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warping was established. A revelation from these closed-form solutions is

that, elastic coupling lowers the first coupled frequencies (in fact a

significant amount of coupling could reduce the first frequency to almost

zero. The discovery of the closed-form solutions for the free vibration

* which seems to mark the first time such solutions were ever obtained, not

only led to answers to a number of previously unanswered questions but also

raised new unanswered questions such as "Does the aeroelastic divergence or

flutter problem of such wings have any closed-form solutions".

During the second year of the first phase investigation was concerned with

essentially how to find the answer to the above mentioned question. Ac-

cordinglv in the first quarter,
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* efforts were concentrated on determining the possibility of finding closed-form solutions to

the divergence problem. The investigation led to two possible methods of obtaining such

solutions. These methods are (a) the "elimination" approach (which was used for the free

vibration) and (b) the method of Laplace transformation. Although it's already known that (a)

works, (b) was implemented in formulating the analytical expressions for the closed-form

solution of the divergence problem due to an anticipated relative ease. In the beginning of the

2nd phase, the closed form divergence and vibrations results which have and are still being

extracted are being studied very carefully to establish physical trends in the constraint of

warping phenomena. In particular, the computed results are being studied in order to evolve

the basic mechanism by which the constrained warping model may be used to explain the

concept of aeroelastic tailoring. Preliminary results that are being evolved seem to indicate

that in free vibration, if the elastic coupling is varied, there are some circumstances when the

* first two coupled modes may diverge from one another and other circumstances when they

may approach coalescence. The big question therefore is "would such coalescence result in

instability" even in absence of air (or at low air speeds)? Another question whose answer is

being searched also is "what is the role of such coalescence or diverging potential in

aeroelastic tailoring"? The answers to these questions seem to be evolving gradually as the

investigation continues. For example, it is seen as shown in this report that coalescence of

modes may not result in stabilities (even at very low flight velocities).

In the most recent investigations, efforts have been concentrated on the unsteady

aerodynamics. This was considered necessary especially since this research program plans

to eventually look at the aeroelastic behavior of wings in transonic flow - a non-linear, very

complicated flow regime. It is recognized that problematic phenomena at low subsonic

speeds can potentially be disastrous at transonic speeds. Hence a new discovery by the

h.



* principal investigator in non-linear fluid dynamics is employed to establish some closed form

solutions for 2-D unsteady non-linear flow applicable to transonic regime which are expected

to be eventually used for aeroelastic analysis. Some of the results have been compiled and

published in the AIAA Journal. In the process of studying the unsteady 2-D nonlinear

transonic flows, what seems to be a major breakthrough was discovered: this breakthrough

is the discovery that the 3-D steady non-linear transonic flow equations can be transformed

into a linear hodograph equivalent. This discovery essentially reverses a hundred years state

of thinking and belief in the scientific and mathematical community that the hodograph

method was limited to the 2-D flows. The results of this discovery have been written up and

published in the AIAA Journal.

In addition another paper AIAA 92-257 which presents practical shock free 3-D wing for

O transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics

Conference in Palo Alto, California. This research program seems to be seeing the beginning

of what seems to be another breakthrough, perhaps even more significant than what we have

seen thus far. This is what seem to be a discovery that transformations methods can even

be used to effectively study the ultimate set of equations in continuum gas dynamics known

as the Navier Stokes set of equations. This new finding could be the key to effectively

unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,

which have been blurry at best thus far. This finding has resulted in a preliminary paper

accepted to be presented at an international conference to be held in Colorado in August of

1992. It is being proposed that the investigation of these new findings be pursued in a

proposed next phase of research. This is because if the findings are correct this could be the

start of a new era of fluid or gas dynamics analysis.
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1.0 ABSTRACT

The investigation of an aeroelastically induced constrained warping phenomenon for

a composite, supermaneuverable type aircraft wing has continued in this second phase of the

study. The first phase investigation was concentrated mainly on the static phenomena and

the search for closed form solutions for free vibration of aircraft wings having constrained

warping in the presence of elastic coupling. The wing is analytically modelled as a straight

flat laminated plate. Various forms of highly simplified aerodynamic loads are employed in the

analysis. The free vibrations and stability aspects of this phenomenon are examined to obtain

some physical insights and to determine its importance and/or design implications. Analytical

tools employed include an affine transformation concept which was formulated previously (by

the present principal investigator) as well as a non-dimensionalization scheme. With the help

of these tools, an evolution of effective warping parameters with which to study this

. phenomenon was carried out. The virtual work theorem and variational principles were used

to derive the equations of motion based on the assumed wing displacements. The existence

of closed-form free vibrations solutions for composite wings with elastic coupling and

constraint of warping was established. A revelation from these closed-form solutions is that,

elastic coupling lowers the first coupled frequencies (in fact a significant amount of coupling

could reduce the first frequency to almost zero. The discovery of the closed-form solutions

for the free vibration which seems to mark the first time such solutions were every obtained,

not only led to answers to a number of previously unanswered questions but also raised new

unanswered questions such as "Does the aeroelastic divergence or flutter problem of such

wings have any closed-form solutions."

During the second year of the first phase, investigation was concerned with essentially

how to find the answer to the above mentioned question. Accordingly in the first quarter,
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efforts were concentrated on determining the possibility of finding closed-form solutions to

is the divergence problem. The investigation led to two possible methods of obtaining such

solutions. These methods are (a) the "elimination" approach (which was used for the free

vibration) and (b) the method of Laplace transformation. Although it's already known that (a)

works, (b) was implemented in formulating the analytical expressions for the closed-form

solution of the divergence problem due to an anticipated relative ease. In the beginning of the

2nd phase, the closed form divergence and vibrations results which have and are still being

extracted are being studied very carefully to establish physical trends in the constraint of

warping phenomena. In particular, the computed results are being studied in order to evolve

the basic mechanism by which the constrained warping model may be used to explain the

concept of aeroelastic tailoring. Preliminary results that are being evolved seem to indicate

that in free vibration, if the elastic coupling is varied, there are some circumstances when the

first two coupled modes may diverge from one another and other circumstances when they

may approach coalescence. The big question therefore is "would such coalescence result in

instability" even in absence of air (or at low air speeds)? Another question whose answer is

being searched also is "what is the role of such coalescence ar diverging potential in

aeroelastic tailoring"? The answers to these questions seem to be evolving gradually as the

investigation continues. For example, it is seen as shown in this report that coalescence of

modes may not result in stabilities (even at very low flight velocities).

In the most recent investigations, efforts have been concentrated on the unsteady

aerodynamics. This was considered necessary especially since this research program plans

to eventually look at the aeroelastic behavior of wings in transonic flow - a non-linear, very

complicated flow regime. It is recognized that problematic phenomena at low subsonic

speeds can potentially be disastrous at transonic speeds. Hence a new discovery by the
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* principal investigator in non-linear fluid dynamics is employed to establish some closed form

solutions for 2-D unsteady non-linear flow applicable to transonic regime which are expected

to be eventually used for aeroelastic analysis. Some of the results have been compiled and

Published in the AIAA Journal. In the process of studying the unsteady 2-D nonlinear

transonic flows, what seems to be a major breakthrough was discovered: this breakthrough

is the discovery that the 3-D steady non-linear transonic flow equations can be transformed

into a linear hodograph equivalent. This discovery essentially reverses a hundred years state

of thinking and belief in the scientific and mathematical community that the hodograph

method was limited to the 2-D flows. The results of this discovery have been written up and

published in the AIAA Journal.

In addition another paper AIAA 92-257 which presents practical shock free 3-D wing for

* transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics

Conference in Palo Alto, California. This research program seems to be seeing the beginning

of what seems to be another breakthrough, perhaps even more significant than what we have

seen thus far. This is what seem to be a discovery that transformations methods can even

be used to effectively study the ultimate set of equations in continuum gas dynamics known

as the Navier Stokes set of equations. This new finding could be the key to effectively

unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,

which have been blurry at best thus far. This finding has resulted in a preliminary paper

accepted to be presented at an international conference to be held in Colorado in August of

1992. It is being proposed that the investigation of these new findings be pursued in a

proposed next phase of research. This is because if the findings are correct this could be the

start of a new era of fluid or gas dynamics analysis.
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2.0 NOMENCLATURE0
a. = chordwise integrals

C'o, Co = affine space half-chord and chord, respectively

Dj = elastic constants

e = parameter that measures the location of the
reference axis relative to mid-chord

El, GJ = bending and torsional stiffness, respectively

h = wing box depth

(hoa.) = affine space bending and torsional displacement,
respectively

K,So = elastic coupling and warping stiffness, respectively

ki = elemental stiffness parameter

k. = Strouhal number

L.,M0  = affine space running aerodynamic lift and moments,
respectively

= affine space half-span for the wing

mo = affine space mass per unit span

(Ap, APo) = differential aerodynamic pressure distributions in
physical and affine space, respectively

t = time

U,U0  = virtual work expressions in physical and affine space,
respectively

Uf = flutter speed

(x,y,z), (xo,y 0 ,Z7 = physical and affine space coordinates, respectively

Yj,8 ip = displacement shape functions

r,L ,, ,D*,D*o, = generic nondimensionalized stiffness parameters
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* o = affine mass ratio parameter

114,e = Poisson ratios and generalized Poisson's ratio,
respectively

1o = divergence parameter

p.P. = affine space material and air density, respectively

0 = twisting displacements

w = displacement

= vibration frequency
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O 3.0 INTRODUCTION

In the late 1960's designers began to investigate the possibility of exploiting the directional

properties of composite materials to improve aeroelastic characteristics of lifting surfaces. For

example, superfighter designers may aeroelastically tailor a wing so that it deforms to the

optimum camber under maneuvering loads.

For instance, a wing can be tailed so that its leading edge will twist downward under the

stress of a tight turn, thereby decreasing the wing's angle of attack and hence reduce drag.

Exploitation of the directional properties of composite materials to solve aeroelastic

instability problems (known as aeroelastic tailoring) may enhance the performance of future

high performance military aircraft, particularly the super-maneuverable concepts. This stems

from the need for future military weapon systems to exhibit high performance and minimum

vulnerability (e.g.: minimum radar cross-sectional area). These requirements may lead to

* unorthodox aircraft configurations which in turn result in unorthodox aeroelastic instability

problems (e.g., the X-29 primary mode of instability, called the 'body freedom' flutter).

Perhaps the aeroelastic tailing concept would have been discovered much earlier if the

physics of anisotropic aeroelasticity were more apparent. This inherent physical intractability

is large!y due to the existence of numerous variables, e.g.,; flight parameters, several

composite directional properties, fiber orientation angles, etc., which are not even truly

independent, in the anisotropic system. This state of affairs is therefore analogous to that

which existed in the basic rigid body aerodynamics before the advent of the similarity rule

theory. This theory clearly revealed that, the utilization of non-dimensionalized groups of

variables, e.g.: Reynolds, Mach, Strouhal, Froude numbers etc., provide significantly superior

physical insight to the problem than the individual physical variables. The new methodology

that is being used as the basic tool in this research program is basically the aeroelastic0



* equivalent of the aerodynamic similarity rule. The expected superiority of this new approach

over the state-of-the-art (SOA) counterpart, which utilizes individual physical variables,

especially in terms of physical insights, has been demonstrated in references 1-10. For

example, a high-aspect-ratio composite wing could behave aeroelastically like a low aspect

ratio wing and vice-versa. Similarity parameters can expose conditions for which this might

happen. This is significant, (for instance) in the light of the important role played by the wing

aspect ratio in the aerodynamics approximations for an aeroelastic analysis. This result may

therefore be suggesting some new form of coupling between the elastic and aerodynamic

equations in composite wing aeroelasticity. A fundamental aspect of this new methodology

has been used in studies at Purdue University " and MIT 2.

In this research, an investigation of a wing's spanwise sectional distortion (warping)

resulting from aerodynamic forces and its influence on the wing's free vibrations, as well as

* (aeroelastic) stability, is being carried out. In particular, St. Venant's torsional/twisting theory,

which is currently widely used for estimating the wing's twisting displacements has been

examined with the help of the new methodology, to determine its limitations, when applied

to wings fabricated of composite materials. The relevance and significance of this study for

the newly emerging supermaneuverable type aircraft may be seen in the light of the fact that

(a) supermaneuverability is characterized by high angle of attack which implies high twisting

aerodynamic forces, and (b) most aircraft designers believe future aircraft will be fabricated

of 40-70% composite materials.

When the St. Venant's torsional theory is used to estimate a wing's twisting displacement

and/or forces, the fact that the wing's root section's distortion is relatively small compared

to that of other sections is ignored. However, previous investigators have determined that

such an unrealistic assumption may lead to only little errors if the aspect ratio of the wing is

0



* very high.

The research has shown during the first phase that the conclusions reached by previous

investigators are basically true for wings fabricated of metals or isotropic materials. A set of

new theories is therefore being postulated in this research effort for accurately estimating the

twisting displacements, vibrational frequencies and instability boundaries for wings fabricated

of composite materials.

In the second phase, the mechanism of instability is defined as the main target of more

detailed investigation. This is partially because some new findings during this research

program seem to indicate that composite wings undergoing free aeroelastic oscillations exhibit

some unique phenomena not known to occur in metal wings. One of this phenomena is what

we have referred to as a "damping like behavior" (in absence of actual damping) brought

about by the presence of asymmetric coupling. This among other things presents opportunity

O for a merging of two modes during a free vibration. The natural question is therefore "would

such a phenomenon lead to instabilities" as has been well documented for other aeroelastic

systems? Of primary interest to an aeroelastician is "how does this phenomenon connected

to aeroelastic tailoring? These are some of the questions that we are searching for answers

to in this second phase of this research. It is beginning to be apparently evident that modal

coalescence is possible. Furthermore it is also evident that this modal coalescence may lead

to some form of instability at low flight velocities which we are still trying to discern properly

and carefully.

In preparation for more sophisticated flutter or divergence analysis, a new discovery by the

principal investigator in nonlinear unsteady fluid dynamics is being refined to enhance and help

expose the physical nature of aeroelastic instability of composite wings with elastic coupling

and warping restraint. Some of the preliminary results have just been published in the AIAA



* Journal. A copy of this publication is included in this writeup. Furthermore, the study of the

unsteady transonic fluid dynamics has led us to some new findings. In the process of

studying the unsteady 2-D nonlinear transonic flows, what seems to be a major breakthrough

was discovered: this breakthrough is the discovery that the 3-D steady non-linear transonic

flow equations can be transformed into a linear hodograph equivalent. This discovery

essentially reverses a hundred years state of thinking and belief in the scientific and

mathematical community that the hodograph method was limited to the 2-D flows. The

results of this discovery have been written up and published in the AIAA Journal.

In addition another paper AIAA 92-257 which presents practical shock free 3-D wing for

transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics

Conference in Palo Alto, California. This research program seems to be seeing the beginning

of what seems to be another breakthrough, perhaps even more significant than what we have

O seen thus far. This is what seem to be a discovery that transformations methods can even

be used to effectively study the ultimate set of equations in continuum gas dynamics known

as the Navier Stokes set of equations. This new finding could be the key to effectively

unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,

which have been blurry at best thus far. This finding has resulted in a preliminary paper

accepted to be presented at an international conference to be held in Colorado in August of

1992. It is being proposed that the investigation of these new findings be pursued in a

proposed next phase of research. This is because if the findings are correct this could be the

start of a new era of fluid or gas dynamics analysis.
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4.0 RESEARCH OBJECTIVES

The overall goal of this phase of the research program is twofold: first, is to formulate

closed-form solutions to the aeroelastic divergence and flutter of aircraft wings with warping

constraint and elastic coupling, and use these to study the effects of constrained warping on

aeroelastic response; second is to develop new plate-beam finite elements and use in modal

analysis of vibration and flutter to provide an independent check on the closed-form solution

results.

During a preliminary investigation of the constrained warping under aeroelastic forces,

a phenomenon being studied in the current research program sponsored by the AFOSR, the

Principal Investigator discovered (for the first time), that there are closed-form solutions to the

free vibrational and divergence problem of composite aircraft wings having warping

constraints and elastic coupling [21. In this study these newly discovered techniques are to

* be extended (and expanded) and used for continuing the formulation of closed-form solutions

to the aeroelastic flutter and dynamic response problems of aircraft wings with the constraint

of warping and elastic coupling. This process is expected to involve determining the

necessary symmetries that exist in the flutter and dynamic response equations (by comparing

them to their free vibrations and divergence counterpart) to permit the extraction of their

characteristic roots for elastically coupled deformations of the wing under the influence of

aerodynamic forces.

