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SECTION 1
INTRODUCTION

The increasing use of composite materials in  structural applications, such as
automobiles, aircraft and  space structures, is characterized by their high strength
(stiffness)-to-weight ratio, low maintenance costs and the flexibility in tailoring the
stiffness and strength to design requirements. As fiber reinforced laminates huve
plaved a more important role in high performance structures for the last 2 decades, the
need to have accurate stress and failure analysis become apparent for design or repair
purpose.

Recent development in the analysis of composite laminate coupons under uniform
extension indicated that the high interlaminar stresses near the free-edge are mainly
responsible for delamination failure [1]. Before delamination can be predicted on the
basis of a stress-based failure criterion, it is essential that a highly reliable estimate of
interlaminar stresses be available for the given situation. However, it has been
difficult to obtain solutions for the stress field because of the anisotropy as well as
heterogeneity of the material, and the difficulty of satisfying traction-free boundary
condition in a solution procedure based on the displacement formulation.

Consideravle research efforts have been devoted to the study of such free-edge
delamination problem. These can be classified as analytical and numerical approaches.
The analytical solutions are based upon simple elastic approximation [2,3] modified

higher order theory [4], Galerkin method [S], Perturbation technique [6], Boundary layer




theory [7], Reissner’s variational principle [8,9], Global-local model [10] etc, while the
numerical solutions are based on finite difference [11,12] and finite element methods
including displacement [13-16], stress [17] and hybrid [18,19] formulations. It was
found that some of the solution techniques were only applicable under certain
conditions. For this reason, a complete stress distribution was usually hard to obtain.
Although results calculated from various approaches have demonstrated similarities in
some cases, discrepancies do exist in the magnitude as well as sign of the computed
interlaminar stresses near the free-edge of lauminate coupons. (ne example is shown in
Figure (1) in which significant difference was observed for o, stress distribution along
the interface of [45/-45], laminate based on various solution techniques [19).
Apparently, one possible source of these discrepancies is that, in these methods, the
continuity conditions for displacements and tractions across laminate interfaces along
with traction-free boundary condition along free-edges characteristic of the real life
situation, can only be approximated to a limited extent. However, the credibility of
various methods in predicting the o, distribution shown in Figure (1) will be judged
later.

Due to the presence of singular interlaminar stresses mnear the laminate
free-boundary, edge delamination associated with various types of damage modes, such
as fiber breakage., matrix cracking, fiber-matrix debonding, etc., are observed to occur
under incremental loading. Delamination can be simply interpreted as separation of
laminae from each other in the laminate, and can occur under static, impact or fatigue
loading conditions. For the case of a symmetric laminate under inplane loading, the
strain components are essentially uniform throughout the laminate. Due to the

free-edge effect the out-of-plane interlaminar stresses, however, may be sufficiently
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large to damage the matrix material, which bonds adjicent plies together, and cause
delamination.

Two generic approaches are available for investigating damage modes in composite
materials. The first approach involves a detailed stress analysis used in conjunction
with a failure criterion to predict, and measure experimentally, the onset of fiber
fracture, matrix cracking and delamination. This can be referred to as the strength
characterization approach.  In  the second approach, classical linear elastic fracture
mechanics can be applied to characterize matriy cracking and the delamination process.
Delamination has usually been isolated from the other damage modes and treated as a
stable crack growth [20-25], and the basic character of the strain energy release rate
has been widely used to predict the kinematic behavior of delamination. However,
experiments [26] have indicated that delamination usually does not produce a clean
surface between the adjacent plies; instead it is associated with other types of damage
such as matrix cracking and fiber breakage. Thus, use of linear elastic fracture
mechanics approach to study delamination growth seems to be inappropriate.
Meanwhile, due to the irregular occurrence of various damage modes in the form of
different cracking patterns, use of anisotropic strength and failure criteria is apparently
superior to the f{racture mechanic approach for the determination of damage
characteristics such as type of failure mode, damage zone and crack growth behavior
including delamination.

The primary objective of the present research was to develop a finite element
model with a sound theoretical background, which could accurately and efficiently
predict the complete stress field of the free-edge stress problem in composite laminates

without resorting to any special singularity elements. The next was to incorporate




various commonly known macroscopic failure criteria into the finite element
computational procedure to evaluate the performance of various criteria on the
determination of onset of matrix cracking and delamination in the composite laminate
specimens under uniform extension. In Section I, a review of analytical and
numerical methods related to the free-edge stress problem is presented. Section I
contains the theoretical foundation of the finite element formulation including basic
variationpal principles.  Section IV describes a continuous strain finite element maodel
based on a compatible cubic interpolation function. A continuous traction finite
element procedure for analysis of free-edge delamination specimens is developed in
Section V. In Section VI, analysis of f{ree-edge effect as well as onset of delamination
in various types of laminated specimens are presented. Section VII contains discussion
of the proposed finite element models for analysis of free-edge delamination specimens.
Derivation of Felippa's compatible cubic interpolation function is summarized in the

Appendix.




