, I'igure 1 sliows a comparison of prelimlnary results of the
calculation of the flow from the new method with results obtained by Sprelter'a using a
local linearization techunique for the case of M =1 llow around a rectangular wing with a
parabolic arc sectlon and an aspect ratio of 7.061. The results are shown to be in good
agreement, with the dlllferences attributable to the approximate nature of Spreiter’s

analysis.
— e - T _\
L .

SR e

Flgurq\, 2‘\.5._how "~ comparisonsbetween the results obtalned using the new method and
those computed using the FLO22 computer code of Jameson and Caughey”. This code
uses a [inite dlfference technique to solve the transonlc full potenilal equations in non-
conservative form. For the casesshown of a rectangular wing at M,:Ou?_ the results are
seen to be In éxcellent agreement due to the more accurate model contained In the
computer code than in the previous case. We thus feel that these preliminary solutions
give credlbllny to the 3-D analysis and give confidence as to its potential.

14RELEVANCE OF PROPOSED TECHNIQUE

Critics of the use, for design purposes, of the full potentlal equations ( upon which the

hodograph method Is based ) often say that numerical solutions of the either the three-

dimensional Navier-Stokes equatlons or the Euler equations would provide a more

accurate prediction of the flow fleid, particularly at lower Reynolds numbers or In cases

involving strong shocks. llowever, accurate numerical predictions by themselves do not

necessarily provide destgn solutloas, nor do they provide guldance to deslgners as to what

to do about poor aerodynamic performance nor any other adverse conditions resulting

from the predicted aerodynamlic characteristics. In contrast, the solutions from the

hodograph space do provide these capabllities. In addition, It Is Important to keep in mind

that strong shocks are highly undesirable from a design polnt of view and should be

avolded. Thus the capabillty of predicting strong shocks in the flow field Is not Imperative

for design polnt calculations. For the off-deslgn conditlon, it Is expected that for the

aerodynamic shapes developed In this research, much weaker shocks are expected than for

shapes designed based on two dimenslional analysis. For this sltuation solutilons to the full

potentlal equation are still valld and the simulation of shocks developed as part of the

" proposed work should be adequate to predict off design aerodynamic performance. '

Note that It Is generally belleved that the discovery of supercritical wing sections was

made possible by the use of the hodograph transformation along with the full potentisal

flow equations (although classifled experimental work was evolving the same airfoll shapes

independently). As a result, new characteristic families of alrfoll shapes were deflined and,

n conjunction with wind tunnel tests, were proven to be the types of shapes that can

postpone or eliminate loeal shocks at transonic speeds (a conceptual revolution!).
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In'retrospect,, it was riét. necessary to use a more accurate theory like the Navier-
Stokes equations lg order to discover such an lmportant, [undémental and revolutionary
esult. In fact, It has been shown that the boundary layer correction effects can, In most
cases, be sat.lsl'acto;lly Incorporated emplrically into the Inviscid formulation (i.e., without
necessarily using the Navier-Stokes equations). In addition, the difficultles of generating an
appropriate grid and establishing the appropriate lar fleld boundary conditions and their
location for the computational solution of the equatlons still are problems that require

considerable numerical experimentation.

In splte of the successful design of shock free airfolls using the hodograph method, true
shock free wings did not evolve from this work. One of the drawbacks of trying to use
supercritical alrfolls to construct 3-D lifting surfaces Is the inherent significant sensitivity
of the transonic flow fleld to changes in its physical parameters due to the strong non-
linearity of the equations. For example, small changes in a glven set of transonic flow
parameters can result in a significantly different flow fleld. This means, for instance, that
a supercritical sectlon designed to be shockless at a Mach number of 0.85 may end up
having strong shocks at a Mach nuinber of 0.8 or 0.9. This type of behavlor Is very typical
~f a2 nonlinear system (which Is what the transonic flow problem Is). The principle of
superposition which-Is useful In linear systems does not apply to transonic flow. This,
therefore, explains why a three-dimensional wing, designed with a set of two-dimensional
sections along Its span that are indlvidually shockless, does not necessarily end up being a
shockless wlng. Unfortunately however, because the hodograph method (the principal tool
for designing shockless sections) has been thought to be (up until now) a two-dimensional

't,ool, designers have had no cholce but to use the superposition idea to design a three-
dimenslonal wing; this linearization practice (superposition) is fairly accurate In most flow
regimes except the transonlc. The penalty for such an Inaccurate practice is the
reappearance of stroug shocks (and consequent deterloration of aerodynamic performance).
I'herefore, a three-dimensional hodograph approach should not only eliminate such an
incorrect practice but should also provide the correct method for dlstrlbutlng' the sectional
rtles (e.g., thickness) along the span (providing perhaps new characteristic famiiies of

prope

wing shapes) that may provide truly shockless, three-dimensional transonic wings. 1t Is
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emphasized that the avallability of a design procedure based on the three-dimensional

hodograph space transformation would provide Insight not avaliable from any other

)

approach.