Experience from the free vibrational and the ongoing divergence investigations has

shown that the computations involved in extracting the eigenvalues from the closed-form

eigen expressions derived using the new techniques are very challenging. For example, it is

difficult to determine how to eliminate or minimize the numerical errors resulting from the

17



of dynamic response problems are to be evolved with the help of the experience gained from the

study of the vibrations and divergence. The closed-form solutions thus extracted, are to be

thoroughly studied to understand the physics of the constrained warping phenomena. In

particular, the computed results used to determine the basic mechanism by which the constrained

warping model can be used to explain the concept of aeroelastic tailoring. This is necessary

because the basic mechanism of aeroelastic tailoring seems to be still rather elusive. For

example, it seems to be generally accepted that tailoring occurs because ply angles are "properly"

oriented. From our ongoing research, tailoring seems to be more than just a ply angle

orientation. Careful study of the data generated are expected to be carried out to try to unfold

this apparent mystery. In other words, by using a figure similar to Fig. (1), how can tailoring

(higher flutter speed) be explained?

L02

W1o, W20 - is isotropic 1st &
,- I2nd frequency, respectfully.

- I.',w , w22 - composite 1st &
' 1" ' 2nd frequency, respectfully.

Figure 1 Vr; = flutter speed

13



O 5.0 STATUS OF RESEARCH EFFORTS

5.1 INTRODUCTION

During the reporting period, the research program progressed according to plan resulting in

the accomplishment of the goals defined for the period. These goals, which have been defined

in Section 4 of this report, basically are to extend and utilize some of the newly developed

important tools in the current ongoing research program which is being sponsored by AFOSR

to investigate the constrained warping phenomena of aircraft wings fabricated of composite

materials having elastic coupling and subjected to aeroelastic forces. The proposed study is

basically comprised of the investigation of (a) the basic mechanism of instability and dynamic

response, (b) the mechanism of modal transformation in flutter and dynamic response, and

(c) nonlinear and transonic instabilities.

In the first and second reporting period during the preliminary study, Prof. G. A. Oyibo

* started the investigation of the basic mechanism of aeroelastic instability of composite aircraft

wings with restrained warping and elastic coupling. Following a realization that proper

understanding of the mechanism of aeroelastic instability particularly the dynamic instabilities,

require some sound analytical tools, a review of the important tools developed for the

divergence and free vibration for composite wings with warping restraint and elastic coupling

during the last phase was started. During this review, a thorough study of the preliminary

data generated were carried out. The understanding gained during this review provided the

necessary background necessary for properly formulating the instability mechanism problem.

Consequently an expansion or extension of these earlier tools started. First, the major

scientific revelation to the scientific community made possible (through the help of these

tools) by this research program was properly reexamined. The revelation is that a composite

wing having a restrained warping0
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O in the presence of an asymmetric elastic coupling (in absence of damping) exhibit a "damping-

like" behavior. This new discovery which should be critical to the proper understanding of the

mechanism of aeroelastic tailoring is still being thoroughly investigated. The latest results

show that modal coalescence is possible. These results are seen to show that such a

coalescence could lead to instability (even at low flight speeds). More careful investigations

are now being carried out in order to "fine tune" the conclusions of these results and to

recommend possible experimental studies to verify them. In addition, a refinement of a new

discovery in nonlinear/transonic fluid dynamics by the principal investigator was initiated in

anticipation of more realistic or sophisticated flutter/divergence analyses to further the goals

of this research. Some of the preliminary results have been compiled and published in the

AIAA Journal. In the process of studying the unsteady 2-D nonlinear transonic flows, what

seems to be a major breakthrough was discovered: this breakthrough is the discovery that

* the 3-D steady non-linear transonic flow equations can be transformed into a linear hodograph

equivalent. This discovery essentially reverses a hundred years state of thinking and belief

in the scientific and mathematical community that the hodograph method was limited to the

2-D flows. The results of this discovery have been written up and published in the AIAA

Journal. In addition another paper AIAA 92-257 which presents practical shock free 3-D wing

for transonic flight is to be presented in June, 1992 at the AIAA applied Aerodynamics

Conference in Palo Alto, California. This research program seems to be seeing the beginning

of what seems to be another breakthrough, perhaps even more significant than what we have

seen thus far. This is what seem to be a discovery that transformations methods can even

be used to effectively study the ultimate set of equations in continuum gas dynamics known

as the Navier Stokes set of equations. This new finding could be the key to effectively

unlocking the secret of gas dynamics and aeroelastic phenomena for real gases with viscosity,
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which have been blurry at best thus far. This finding has resulted in a preliminary paper

accepted to be presented at an international conference to be held in Colorado in August of

1992. It is being proposed that the investigation of these new findings be pursued in a

proposed next phase of research. This is because if the findings are correct this could be the

start of a new era of fluid or gas dynamics analysis.

The investigation of the numerical method for efficiently and accurately extracting the

eigenvalues for the vibration and divergence problems continued. New numerical methods for

handling some problem regions of these problems are also being examined. Prof. T. A.

Weisshaar is also continuing his investigations into how a new beam-plate finite elements may

be formulated to capture the constraint of warping effect in order to provide results which

may be used to independently check the closed-form solutions which have been, and are

being generated.



5.2 ACCURATE DIVERGENCE THEORY FOR COMPOSITE SUPERMANEUVERABLE

AIRCRAFT WINGS

5.2.1 INTRODUCTION

Modern supermaneuverable aircraft concepts benefit a great deal

from, among other things, significant advances in materials

technology and the availability of more accurate aerodynamic pre-

diction capabilities. Supermaneuverability as a design goal in-

variably calls for an optimization of the design parameters.

Optimization may be partially accomplished for example, by using

composite materials to minimize weight. Indeed, it has been known

that these composite materials can be tailored properly to resolve

the dynamic or static instability problems of these types of air-

craft. The concept is referred to as aeroelastic tailoring.

While aeroelastic tailoring has tremendous advantages in the design

of an aircraft, the analysis which provides the basis for the

aeroelastic tailoring itself is generally very involved. This is

rather unfortunate since a good fundamental physical insight of

the tailoring mechanism is required for accurate and reliable re-

sults.

In this investigation an attempt is made to look at some dynamics

theories that can be used to understand the aeroelastic tailoring

mechanism. Specifically, the accuracy of the St. Venant torsion

theory which is relatively simple and frequently used in aeroelas-

tic analysis is examined with particular reference to the effects

*of the wings aspect ratio as well as other design parameters.
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An accurate torsion/twist theory is particularly significant for

supermaneuverable aircraft wings since supermaneuverability is

basically characterized by high angle of attack.

Although earlier studies (1,2,3) have indicated that the St. Ve-

nant's torsion theory is reasonably accurate except for aircraft

wings with fairly low aspect ratios, the theory supporting that

conclusion was based on the assumption that the wing is construc-

ted of isotropic materials. Basically the St. Venant's torsion

theory assumes that the rate of change of the wing's twist angle

with respect to the spanwise axis is constant. This assumption

is hardly accurate particularly for modern aircraft construction

in which different construction materials are employed and the

aerodynamic loads vary significantly along the wing's span. How-

ever, References 1-3 have shown that (in spite of such an inac-

curate assumption) the main parameter that determines the accur-

acy of the St. Venant's theory is the wing's aspect ratio. Thus,

it was determined that the theory is fairly accurate for moderate

to high aspect ratio wings constructed of isotropic materials.

In recent studies (4,5,6) however, it has been shown that for

wings constructed of orthotropic composite materials, the con-

clusion of References 1-3 need to be modified. Rather than using

the geometric aspect ratio of the wing to determine the accuracy

of St. Venant's twist theory, it was suggested that a generic

stiffness ratio as well as an effective aspect ratio which consid-

ers the wing's geometry and the ratio of the principal directional

stiffness should be considered in establishing the accuracy of St.

Venant's theory.



The present investigation is related to the studies that were ini-

tiated in References 5 and 6. In this study the first task was to

examine the role of coupling (both mass and elastic coupling) on

the accuracy of St. Venant's theory applied to static problems.

It was discovered that coupling plays a very significant role on

the accuracy of St. Venant's twist theory. The second task was to

investigate the torsional vibration for a flat plate model of an

aircraft wing fabricated of composite materials in which the con-

strained warping phenomenon is more realistically represented,

with particular emphasis on higher frequencies and to compare re-

sults with those from a representation based on St. Venant's

theory.

5.2.2 FORMULATION

S Consider an aircraft wing fabricated of composite materials and

mathematically idealized as a cantilevered plate subjected to an

aerodynamic flow over its surfaces. The mathematical statement of

the virtual work theorem for such a plate model is well known and

documented. It is also known that such mathematical statements

of the virtual work theorem for a laminated plate model are char-

acterized with the existence of so many variables (in the state-

ment), reflecting the various directional properties for the lamin-

ated plate model, which would tend to interfere with any physical

insight that might be desired from a phenomenological analysis

employing such a mathematical statement. The newly discovered af-

fine transformation concept (5,6 and 7) was developed principally

to resolve such a problem.
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This new concept therefore can be used to evolve the mathematical

statement of the virtual work theorem in an affine space given by

the following equation.

6UO 0 a2f ff (W,0.), 2D*1( -E()(w, 00)2O
6 0 A A (1)

+ ifw x ] + (wiyo yo ) 2 +  L1 WWx  x 0 o o A + L2 W'YoYo W x 0 dx0 dvo :0

6 jftf p0oQ
2dxodyodt + ftff A PO6wdx0 dY0 dt

A 0 A

0

where:

02 D I I / 4 ; D 0 1 2 + 2 0E =

0 (D11 D22)1 2  
(0 11 C ) 112

4016 L 4025 (2)

L1 (01I) 3/4(C 22 ) / 4  (0 D11)11/4 (a22)31/4

4P Ph
'600  d D PO Ph

;.2  022

20



Dij are the elastic constants, p, is the material density, Ap

is the differential pressure distribution, w is the displacement,

t is the time, A integrals represent area integrals and R is the

wing box depth.

Equations (1) and (2) therefore form the basis of the newly de-

veloped methodology. The equations of motion of a plate model of

an aircraft wing can now be derived by prescribing a realistic

wing displacement and using Equation (1).

When Equation (1) is compared to its physical space counterpart,

it is seen that Equation (1) has fewer variables. It is also seen

that Equation (1) contains only non-dimensionalized stiffness quan-

tities (compared to dimensional stiffness quantities in its physi-

* cal space counterpart). Another feature of this new methodology

which makes it unique is that the non-dimensionalization (a conse-

quence of the affine transformation) is accomplished before assum-

ing the wing deformations. This means that the non-dimensionaliza-

tion is independent of how the wing deforms. A non-dimensionaliza-

tion scheme that depends on a particular assumption of the wings

deformations could lead the analyst to an incorrect physical inter-

pretation of results. since the wing's deformations assumptions

have inherent errors because they are based on the analyst's judg-

ments and experience. This observation may become clearer during

the evolution of a warping parameter with which to study the ef-

fects of the warping constraint phenomenon on the status and dyna-

mics of a wing fabricated of composite materials later in this study.

2-



If the chordwise curvature is neglected in an initial approxima-

tion, the wing's deformation may be assumed as follows:

w(tX 0 Oy) = h0 (t ,y0 ) + X a 0 (t,y O) (3)

where h0 and a are the bending and twisting displacements, re-

spectively.

It can be shown that when Equation (3) is substituted into Equation

(1) and the variational calculus is carried out for arbitrary h0

and a0 , the following equations of motion are obtained:

° i v +asa ii+ pa- + p0a = Lo

0
a2h ia hM+ acc iv - a 4 a // + a " + 0a = M (4)2 " 5 o 0ja 4 0 PO 3o 0 po0ho4)

where:
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0

0 0

L0  co~ 4Podx a5  fc L2 dxo
0

e C0

C

- e < o C I -e

a C' ) C7 (6)
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. 5.2.3 EVOLUTION OF WARPING PARAMETERS

The evolution of the warping parameter with which to study the con-

strained aeroelastic warping phenomenon for wings fabricated of

composite materials is a process that depends on the sophistication

of the wing's mathematical model; whether coupling effects are in-

cluded, whether the wing's chordwise curvatures are included and

so on. Therefore, any warping parameter is as good as the corres-

ponding wing's displacements assumptions. However, Equation (1)

makes it possible for the analyst to determine its effective inde-

pendent variables even before the displacement assumptions are made.

By non-dimensionalizing the spanwise space variable in Equation (4),

depending on whether one is interested in the static, dynamic,

. coupled or uncoupled displacements, one of the following warping

parameters may be useful.

= 0 3 D
0

(7)

0 3 L 2
A E- (o -(

0
1-2



where:

* . a200 0= 0 (1 -E) ; 82 - 2 (0

( o/Co) is defined as the wing's effective aspect ratio and Do0

and L are the generalized stiffness and coupling ratios, respec-

tively (defined in earlier work such as References 5 and 6).

Equations (7) thru (9) represent the appropriate warping parame-

ter for dynamic deformation, static displacement with elastic

cross-coupling, and static deformation with "geometric" coupling

(e 1), respectively.

0
It was discovered in this study that evolving the warping parame-

ter in a manner shown in Equations (1) thru (3), should enable

one to investigate the effects of warping on the composite wing's

dynamics (or the accuracy of St. Venant's theory) effectively.

From the lamination theory for composites it is known that while

D * and (k 0/C ) are always positive, L and a2 can be positive or

negative. However, from Equations (1) and (3), it is clear that

whether a composite wing has positive or negative coupling, the

warping effect (in terms of Tc) is unchanged.
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Using the Laplace transform method on the divergence form of equa-

tions 4 in which strip aerodynamic theory is used, the following

Laplace function becomes important in the divergence problem,

71 () 1 5r4s7

F5 - a1 4 s 5+ a15s4+ a16s3+ a17s2+ a 18 (7)

where

-- - 2
(aa4-a 5  Fa

a13 =a 1 a3, a1 4 =- , a15  -
a1a 3  a1a3

F4 a5 -F3 a1  F a 5-F2 a4
16 = , a1 7 =

a1a3  a1 a3

a 18 s is Laplace variable,
Fi (i=1,2,3,4) are aerodynamic forces and

moments

Let
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F1 (s) a1 3 (s+b) 2+al2 [ (s+b 2 +a 2] [ (s+b3 ) 2+a2 [s+b 4 ]

(8)

T0 1 (s) a1 3 [s4+9 0 1 2
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2
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or in proper notation
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FII = F2 1 (1) ; F1 2  F2 2 (1) ; F1 3 =F 2 3 (1) ; F1 4 = F2 4 (1)

F21 = F0 1 (1) ; F2 2 = F 0 2 (1) ; F2 3 = F0 3 (I) ; F 2 4 = -F 0 4 (1)

F31 = a1 F2 1 (1) + a-F01(1) ; F32 alF22(1)-a5F 0(1) ;

F3 3  a1 F2(1) -a 5 0 3 (1) (49)

F3 4 = aF 2 4 (1) + a5 F 0 4 (1)

-2 -2
a5 - _ - a 5

F4 1 = (a 4 - -) F0 1 (1)-a 3F 0 1 (1) ; F = a02()-(a4-- F 2
a1  a1

-2 -2
a 5 a 5 -

F 43 a3F0)-a -0- F 03l) 440 0-a 4_ F04- (l-i F04 (1
aI  a1

Determine eigenvalues that makes the following determinant zero

F11 F12 F13 14

21 22 23 24
= 0 (50)

F31 F32 F33 34

F41 F42 F43 F44

Equation 50 is therefore expected to rep - sent the closed-form ex-
pression for the divergence eigenvalues. merical methods are now
being used to *-tract t se eigenvalues in order to obtain the
divergence steeds.

0
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RESULTS

* The results obtained so far seem to verify existing results and

establish new trends. Due to the fact that the evolution of

these new trends are yet to be fully completed, only a summary

of these results are Presented below.

The results obtained by solving equation 50 were carefully to

evolve the physical insight into the mechanism of divergence in-

stability in the presence of warping restraint and elastic coup-

ling. This study revealed the following, as can be seen from

figures 1-7.

First, it is seen that the view held by many analysts that elas-

tic coupling plays a significant role in aeroelastic divergence

tailoring is verified.