SECTION 11
REVIEW OF EARLIER WORK

2.1 Introduction

The problem of calculuting interlaminar stresses near the free-edges of a layered
composite under uniform inplane extension has been investigated by many researchers.
Most approximate solutions [2-7,10-19] are based upon elasticity theoryv and treat the
problem as a generalized plane strain case. This is because first of all, the classical
and even many of the refined laminate theories, are single-layer theories which do not
account for local effects such as geometric and material discontinuities, and the presence
of a free-edge; secondly, use of discrete layered theory is very uneconomical and
impractical from the computational stand point. An effective modulus formulation [27]
in which each layer is characterized as a homogeneous, anisotropic material has been
widely used [1-19] A complex state of stress with high gradients has been noticed
[19] in the neighborhood of the free-edge due to the presence of interlaminar stresses to
keep the laminae in a state of equilibrium. In order to have a precise prediction of
delamination behavior, an accurate estimate for the near-field stress distribution is
essential. However, due to the singular nature of the boundary-layer stress field [19],
an exact solution is currently unavailable, and discrepancies exist in the magnitude and
even the sign of the computed interlaminar stresses near the free-edge (Figure 1) based

on various approximate theories.




22  Analytical Approach

Except for Pagano's [8] approximate theory based on Reissner's variational principle
and Pagano and Soni's [10) Global-local model, most analytical solutions discussed in
this section are obtained by using various engineering methods to solve the
displacement-equilibrium equations under certain assumptions. Thus, these can be

regarded as approximate solutions based upon elasticity theory.

2.2.1 Approximate Elasticity Solution

Investigations of the free-edge problem was carried out by Puppe and Evensen [2]
using a composite model essentially consisting of a set of anisotropic layers separated
by isotropic adhesive layers. It was assumed that the isotropic layers, developed only
interlaminar shear stresses, acting as an adhesive between the anisotropic layers. It was
reported that a sharp rise of the interlaminar shear stress could be observed in finite
width Jaminates. However, the simplicity of these elastic formulations precluded
calculation of the transverse normal stress, and the problem became more complicated
when more layers were involved.

In an attempt to approximate the interlaminar normal stress, a simplified formula
was developed bv Pagano and Pipes [1]. The strategy was to use solutions along the
longitudinal mid-plane of the laminate based upon classical laminated plate theory, one
could then compute the force and moment resultants caused by the interlaminar stresses
on any plane z=constant through consideration of static equilibrium. The maximum
interlaminar normal stress at the free-edge could then be expressed in terms of the
transverse stress in the y-direction calculated from the laminated plate theory.

Another approximate elasticity solution proposed by Pipes and Pagano [3] was based

upon displacement-equilibrium equations for an anisotropic elastic medium. Assuming




the transverse stresses in the y-, z- directions to vanish, the equations were written in
terms of the single variable U (axial displacement function). This yielded components
of displacement, strain as well as remaining stress fields in the form of
sinusoidal-hyperbolic series. However, violation of stress equilibrium in the transverse
directions as well as neglect of the interlaminar normal stress constituted major

drawbacks of this scheme.

2.2.2 Modified Higher Order Theory

Paguno [4] derived another approximate method for determination of distribution of
the interlaminar normal stress along the mid-plane of a symmetric, finite width
iaminate.  The approach was based upon a modified version of a higher order theory
proposed by Whitney and Sun (28] which recognized the effect of shear deformation
through the inplane rotations as well as the thickness strain implemented in the
assumed displacement field. However, like the approximate theories discussed
previously, none of them were able to determine the complete stress field near the

free-edge.

2.2.3 Galerkin's Method

Due to the fact that high stress gradients occurring near the free-edge are difficult
to estimate by numerical approaches, Wang and Dickson [5] applied the extended
Galerkin's approach, in which interlaminar stresses and displacements of each layer
satisfying pgeometrica! boundary conditions were represented as series of Legendre
polynomials. The final solution was reached by requiring the satisfaction of continuity
conditions at each interface as well as stress boundary conditions at exterior planes.
Due to tl- completeness of legendre polynomials, convergence of solutions could be

expected.




224 Perturbation Technique

In an effort to obtain more accurate {ree-edge stress intensities, a perturbation
technique was applied by Hsu and Herakovich [6] to solve the three coupled
dimensionless partial differential equations based upon a displacement formulation of
the elastic problem. It showed that the perturbation solution provided a smooth
continuous stress distribution in the vicinity of the free-edge. However, this solution
had the limitation that the shear stress distribution was a function of both laminate
thickness-to-width ratio and » problem-dependent parameter. Although the latter could
be chosen such that the maximum values of shear stress field did not exceed elastic

limits, the accuracy of the calculated stresses was suspect.