The treatment of shocks Is very important for transonic flow. When the hodograph
approach Is used as an Inverse method, the shock Is not treated, since the goal In such én
approach Is to proguce "shock}ess" airfolls. Some investigators are skeptical about the
existence of “shockless” airfolls, mainly because of the possibllity of the appearance of
shocks at the off-design polnts. This is a genulne concern since the "shockless™ alrfolls
which have been designed using a two-dimensional theory have to operate frequently at
off-design polnts e.g. operation In a three-dimensional or unsteady physical environment
causing local off deslgn conditions even at the design Mach number. The proposed work,
which deals with application of the hodograph technique to the three-dimensional wing,

should provide deslgn points that are more practical and should alleviate such concerns.

Finally, this sectio
y n may be concluded with a quotation from Sir M. J. nghthlll:3 "It

seems likely thai any general theory of compressible flow applicable to problems with

reqions both of sub- and supersonic flow (such problems have been called ‘trans-sonic’)
must be based on the 'hodograph transformation’ (due originally to Molenbroek 1890 and

Chaplygin 1904).”

1.5 .CONCLUSIONS

in this paper the formulation of a new 3-D hodograph technique
is presented. It is shown that a mild constraint on the energy/
Bernoulli equation permits the separation of the nonlinear 3-D
flow equations over an aircraft wing into the sectional component
and spanwise component. These two component equations are solved
in both physical space (spanwise component) and hodograph-plane

(sectional component) and used for constructing flows over 3-D

wings.

While the formulation of the complex characteristics method of

solution for the sectional component is presented in this paper,

series solution method is utilized for construct-
results are shown in this preliminary computa-

ement is seen when these results are compared

the hypergeometric
ing the flows whose

cion work. A good agre
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T and rLO;ll code Jmn(o;ono( by Jamcso/« and C“‘jhp‘{
to the previous work of SpreiterK That verification of the pres-
ent work provides the confidence that this new technique which

seems to have significant potential also seems to possess some

credibility.
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SUPLRCRITICAL WiHG DLS1CHN, A THREE ‘d] d
DIMENSIONAL HODOGRADil APPRCACH pres Cﬁ/
Gabriel a. Cyinc’ A /A/] /0’¢L
John Nutaker® and Fyunu-zoo Jang’ /”(17 (/A[,@-(f'kdm‘cg
- " J u‘

Polytocrnic Ly
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Significant conwvrinuticns fran var:ous investigaters have been J@bgfsz—
responsible for thne aveoluticn of the hoeloyraph uethodoloyy :
applicable to nonlipear potential flow. Vorks of Molenbroclk!
and Chaplygin® were compliimented by later efforts of Liahthill?,
Guderley®, Colile and Ccook’”. Rnhcent vorlia py lorawetz”,Niewland®,
Bauer, Garabedian and Korn®, CGarabedi:n’ ifHaceoan, Sobiecziiy and
Seebass® estalblished the applicability of the methodolcuy to
shockless supercritical section desicans. Crzdibility of this
nethodology has since been clearly ostablished evperinentally by
studies such as Whitconb' .Thiz marited & najor breakthrocgh in
transonic flow gas ciynamics. Liowever, cu> to the mathenctical and
perceptive constraints, this poverful nethodology has been viewed
as restricted to 2-D flow or gas dynamics. licwever Oyibo'***, in a
recent finding was able to prove Lhat :-D hcilograph methods exist
and can be used to study 2-D unsteady end 3-D gas dynamlc flows
over 3-D wings of finite snman. It was further shown in
references 12 and 13 that it is possible to find smooth or
shockless solutions to the 20D unsteady and 3-D gas flow around

’ wings sections and 3-D wings of finite span respectively. The
smooth, shockfree solutions gen=ratad in 12 and 13 were generated
using hypergeometric series (which are fundamental solutions) the
singularities of which are forced inside the wing and out of the
flow field. Rererence 12 also showed the formulation of the basic
3-D hodograph equation in the characteristic hodograph variables
in a manner similar to that formulated by Garabedian® for 2-D
wing sections. This formulation along with the separability of
the solution (into a "sectional" component and a wing spanwise
component) as established in reference '’ makes it possible to
modify and use the 2-D methcds to solve the sectional problem and
combine it with the spanwise solution to construct a smooth or
shockfree solution @round realistic closed 3-D finite wing
shapes. Thiz write up, therefcre, uses this characteristic
hodograph formulation from reference 13 as a basis for modifying
the 2-D code from the Ccourant lnstitute of Mathematical Sciences
for designing shockfree 3-D wings. . .
Figures 1-3 show the results obtained jin this research. The
preliminary concluzions ( which conrirnm the findincs of reierence
13) seem to be that a shockiree 3-0 fion:iuve reccanaular wina is
possible and feasiible. In other verids Lhe regoierch secwme to
suggest that sweep and/or tyi;t.may not e the only way to delay
drag rise mach numbers or minim.ze shockwave effects.