Second, it is seen that another view that, higher aeroelastic

divergence stability boundaries are feasible with negative elas-

tic coupling (than nositive elastic coupling), is basically true,

but uo to a ooint. It is further seen that there seems to be a

limit to how negative the elastic coupling can be made to obtain

better stability boundaries - after such a limit, a further nega-

tive increment of elastic coupling would seem to lower the stabil-

ity boundaries.

Third, it is found that the effective aspect ratio defined in the

-first ohase of this research program (Ac ), for simpler models can

still be used in this relatively more complex model, to measure

3 1



the effect of warping restraint on the phenomenon of divergence

instability. The results show that ignoring the warping re-

straint would lead to conservative estimates for the divergence

instability boundaries. It is also seen that the restraint of

warping effects are more significant for small effective aspect

ratio (X ) and/or large elastic coupling.

oc
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5.3

Exact Solutions to Aeroelastic Oscillations of Composite Aircraft

Wings with Warping Constraint and Elastic Coupling

Gabriel A. Oyibo and James Bentson
Polytechnic University
Farmingdale, New York

Abstract

Exact solutions within the framework of standard aeroelastic

bending and twisting assumptions are found to the free oscilla-

tions of composite aircraft wings having warping constraint and

elastic coupling. The problem is treated as a regular boundary

value problem consisting of two fourth order partial differen-

tial equations coupled by the presence of elastic coupling.

This system, which is linear, therefore is equivalent to an

* eighthorder ordinary differential equation . Classical linear

"operator" method is therefore used to extract fundamental solu-

tions which are superimposed appropriately to obtain an exact

functional form for the mode shapes. These mode shapes are

therefore made to satisfy the necessary boundary conditions, a

process that leads to the formulation of the required eigenvalue

problem. The eigenvalues are extracted numerically by using ap-

propriate ordering of the eight roots of the operator equation.

The bending-torsion frequencies obtained as a result of this an-

alysis are compared favorably with existing results. New in-

sights made possible by these results which are preliminary, ap-

tResearch sponsored by the Air Force Office of Scientific Research

(AFOSR), under Contracts F49620-85-C-0090 and F49620-87-C-0046.

Associate Professor Dept. of Aerospace Engineering
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pear to be that (a) the first coupled frequency decreases with

increasing coupling and (b) the phenomenon of modal transforma-

tions found by earlier investigators is explainable in terms of

some conservative inter-modal energy transfer.

0



5.3.1 NOMENCLATURE

a. = chordwise integralsO
c ,co  = affine space half-chord and chord, respectively

D.. = elastic constants

13

e = parameter that measures the location of the

reference axis relative to mid-chord

EI, GJ = bending and torsional stiffness, respectively

h = wing box depth

(hoc a) = affine space bending and torsional displacement,
respectively

K,So = elastic coupling and warping stiffness, respec-
tively

k.. = elemental stiffness parameterii

k = Strouhal number0

L ,M = affine space running aerodynamic lift and mo-
ments, respectively

Z 0 = affine space half-span for the wing0

m 0= affine space mass per unit span

(Ap,Ap0 ) = differential aerodynamic pressure distributions

in physical and affine space, respectively

t = time

U,U0  = virtual work expressions in physical and affine
space, respectively

Uf = flutter speed

(x,y,z,), (xoyoz o) = physical and affine space coordinates, respec-tively

yi6iSai = displacement shape functions

r,LI,L 2 ,D*,D*o, = generic nondimensionalized stiffness parameters

Io = affine mass ratio parameter

I ij, E= Poisson ratios and generalized Poisson's ratio,
respectively

O = divergence parameter
0



p 0,p = affine space material and air density, re-

*spectively

O = twisting displacements

w = displacement

W = vibration frequency

SO



5.3.2

Introduction

Perhaps one of the more elusive aspects of supermaneuverabil-

ity as a design concept is its aeroelastic implications. One gen-

erally accepted definition of supermaneuverable aircraft is that it

is designed to operate at high angles of attack. Strictly speaking

high angle of attack problems are nonlinear. However due to the

high degree of complexities involved in dealing with nonlinear aero-

elastic problems, an average aeroelastician would prefer to deal with

a linearized version of the problem (at least as a first approxima-

tion). If linear aeroelastic equations are used under such condi-

tions, at least it should be assumed that the high angle of attack

would introduce large twisting displacements which would imply that

terms containing twisting displacement should be retained. Even

under low angle of attack assumptions, the early works of Reissner

and Stein I and later works of Libescu et al2 have shown that for

metal wings there are conditions under which the so called St. Ve-

nant's torsion principle is inapplicable. This is when the res-

traint of warping effect is important and a more accurate analysis

would need to include a higher order term involving the twisting

displacement. Although the retention of such a term implies solv-

ing fourth order (instead of second order) differential equations

for the twisting and bending displacements, the equations can 
be

easily decoupled for metal wings. However for composite wings, the

decoupling of these equations is neither easy practically nor is it

even desirable from aeroelastic tailoring standpoint.
3- 7 These stu-

dies have also shown that the restraint of warping is very important



in composite wings. Therefore it would seem that an aeroelastic

analysis of a supermaneuverable (hiqh angle of attack) aircraft

wing fabricated of composite materials would need to consider

the effects of restraint of warping as well as elastic coup-

ling.

Previous investigation of this latter problem (free vibra-

tion) at MIT 3 ,4 used analytical methods to solve the decoupled

problem, while numerical methods were utilized to solve the cou-

pled problems. Consequently general results were presented for

the decoupled problem while representative results were presen-

ted for the coupled problem.

In this paper the coupled free vibration is treated analyti-

cally as a pair of coupled fourth order (differential equations)

boundary value problem to which exact closed form eigen-solutions

0 are sought. The enforcement of the necessary boundary conditions

resulted in a fairly complicated transcendental function to be

used to determine the required eingenvalues from which the natur-

al frequencies are to be obtained. This transcendental function

was complex in contrast to its decoupled counterpart (which is

real). That should be indicating the presence of the phase angle

that exists between the twisting and bending displacements. A com-

parison with a damped (decoupled) system in which complex determin-

ant signifies phase angles between damping and other forces, led us

to the formulation of an explanation for the "modal transformation"

phenomenon which was reported in studies at MIT
' and Purdue 8 (which

seemed to have lacked explanation until this study). The explana-

tion is that the modal transformation may be viewed as a

form of steady state conservative (energy stays in this system

-52-



since there is no damping) inter-

modal energy transfer between the vibration modes. In fact

0 work currently in progress at Purdue 8 seem to support and con-

firm this explanation. The results which favorably compared

3,4
with those obtained at MIT, ' also revealed that coupling has

a tendency to lower the first coupled natural frequency of a

composite aircraft wing. In fact it is seen that a substantial

amount of coupling could reduce the first coupled frequency to

almost zero (hence a possibility of coupling with rigid body

modes).

5.3.3

Problem Statement

For a composite aircraft wing cantilevered at the root as

shown in Figure 1, the virtual work theorem in the physical

space is given by

*t

6U = 0 = [Dllwxx2 + 2D12 W,xx W,yy

0A

+ D2 2 (wyy) 2+ 4D16 Wxx Wxy + 4D2 6 wiyy (1)

+ 4D 66 (w, x 2 dxdydt - 9ff~ I w dxdydt

+f f f p6w dxdydt

where: 0

D.. are the elastic constants, p, is the material density, Ap1J

is the differential pressure distribution, w is the displacement,

t is the time, A integrals represent area integrals and 
h is the

wing box depth.

Using the following affine transformation of variables;

D~ 1/4x = (-) x y = yo ; Z = z (2a)
D22 o



then in affine space the virtual work theorem becomes:

0
6U =0= J2(w, 2D* (w, 2

0A xoyo

E w W, ] + (w, )2 + LIw, w +

(2b)
+ L2Wy oy w, x dx 0 dy 0 dt

t .2t

I ) wdx 0 dy 0dt +f 0fAowdoy

fffA 0 A

where

U D 2 ), /4 D , 1- 2 + 2D66

0(D11D22) /2

D:D* _D_2 4D 1 6
DI 21/2= (D)L3/4- 1/4

11 (D22)

(3)
L = 46 ;Apo = ; Po = p

2 (D1 1 ) (D 2 2 ) D22 D22

If the affine space equivalent of the standard aeroelastic

displacement assumptions is made, i.e.,

W(xoyot) = h o(yot) + x oa (y ,t) (4)

&T4



where h and ax are the bending and twisting displacements re-

*spectively, then it can be shown through the use of the calcu-

lus of variations that a coupled set of aeroelastic equations

of motion for the composite aircraft wing, in which the re-

straint of warping and elastic coupling effects are accounted

for is given by

ahoV +a ct iv-,a aii+ a . h °a
2 o olo 5 0o 2 0

(5)

IhMV+shM ahV - 34o// + Po a 3 1 4 Poa"ho

aty ° = 0

* 0 with boundary conditions

h 0 = , h. = 0, ao = 0 o 0 (6)

at yo z 0

a -al + a ho"- L a2aA 0,ah"-o aaah-a.= 0 alho'ac1;+ a2 = 0

3o0 20 2 2o ' 0 50 20o
a2 ct + a~h7- a5cO " =0

ah A+ a hA + a -A -acx=0

a + a 5 o 4

2



where:

Sec3 d Sec 0

= x 2dx a4 2jCeo D" (1-C)dX

e0 0 fE0

L0 = ft~ 4pE 0~ 5 - (7)
0to 0 x 0xo A Po do x 05 = 7

eco

M0 = e ° K 0 P~x

C
e < 0 <O I-e

3C-

) y0, (*) at
0

For free vibrations, if a2 (through the geometric construction

of the wing) is made to be zero, equations 5 reduce to

ah - aca"+ pah = L01 0 5 0 olo

(8a)
iv • "

3o + a5 h" +-a4  o3o

with boundary conditions



at y = 0,

h = 0, h' = 0, ao = 0, a' = 0
0 0 0

at Yo = to

Oh = a a. 0, a h" - a a= 0 (8b)
0

"3a+ a5h0 = 0

It may be stated here that the restraint of warping effect is rep-

IVresented by the product of a.. and a3 while the elastic coupling

effect is represented by the a5 terms.

5.3.4

Methods of Solution

Two methods for solving equations 8 are examined in this pa-

per. These are (a) an "exact closed form" approach and (b) a "semi-

exact closed form" approach. The exact closed form approach is de-

fined here as one in which explicit expressions are derived for

the eight roots of the eighth order operator equations represent-

ing equations 8a, and through the superimposition of fundamental

solutions corresponding to each of the eight operator roots, the

boundary conditions 8b are satisfied. The semi-exact closed form ap-

proach is the same as (a) except that the roots of the operator

equation are determined numerically through the usage of some

standard root extraction subroutines.

In either case, to solve for the operator roots of equation

Ba, it may be rewritten in operator form as follows,



O-1i/2 (3

an  x n = 1,2,3,4 (13)

and xn can be obtained either from the numerical solution of

equation 11 or according to the method described in Abramo-
10

witz and Stegun, as follows

Define

-22 2

xc = (Z'o/Co / c =  oCo (Do- (4

P1 = 4(X 4 + X4)-8/3T c c2 2 + R

(15)

S(32122 + 2
OP2 = 6 (3 c c

S1 = 2k Pil + (12 2 8P23)I (16)

• 2k 
8 2 1 1/ 3

S2 2k FPl-(k2Pl2 - 3821)

uI  SI + S 2

1 1 2 3

-2 
/

u - S + i -2 (SI$ (17)

1 -2
u 3 - (SI+S2) (S1 -S 2 )
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f -8 T [ 64X4 + u. + W2]
3,4 c 1 j

2 412(18)

5,6 2 - -1

+/ 2-f 3 -+ 3 -4f 5
x -3

1,2 2
(19)

-f + /f2 -4ff
x + 4- 4 6

3,4 2

where ui (i = 1,2,3) is the root that makes f3 4 5 6 all real.

5.3.5
Consistency Conditions

From equations 12(a) and 12(b) it is seen that there are six-

teen arbitrary integration constants as opposed to the expected

eight constants. The additional eight constants have been intro-

duced superfluously as a result of the differential operation

which was done in order to eliminate one of the dependent varia-

bles in the two coupled differential equations (equations 9). In

O order to get rid of these superfluous solutions it is necessary to

enforce some consistency conditions. This may be accomplished by
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substituting equations 12(a) and 12(b) into one of the equations

9 and requiring the equation to be satisfied identically. This

procedure shall establish a set of explicit relationships be-

tween the constants A and B in which A can be determined inn n n

terms of B or vice-versa.n

When the superfluous solutions are eliminated, equations 12

can now be used to satisfy the boundary conditions for this prob-

lem (equations 8b). Consequently the condition for nontrivial so-

lutions is enforced to obtain the transcendental functional ex-

pression for determining the eigenvalues of this problem.

5.3.6

Eigenvalues

The following steps and definitions are carried out in order

to obtain the transcendental functional expression for determining

the necessary eigenvalue (for this eighth order boundary value

problem) from which the coupled natural frequencies may be ob-

tained

Define

h 4 k2 2 1 hn n - t n n
n (20)

h h
2 hnn

n Bnn

2 12 2 n+l n 2 n 216(X ~ + (-I) - a +-1) 16A
n c c n Bn 2 1c ( 1



h 3+h 2 h4- 2 3-h
a 1 5  i a1 7  a3 5  hl1

h+h4 h3-h 2  h 4-h 2 (
37 1 +H62a28 2 (22)

hah h 2 -hI  h 2 -h1

1h3 hlh 4a46 = a48 =
h2-hI  h 2 ~h1

51I -1a5ih8l+B2 3a35sin 2 +I83 sinh83

F 3 1ac26 oshi-23a4 6cos8 2 +8 3 cosh83

61 3 6 124 3 3

F 71 = 1a 1 7sinh 1 -a2 3a 37 sin8 2+04 3sinO 4
71 a (23)

F81 1 3a28 cosh1- 823 a4 8cos8 2- 84 3cos8 4

52 = ha 1 5 2sinh 8-ha 3 5 sin8 2-h3sinh83

F62 =-ha 2 6 coshOl+ha 4 6 Coss8-hcosh83
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F7 2  -h'ai7 sinhOl+h a 3 7sinB2 -h4 sin4

F82 = -hla 28 coshOl+h~a4 8 cos82 +h cosa 4

F53 1 -t1a 1 5 coshB 1-t2 a3 5 cosa 2+t 3cosh8 3

F63 = t1a26sinhU -t2a46sin8 2 +t3sinhS 3

F73 t1a1 7coshB 1+t2 a37Cos 2-t4 cosa4

(24)

F83 = t1 a2 8 siih$1 -t 2a4 8 sin 2-t 4sinB 4

F54 = tla 15 coshl+t2 a35cosa 2-t3coshB3

F64 = -t1 a26sinh 1+t2 a 46si n82-t3s inh0 3

F = a-ta 17cosa-t 2 a37cosa 2+t4cosa4

F84 = -tla 28sinh 1+t2a4 6sin8 2+t4sin4
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F 61 F72- F62 F71 a F61 F82- F62F 81
a57 F5 1 F6 2 -F 5 2 F6 1  8 51F62-F52F61

(25)

F52F71- F51F72 F 52F -F 51F82
a6 7  F5 1 F6 2-F 5 2 F6 1  68 F F62-F 52F61

Then, kn are given by the roots of

= (F5 3 a5 7 +F63 a6 7 +F7 3) (F5 4a5 8+F6 4a6 8+F 8 4 )-

(26)

(F5 4a5 7 +F6 4a67 +F7 4 ) (F5 3 a5 8 +F6 3 a6 8 +F8 3 )=O

* Equation 26 is therefore the exact closed form transcendental

functional expression from which the eigenvalues k n may be ex-

tracted. The coupled natural frequencies are related to these

eigenvalues by the following expression,

D22 1/2E
n = n --- n 2 (X c c /Ac ) ... (27)

0

5.3.7

Computations

The extraction of the eigenvalues from the exact-closed form

transcendental expression in equation 26 proved to be a very chal-

lenging computational exercise due mainly to its complex nature,

the existence of branch points, the necessity to order the opera-

tor roots appropriately and the existence of numerical noise.
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The characteristic roots for the equations of motion, x

* were extracted in two different ways in order to assure accuracy:

one method was by using a Jenkins-Traub computational method from

the IMSL library. The second method was by using an exact-closed

form approach outlined in Abramowitz and Stegun.I0 When these

roots are being extracted numerically, they do not necessarily

come out in a continuous manner. Therefore a subroutine that re-

orders them so that they become continuous with respect to the

eigenvalue kn is also employed. Once this reordering of these

roots is completed, the parameters needed for computing the trans-

cendental function, F, in equation 26 are computed. Finally, the

transcendental expression itself is computed and the roots, kn o

are found numerically.