2.2.5 Boundary Layer Theory

A boundary layer theory for laminated composites in plane stress was developed
by Tang and Levy [7] from the three-dimensional theory of anisotropic elasticity. By
expanding the stresses, displacements, body forces and surface tractions in power series
of the half-thickness of a lamina in the equations of equilibrium, compatibility and
boundary conditions, a sequence of systems of equations was obtained. The complete
solution was obtained by combining solutions of the interior domain based on the
classical lamination theory and those from boundary layer and matching a set of
appropriate boundary conditions. This formulation indeed provided a way to obtain
analytical solution for estimating interlaminar normal as well as shear stress

distribution.
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22,6 Reissner’'s Variational Principle

In order to have displacement as well as stress continuity, a mixed formulation is
sometimes used. Unlike the elastic approximations discussed previously, Pagano [8]
developed an approximate theory for a general composite laminate based upon an
application of Reissner’'s variational principle. In this theory, the inplane stresses are
considered linear in the thickness coordinate while the transverse stresses derived from
equilibrium consideration are cubic. If a laminate or a single lamina is viewed as an
assembly of N sheets, each having a finite thickness and required to satisfy force and
moment equilibrium, the analysis led to a set of 23N algebraic and ordinary
differential equations which had to be solved simultaneously. Based upon the
assumption that the stress field is independent of the longitudinal axis, Pagano [9]
further specialized the theory to the free-edge problem by reducing the stress field
determination to the solution of a one-dimensional problem. Despite the relative
accuracy of this theory resulting from the improvement of smoothness for both
displacement and traction fields at interfaces between adjacent layers, a major drawback

was that its application was limited at most to six sublayers.

22,7 Global-local Model

Pagano [10] introduced a global-local model, which was able to define detailed
response functions in a particular, predetermined region of interest while representing
the remainder of the domain by effective properties, that reduced the number of
variables in a given problem. In this model, for the global region of the laminate,
potential energy has been utilized, and the displacement components were based upon
the assumption given by Whitney and Sun [28] The Reissner variational principle

described in [8] however, was applied for the local region in which a thickness
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distribution of stress field satisfving equilibrium equation within each layer was
assumed. A variational principle was then used to derive the governing equations of
equilibrium for the whole system. It was reported that the global-local model could
effectively solve the same class of free-edge stress problem as described in [8] and had

wider range of applicability.

2.3 Finite Differcnce Method

2.3.1 Pesudo Two-dimensional Analysis

Pipes and Pagano [11] used the classicul theory ol hnear elasticity to formulate the
problem of free-edge delamination of a4 strip under umform axial strain.  Allowing for
material symmetries and uniform extension, the transverse components of displacement
were assumed to be independent of the longitudinal coordinate. The three coupled
elliptic equations for the displacement functions were solved using a finite difference
solution technique to approximate the interlaminar stresses. Delamination was assumed
to be primarily due to the high shear stress near the free-edge and the interlaminar
stress field was found to be an edge effect which was restricted to a boundary region

approximately equal to the Jaminate thickness.

232 Three-dimensional Analysis

A three-dimensional finite difference analvsis was carried out by Altus, Rotem and
Shmueli [12] to examine the free-edge stress field. The displacement equilibrium
equation was solved by using central difference method while for displacement or
traction-free boundary conditions as well as interfacial continuity conditions, either

forward or backward difference scheme was applied. Convergence of the solution was
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expected providing a reasonable displacement field was assumed initially. Although &
complete stress field was availuble due to three-dimensional characteristics, an iteration

scheme could be a serious inconvenience.

24 Finite Element Method
In order to more effectivelv evaluate the high gradient stress field at the free-edge
of  laminated composites, the popular finite element method has been applied by

numerous investigators.

2.4.1 Displacement Method

Wang and Crossman [13] used a verv fine, constant strain triangular element gprid
to model the laminate boundary region through a cross-section. The functional
dependence of the assumed displacement field was of the same type as in Pipes and
Pagano's analysis {11} To overcome the difficulty of computational storage and time
limitation, the solution process adopted the so-called “"sky-line” matrix storage scheme.
The results indicated that the interlaminar as well as inplane stress singular behavior
was highly localized in angle-plv laminated composite. A simplified method for
calculating interlaminar stress was proposed [14] wherein the stresses at the desired
layer-interface were evaluated by substructuring the laminate with fewer number of
effective layers. This reduced the number of laminar interfaces and facilitated fimite
element calculation within fewer elements.

A quasi-three-dimensional finite element analysis was carried out by Raju and
Crew [15] using eight-noded isoparametric elements. In nrder to approximate the stress
singularities, polar mesh was introduced near the intersection of interface and free-edge,

associated with a so-called log-linear procedure to relate the steep gradient stress with
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the radial distance from the singular point in the logarithmic coordinate. One major
drawback of this scheme is that the power of singularity has to be determined by
solutions calculated from finer polar mesh near the interface of the free-edge.

Whitcomb, Raju and Goree [16] further pointed out that the disagreement for both
magnitude and sign of the interlaminar normal stress distribution among various
numerical methods could be attributed to the unsvmmetric stress tensor at the
singularity. In their approach too, the problem was modeled by eight-noded
isoparametric elements. It was concluded that finite element displacement models were
capable of giving accurate stress distributions everywhere except in the region within
two elements of a stress singularity.

In summary, we observe that in the couventional displacement-based finite element
formulation, evaluation of shear as well as normal stresses required expensive mesh
refinement near the boundary region to approximate the singular stress field. Even
then the actual stress distribution along the free-edge was generally not sufficiently

accurate.

2.42 Stress Method

Rybicki [17] used a three-dimensional equilibrium finite element analysis procedure,
based upon minimization of complementary energy, to solve the free-edge stress
problem. Due to the fact that the assumed stress state in the analysis did not contain
singular term, a finite rise in interlaminar normal! and shear stresses near the interface
corner was observed for angle-ply layup. However, this method involved very iarge
matrices and was computationally expensive, and even at that did not yield a

continuous stress field.