+ Agsociate Professor, Asrosvac2 Erdineering Depariment., .
Associate Fellow, AIAA
. + graduate Research Fellows, Aerospsc: Fngirea;ina Department
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EXACT CLOSED FORM SOLUTIONS TO THE FULL NAVIER STORES EQUATIONS
AND NEW PERCEPTIONS FOR FLUID AND GAS DYNAMICS

Gabriel A. Oyibo®

Polytechnic University

Farmingdale, New York
The full Navier Stokes Equations are carefully investigated using
the fundamental concepts of transformation group theory. This
reveals that in some transformed spaces Navier Stokes equations
can become very tractable mathematically and fairly transparent
physically. The careful examination and exploitation of these
findings permitted the formulation of rather general set of
fundamental exact closed form solutions to these equétions
generally considered to be the most sophisticated mathematical
description for continuum fluid and gas dynamics. These
fundamental solutions are then used to construct the solution to
the 2-D steady flow over a cylinder, a problem which apparently
has never enjoyed exact closed form solutions using the full
Navier Stokes Equations in the history of fluid or gas dynamics.
For incompressible flow with constant viscosity the laminar
separation points are precdicted and are found to be in agreement
with experimental data. Similarly *the pressure distribution as
well as the drag predicted by these new solutions are found to be
in very good agreement with experimental data. This experimental
data verification therefore provides the necessary basis for
confidence in these new solutions and their legitimacy to be used
to explore and evolve new perceptions in fluid and gas dynamics.

In addition they should serve as benchmark solutions for

validating the CFD codes.

* Associare Professor. Polytechnic University, Associate Pellow ATAA
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6.0 STATUS OF PUBLICATIONS AND GRADUATE STUDIES

The significant results obtained thus far in this research program are being
compiled and written up for publication in suitable technical journals. AIAA Paper No.
86-1006, a paper based on the first phase of research has been prepared and was
presented at the AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and
Materials Conference held in San Antonio, Texas May 19-21, 1986. A paper, "Exact
Solutions to Aeroelastic Oscillations of Composite Aircraft Wings with Warping
Constraint and Elastic Coupling” has been accepted for publication by the AlIAA
Journal. Another paper entitled "Some Implications of the Warping Restraint on the
Behavior of Composite Anisotropic Beams™ has been published by the AIAA Journal
of Aircraft. In addition, a paper entitled "Exact Closed Form Solutions for Nonlinear
Unsteady Aerodynamics”, which provides the basis for the proposed next phase of
the program, has been published by the AIAA Journal and included in this report. In
the process of studying unsteady 2-D nonlinear transonic flows, what seems to be a
major breakthrough was discovered: this breakthrough is the discovery that the #-D
steady nonlinear transonic flow equations can be transformed into linear hodogragh
equivalent. This discovery essentially reverses a hundred years state of thinking and
belief in the scientific and mathematical community that the hodogragh method was
limited to the 2-D flows. The resuits of this discovery have been written up and
published in the AIAA Journal. In addition another paper AIAA 92-257 which presents
practical shock free 3-D wing for transonic flight is to be presented in June, 1992 at
the AIAA applied Aerodynamics Conference in Palo Alto, California. This research

program seems to be seeing the beginning of what seems to be another breakthrough,




perhaps even more significant than what we have seen thus far. This is what seems
to be a discovery that transformations methods can even be used to effectively study
the ultimate set of equations in continuum gas dynamics known as the Navier Stokes
set of equations. This new finding could be the key to effectively unlocking the secret
of gas dynamics and aeroelastic phenomena for real gases with viscosity, which have
been blurry at best thus far. This finding has resulted in a preliminary paper accepted
to be presented at an international conference to be held in Colorado in August of
1992. It is being proposed that the investigation of these new findings be pursued in
a proposed next phase of research. This is because if the findings are correct this
could be the start of a new era of fluid or gas dynamics analysis.

Mr. John Calleja and Mr. George Papadopoulos have finished their Masters thesis’
under this project. The support of AFOSR under Contract F 449620-87-C-0046 and

Grant89-0050 of these thesis’ are aknowledged in the thesis writeups.
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