One interesting result is that the values of T are complex

* here. It is known, however, that each of the two uncoupled prob-

lems (bending or torsion) when treated separately has a real

transcendental expression for extracting the eigenvalues. This be-

havior of the transcendental expression for extracting the coupled

eigenvalues (i.e., being complex as opposed to being real) was the

first hint that led the first author to examine any possible math-

ematical similarity between the problem at hand (a coupled non-

damped oscillations problem) and simple damped oscillations prob-

lem in which the expression for determining the eigenvalues is in

general complex due to the need to determine the oscillation fre-

quency and the amount of damping in the mode, etc. In the coupled

problem the complex nature of this transcendental expression for

extracting the eigenvalues seems to be basically a reflection of
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the phase that normally should exist between the bending and tor-

sional modes. Realizing that in the damped case, there is a non-

conservative energy transfer between the oscillating system and

its environment as well as intermodal energy transfer, it became

clear to the first author that in the undamped coupled system

there may be a conservative energy transfer in the oscillating

system. At the time of this thought it seemed to the first auth-

or that if it made sense, the idea should provide an explanation

for the modal changes which were noticed during the studies at

Purdue and MIT as coupling in the system was changed. This

prediction which turns out to be useful and confirmed by other

.8
recent studies from Purdue University shall be discussed in more

detail below.

0 The most convenient way to obtain the eigenvalues, kn, was

found to be by graphical means. Thus the values of the real and

imaginary parts of the complex transcendental function T are

plotted against the values of k on the same curve as shown in

Figure 2. The values of kn at which the real and imaginary parts

of the transcendental function are simultaneously equal to zero

corresponds to the desired eigenvalues for this coupled problem.

One of the problems with the computational model described

above is that, when the coupling parameter, L2 , becomes identical-

ly zero, the coupled system of equations becomes computationally

ill conditioned and unsolvable. To circumvent this the results

for the uncoupled case (Ac/c = 1) are obtained from a series of

calculations using successively smaller values for the coupling

parameter, L This led us to accept the values of eigenvalues
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for zero coupling as the value corresponding to the limit as the

* coupling approaches zero. Although this continuity assumption

seems to make s'.-se, it is not backed by a rigorous mathematical

proof. Luckily it was possible to check these results with re-

sults generated for an isotropic/metal aluminum/wing 
by MIT, 3' 4

and the agreement was found to be good for the cases checked.

5.3.8

Results and Discussions

The natural frequencies wn for the coupled bending-torsion

oscillations for a composite aircraft wing in the presence of

elastic coupling and warping restraint is found (as shown by

equation 27) to be a function of the ratio (D2 2/p
1/2, the length

k and the nondimensionalized frequency parameter kn for the

wing. In this problem, kn, is a function of only two parameters,

i.e., A which may be considered as an effective nondimensional-c

ized aspect ratio and Ac/Ac, which in a way, measures the amount

of elastic coupling in the wing (Xc/Ic = 1 for zero coupling).

It is therefore seen from equation 27 that in order to increase

w one needs to make 1o as small as possible and/or make (D2 2/p)

and k as large as possible. Such an exercise may be necessaryn

when a tailoring of the frequency is needed to avoid instabili-

ties (e.g., very low structural frequencies may provide an atmos-

phere for a coupling between the flexible modes and rigid 
body

motions, which in turn has a potential to result in instability).

This kind of tailoring is made convenient through 
the use of equa-

tion 27 in which, for a particular wing configuration and compos-

ite material, every variable in the equation shall be known 
ex-
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cept kn and D2 2. Obviously if we want high wno as we said earli-

er, D22 should be made to be as high as possible (and of course ,

as low as possible). Once this is done the only other parameter

to be tailored is kn"n

The plot of 1 as a function of Xc and Xc is shown in Figure

3 for all configurations having low camber to twisting coupling,

and all values of bending to twisting coupling. The results com-

3,4
puted at MIT, which were used to verify the present results,

are shown in Figure 3 as well. The important trend made visible

is this investigation as shown in Figure 3, is that k1 (and hence

S1) decreases with increasing nondimensionalized coupling L2 ,

which perhaps may be a more effective way to actually measure and

compare elastic couplings, D16 and D 26 For example, the results

f rom MIT 3 '4 which were computed for some representative configura-

tions, in dimensionalized form seem to represent systems with a

fairly significant variation in coupling D2 6 or D1 6 (depending on

the coordinate system). However when nondimensionalized, the re-

sults as shown in Figure 3 seem to show little variation in coup-

ling. In fact they appear to be so close to the zero coupling

case (Ac/A = I) or isotropic (or metal) case, that for a metal
c c W

or isotropic wing should be a good approximation (if it was nec-

essary to make an approximation). The low value for the effective

coupling was also evident in the nondimensionalized results from

MIT 3 ,4 where the bending frequency hardly varied with material

changes. The question that could be asked is therefore "Do all

possible composite wing configurations result in very low 
effective

nondimensionalized coupling, (A c/A cl)?" If the answer is "yes",
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then it may be proposed that for A c>.5, kI (A c,)c/ c ) may be ap-

proximated as k (A cl), which is also the isotropic or metal

value. For this case it is seen that the computation of the na-

tural frequencies of composite aircraft wing having aeroelastic

oscillations, merely requires the computation of (D2 2/p) for a

given wing half span Z,0' since kn (cA c / c) is approximately

equal to Rn (A c,l) which is approximately equal to a constant

(3.5) for n = 1. This result should make frequency computations

for the bending mode significantly easier.

The proble;a with an affirmative answer which may likely be

a "practical" answer, to the question posed above, is that there

doesn't seem to be a theoretical or rigorous analytical reason

(to the best of the authorh' knowledge) why c /Xc must always be

approximately 1. Therefore, if on the other hand, the answer to

our question is negative, then the following observations may be

made: (a) significant variation in k1 is possible with variations

in effective nondimensionalized coupling ( cI c). In fact it can

be seen from Figure 3 that if c/Ic approaches zero, k1 (and hence

Wl) approaches zero. (b) The values of k1 vary significantly with

Ac for low Ac but approach asymptotic values for large Ac -

(c) The highest values of k is for isotropic (metals) or quasi-

isotropic configurations. (d) For large values of Xc, there ap-

pears to be a simple approximate (hopefully linear relationship)

between W1 and A /Ac (or a measure of coupling).. (e) For very

large coupling (Ac/Ac -0), k1 approaches zero, which may provide

the ingredient necessary for coupling between the elastic and ri-

* gid motions.
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Perhaps a number of implications of some of these observations

should be examined: Observation (c) seems to imply that the high-

est first frequency would correspond to isotropic or quasi-isotrop-

ic configurations if (D2 2/p) and Z are the same. It is known how-

ever the metals have lower values of(D 2 2 /P) than composites. It

therefore means that quasi-isotropic or orthotropic configurations

are desirable for such a design goal. Observation (e) would seem

to imply that if a designer, interested in tailoring the wing fre-

quencies, arbitrarily introduces large effective nondimensionalized

coupling (Tc/Ac+0), then W1 (and hence w1 ) would approach zero.

This may result in coupling between flexible and rigid motions

which may or may not lead to instabilities. Could this have hap-

pened in the case of the X-29 Forward Swept Composite Wing Aircraft

for which one of the primary modesof instability results from the

* coupling between flexible and rigid body motions? In other words

was "too much" coupling (effective) inadvertently built into the

wing during the design process? If that is the case, is there an

alternative, equivalent design without any penalties (weight or

otherwise) that could have been explored? Although the answers to

these questions can, strictly speaking, only be possible after car-

rying the necessary aeroelastic analysis in which unsteady aerody-

namic forces are considered, it appears from Figure 3 that a rough

idea of the final picture may be obtained from the natural fre-

quency analysis. Afterall, it is a common belief that the phenom-

ena that actually lead to aeroelastic instabilities are linked to

damping and coupling.
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Earlier in this paper it was mentioned that previous studies

by other investigators have found what appeared to be some kind

* of modal transformations as ply orientation was changed in a de-

sign process for a composite wing. While variation in ply orien-

tation may change several directional stiffness parameters for

the wing, the coupling stiffness parameter, L2 , may be singled

out as a significant design parameter, because it may vary con-

siderably (orthotropic configurations have zero values while it

may be fairly significant in other configurations). Furthermore

it should be remembered that the main reason for ply orientation

variation is for 'tailoring', which is believed to be primarily

tied to couplings (D1 6 and D2 6). The absence (or the presence)

of these couplings is basically what differentiates orthotropic

configurations from anisotropic configurations. From these ob-

servations, and the fact that the entity that ties the bending

and torsional equations is the coupling, it became clear that

the role of coupling in modal transformations should be signifi-

cant.

In order to see the role of coupling therefore in this stu-

dy, the modal assumptions for the coupled problem were made sim-

ilar to those normally made for the uncoupled problem (e.g., the

frequency was assumed to be real) so as to provide an opportun-

ity to compare, contrast and discern the final results easily.

When this was done and the eigen-problem was formulated result-

ing in a complex transcendental expression from which the eigen-

value are to be extracted, a careful examination began.

A significant difference between the coupled and uncoupled
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problems was that (as shown in Figure 2) the transcendental ex-

pression from which the eigenvalues are extracted is complex for

the coupled problem while it is real for uncoupled problems.

The complex nature of this transcendental expression basically

reflects the fact that the bending and twisting oscillations are

generally out of phase. Therefore the resultant coupled frequen-

cy that represents both the bending and twisting oscillation may

be viewed as some kind of vector representation of the individual

contributions. In order to formulate some explanations for the

phenomenon of modal transformation in coupled (conservative) sys-

tem, it may be necessary to compare and contrast coupled systems

with damped systems. Damped systems, by definition are noncon-

servative, i.e., the system experiences a net loss or gain in en-

ergy. It is well known that in a damped system the transcenden-

tal expression for extracting the eigenvalues is complex, again,

due to the phase angle that exists between the damping force and

the conservative forces in the system. It is also known that

some damping (desirable types) would tend to reduce the oscilla-

tion of the system (the non-desirable type tend to make the oscil-

lations diverge). Therefore since damping is linked to some ener-

gy transfer which in turn tend to lead to a change in the oscilla-

tion frequencies, it was thought that the complex nature which is

common to the coupled and damped system determinants (transcenden-

tal functions) from which the eigenvalues are extracted may be a

similarity that may provide some explanations to the modal trans-

formations in coupled systems. Using the similarity argument, the

coupled system which for the present problem, is conservative, may
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be viewed as having some conservative inter-modal energy trans-

fer within the system when the coupling is changed, resulting

in steady state changes or transformations of the modal energy

content of a coupled mode compared to the uncoupled case. It

may be worthwhile to point out that some results recently ob-

tained at Purdue University 8 and communicated to the authors

seem to strongly support this hypothesis.

5.3.10

Empirical Relations

A careful study of Figure 3 has led the authors to propose

the following closed form asymptotic relationship that may be

useful for some preliminary design consideration:

k 3.5 (X IA /X X >3-0 (28)

Equation 28 was derived from Figure 4. Equation 28 as well as

equation 27 show that the first coupled frequency decreases with

increasing coupling, a trend that seems to be supported by new

results from Purdue University8 and the data from MIT.3  In ref-

erence 3 for example, the first nondimensionalized frequency com-

puted by Raleigh-Ritz (in which coupling is zero) had a value of

3.52, which is consistently higher than those computed by finite

element method in which coupling is finite (not equal to zero).

Equations 27 and 29 which are closed form (generally rare for an-

istropic systems) should be easy to use.
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Before this discussion is concluded, it is probably necess-

0 ary to explain why only the results of the first mode are shown

in this paper. First of all it should be pointed out that some

second mode data have been generated but are still being studied

very critically to understand the general trends. It may also

be pointed out that the extraction of the eigenvalues is a little

challenging since some care is needed in ordering the roots of

the operator equations.

5.3.11

Concluding Remarks

This paper has attempted to present exact closed form solu-

tions to the coupled bending-torison vibration problem for a

simplified model of composite aircraft wings with war ping con-

straint. Increasing the coupling was found to decrease the first

coupled frequency. A comparison between the coupled problem and

a sample damped problem ,led the authors to propose some explana-

tion to the "modal transformation" phenomenon found by earlier in-

vestigators. Some simplified closed form expressions are provi-

ded for the first coupled frequencies which may be useful for fast

applications.

5.3.12

Acknowledgement

The authors acknowledge valuable discussions with Drs. A.

Amos, and A. Nachman who are monitors for the AFOSR Contracts

F49620-85-C-0090/F49620-87-C-00 4 6 under which this study was con-

ducted. We also appreciate Professor T. A. Weisshaar's efforts

* in providing the data for validating the results presented here.

Finally we acknowledge the programming efforts of Mr. John Calle-

73



ja, a graduate student in the department and we thank Mrs. B.

Hein for patiently typing the manuscript.

0

74



5.3.13
REFERENCES

1. Reissner, E. and Stein, M., "Torsion and Transverse Bending of

Cantilevered Plates," NACA TN 2369, June 1951.

2. Petre, A., Stanescu, C., and Librescu, L., "Aeroelastic Di-

vergence of Multicell Wings (Taking their Fixing Restraints

into Account,)" Aeromecanique, 1962, pp. 689-698.

3. E. F. Crafley and J. Dugundji, "Frequency Determination and Non-

dimensionalization for Composite Cantilever Plates," Journal of

Sound and Vibration, Vol. 72, No. 1, pp. 1-10, 1980.

4. Jensen, D.W. and Crawley, E.F., "Frequency Determination Tech-

niques for Cantilevered Plates with Bending-Torsion Coupling,"

AIAA Journal, Vol. 22, No. 3, March 1984, pp. 415-420.

5. Oyibo, G.A. and Berman, J.H., "Influence of Warpage on Composite

Aeroelastic Theories," AIAA Paper No. 85-0710, April 1985.

6. Oyibo, G.A. and Berman, J.H., "Anisotropic Wing Aeroelastic

Theories with Warping Effects," DGLR Paper No. 85-57, Second In-

ternational Symposium on Aeroelasticity and Structural Dynamics,

Technical University of Aachen, West Germany, April 1985.

7. Oyibo, G.A., and Weisshaar, T.A., "Optimum Aeroelastic Charac-

teristics for Composite Supermaneuverable Aircraft," Final Tech-

nical Report, AFOSR Contract F49620-85-C-0090, Report No.

AE002V7407, July 31, 1986.

8. Weisshaar, T.A., "Vibration Tailoring", AFOSR Contract F49620-87-

0046 Second Quarterly Technical Report, POLY AE Report 88-2,

December, 1987.

9. Hildebrand, F.B., "Advanced Calculus for Applications," Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, 1976.

@ 10. Abramowitz, M., and Stegun, I. A., "Handbook of Mathematical Func-

tions" National Bureau of Standards, US Printing Office, 1965.

-7 i-



THIS

PAGE

IS

MISSING

IN

ORIGINAL

DOCUMENT
/ (



Q) -H

4JI

0'

0) ty'

fa 4 rr. 4-)

4-) 0l
4- (L

S 4 Q

LI 0

V 8

3l

4JH
00,0

>

-4
04-1

.*'44

*-H 4

U,4

3.4

o0 0) 0 C0

en C'4

79



5.4 INVESTIGATION OF THE BASIC MECHANISM OF AEROELASTIC INSTABILITY

FOR COMPOSITE AIRCRAFT WINGS

* It is well known in aeroelasticity that the mechanism of instabil-

ity is governed by the interaction of aerodynamic forcing functions

and the vibrational modes of the structure. The aerodynamic forces

generally provides ingredients such as damping and coupling to such

an interaction. As a result, the structural modes may loose damp-

ing and/or stiffness which may result in some form of coalescence

of two or more modes leading eventually to instability which may or

may not be catastrophic. Physically therefore it is sdnsible to say

that some of the main ingredients of aeroelastic instability are

damping and coupling.