24.3 Hybrid Assumed Stress Model

In Pian's hvbrid model [29], stress equilibrium in the interior of the elements as
well as displacement continuity along interelement boundaries are ensured, but the
interelement stress continuity is satisfied only in a weighted integral sense. Following
Pian's formulation, Spilker [18] developed a special hybrid element for the edge-stress
problem. In his work, the assumed stress field was made to satisfy exactly the
continuity  of  traction across interlayer boundaries as well as traction-free conditiens
along exterior planes of the laminate. This was found to be effective for study of
cross-plyv laminates having a relativelv simple stress field. It is difficult to extend this
procedure 1o angle-plv laminates because in these the complete stress field has to be
considered.

A special formulation of a singular composite-edge element was developed by
Wang and Yuan [19] based on the Boundarv-layer theory [30] and the variational
principle of a modified hybrid functional. In the analysis, the singular hybrid element
was used in conjunction with displacement-based eight-noded isoparametric elements, and
it was reported to give satisfactory stress distribution near the free-edge. This method
is excellent for determining possible growth of delamination but would be awkward to
use to predict occurrence of delamination in an intact specimen. This is because

sometimes. it is hard to find the place in which stress singularity may occur.

2.5 Summary and Research Motivation

The analytical and numerical solutions discussed above for the free-edge stress

problem are summarized in Table (1). Some conclusions can be made at this point.
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Generally speaking, an analvtical solution for the complete stress field is
extremely difficult. The solution procedure for the case of a multi-layer
system is not currently available.

Use of a finite difference technique suffers from geometric limitations.
Calculation of stresses at the interfaces or laminate boundaries needs to apply
additional techniques, such as iteration scheme. Even then the solution
generally lacks  adibility.

Conventional  displacement-based  {inite element methods are incapable of
predicting accurate stress lields particularly along element boundaries.  Stress
equilibrium approach is apparently impractical. Use of hybrid element does
improve stress calculation but is applicable only to some special cases.
Application of singular element near the free-edge boundary apparently makes
the analysis too subjective. In order to have reliable predictions of
displacement and stress fields, it is necessary that the free-edge stress model be
able to approximate the real life situation as closely as possible. In other
words, the displacement and stress continuity conditions along with
traction-free boundary condition have to be exactly satisfied. Considering also
the generality and effectiveness of the analysis, the displacement-based finite
element approach with higher order interpolation function could conceivably be

superior to the other approximate theories.
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SECTION Il
VARIATIONAL FORMULATION AND FINITE
ELEMENT APPROXIMATION IN LINEAR ELASTICITY

3.1 Introduction

In this section, a variational formulation of three-dimensional elasticity is described
and its use as the basis of a finite element approximation is discussed. The treatment
essentially follows that in reference [31). Variational formulation has been used as the
basis for direct methods of obtaining approximate solutions to boundary value and
initial boundary value problems. Traditionally, the approximation space is generated by
complete orthonormal sets consisting of eigenfunctions of self-adjoint operators. The
functions which are used to approximate the field variables are required to satisfy
certain continuity requirements over the whole domain. The finite element method,
however, offers an alternative route for generating the sequence of finite dimensional
approximation spaces. The region under consideration is subdivided into a finite
number of discrete elements, and the field variables are represented by functions which
follow the same continuity condition only piecewise within each element. Some
significant differences between the finite element method and the traditional direct

methods include [31]

1. The base functions have local support and are nonorthogonal.
2. The sequence of approximation spaces is ordered by refinement
3. The local support functions may have only limited smoothness
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The support of each base function is confined to the neighborhood of a nodal
point and extends over the elements of the finite element approximation sharing that
point. Across interelement boundaries within the support and at the boundary of the
support, the function may have only limited smoothness. In a sequence of refinements,
additional nodal points, elements and base functions are introduced. The base functions
associated with each nodal point change with refinement, including a monotonic
decrease in suppurt.  Additional discontinuities might be introduced at each refinement.
Variational formulations and solution procedure for direct methods based on the finite
element approach must allow for these peculiarities of finite element approximation

spaces.

3.2 Boundary Value Problem
Consider an open connected region R in an euclidean space. @R is the boundary

of R and R its closure. A typical boundary value problem on R is defined by the set
of equations

Au=f on R (1)

Cu=g on R (2)
where A is the field operator and C is the boundary operator such that

A:D, -V, 3)

(‘.:])(,’R--'VaR (4)
Vg, Vg are linear vector spaces whose elements are defined on the regions indicated
by the subscripts. Dy, DaR are dense subsets in Vg, V., and denote the domains of A,
C respectively. D, is the extension of Dy ie. any element u€D; has a unique

extension in Dy, and every element in D, is the extension of an element (not
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necessarily unique) in D,. For given f€V,, g€V, the boundary value problem
consists of determining u€D, along with its extension in Dy such that (1) and (2) are

satisfied.