Crisp has shown that the necessary condition for instability may be

studied by investigating the matrix form of the aeroelastic equa-

tions of motion. Thus

[Al] {i} + [B] {qi} + [C] {Ci } 
= 0 (1)

where qi are the mode shapes and A,B,C, are the mass, damping and

stiffness matrices, respectively. He considered

T = 1/2 [qi] [A] {qi}

F = 1/2 [q i [B] {qij (2)

U = 1/2 [qi ] [C] {qi

where i and U are some generalized kinetic and potential energies,
2

respectively. F is basically the Rayleigh's dissipation function
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[A], [B] and [C), are symmetrical for elementary metal mechanical

systems but the addition of the aerodynamic and dampings spoils

this symmetry for metal or isotropic systems for the last two. In

the case of composite anisotropic system, aerodynamics is not even

needed for asymmetric [C], since such asymmetry can be provided by

elastic couplings. Crisp has further shown in the case with non-

symmetric [B] and [C] they may be decomposed into symmetric and

skew-symmetric portions or

[B] = [B1 ] + [B2] (3)

[C] = [C1l + [C2]

where B1], [C1 ] are the symmetric portions and [B2], [C2] are the

skew-symmetric portions. By considering the total energy for the

system T + U = E, Crisp obtained the follcwing expression for work

O done on this system,

dE

=-[ i]  [BI ]  {4 i} - [qi ]  [C2 ] {qi} (4)

It is then seen that without damping ([B] = 0), a composite wing

can exhibit a "damping-like" behavior as was shown in section 5.4

probably for the first time in aeroelasticity. This investigation

is being continued in order to search for the explanation for aero-

elastic tailoring. A preliminary plot of the second mode is pre-

sented in Figure 1. Figure 2 also shows that modal coalescence

NO,

Ri



is also a reality. Further studies have also shown that such a

coalescence could lead to instability. We are currently exam-

ining the necessary physical ingredients for such an instabil-

ity and its implications. Figure 3 shows a typical flutter in-

stability evolution process. Figures 2 and 3 therefore display

some interesting resemblance. We are in the process of discern-

ing the striking resemblance.
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Some Implications of Warping Restrdint

5.i on the Behavior of Composite Anisotropic Beams*

Dr. Gabriel A. Oyibo

Polytechnic University .

Farmingdale, New York I'

5.5.1 Nomenclature

(X,y,Z,), (XoyoZo) . - physical azd'affine space

coordinates, respectively

a. chordwise integrals

(ApdAp ) differential-aerodynamic pressure dis-
0

.,,
tributions in physical and affine space

respectively

r,LI,L2 ,D ,Do, generic nondimensionalized stiffness

parameters

T. affine space running aerodynamic lift

and moment, respectively
U, U virtual work expressionsin physical and,

affine space, respectively

Do. elastic constantg.
1)

affine space material and air density,

respectively

Research.. Sponsored b" the Air Force Office of Scientific Research

(AFSC), under Contract F49620-85-C-0090 and F49620-87-C-0046.. The

United Statep Govenment is.authorized to reproduce anA distribute

.reprints for goyernmuental purposes no-twithstanding any: copyright

notation hereon.

Associate Professor.!Aerospace Engin ering Dept., meber. AIAA
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w displacement

= wing box depth

(hoo) = affine space bending and torsional dis-

placement, respectively

c, c= affine space half-chord and chord, res-

pectively

jZ= affine space half-span for the wing
0

e parameter that measures the location of

the elastic axis relative to mid-chord

m 0 affine space mass per unit span

W vibration frequency

5,5.2 Introduction

The performance of modern supermaneuverable aircraft can be made

to benefit a great deal from, significant advances in materials

technology and the availability of more accurate aerodynamic pre-

diction capabilities. Supermaneuverability as a design goal in-

variably calls for an optimization of the design parameters. Op-

timization may be partially accomplished for example, by using

composite materials to minimize weight. Indeed, it has been known

that these composite materials can be tailored to resolve 
the dy-

namic or static instability problems of these types of 
aircraft.

The concept is referred to as aeroelastic tailoring.

While aeroelastic tailoring has tremendous advantages 
in the design

of an aircraft, the analysis which provides 
the basis for the aero-

elastic tailoring itself is generally very 
involved. This is ra-

ther unfortunate since a good fundamental 
physical insight of the

tailoring mechanism is required for 
accurate and reliable results;
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In this paper an attempt is made to lok at some dynamic theories

that can be used to understand the aeroelastic tailoring mechan-

ism. Specifically, the accuracy of the St. Venant torsion theory

which is relatively simple and frequently used in aeroelastic

analysis is examined with particular reference to the effects of

the wing's aspect ratio as well as other design parameters.

Although earlier studies I '2 ,3 have indicated that the St. Venant's

torsion theory is reasonably accurate except for aircraft wings

with fairly low aspect ratios, the theory supporting that conclu-

sion was based on the assumption that the wing is constructed of

isotropic materials. Basically, the St. Venant's torsion theory

assumes that the rate of change of the wing's twist angle with

respect to the spanwise axis is constant (foriconstant stiffness

and torque). This assumption is hardly accurate particularly for

modern aircraft construction in which different construction mate-

rials are employed and the aerodynamic loads vary significantly

along the wing's span. However, References 1-3 have shown that

(in spite of such an inaccurate assumption) the main parameter

that determines the accuracy of the St. Venant's theory is the

wing's aspect ratio. Thus, it was determined that the theory is

fairly accurate for moderate to high aspect ratio wings construc-

ted of isotropic materials. In recent studies 4'5 however, it has

been shown that for wings constructed of orthotropic composite

materials, the conclusions of References 1-3 need to be modified.

Rather than using the geometric aspect ratio of the wing to deter-

mine the accuracy of St. Venant's twist theory, it was suggested

that a generic stiffness ratio, as well as an effective aspect

ratio which considers the winq's geometry and the ratio 
of the
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principal directional stiffness, should be considered in estab-

lishing the accuracy of St. Venant's theory.

* The present paper is basically an extension of the studies that

were begun in References 4 and 5. In thiL study the task was to

examine the role of coupling (elastic coupling) on the accuracy

of St. Venant's theory applied to static problems. It was dis-

covered that coupling plays a very significant role on the ac-

curacy of St. Venant's twist theory.

5.5.3
Formulation

Consider an aircraft wing fabricated of composite materials and

mathematically idealized as a canti-levered plate subjected to

forces and moments. It can be shown that the equations of motion

for such a model can be described as follows.

ahoiv + a2aiV + a5 oiii+ poaho

SPoa2 ao = LO 0I

a2 ° 0 5o a 3o 0 40 oa3 0

Poa2 ho = M0

where 1 0 5 0 2dx

a == x0 a dx 0 a 3  f -c xo0

eco eco 0o

a 4  = 2 fco_ D*(-c)dx O0(2

ec0

L° = f o_ AD0dX°"  a a5  f 0ec L 2dx0

ec O  o

M fc x oAPodXo

5 0 30 ac ~

ecc 00
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and

- <e<O ; Co = 1-

U (D2 1/4 D D 2 + 2D6 6
0 D22 D1 1 /. D 11 D2 2 1/2

D1 2

ED* (D1  1/2 (4)

L4D 16 L4D26L1= 54 1/ 2 =  / /
1 (D1 1 3

4 (D2 2 )
1 /4  2  (D11 )1/4 (D2 2 ) 3/4

22 22

D. . are the elastic constants, p, is the material density, Ap isO 1)

the differential pressure distribution, w is the displacement, t

is the time, and h is the wing box depth.

5.5.4

Evolution of Warping Parameters

The evolution of the warping parameter with which to study the

aeroelastic warping constraint phenomenon for wings fabricated

of composite materials is a process that depends on the sophisti-

cation of the wing's mathematical model; whether coupling 
ef-

fects are included, whether the wing's chordwise curvatures 
are

included and so on. Therefore, any warping parameter is as good

as the corresponding wing's displacements assumptions. 
However,

the virtual work equation makes it possible 
for the analyst to

determine its effective independent variables 
even before the dis-
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placement assumptions are made. By non-dimensionalizing the

spanwise space variable in Equation (1), depending on whether one

is interested in the static, dynamic, coupled or uncoupled dis-

placements, one of the following warping parameters may be useful.

o D
1 o 3 * .

2

c A (n o - 2) (6)
c

where

D =D (l-D ) (7)
0

(ko/co) is defined as the wing's effective aspect ratio and D0

and L are the generalized stiffness and coupling ratios respective-

ly (defined in earlier work such as References 5 and 6).

Equations (5) and (6) represent the appropriate warping parameter

for dynamic deformation, static displacement with elastic cross-

coupling.

It was discovered in this study that evolving the warping param-

eter in a manner shown in Equation (1) thru (3), should enable one

to effectively investigate the effects of warping on the composite

wing's dynamics (or the accuracy of St. Venant's theory. From the

lamination theory for composites it is known that while D and

(L0 /Co) are always positive, L can be positive or negative.

However, from Equations (1) and (3), it is clear that whether a

composite wing has positive or negative coupling, the warping ef-

fect (in terms of Xc) is unchanged.
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5.5.5

Computa tions

By using the evolved warping parameters defined in Equations 7 and

8 and appropriate boundary conditions, the boundary value problems

associated with Equation (4) are solved in a closed-form manner to

determine the wing's static twist.

The wing loading conditions considered in this analysis are as

follows: (a) steady state distributed twist loads and (b). steady

state concentrated twist oads.

5.5.6
a. Steady distributed twist loads

For a wing with a constant uniformly distributed spanwise

twisting moment, f0 resulting from a steady state coupled

bending-torsion displacements, the exact closed form solutions

for the mode shape a, satisfying the appropriate boundary con-

ditions is given by

f 1 y sinh4Tcya0 (Yo0) c 3 040 2 Yo 2 4I
c (41 c (8)

1 (tanh4cX + (cosh4X JO -1
4c c oshO )

Equation 8 is therefore a closed form coupled twist distribution

for a composite wing with the warping effects accounted for.

where

yo - yo/ o (9)

When equation 8 is evaluated at the wing tip and compared to an

equivalent expression predicted by St. Venant's theory, the fol-

lowing expression is obtained.

aO (1) tanh4X c (i0)

a0(1)St.V 2X 9 X2 cosh4Ac cc
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where a° (1) is the wing tip twist given by equation 15 while

a0 (1) is the wing tip twist given by the St. Venant torsion

theory. A plot of equation 10 is shown in Figure 1.
5.5.7
b. Steady state concentrated tip twist loads

If the wing is under the influence of a concentrated

twisting moment, F at the tip as a result of a steady

state coupled bending torsion displacement, the exact

closed form twist distribution that satisfies these

equations of motion and their associated boundary

conditions is given by

6F0 t 0 sinh4A CYO tanh4X
C3 0 (4X 2 [Yo 4 + (11)

(coshX CYO -1

When the twist distribution given by equation 11 is evaluated at

O the wing tip and compared to its counterpart predicted by the

St. Venant's torsion theory the following expression is obtained.

a (1) tanh4A
o =1 c (12)
S(i)StV 4X

It should be noted that the ratio given by equation 12 was plot-

ted for the real values of A in references 5 and 6 and was shown
c

to represent conditions where any errors resulting from using St.

Venant's torsion theory are conservative (over-design rather than

under-design). In this analysis equation 12 is examined when XC

is imaginary, which is possible if L2 is very large. Under

such circumstances, equation 12 becomes

a (1) tan4 (0 -1c (13)

S(1) t9V 4X



Figure 2 depicts the conditions given by equation 13. It is

therefore seen from the figure that there are certain ranges of

c for which nonconservative errors are possible by using the

St. Venant's twist theory.

5.5.8
Results and Conclusions

The results are shown in Figures 1 and 2. Figure 1 shows a com-

parison of the static wing tip twist obtained in the present

study and that obtained via St. Venant's twist theory in the pres-

ence of statically distributed forces and low to moderate

coupling. Figures 2 shows the trend for concentrated forces and

substantial coupling. In Figure 1 it is seen

that the presence of coupling makes the errors of St. Venant's

theory worse. This seems to suggest that the more sophisticated

theory is more important for wings with coupling (e.g., wings

* aeroelastically-tailored using elastic cross-coupling).

ao(1)

Figure 2 also shows that nonconservative errors (I(I1 j>1) are

are possible. °St.V

Using Figures 1 and 2, the following conclusions can be summar-

ized: (i) ignoring warping arbitrarily using St. Venant's theory

could result in very significant errors (as high as over 80% er-

rors) in analytical results for composite aircraft wings, (ii)

warping ig more important (St. Venant's theory is less accurate)

for wings with coupling, (iii) St. Venant's theory (which has al-

ways been shown to be conservative(
1 '2 )), can be non-conservative

or St. Venant's approximation can lead to an unsafe design error

(under design rather than over design from a stability point of

*view).
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Figures

Figure 1: Wing Tip Twist Ratios for Simple and More Involved

* Theory (distributed load and low to moderate coupling)

.Figure 2: Wing Tip Twist Ratios Comparing Simple and More In-

volved Theory (with substantial coupling)
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Closed-Form Solutions for Nonlinear Quasi-Unsteady
Transonic Aerodynamics

Gabriel A. Oyibo*
Polytechnic University, Farmingdale, New York

The existence of exact closed-form solutions for nonlinear unsteady aerodynamics is established. The full

nonlinear unsteady velocity potential equations for an airfoil are considered. Evidence Indicating why the traditional

hodograph approach is Ineffective for solving these equations is provided. Therefore, a suitable mapping scheme is

employed In transforming these full nonlinear equations into the hodograpi plaoe. A close examination of the

resulting hodograph equations reveals closed-form solutions can be obtained for the nonlinear unsteady aerodynamic

characteristics of an airfoil in potential flow. The shockless transonic results presented In this Inviscid analysis show

trends that are in agreement with the results of previous investigators and available experimental data. "Dips" were

observed In the pressure distributions as the fkeeshearn Mach number is varied. It appears that there are finite

optimum reduced frequencies for the pressure distributions. This result might suggest a solution to the "transonic

dip" problem. Perhaps an Inportant practical consequence of this study Is the possibility of employing this

approach to solve an Inverse problem of designing an airfoil section with given or desired serodynamic

characteristics. Desirable candidates for such a design procedure would include supercritical osclating shock-free

or "trnsonic dipless" airfoil sections. Such airfoils, therefore, could be designed to meet both the performsoce and

stability criteria simultaneously.

Nomenclature Introduction

b,c = airfoil chord length and velocity of sound, HE hodograph transformation has been established as a

respectively .1very vital tool with which to analyze two-dimensional

(xz); (u,w) = Cartesian and hodograph coordinates, nonlinear steady transonic flow problems comprehensively.

respectively The significance of the hodograph representation results from

CP.CL = pressure and lift coefficients, respectively the fact that whereas the linearized equations in the physical
k,M = reduced frequency and Mach number, plane fail to explain certain observed transonic flow phenom-

respectively ena, the nonlinear equations, which more accurately describe

qP = resultant flow velocity and pressure, the flow, do not seem to have simple closed-form solutions in

respectively the physical plane. With the help of suitable mapping func-

= Jacobian of the hodograph transformation tions, these nonlinear equations could be transformed into the

F. = hypergeometric function and arbitrary hodograph plane,i - 
-4 where they become linear, resulting in a

constant, respectively possibility of obtaining closed-form solutions for them. Al-

= velcity potential and stream-function though the hodograph approach could introduce difficulties
quantity, respectively associated with involved boundary conditions resulting from

ai = integer and square root of minus one, some practical problems, many investigators believe that its

respectively advantages, particularly in terms of physical insights, far

p.0) = air density and oscillation frequency, outweigh its disadvantages.

respectively Outstanding contributions from various investigators have

1,7 = time and ratio of gas specific heats, been responsible for the development of the hodograph
resetively dmethod for solving nonlinear potential flow problems. The

= velocity potential and vector differential early work of Molenbrock' and Chaplygin2 was complemented
operator, respectively by the later efforts of investigators like Lighthill 3 and Guder-

,4 = transformed velocity potential and stream leg.4 Consequently, researchers like Nieuwland,' Bauer,
function, respectively Garabedian, and Korn,6 and Boersteel 7 were able to establish
uc=afoine space or nondimensionalized the hodograph approach as an effective design tool for

efficient airfoils like the supercritical shockless sections. Thequantities
=quantities at infinity basic idea here is to suppress the boundary-layer separation

o = angle incinned by velcity vector and by "pushing" the shock waves on the wing toward its trailing
p ii ed by at vedge and eventually diluting (or weakening) them as much as

Tr --dimensionless velocity variable possible. Sobieczky"9 and his collaborators have also pre-
sented interesting results more recently.

The hodograph transformation has been known and used
for over a century. Curiously, however, evidence from a
literature search seems to indicate that its use has largely been
restricted to the analysis of the nonlinear, steady, two-dimen-
sional flow problems like steady transonic flow.

_ _ 9MThe reasons for this restriction or why there has not been
Reeived April 20, 1987; revision received March 19, 1988 copy- an extension of this anproach to unsteady two-dimensional or

right @ i9 by G. Oyibo. published by American Institute of
Associate Professor. Aerospace Engineering Department. Member the literature as well. The implication, therefore, seems to be

A*As t Pthat such an approach can only be used to solve steady-state
AIAA.
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airfoil problems like performance and not dynamic instability By using Leibnitz's rule and Kelvin's theorem for an irrota-
problems (which require the unsteady flow solutions). tional flow as well as the assumption that a velocity potential

In transonic aeroelasticity, phenomena like the "transonic 0 exists, such that
dip" require nonlinear unsteady aerodynamics for their
understanding. The need to operate modem aircraft in the q (3)
transonic region, among other things, has been responsible for
the recent tremendous interest in transonic flow problems. in light of Eq. (1), Eq. (2) can be integrated to obtain the
Aeroelasticians and computational fluid dynamicists have following:
been investigating these problems with a good degree of a 0 dP q
success; Refs. 15-24 are just a few examples. As a result, - + (4)+ =W (
numerous computer codes are now available for computing at 2 Jp P p 2
transonic aerodynamics, many of them using various approx-
imations of the full nonlinear potential equations. In spite of where ( is a reference point quantity (e.g., infinity). Equa-
this progress, however, recent publications and presentations, tion (4) is basically the Bernoulli-Kelvin equation.
like Ref. 24, seem to indicate that a great deal still remains to By considering isentropic flow with the following relation-
be done to thoroughly understand aeroelastic phenomena like ship between the pressure P and density
the transonic dip. The author, inspired by a recent experi-
ence, '2 shares the view held by some investigators that a more pp = const (5)
fundamental approach could provide some of the necessary
physical insights for improving our understanding of these and defining the quantity c given by
phenomena. Such insights may not be readily extractable
from an analysis in which big computer codes are used. =- dP(6)

This paper presents the results of a preliminary investiga- dp
tion of the unsteady transonic aerodynamics in which the full
nonlinear unsteady two-dimensional velocity potential flow called the speed of sound, the Leibnitz rule can be employed

equations are employed. Evidence indicating why the tradi- to derive the following velocity potential equation from Eqs.

tional hodograph approach is not effective for solving these (I) and (4):

equations is presented. With the help of a certain mapping a
scheme, the nonlinear equations are transformed into the a2V2o-L- (V4r V4) + - V10 - V(V4 _ =[ V43] =0(7)
hodograph plane. A close examination of the transformed [at at
equations reveals that if J, the Jacobian of the transformation,
is prescribed, ab initio, the hodograph velocity potential When Eq. (7) is expanded and the vector calculus is carried
satisfies a linear second-order partial differential equation. out, the following nonlinear velocity potential equation in the
The significance of this result includes the fact that the physical Cartesian coordinates is obtained:
following results appear to be possible for the first time: a2 0 a243 2 , 820 82.0

I) Exact closed-form solutions for the nonlinear unsteady (c2 
-

2) 2 - uw + (c -

velocity potential can be obtained. ax 2 x z w at
2) The solution of an inverse problem of designing an a2l 02

airfoil section with given or desired unsteady aerodynamic -2w - 0 (8)
characteristics can be attempted.

These results, therefore, imply that it is possible to design an where
airfoil that can meet both the performance and dynamic
stability criteria simultaneously. a0 _o

The results shown in this paper are obtained by piecing the u = -, w= -- (9)
fundamental solutions in a manner similar to Nieuwland's ax
approach.' From these results it appears that there are "dips" Once Eq. (8) is solved for 43, the Bernoulli-Kelvin equation
in the pressure distributions as the freestream Mach number isvaried in the transonic region, a phenomenon that also has (4), along with Eqs. (5) and (6), can be used to determine the

varid i th trnsonc rgio, apheomenn tat lsohas ressure P as a function of the velocity potential 0b. Therefore,
been established (Ref. 24, for example) for the aeroelastic preres futn the eocient ial de.ie reoe
stability characteristics. It also is observed that there appear in terms of 0, the pressure coefficient C defined by

to be finite optimum reduced frequencies for the pressure P- P,
distributions. This. therefore, appears to agree with the trends C, = yP-Ml (10)
established by Marble26 for a quasi-one-dimensional flow. cPesdcan be expressed as

Equations of Motion 2 I
By considering the concept of "control volume" for a fluid C, = I 1+- M+,

flow, it can be proved from the first principles that the 2 2

physical principle of continuity of mass demands that the f [V0 .V_+ 2(003/0t)]pv-_l 1
following equation be satisfied for any arbitrary volume: q 2

+ q • V + p(V • q) = 0 (I) where M_, the reference Mach number, is given by

w (12)where q is the fluid-flow velocity vector, p is the fluid density, M 2
and V is a differential vector operator.

Using a similar approach, the physical principle of the
conservation of momentum can be represented by the follow- Traditional Ilodogralp Methods and Exact Solutions
ing equation: Early investigators like Molenbrock' and Chaplygin 2 were

able to show that if the steady approximation of Eq. (8) were
[ + 1 + mapped onto the hodograph plane using the Legendre trans-

+ (q "V)pq +pq(V • q) = -VP (2) formation, it is possible to determine the exact fundamental
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solutions (to this nonlinear equation). Of course, this was a where -,0, n = 0,1,2,3 ..... This is essentially a quasi-unsteady

breakthrough in the study of transonic flow. However, noth- assumption. Therefore, it can be argued that this analysis is

ing seemed to have been said about the applicability of this not really unsteady. Clearly a response to that argument is

type of transformation for solving the unsteady problem. In that the analysis is probably the first one in almost one

an effort to determine if the three-dimensional form of Legen- century to show that transonic (nonlinear) flows other than

dre's transformation can be used for solving Eq. (8), the two-dimensional or unsteady one-dimensional flows can be

following results were obtained. studied in the hodograph space. It thus provides an aspect of

Consider the transformation transonic flow that has never been seen before. If this assump-
tion seems crazy to some readers, it should be noted that it is

= xC + Zr + it - X (13) not without precedent. For example, this assumption is not
likely to be crazier than the famous von Kirmin-Tsien

which is the Legendre transformation in three variables, assumptions that led to the definition of a gas known as

where "Kirmin-Tsien" gas. This gas has the ratio of the specific
heats to be equal to - I, i.e., y = - I. However, the Kirmin-

84 84b 84i Tsien's approximation did provide good benchmark results
= .' = --a that compared favorably even with experimental results. The

analysis received the blessing of such important scientists as
LX. t LX (14) Sir M. J. Lighthill-particularly pp. 367-373 of Ref. 28.

x = Z = t = (-4) A second example is the fact that the so-called small-distur-

bance theory approximation has been known to give good

Equation (13) transforms Eq. (8) into its counterpart in the results. Therefore, it would seem that the primary (most

hodograph space given by important) thing in ny transonic flow analysis is the preser-
vation of the flow's nonlinear character. Every other thing

(c 2 
- C 2)[X,,,,X - X2,j + 2Cq[XqcX,, - xc,x,,] seems to be secondary.

Furthermore, it should be pointed out that as a conse-

+ (c2 
- 1)[XCCX, -- X2,] - 2[x, - x,-,X,C] quence of the assumptions in Eq. (19), if the steady-state

solution O(xO,zO) has shocks, such shocks would be retained

- 2q/xcz x, - XXn - XccX, + Xi2c, = 0 (15) in the quasi-unsteady solutions as well.
Finally, perhaps it also should be remembered that all of

Obviously, by comparing Eqs. (8) and (15) it can be seen that the transonic flow equations (and, indeed, all mathematical

Eq. (15) does not look easier than Eq. (8). This type of physics equations), including the Navier Stokes equations, are

comparison, therefore, explains why the traditional approach all approximations.
is not effective for solving Eq. (8). The nondimensionalized frequency (or Strouhal number) k

New Hodograpli Mapping Scheme is, as a result of Eqs. (16), given by

Before formulating the new mapping scheme that can trans- k ob

form Eq. (8) into its relatively easier counterpart in the (20)

hodograph plane, a nondimensionalization scheme, which
uses the following set of affine transformations, is considered. where w is the circular frequency of oscillations. If Eqs. (19)

Affllt Trainfonaatlu and (20) are substituted into Eqs. (17), the following equation
is obtained:bo

qob,, x=bxo, z =bzo, t =qo (16) ( 24, oa2o0 _o W 8-4, + k 2
00

q_ (c (4- U 2) 2-i 2uoA, - +o0 00

Equation (16) transforms Eq. (8) into its nondimensionalized -ik(uo + W) (21)
counterpart in the affine space, given by 2 + (

_L., 82, 2 020. Equation (21) also can be written in the following manner:

(c _U ) o-3 -- 2 __o + -aX) a24,o 024 az4,

8 ( ) -i- - 2uw 0  + - wO O O .0o xe az4o .+ (c o )aoZ2 4,

2 a2 0  2,, - O (17) 0

-x08io az0 f o 0 8

Although b in Eqs. (16) can be any arbitrary length quantity, 2ikq 2 (22)

it is convenient, at least for computational purposes, to

choose b as the chord length of a wing section. where q0 , the resultant velocity, is given by

Equation (17) is, therefore, the nonlinear velocity potential q2 = U 2 4 w2  (23)
equation in the affine space, where q 0 o

8o =8, c c Now consider the following transformation:-- wo = , Cc = - (1I8a)
ax" 8 q, Xo = Uoxo + WoZo -O o (24)

or

u w c (18b) where
q - q - q - r 0o 0 (25

Hodogrph Tramnsformation 
au a'(

" Consider 00 to be a harmonic function of the form given by X e (26)

no(oot )=o(o se- 1- When Eqs. (24-26) are substituted into Eq. (22), the

nn + tkt!;(n + )n - (19) following equation in the hodograph plane must be solved to
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obtain the transformed velocity potential: or

- 2 2 -- 02hi + -2 V( 0(33)
(e 2 u F _+2ua__) _ (33)

+ k2J u + - x L = 0 (27) To study the fundamental solution of Eq. (30), consider a
L of flow in which

where J -=(0) (34)

a. a,
U - =- (28) Therefore, a general solution of the form

j = Q(4) cos(mO + ) (35)
and e and J are the nondimensionalized steady-state velocity
of sound and Jacobian of the transformation, represented by can be assumed for Eq. (30) in order to obtain the following
Eqs. (24-26), respectively, equation for Q(4).

From Eq. (27), it is seen that if the Jacobian J is prescribed,
ab initio, the resulting linear equation can be solved closed- JQ0+ 2 0k2
form to determine the exact fundamental solutions for the PQqq + - +(

transformed potential X and, hence, 4. Consequently, these [G
solutions can be pieced together to determine the shape of an_ +r-~- I 2 + (kl- 0 (36)airfoil. Notice that the familiar steady hodograph equation l\mJ ( ?.J
can be recovered from Eq. (27) if k is set equal to zero. It also
should be noted that the presence of the Jacobian in Eq. (27) Equation (36) can be rewritten in a slightly different manner
should not necessarily be considered as an added problem in if the following definition is employed:
comparison to the steady hodograph equation in which the
Jacobian does not appear explicitly, since its behavior must be M - (37)
studied in both cases in order to ensure unique solutions.

Solution Methods where M is the local Mach number.

Although Morawetz2' has shown that continuous solutions Equation (36), in light of Eq. (37), becomes
for Eq. (27) (steady-state approximation was used to arrive at
this conclusion) for a closed body in the transonic regime do I / -)\1
not exist, investigators like Nieuwland' have shown that qQ, +q - M 2 +M 2 k 2 iQ. fundamental closed-form solutions of the steady approxima- r (
tion of Eq. (27) can be pieced together employing the appro- - (I - M 2)m 2 + = 0 (38)
priate boundary conditions to obtain interesting transonic [ =J
flows over airfoils. In this paper an effort is made to obtain
closed-form fundamental solutions of Eq. 27, which are con- Equation (38) must be solved to obtain the transformed
sequently pieced together after the appropriate boundary velocity potential j and, hence, the physical space velocity
conditions are enforced to study some steady and unsteady potential 4,. A similar approach can be used to show that the
transonic flows, following equation must be solved to obtain the transformed

stream function given by
Polar Coordinates

In an attempt to obtain fundamental solutions of Eq. (27), 4' = - C(4) cos(mO + 1 (39)
it is helpful to transform this hodograph equation of motion
into a polar coordinate system. i.e.,

Consider the following transformations:

= 4 coso, w--= sinG (29) 4'2 + 1 + M 2 + M2I(k2q

Equations (29) transform Eq. (27) into the following polar -(I - M 2)m2 + M2(k2 0 (40)
coordinate counterpart: + D10 (0

[(e)2 1 [(e)2  In general, Eqs. (38) and (40) are hypergeometric and,
2 +[ + - I y. +q )- I hence, can be satisfied by combinations of power and loga-

/ q /rithmic series. Finding solutions to the flow around a closed
+ 1k 21I,,+ 1k 2 =0 (30) body, therefore, becomes dependent on piecing these types of

k q \ = 410) series correctly. Employing such fundamental solutions to
construct the overall solution is obviously preferable to using

where J is now the Jacobian of the transformation into the arbitrary series, since these fundamental solutions are "solid"
polar coordinates whose relationship to J can be seen as in that they satisfy the equation of motion.
follows: in order to transform Eqs. (38) and (40) into the familiar

hypergeometric form, consider a reference q* given by
8(x°,z°) (31a)

J=0(,,---- 2 + + 1 q, -l2 (1

=(Xozo) (31b)" 8( 0 ,0 ) and a change of independent variable given by

O(x.z) _ (x0,z0) (4,0) 12 = 42I ) (42
a(4.) = (o,0) 0(6.,o) y f i \Y (42)

1 00
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Equation (42) transforms Eq. (40) to the following lem. Hence, no attempt has been made in this paper to
redocument the basis of this approach. Therefore, readers are

I - fO+[I (y -2-kJ°). ] referred to Ref. 5. Suffice it to say that the approach involves
-- I f L~+a lot of "bookkeeping" and patience. Furthermore, it must be

2k pointed out that this procedure can (and should) be better
M[I (Y + 1 2k 2Jo)] 0  (43) automated. This endeavor is currently in progress.

S- I- The flat plate results shown in Figs. I-6 have basically two
main features:

An exact fundamental solution of Eq. (43) can be given by I) Dips in the pressure distributions when the Mach num-
bers are varied in the transonic regime seem to agree with the

= B,,f "' F,,() (44a) general trends in the behavior of transonic characteristics such
as the lift coefficient, the so-called transonic dip, which is

where basically the loss of aeroelastic stability at transonic speeds.
2) The pressure distribution at a particular Mach number

= B,,f ' ' 2 F.(f) cos(mO +0 (44b) at a particular chord length seems to have an optimum
reduced frequency (Strouhal number),

where B,, are arbitrary constants to be determined by the

boundary conditions of a particular flow problem, and F,,(T) 100.
satisfy the following hypergeometric equations: e - 16-0( ,- '-- 2' 1 F 5*2030,P °

J) j30,, -2.0

+- (m+ 1)(m +k 2JO)F,,--O (45) C. I - 
0 .25

2 -

where I_ /

____ 20-/

An F,, satisfying Eq. (45) is a hypergeometric function 0-

given by 0.350 0.80 0.150 0.90 0.950 t. 1. I.0 1.100 1. . 0.2

- t Fig. I Pressure coefficient Ys Mach numbers for a lat pla te.
F,_ (-) = F(d,b: d; i) = I +.f

20

+ . ...... (46) J ."" 0 k- .0
I- ,"d(d+ -) " 4.0

k1 2.0
where " 0.5 0

13 0.5
d+ =m- (l+k 2 Jo); (b=--(m+l) -,2

(m +k 2Jo), d= m + ( (47) .0 I
In terms of the velocity potential, the fundamental solution

2i aF_(0 - 2  '____% _, ..... .... ..... -.......-
- 1 ( -) (-) + sin(mO + ) (48) 7 , -,

I- MB ,( m C.0 0.8W 0.850 0.9W 0.050 LOW .050 1.1 1.150 1.2
5.