3.3 A Variational Principle
Let the linear operator A be self-adjoint, ie. there exists a nondegenerate, linear
Gateaux differentiable, bilinear mapping By :D XV_,—S, where S is a linear vector space,
such that
B (u,Av) =By (v,Au) + Cy(v,u) u,v €D NV, (5)
Here, Cy(v,u) are quantities associated with the boundary @R. Magri [32] has shown
that such a bilinear mapping can be constructed for every linear operator A. If the
boundary operator C is‘ consistent [33] with the field operator A, ie., there exists a
nondegenerate, linear Gateaﬁx differentiable, bilinear mapping By, :DgXV,—S, such that
Carlviu) =B (v.Cu)— BaR(u,Cv) 6)

then, the linear Gateaux differential of

0(u) = B(u,Au—2f) + By (u,Cu—2g) (n

vanishes if and only if (1), (2) are satisfied. Sandhu and Salaam [33] further pointed
out that even if the boundary condition is homogeneous, ie. g = 0, the quantity
Byx(u,Cu) in (7) must be included if the variational principle is to hold for the path
of Gateaux differentiation not satisfying homogeneous boundary conditions. This is
important for approximation in finite element spaces where the variation is introduced
as change in the nodal point value of the field variable and, consequently, the path of

variation may not satisfy the boundary condition or internal smoothness.
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3.4 Variational Principle for Finite Element Approximation

In the finite elemert method, the region R is approximated by a set of elements

{R,; e=1,2,...m} such that
R NR,=0 if ex=f (8)
m
lim |J R =R (9

The field variables arve approximated by functions which may not be sufficiently
smooth. Ilowever, over each element, adequate smoothness is assured. If R_ represents
the interior of the e-th element and R, its boundarv, we have [34]

BRP(u,A V)= BR‘_(V’AU) + CaRe(v,u) (10)

and

CaRe(v,u) = BaRe(v,Cu) - BaRe(u,Cv) (a1

Further define
m
Q)= Z[BRe(u,Au—Zf) By ngr (u.Cu—2g)] + BaRl(u,(Cu) ) (12)
e=}
where aRl represents interior boundaries of elements and a prime denotes a jump. The

Gateaux differential

A,0W)=2Y[B, (v,Au~-{)+B

e=]

ak rs‘(wt(v,(?u—g)] +2 BaRi(v,(Cu)') (13)

vanishes if and only if (1), (2) are satisfied over each element and (Cu) vanishes, ie.
Cu is continuous across interelement boundaries. If there are actual discontinuities in

the interior of R, let

(CuY =g over 9R’' (14)
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where g is specified over OR.  Then, if the union of intersection of element

boundaries covers R', the functional in (12) may be redefined as

Q)= Z[Bne(“'A“_Zf )+Bgn aR‘(u,Cu—Zg)] + BaR:(u,(Cu)'—2g')

e=}

3.5 Linear Operator with Adjoint Splitting
Many physical problems can be written in the form of
Au=Fu+TETu=f on R
where
F:W,—V,
T: WX,
E: X Y,
T:Y, -V,
T is the adjoint of T, ie. Bg, Bg such that

B (u,Tv)= BR(V,T'U) +C aR(v,u)

15)

(16)

(17)
(18)

(19)

(20)

(21)

Here Bp: W xX.—S and B,:W_ xV_,—S. S is a linear vector space and B, B, are

continuous non-degenerate bilinear mappings. E, I' are symmetric, i.e.
B (u,Ev) =B,(v,Eu)
B, (u,Fv) =B (vFu)
Introducing €, o through the equations
Tu—€e=0 on R
Ee—o0=0 on R

(16) can be written as
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(23)

(24)

(25)




Fu+To=f on R

Combining (24) through (26), these constitute the coupled system

FOoT|u |f
0 E -1} 1€{=10 on R
T -1 0) o} [O

If the inverse of E exists, let G=E'. Then, combining (24), (25)
Tu—-Go =0 on R
(26) and (28) are the coupled system

f
Q)

u
[0

l: rl\‘
T -G

on R

(29) is referred to as the complementary form.

For an operator with adjoint splitting, let the boundary conditions on u, o be

Cu=g, on S, @R
Co=g, on §, QR
The discontinuity conditions are
(CuY=g', on§

1

(C,o) =g, on S,

(26)

@7

(28)

(29)

(30)

(31

(32)

(33)

where S, and S, are interior surfaces imbedded in the intersection of finite element

boundaries. C,, C, consistent with T, T" implies the existence of bilinear mapping

Bs', Bs’ such that

Bne(“'TV) = BR.(V'T.“) +B S;(V,C 2u) -B S:(u,C lv)

where S;, S| are complementary subsets of boundary §R, of element e.
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The function governing variational formulation of (27) for finite element

approximation is

Q@ue0) = ¥ [B, WFu+T o—2f) + B, (Ee—0) + B, (0,Tu—€) + B

e=1

=, nsl(0',C u—2g )]

+(B (u,C,o0~2g,)1+ Bil(a,(C Ju)=2g' )+ B;(u,(C ,0Y—2¢") (35)

3R, NS,

It is important to note that even if there are no interior discontinuities in the
physical problem or the specified boundary conditions are homogeneous, the boundary
and the discontinuity terms must be included to accommodate the nature of the finite

element approximation space [32].