Equations (44) and (48) represent some exact fundamental Fig. 2 Pressre coefficient Ts Mad amubers for m flat plate.
solutions for the stream function and velocity potential, re-
spectively, in the hodograph plane. In the examples shown in 0 . -" -. I 2.05

this paper, the stream function solutions were used in con- 0 / - k LO
structing the flow solutions. - .I

I I - 0.50C/p/e/ ,amh - 0.50 'e
The examples computed in this paper consist of the pres- /kr 0.30

sure variations with Mach numbers and Strouhal numbers -I20
(reduced frequencies) for some chosen points on a flat plate in '-' ,l0.10

a transonic flow and what may be considered as a preliminary P 1-'
attempt to compute the steady and unsteady transonic pres- -

sure distributions around a 70-10-13 supercritical wing section_.....
designed in the early seventies by Bauer. Garabedian, and -_ -

Korn. "'The procedure basically consists of trying to construct 2-

* compressible (transonic) flows using incompressible flowsS around an elliptical cylinder resulting in a shape different _____________________________________________
arou te cylinder eslp in heiffeent 0
from the cylinder with the help of the exact fundamental sno .5O o. o.o .00 0.0 1. 1.i5o I.i 35o I.o

potential flow solutions above. This procedure has been thor- A_
oughly documented by Nieuwland1 for the steady flow prob- Fig. .1 Pre"ure coefllent vs Mach nambems for a flat plate.
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a • -Iii 3i. .10

J * .10).0/ IW
..... M,"k..)

-M: 0.96
. .0.

.0-o

20- 
. .

0.1.0

0.20 0.6 0.0 0.0 1.02 k1.20 1.4 1.0 1.0 2.9 Fig. 7 Pressure distribution on a 70-10-13 supercritld airfoiL

Fig. 4 Pressume coefficient vs reduced frequency for a flat plate. (C,.) = 0.98, and the airfoil has a thickness ratio of 0.127. The
angle of attack for the steady computation was 0 deg. For the

--- M- 1.20 unsteady computations it is assumed that kto = 0.1, and that
J --o. M: 1.10 the airfoil is oscillating about the half-chord with a pitch

... .L amplitude of I deg. The main significance of Fig. 7 is that the
10. M o.9 approach outlined in this paper can be used to accurately

/ ...- U: 0.96 compute the pressure distributions for supercritical airfoils,
- M 0.9? since these pressure distributions compare very well with the

- ] ...----M 0.0 results obtained in Ref. 6 for the steady flow and also,l . .......- .. compare favorably with results of Ref. 15 for the unsteady

.,' .flow. Because of the fact that the analysis in this paper is
preliminary in nature, a more general set of conclusions would

. have to await more refined computations that are anticipated

40- in the near future. Finally, it must be pointed out that the
-I .results presented in this paper are basically shockless inviscid

- 1* results. Therefore, the plots shown for Mach numbers greater

20' than unity can only be approximations to the weak shock
' solutions.

0. . . . . . . 1 Concluding Remarks
02 This paper has attempted to establish the existence of exact

Fig. 5; Pr'essure coefficient vs ed (reqoe for a fRat plate. closed-form fundamental solutions to the two-dimensional
nonlinear unsteady potential aerodynamic equations. Evi-
dence indicating why the traditional hodograph approach is

20- not effective for solving the nonlinear unsteady two-dimen-
I Isional flow equations is presented. Therefore, suitable map-

"-- .20 ping functions are employed to transform the nonlinear
-- 1.10 potential flow equations into the odograph plane. An exam-

7.9 I ination of the transformed flow equations in the hodograph
"" 0.96r//U/ 

"  plane reveals that if the Jacobian of the transformation is
0 prescribed ab initio, the exact closed-form fundamental solu-

- M..0.92 tions for the velocity potential and stream functions can be
--- U.... . oIobtained. It is seen that such Chaplygin solutions can be used

in conjunction with the incompressible flow around elliptical
cylinders to construct transonic flows over interesting shapes

with the help of a methodology developed several decades ago
/ by investigators such as Lighthill' and Nieuwland for steady

flows. Computations of the pressure distributions for certain

0 0.20 0.40 0.00 I. 1.20 111D. 1.00 2.0 points on the flat plates seem to indicate that dips exist in the
k pressure distributions as the freestream Mach numbers are

Fig. 6 Pressue coeffilest vs educ frequency form Eat plate. varied in the transonic regime. The results also seem to show
the existence of optimum reduced frequencies for the pressure
distributions. A steady and an unsteady pressure distribution

Marble2" has shown similar trends for a quasi-one-dimen- are also computed for a 70-10-13 supercritical airfoil designed

sional flow. The result shown in Fig. 7 for a 70-10-13 super- back in the early seventies.' Although the approach needs

critical airfoil designed back in the early seventies,6 which is more efficient automation, the results computed show that it is

preliminary in nature, seems to indicate the feasibility of using feasible to use this approach to solve the inverse problem of

e the approach outlined in this paper in designing unsteady designing airfoils with desired unsteady aerodynamic charac-

aerodynamic characteristics for an airfoil. The pressure distri- teristics. This, therefore, implies the possibility of designing

bution for the supercritical airfoil. 70-10-13 shown in Fig. 7, airfoils that satisfy both the performance and stability criteria

is for a freestream Mach number oi 0.7 and a lift coefficient simultaneously.
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FORMULATION OF 3-D HODOGRAPH METHOD AND SEPARABLE

SSOLUTIONS FOR NONLINEAR TRANSONIC FLOWSt

Gabriel Oyibo
Polytechnic University
Farmingdale, New York

Abstract

Formulation of a three dimensional hodograph technique for

transforming the full nonlinear potential transonic flow equa-

tion from the physical space into an equivalent linear counter-

part in the hodograph plane is presented. A very careful exam-

ination of the governing nonlinear equations in the physical

space reveals that a mild constraint on the energy equation

(which may even enhance the accuracy of this nonviscous foripula-

tion) would permit the separation of the nonlinear flow equations

for an aircraft wing into a sectional component and spanwise com-

pgent. This separation of variables normally believed to be pos-

sible only for linear equations seems to have been possible (for

the non-linear equations) because of some inherent mathematical

symmetry of the 3-D nonlinear flow equations. The consequential

"three-dimensional" sectional equation is eventually transformed

into the hodograph plane where it becomes linear. A further

transformation of these linear hodograph equations into the char-

acteristic hodograph plane provides the opportunity of obtaining

the nonlinear flow field for a particular set of boundary condi-

tions by just solving a set of first order characteristic equa-

*Associate Professor, Aerospace Engr. Dept., Associate Fellow AIAA

1
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tions. The necessary computations can easily be carried out on

a computer. Some preliminary computations show good agreement

with previously computed data. This verification therefore pro-

vides confidence that the new tool can perhaps be used in an in-

verse manner to design a new family of 3-D lifting surfaces with

great potential.

+ Research sponsored by the Air Force Office of Scientific Research

(AFSC), under Grant 89-0055. The United States Government is auth-

orized to reproduce and distribute reprints for governmental purposes

notwithstanding any copyright notation hereon.
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Nomenclature

a,b,d,f coefficients of hodograph equation

complex constant and its conjugate, respectively

C p, Opressure coefficient and fraction of wing half

span (zero is wing root),- respectively

CC speed of sound and 2-D component of 3-D speed of

sound, respectively

Ci (i=l,2,...) coefficients of separated physical equations

E,t ellipse parameter and time, respectively

x fraction of chord length (zero is leading edge)

F term in hodograph equation

M Mach number

x,y,z Cartesian coordinates (flow, spanwise, and verti-

cal directions, respectively)

,,~w flow velocity components

u,w 2-D components of 3-D flow velocities

velocity potential and stream function, respec-

tively

X transformed potential

(D,X section component velocity potential and trans-

formed potential, respectively

A,a spanwise component velocity potential and separa-

tion constant, respectively

f,h functions in the hodograph plane

q,e flow speed, and flow angle, respectively

r,q ratio of specific heats and maximum speed, respec-

tively

,,'n characteristic coordinates
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p,k air density and circulation parameter,

respectively

X iz i  regular solutions in the complex characteristic

hodograph plane

hodograph variable and characteristic roots,

respectively

s,t conjugate complex characteristics

freestream quantities
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INTRODUCTION

It the iate 1800's, certain investlgalors 1.2 discovered that the hodograph

Lrazisforznatlon can be a very powerful tool for studying nonlinear Inviscid fluid flow

problems. Subsequently, later livestigators3 - 
14 were able to reveal that this method

could be used to design supercrltical airfoils with superior transonle performance

characteristics. Thesedevelopients constituted a breakthrough In the study of transonic

flow problems, which are characterized by equations which exhibit strong nonlinearltles.

The success of this method was due to the following two characteristics of solutions

obtained from the hodograph equatlonis as compared to solutions obtained from the

equations In physical space. First, the hodograph equations are linear allowing soittions to

be superihposed, which is not possible in physical space due to he nonlinearhty or the

r( V IIliell .' (li dJiO S. Scc OlI. tie plol l lal I(r rorllti.lng an Inverse problem In

lh(du'ograpih space therchy ailoviwig tie (iesli IIld Ilow IlelI to be specified as Input and

[e:ndlig o tO he re( ilred gcollletry SS thle ("om ,t1lled o)lli.l)mt.

I)csplte Whe smccess or this work. iis, or I.he Ito l(',ral)lm ,echtnque has unnecessarily

stlllfred rromin a IIajor (r tl=iWk: t1hat 1 S.h,1 WIre Is a t eernil belier that the hodograph

.."Ch litlle C(au (il i.' he ;1 pl| fe(I L(D It t%0EJ -,lI 'arII D:P| .I. a ri'Jniv prolp'leas. "'TIs implies that

iieli.mhcr unsteady two-dimeisiouial flow ior si.(/s.ly hrr'- liueti.loamal prol)lemns can be

,tudied iisljg a iodo)erahi) ,'irO:ich :uimI I I11I.; h',:: liIIoi.,.d I Ir il-re.st li. nid application

However, recent research performed by Oybo15 has shown that the

hodograph transformation is not limited to two-dimensional steady

flows. The work reported in this paper is a direct cosequence of

the discovery that, contrary to the aforementioned

general belief, the hodograph technique can be employed to trans-

form the nonlinear transonic flow problems with three independent

variables into an equivalent linear set of equations in the hodo-

graph plane.

The derivation of these transformed equations mark~the 
first

time in fluid mechanics that the hodograph technique

has been extended beyond steady two-dimensional flow using full 
po-

"ntial equations. It is important to note that a straight-forward
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application of the usual hodograph (Legendre's) transformation for

the case of three independent variables leads to an equation (cf.

quation (4) below) which is even more nonlinear than its counter-

part in physical space. While Equation 4 is consistent with the

earlier research work published by Guderley1 6 which was indepen-

dently verified by Cole and Cook17 ,21 using a different approach,

small disturbance (not full potential) equations were used. The

primary achievement of the new method was to find an alternate way

of defining the transformation so as to result in a linear system

of equations. The resulting equations have tremendous significance

for the solution of both steady and unsteady fluid flow problems due

to a number of features of the hodograph method in general and the

new equations in particular.

' .sJ1CC' the I.-'a1sfor"(ed V(eqii t IS are i i Iier, I.iie. allow superposition or solutions.

"'iiis z11cans tlhat ally COitlplel-e sol Itlkm rant be coi st.riieted froin a combination of

I' 11:111 iWcIlUL sol1t1Ous. Tihis will euithle "I anmlytic deteriination or the Influence of the

i1mapiL p-irn;imel.ers on the soluitlons and lhence will lead to a )etter understanding or the

flow physics. This is not possible With the nonlinear equations in

.n physical space where, except for specialized cases, only purely

numerical solutions are possible. These numerical solutions suffer

from the drawback that they are both approximate .and that it is dif-

ficult to understand .the effect that the important physical param-

eters have on the solution to the problem, since these effects have

to be deduced by studying the results from a number of different

cases.

Second, as shown below in Sectlonjl 1.1, tile form of the newly derived

hodograph equations for tile both the unsteady 2-D case and the steady 3-D case are

similar to the steady 2-D hodograph equations In that the highest order (second)

derivative terils are Identical for all three cases. The difference between the cases shows

t1p In the Inclusion of lower order terns which are not present h, the steady two-

(li,,mensional hodograph equation. Since the computational solution techniques and the

characterlstcs of partial differential equations are usually determined by the form or the

hightesL derivative terms, and since that formn Is ilentical to the steady 2-D hodograph

emqtatloas, then the solution lehlniques prevlously developed for steady two-dimensional
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Sliow should be directly applicable to the 3-D steady case. This Is particularly Important in

fie case or transonic flow due to the tiou-uniqueness of the solutions as proven by

20
Mlorawetz . For the case of 2-D steady flow, Garabedlian and 1orni have worked out a

systematic and efficient procedure to enable "closed" bodies to be developed In a

stralghtforward manner. Since the new equations are so similar to the ones solved In 1O,

this work is directly applicable to the current problem and forms the bases for excluding

non-realistic solutions from the admissible set.

Finally, and perhaps the most Important point. Is that the transformed equations allow

inverse solutions to be obtained, in which the pressure field Is specified and the body

geometry is calculated from closed form solutions. From the point of view of design, this

is the desired situation rather than the usual trial and error method of picking the

eometry and then examining the resulting calculated flow field. Thus solutions obtained

from the new hodograph method could lead to the design of new families of wing shapes

which should prove to have significantly reduced shock strengths and hence lower drag

when shocks appear at off design conditions. The fuel savings for the commercial airline

industry made possible by such an efficient wing design 
could ap-

-coach hundreds of millions of dollars 
annually and thus the pro-

posed technique as outlined in this paper could lead 
to immediate

and substantial industrial value.

In reference 15, the two-dimensional unsteady 
nonlinear transon-

ic flow case was treated using the new hodograph 
method and shown

to lead to results in good agreement with previous 
computational

solutions. The ease of obtaining solutions to the new equations

was demonstrated by using a microcomputer 
to obtain these solu-

tions. This should allow more room in big computers 
like the Cray

for design optimation rather than just solving 
for the flow field.

Since that time, the derivation of the 
governing hodograph equa-

tions in three variables has been extended 
to the important case

of steady 3-D flow. It is the purpose of this proposed paper 
to

delineate the formulation of the 
3-D hodograph equations and to

carry out a preliminary study of 
their solutions for the case of

steady flow around lifting surfaces 
of finite span.
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Equations (J7A) and (_7) probably are among the very few (perhaps

the first set) of separable nonlinear equations. It can be seen
that as a conse uence of equations (7aeither of the following

)eiter o thefollwingcon-.

straints on the energy (or Bernoulli) equation become necessary.

2 2
U c

+ -) = 0 in three dimensions ( 7)

or (u0 ,c..) = (Ui,,EC)A(a,y) (7h)

For the constraints in Equation (7f) to be enforced, I must
approach -1. This is either an interesting coincidence or
something is being said about the realities of the isentropic
assumptions in the potential flow formulations. This is because
r= -1 is the Karman-Tsien gas which has been shown to be so

accurate that the results using this gas agrees very well with
experimental results. This agreement which is really excellent,
can be seen in Figure F,5b in reference 19. Figure F,5b further
shows clearly that Karman-Tsien gas is very accurate even for
truly transonic flows (flows with supersonic bubbles). The
alternative constraint in Equation (7h) could be shown to work
provided that Up, C. represent the reference section free stream
velocity and speed of sound respectively.
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Theeforore, for steady 3 -) flows, tile lodograph equation to be solved Is:

+j + f -o 8)
(---V~j + (Z2-:F2)X.jj + 2TiWX 1VZ - f ~j- f 2Xj 13X ()

= 0, Equation (-8) reduces to the fanililar 2-D hodograph equation.

Equation (-8) Is similar to the 2-D hodograpli equation which has been studied For

almost a century. Therefore any miethods of solution for the 2-D hodograph equations are

also applicable to this new equation. Due to the natlieniatical symmetry mentioned

previously, the solution 'takes on the separated form given by Equation ( ) and Equation

( R) becomies the 2-D sectional analog of tie 3-D flow problem. From Equation (1120 the

following fornm are feasible solutions for tie spanwise component:

00

A(a.y) =- 1 A,,e 0 e' (9)

wher-e a n are constants deterlined by the boundary conditions of the flow and y Is tile

spanwise coordinate.

The general solutions of te sectional component of Equation (.'8) are in terms or

hypergeonmetric series. These solutions Pny be used along with the method or complex

characteristics in which te flow Is mapped into the unit circle In the characteristic

hodograph plan'e In order to obtain solutions for Equation ( 8). The goal Is then to obtain

the body strean function that encloses tie particular wing section ( e.g. the root section).

Thereafter the spanwise component is combined with this solution In accordance with

Equation (,. to provide the flow field over the entire 3-D lifting surface.

1.7. Nonlinear Thlree-Di,,esioual Transonic Flow Iuvestigation and

Construction

The fundaniental exact solutions to tite new ho(Iogrli)lh equations are hypergeonmetric

series in the hodograph space. As inentioned above, the equation system in the hodograplh

plane closely resembles the two-dlinciisional steady hodograph case for which

conputatlOilal tecllniquies are well estabilished. It Is expected that these solution

techniques will therefore be directly tranisferable to tie higher dimensiona cases. The

techilques that have been successfully applied lit previous lodograph analyses rail

genierally into two categories, either solutioms obtaied by superpositiol of a series of

[uu(ianenltal solutions as In tie nuamer of Nleiiwland 5 and , ww. also done lin Reference

15 or by converti -tie iroblil hilo nI lmllal value problem (or a

c icteristic Initial vale Iprohleim) Iby wlong Ihe inlCilIo(l or coimiplex cliaraeterLtles

developed I)y (;arl rii1."
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While either of the solution techniques can be used, the method of

complex characteristics has more appeal since the location of sonic

li.nes and limiting lines appear more naturally in characteristic

toordinates and thus this method is expected to be more promising

in this ongoing, study. .However, in the present study the: series

method way used for constructing the flows satisfying the necessary

boundary conditions for 3-D wings and to study the fundamental solu-

tions carefully to determine how to piece them together properly as

was done in Reference 15 for the 2-D unsteady case. The details of

this procedure are given in [15]. An alternate method, which fol-

lows the 2-D work of Garabedian, is expected to be the primary analy-

sis tool the next stage of the study, and consists of: (i) reducing the

linear hodograph equation into its canonical form, (ii) utilizing the meth-

od of complex characteristics to map the particular section flow on-

to the unit circle in the characteristic hodograph plane, (iii) ex-

amining the solutions to ensure that the body stream function en-

closes the particular wing section.

For that purpose, Equation (4B) reduced to Its canonical form, would lead to the

fr'Iowing system of first order equations:

Zf +X+Xf + W( = 0 , 2, +XXrq+ =W 0 (00)
a a

where and i1 are the complex characteristics and:

Z--Xi , x--=X i

X= d (13)
a

with:

b wv d-@2



Notice that the canonical system or equations (10-14) are first order equations

representing Equation (,8) or One way to solve these equations Is to map tile flow

field In the physical space into the region Inside a unit circle In the complex characteristic

hodograph plane and then use the incompressible solution to provide Initial data for

solving the characteristic Initial value problem resulting from the mapping. This approach

(thoroughly documentqd In 151) is efficiently automated for the steady 2-D case In a

computer code which we have obtained from Prof. Garabedlan. We have extensively

exercised this code and are thoroughly familiar with it, and hence have a major part of the

necessary code for the 3-D problem in hand due to the similarity between the 2-D and 3-D

equations. A full run of this code takes only 30 to 45 seconds on a Cray X-MP when run

with non-vectorized code. It Is expected that vectorization of tie code which Is currently

underway will enable a fully optimized (shock-free) 3-D wing solu-

tion to be obtained in about 10 minutes which appears to be signi-

ficantly faster than the time current computational transonic 3-D

codes would require to obtain an optimal flow.

. . 1 " hnvestigation of Fundamental Solution

In general either of the 
two methods outlined above 

can be exam-

ined and used. In that process, the fundamental 
solutions can be

studied very carefully, particularly 
to ensure the proper handling

of the singularities like the limiting 
lines, which are the zeros

of the Jacobian of the transformation 
and the branch lines, where

the Jacobian is infinite.

It is recognized that though the 
spanwise and sectional compon-

ents of the flow are (in a sense) considered separately, 
the funda-

rntal problem of shockless flow 
is basically to find smooth tran-

sonic solutions for Equation (1), describing a 3-D compressible

flow about a lifting surface 
of finite span. However, it is also



recognized as shown by Morawetz 20, that smooth transonic solutions

do not even exist for all sectional (2-D) shapes for the lifting

-rface (let alone for a 3-D lifting surface). The new hodograph

transformation helps us to overcome this difficulty by making it

possible to separate the 3-D flow into the two components mentioned

above and solve them as an inverse problem instead. If the span-

wise component is given by Equation ( 9), then the sectional com-

ponent is to be determined from Equations (10-14). In this study

therefore, we computed smooth transonic flow by piecing together the

hypergeometric series solutions to equations 18 as in reference 15

from a desired flow field and find the finite span lifting surface

which generates it. This procedure was used to find the necessary

a and hence the spanwise variation of the flow field. In order to

compute the sectional component of this smooth transonic flow by

the method of complex characteristics, the variables in Equations

(iD-kn can be extended into the complex domain where a characteris-

tic initial value problem along the complex characteristics may be

solved. While this procedure can be done in a purely analytic man-

ner, it can also be carried out conveniently on a computer. In the

ture work, we propose to use the computational approach by modify-

ing the existing code of Garabedian to include the additional terms

appearing in the sectional equation (Equation 8)). When this is

done as described below, the "3-D" section will be determined as

well as a which provides the unknown in Equation (,19) for the span-

wise component of the flow.

Considering Equation (13). for real variables, for supersonic flow, X+ and X_ are real

and Equation (i8) Is hyperbolic. This means that the Initial value problem, defined as

specifying x and z on any non-characteristlc curve as well as the characteristic Initial value

problem defined as one In which x or z Is specified on one characteristic of each family are

well posed. However, for subsonic flow, X+ and X_ become complex conjugates and

Equation (i8) Is elliptical. Here, both the Initial and the characteristic Initial value

problem are no longer well posed In the real domain, and hence boundary values are

generally needed for formulating a correctly set problem.

13 CREDIBILITY OF THE NEW IIODOGRAPII METHOD

As has been mentioned earlier, the 2-1) unsteady results haye been shown. In 1151

(which has been reviewed and accepted for publicatlon In the AIAA Journal?
to be accurate when compared with

previously PuiblIshed purely conputational results.



For the 3-D steady case, Figure 1 shows a comparison of preliminary results or the

calculation or the flow from the new method with results obtained by Spreiter18 using a

local linearization technique for the case of M=i flow around a rectangular wing with a

parabolic are section and an aspect ratio of 7.01. The results are shown to be In good

agreement, with the differences attributable to the approximate nature of Spreiter's
analysis.

Figurq,2.snow c' omparisonisbetween the results obtained using the new method and

those computed using the FL022 computer code or Jameson and Caughey 22. This code

uses a finite difference technique to solve the transonic full potenlial equations In non-
conservative form. For the casesshown of a rectangular wing at tw1t,. the results are

seen to be In xcellent agreement due to the more accurate model contained In the

computer code thai in the previous case. We thus feel that these preliminary solutions

give credibility to time 3-D analysis and give confidence as to its potential.

1, .RgLEVANCE OF PROPOSED TECHNIQUE

Critics of the use, for design purposes, or the full potential equations ( upon which the

hodograph method is based ) often say that numerical solutions of the either the three-

dimensional Navier-Stokes equations or the Buler equations would provide a more

accurate predlcton or the flow field, particularly at lower Reynolds numbers or In cases

involving strong shocks. However, accurate numerical predictions by themselves do not

necessarily provide design solutions, nor do they provide guidance to designers as to what

to do about poor aerodynamic performance nor any other adverse conditions resulting

from the predicted aerodynamic characteristics. In contrast, the solutions from the

hodograph space do provide these capabilities. in addition, It Is Important to keep In mind

that strong shocks are highly undesirable from a design point of view and should be

avoided. Thus the capability of predicting strong shocks In the flow field Is not Imperative

for design point calculations. For the off-design condition, It Is expected that for the

aerodynamic shapes developed In this research, much weaker shocks are expected than for

shapes designed based on two dimensional analysis. For this situation solutions to the full

potential equation are still valid and the simulation of shocks developed as part of the

proposed work should be adequate to predict off design aerodynamic performance.

Note that it is generally believed that the discovery of supercrltlcal wing sections was

made possible by the use of the hodograph transformation along with the full potential

flow equations (although classified experimental work was evolving the same airfoil shapes

independently). As a result, new characteristic fanmilles of airfoil shapes4 were defined and,

.n conjunction with wind tunnel tests, were proven to he the types a' shapes that can

postpone or eliminate loca.l .horks at ransonic speeds (a conceptual revolution!).
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in retrospect, it was not necessary to use a more accurate theory like the Navier-

Stokes equations In order to discover such an important, fundamental and revolutionary

esult. In fact, It has been shown that the boundary layer correction effects can, In most

cases, be satisfactorily incorporated empirically into tle Inviscld formulation (i.e., without

necessarily using the Navier-Stokes equations). In addition, the difficulties of generating an

appropriate grid and establishing tile appropriate far field boundary conditions and their

location for the computational solution of the equations still are problems that require

considerable numerical experimentation.

In spite of tile successful design of shock free airfoils using the hodograph method, true

shock free wings did not evolve from this work. One or the drawbacks or trying to use

supercrItical airfoils to construct 3-D lifting surfaces Is tile inherent significant sensitivity

or the transonic flow field to changes in Its physical parameters due to the strong non-

linearity of the equations. For example, small changes in a given set of transonic now

parameters can result in a significantly different flow field. This means, for instance, that

a supercrltical section designed to be shockless at a Maci number of 0.85 may end up

having strong shocks at a Mach number of 0.8 or 0.g. This type of behavior is very typical

oif a nonlinear system (which is what the transonic flow problem Is). The principle or

superposition which is useful In linear systems does not apply to transonic flow. This,

therefore, explains why a three-dimensional wing, designed with a set of two-dimensional

sections along its span that are individually shockless, does not necessarily end up being a

shockless wing. Unfortunately however, because the hodograph method (tile principal tool

for designing shockless sections) has been thought to be (up until now) a two-dimensional

tool, designers have had no choice but to use the superposition idea to design a three-

dimensional wing; this linearization practice (superposition) is fairly accurate in most flow

regimes except the transonic. The penalty for such an inaccurate practice Is the

reappearance of strong shocks (and consequent deterioration of aerodynamic performance).

Therefore, a three-dimensional hodograph approach should not only eliminate such an

incorrect prctlice but should also provide tile correct method for distributing the sectional

properties (e.g., thickness) along the span (providing perhaps new characterlstic families of

wing shapes) that may provide truly shockless, three-diMensional transonic wings. It is
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emphasized that the availability of a design procedure based on the three-dimensional

hodograph space transformation would provide insight not available from any other

approach.

The treatment of shocks is very Important for transonic flow. When the hodograph

approach Is used as an Inverse method, the shock is not treated, since the goal in such an

approach Is to produce shockless" airfoils. Some Investigators are skeptical about the

existence of "shockiess" airfoils, mainly because of the possibility of the appearance of

shocks at the off-design points. This is a genuine concern since the "shockless" airfoils

which have been designed using a two-dimensional theory have to operate frequently at

off-design points e.g. operation In a three-dimensional or unsteady physical environment

causing local off design conditions even at the design Mach number. The proposed work,

which deals with application of the hodograph technique to the three-dimensional wing,

should provide design points that are more practical and should alleviate such concerns.

Finally, this section may be concluded with a quotation from Sir M. J. Lighthill:3 "it

seenis likely that any general theory of compressible flow applicable to problems Unth

reqons both of sub- and supersonic flow (such problems have been called "trans-sonic')

must be based on the 'hodograph transformation' (due originally to Molenbroek 1890 and

Chaplygin 1g04)."

1._i. CONCLUSIONS

in this paper the formulation of a new 
3-D hodograph technique

is presented. It is shown that a mild constraint on the energy/

Bernoulli equation permits the separation 
of the nonlinear 3-D

flow equations over an aircraft wing into 
the sectional component

and spanwise component. These two component equations are 
solved

in both physical space (spanwise component) and hodograph-plane

(sectional component) and used for 
constructing flows over 3-D

wings.

While the formulation of the 
complex characteristics method 

of

solution for the sectional component 
is presented in this paper,

the hypergeometric series solution 
method is utilized for construct-

ing the flows whose results are 
shown in this preliminary computa-

Aion work. A good agreement is seen when 
these results are compared
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to the previous work of Spreiter, That verification of the pres-

ent work provides the confidence that this new technique which

seems to have significant potential also seems to possess some

credibility.
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I EXACT CLOSED FORM SOLUTIONS TO THE FULL NAVIER STOKES EQUATIONS
AND NEW PERCEPTIONS FOR FLUID AND GAS DYNAMICS

Gabriel A. Oyibo'
Polytechnic University
Farmingdale, New York

The full Navier Stokes Equations are carefully investigated using

the fundamental concepts of transformation group theory. This

reveals that in some transformed spaces Navier Stokes equations

can become very tractable mathematically and fairly transparent

physically. The careful examination and exploitation of these

findings permitted the formulation of rather general set of

fundamental exact closed form solutions to these equations

generally considered to be the most sophisticated mathematical

description for continuum fluid and gas dynamics. These

fundamental solutions are then used to construct the solution to

the 2-D steady flow over a cylinder, a problem which apparently

* has never enjoyed exact closed form solutions using the full

Navier Stokes Equations in the history of fluid or gas dynamics.

For incompressible flow with constant viscosity the laminar

separation points are predicted and are found to be in agreement

with experimental data. Similarly the pressure distribution as

well as the drag predicted by these new soiutions are found to be

in very good agreement with experimental data. This experimental

data verification therefore provides the necessary basis for

confidence in these new solutions and their legitimacy to be used

to explore and evolve new perceptions in fluid and gas dynamics.

In addition they should serve as benchmark solutions for

validating the CFD codes.

0

A*t. Ile Prnfmessr. Polytechile UYr|o ertty, Assotes. PeI1 ArTA
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6.0 STATUS OF PUBLICATIONS AND GRADUATE STUDIES

The significant results obtained thus far in this research program are being

compiled and written up for publication in suitable technical journals. AIAA Paper No.

86-1006, a paper based on the first phase of research has been prepared and was

presented at the AIAA/ASME/ASCE/AHS 27th Structures, Structural Dynamics and

Materials Conference held in San Antonio, Texas May 19-21, 1986. A paper, "Exact

Solutions to Aeroelastic Oscillations of Composite Aircraft Wings with Warping

Constraint and Elastic Coupling" has been accepted for publication by the AIAA

Journal. Another paper entitled "Some Implications of the Warping Restraint on the

Behavior of Composite Anisotropic Beams" has been published by the AIAA Journal

of Aircraft. In addition, a paper entitled "Exact Closed Form Solutions for Nonlinear

* Unsteady Aerodynamics", which provides the basis for the proposed next phase of

the program, has been published by the AIAA Journal and included in this report. In

the process of studying unsteady 2-D nonlinear transonic flows, what seems to be a

major breakthrough was discovered: this breakthrough is the discovery that the #-D

steady nonlinear transonic flow equations can be transformed into linear hodogragh

equivalent. This discovery essentially reverses a hundred years state of thinking and

belief in the scientific and mathematical community that the hodogragh method was

limited to the 2-D flows. The results of this discovery have been written up and

published in the AIAA Journal. In addition another paper AIAA 92-257 which presents

practical shock free 3-D wing for transonic flight is to be presented in June, 1992 at

the AIAA applied Aerodynamics Conference in Palo Alto, California. This research

* program seems to be seeing the beginning of what seems to be another breakthrough,



perhaps even more significant than what we have seen thus far. This is what seems

to be a discovery that transformations methods can even be used to effectively study

the ultimate set of equations in continuum gas dynamics known as the Navier Stokes

set of equations. This new finding could be the key to effectively unlocking the secret

of gas dynamics and aeroelastic phenomena for real gases with viscosity, which have

been blurry at best thus far. This finding has resulted in a preliminary paper accepted

to be presented at an international conference to be held in Colorado in August of

1992. It is being proposed that the investigation of these new findings be pursued in

a proposed next phase of research. This is because if the findings are correct this

could be the start of a new era of fluid or gas dynamics analysis.

Mr. John Calleja and Mr. George Papadopoulos have finished their Masters thesis'

under this project. The support of AFOSR under Contract F 449620-87-C-0046 and

Grant89-0050 of these thesis' are aknowledged in the thesis writeups.
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