3.6 Principle of Minimum Potential Energy
The field equations for isothermal quasi-static deformation of anisotropic, linear

elastic solids, assuming no initial stresses and strains, are:
a) Equilibrium of stresses

o, +tf,=0 on R (36)
b) Kinematics
For small deformation, the strain-displacement relationship is

u,) =€, on R (37
¢) Constitutive relations

o = Eji€n (38)

on an open bounded connected set R contained in the three-dimensional Euclidean space
E. Here u, f, €, o, E,, are, respectively, the components of the displacement vector,
the body force vector, the infinitesimal strain tensor, the symmetric Cauchy stress

tensor and the isothermal elasticity tensor. The range of indices is 1, 2, 3 and

23




summation on repeated indices is implied. A subscript following a comma denotes
partial differentiation with respect to the coordinate, in the reference frame, defined by
the subscript. Parantheses around subscripts denote the symmetric part of the quantity.

Let the functions u, €, o, satisfy the continuity and differentiability properties
required in the equations of elasticity over every subregion R, Then, admitting

(u,€,0) as the 15-tuple of dependent variables, components of vectors and tensors

ij?

being regarded as ordered subsets in an n-tuple, (36)-(38) can be written as [33]

i 045 O
0 0 (8“‘6 N al) u)
0 i -1 1{€qt=i0t on R (39)
B4p 0 - o) |0
(8kl 3l +8, 6k) 1 0 j

Consistent boundary conditions for the problem are

—nu, = —njﬁi on §, (40)

o.n = t on S, (41)

where the n, are components of a unit normal to the boundary S, and the jump

conditions are

(on) =g, on S (42)

ijoi 2

—(hp)y=—g',. on Sil (43)

Setting up the problem in inner product space, ie. Bglu,v)= f uvdR, and defining
R

m
B (uv)= ZBR(u.v)Re (44)
e=1
The basic functional corresponding to (35), allowing for relaxed continuity, is (33]

T O T 26110"1—2uf+u o, )dR

Q,(u,e,0,)= f(e
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fszu (o, n—~2¢)dS ~ f o,nlu-20, )dS+f ullo n)—-2¢", s

i
Sy

- [ ofmpy-2g gas (45)
sl

In using (45) as the basis for finite element approximations, it is not necessary for the
interpolants to satisfy any boundary conditions or interelement continuity., For no
jump discontinuities, g',ji and g'zj vanish. However, it is important to retain the terms
containing (o,n,), (nu) in the formulation.

Using symmetry property of the operator matrix, i.e.

i i ij b

0' udR = fcru dR+f0'nudS+f O'(nu)dS

+f u(crn)ds (46)

ij i
s?
to eliminate the term containing o, from (45), the functional can be written as
Qz(ui’ekl’oij)= f €.E € dR +2 f Ro'u.(ui_j—e.u.)dR--z f RuifidR
~2[ utas—2 [ on-aps—2[ ompyas (47)
S, 5 s,

1, is the modified variational principle with three independent fields proposed by
Prager [35] If u, €, are restricted to satisfy the last of (39), the strain-displacement

relations, Prager's modified principle of total energy theory is obtained

Q, f E y€9R — 2f ufdR — 2f utdS— 2f crn(u-—ﬁ)dS

-2 f S‘(rij(njui)'ds (48)
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(48) was also proposed by Pian and Tong [29] and is the basis of their hybrid method

with assumed displacement field. If the displacement field, u, is further restricted to

satisfy the displacement boundary condition (40) on S,, Q, reduces to

0,= f € En6dR—2 [ ufar—2 f utds—2 f o (nu)as (49)
If the finite element interpolations are chosen to identically satisfy displacement

continuity across S,, the last term in Q, vanished and (49) becomes

05=f eljl’.”“e“dk—zf ulfldR-2f 4 1dS (50)
R R 5,

The vanishing of the variation of (), with respect to the displacement components u,

implies the satisfaction of equilibrium equations (36). This functional corresponds to
the classical principle of minimum potential energy which is customarily used as the

basis of the finite element displacement formulation of the elastostatics problems.

3.7 Assumed Displacement Finite Element Formulation

For the boundary value problem stated in (1) and (2), the solutions u to the
forcing functions f in general belong to L, the space of square integrable function. L,
is a separable Hilbert spacee. However, u may be contained in a subset D of L, such
that A, the linear operator, is defined on D. We assume that D is dense in L, If
the set of functions {¢,, k=1,2,...00} is a basis in D, then any function u€L, can be

expressed as an infinite sum:

u=Yad (51)
k=1
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A scheme to generate approximate solutions is to use a finite set of terms in the

infinite sum above. Thus, as an approximation
n
u=3ad, (52)
k=1

The approximation process consists of an appropriate choice of n, ¢, and the coefficient
a,. Several alternative procedures are available. The finite element method is a
special process of selection of finite subset of the basis {¢,}. The coefficients a, are

generally evaluated by requiring the approximate solution to satisfy a variational
principle.

The finite element idealization essentially partitions the spatial region R into a
finite number of nontrival discrete elements or subregions. The geometry of the

elements is defined by a set of points in space called the nodal points of the system.

Over an element m, let an approximation to u be u} such that

up =2 a9, (s3)

k=]

or in matrix form, dropping the subscript n,
"= 3" " (54)
where {™}" is 2 row vector consisting of ¢y as its elements and {a™} is a column

vector of coefficients a;. Evaluating the function, and its derivatives up to a certain

order at nodal points, yields
" =B ™ (55)
where {u'} is the vector of nodal point values of the function and its derivatives up

to the order selected, and [@']' is the matrix of base functions evaluated at each nodal
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point. The rows and columns of [¢;“Ir are linearly independent. If square, the matrix

is invertible. Hence, we can write
@™ =" ™ =[AT (]} (56)
where A=[g"]"

Substituting (56) into (54)

™ =[] (AT 0™ = [¢"T fu™) (57)
where [¢™] can now be regarded as a set of interpolation functions relating nodal point
values of a function and its derivatives up to a preselected order, to the value at an
arbitrary point within the element m [36].

In applying the potential energy functional shown in (50), €, is assumed to satisfy
the strain-displacement relationship, and the displacement field should satisfy the
prescribed displacement boundary condition on S,. Vanishing of the variation would
imply satisfaction of the equilibrium equations. As stated previously, in the finite
element method, the displacement u is approximated by interpolation functions and
generalized displacements at a finite number of nodal points of each element. The
interpolation function must be chosen in such a way that when the nodal point
displacements for two adjacent elements are compatible, the displacements along the
common boundary are compatible. Meanwhile, the interpolation function must also
satisfy the requirement that the first derivatives of the displacement field exist.

Based on (57), the assumed displacement over an element can be rewritten in

matrix form as

w"} =g718"]" (58)

m

q
m

T
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where q™ is the column matrix of generalized displacements at boundary nodes of
element m which determines the inter-element continuity, and r™ is the column matrix
of generalized displacements at nodal points either at the boundary or at the interior
of element m but which do not affect the interelement continuity requirements. The

corresponding strain distribution is

(") =[pmiprl [qm (59)
r

where ¢7 and @] are obtained by differentiating ¢7 and ¢ with respect to the
spatial coordinates. Substituting (59) into (50) and expressing in the finite element

discretized form, we have [37]

95=m§;l(fnml‘:

] |
m myr . myT,
-2 s,nakmlzl 7787 Tt} R, (60)

T
[ iemIE™] [¢:I¢;“,1Tl‘r‘

T
dR,_ —2 f ] l‘:} (6516 67 THE}aR

where

[E"L  matrix of elastic constants for element m
[¢;F matrix of interpolation functions for the
body forces in element m
[#"F matrix of interpolation functions for the
prescribed tractions on the surface S_ of element m

The summation sign in (60) implies the direct stiffness assembly procedure, and the
vector [?l is the vector of global displacements. {); can also be written as
M
0, = ¥ Gq® K™} g™ + 2 6™IKRI g™ + VK™ 6™}
m=1

~2AF7Y " = 2AF7Y ™D (61)
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where

K= [  BRET g or, (62)
Ko= [ leqbi“,llﬁ'“lw:‘;leRm (63)
k.= [ Rm[¢:;][1~:'"1[¢;",]TaRm (64)
F = f Rm[¢;"][¢;"]T{fm}dRm+ f Sznsm[d:;“][cﬁ{“f{t'“} ds_ (65)
F=[ Rm[¢;."][¢;"1T{r"'}dRm+ 1l Sznsm[¢f‘][¢i"]T{tm}dSm | (66)

The displacements {r"} in element m are independent of displacements, {r'}, for i=m.

The stationarity condition with respect to their variations yields
(KD Ha®} + K1 ™} - {F[} =0 » (67
Solving (67) for {r"} yields
" =K 'AF KT ) g"™D (68)
Substituting (68) into (61) yields
M
0,= ¥ Uq"VK"Hq" - {F" g™ +C ) (69)
m=1
where [K™] and {F"} are, respectively, the element stiffness matrix and the equivalent

nodal forces defined by

K™= K] - [KE KT K] (70)
{F™} = {F7} — KK T HFT) (71)
C, = —{FT}HK"T "{F"} = constant (72)
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Q, in (69) is given in terms of the generalized displacements {q} which are not

independent for different elements. Using global coordinates, (69) can be written as
o, ={q"Klig} —2 g {(Fr + C' (73)

Taking the variation of this discretized form of the functional yields the system of
algebraic equations

[Kl{q} = {F} (74)
which can be solved for the unknown nodal displacement {q}. The matrix [K] is
positive definite, symmetric and banded. The process of eliminating the generalized
coordinates, {r}, from each element is called the static-condensation process [38]. The
introduction of these terms, which do not interfere with interelement compatibility,
results in an improvement in the satisfaction of the equilibrium equations within each
element. However, the satisfaction of the equilibrium equations along the interelement
boundary is still governed by the degrees of compatibility supplied by the interpolation
functions for the generalized displacements, {q}. The solution obtained represents an

underestimate of the true solution in the sense of energy [39].
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SECTION 1V
CONTINUOUS STRAIN FINITE ELEMENT
INTERPOLATION

4.1 Introduction

In the finite element method, the displacement {field is approximated by
interpolation lunctions and generalized displacements at a finte number of nodal points
which also define the peometry of the elements. To ensure continuous strain across
interelement boundaries, it is sufficient that the interpolation functions be such that
the displacement components as well as their first derivatives along the common
boundary are continuous.

Tocher and Hartz [40] pointed out that for plate bending analysis, continuity of
slopes of the plate displacement surface is necessary. The compatible cubic interpolation
functions developed by Tocher [40] and by Clough and Felippa [41], among others,
satisfy this requirement. For plate bending, the generalized displacements used were W,
the transverse displacement of the plate and its derivatives w,, w,. llere, the
subscripts X or y denote partial differentiation with respect to the independent
variables x, y. Applying the same displacement interpolation scheme to the plane
elasticity  problems [40], the corresponding  generalized  displacements  were

u, u,, u, v, v,, v, the in-plane displacements and their first derivatives at each node.

N

Thus, continuity of strain between adjacent elements was ensured.
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Instead of using a local Cartesian coordinate system in the derivation of the cubic
polynomial with nine coefficients for each displacement component in Tocher and
Hartz's work, triangular coordinates were wused in the present fully compatible
quadrilateral element, following Felippa's [42] work on plate bending analysis. This
simplified the generation of various matrix relationships for the constituent triangular
elements. Tocher's [40] element used incomplete cubic polynomials. Felippa's elements
were based on complete cubic polynomials and were therefore selected for application to
the free-edge problems. These elements include Tocher's formulation as specialization.
Cubic expansion of the 9-degree-of-freedom conforming triangular element (LCCT-9) for
both in-plane displacement components as used by ‘Tocher [40] was extended 10
quadrilateral element designated (Q-15.  Quadrilateral elements, Q-19 and Q-23,
assembled from LCCT-11 and LCCT-12 triangular elements introduced by Felippa [42],
were also redeveloped for the plane elasticity problems. The continuous strain elements
were used to analyze a pseudo two-dimensional free-edge stress problem similar to that

of Pipes and Pagano [11] for composite laminate coupons under uniform extension.

42 Interpolation Functions of Continuous Strain Elements

In the following. Telippa's [41,42] approach for deriving the plate bending
interpolation functions is summarized. We use the same element name as Felippa's and
start with u instead of w for the plane elasticity problems. Similar derivations

applied to the displacement component v.
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4.2.1 LCCT-12 Element
A complete cubic polynomial in two variables is defined by ten independent
coefficients, 'The values of u, the x-direction displacement of the plane stress body and

its derivatives u,, u, at the three vertices of a triangle yields nine independent
quantities. To ensure continuity of derivative u, across element boundaries, it is
necessary that u_ be known at some points other than the vertices along each of the

three edges. It is convenient to introduce mid-side nodes on each of the three edges.
This element then has twelve independent quantities against the minimum of ten
needed 1o completely define a cubic polynomial.

In order to use a cubic polynomial with continuous first derivatives in the interior
as well as on the element boundaries, IFelippa proposed that the element be made up of
three subtriangles as illustrated in Figure (2). Fach subtriangle has three vertices and
one mid-side node to supply the ten independent quantities for defining the cubic
polynomial interpolation in its interior. The point O could be any interior point.
However, for simplicity of formulation, the centroid is generally used [41]

The nodal displacement degrees of freedom to be considered in the stiffness matrix
of the complete element (Figure 2) include the values of the in-plane displacement

components, u,, v, along with their first derivatives u,, ug, v,, v, (i=1,2,3) about the

A
x and y axes at each corner as well as the normal slopes at the three mid-side nodes

about axes perpendicular to these sides respectively, viz. Uy Upo Uno and Vog V

7
ns’ ng .V

ng'  Tng
After forming the expression of the cubic displacement patterns in the three
subelements, because of the common displacements imposed at the nodes, the in-plane

displacements of two adjacent subelements are identical along their juncture line. To

establish continuity of u_ along the edges of the subelements, it is sufficient that u,
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Figure 2: Assembly of the LCCT-12 Plane Efasticity Element




evaluated at points 7, 8, 9, mid-points of these edges, from adjacent subtriangles be the
same. ‘These three conditions were used to evaluate the in-plane displacement u, and
its derivatives u_, u_ at the interior point O. With the interior point thus condensed
out, Felippa [41] obtained a set of interpolation functions for the LCCT-12 element.
These define a piecewise cubic polynomial interpolation such that the in-plane
displacements and their first derivatives are continuous both in the interior of the
element and along the entire boundarv of the complete triangular element. A more

detailed derivation procedure and the complete listing of the cubic interpolation

functions are given in Appendix.

422 LCCT-11 and LCCT-9 Elements

Assembly of three subtriangles results in the LCCT-12 element (Figure 3a).
However, the mid-side nodal points in this element are not desirable for programming.
They complicate the mesh generation procedure, increase the band-width of the
assembled equation systems, and require special identification in calculation of the
stiffness matrix. To overcome these difficulties, it may be desirable to develop a
special element without external midpoints. This can be accomplished by assuming the
normal slope to vary linearly along one or more sides [42].

With the elimination of or;e mid-side node, the five-node element is designated as
1.CCT-11 (Figure 3b). Further imposing linear slope variation constraints on three sides
gives a triangle with three nodal points and results in LCCT-9 element as illustrated

in Figure 3(c). The LCCT-9 element is identical to the Tocher and Hartz [40] element.
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Figure 3:

(a) LCCT-12 (b) LCCT-11

Compatible Triangular Elements

-9

{c) LCCT-9
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423 Quadrilateral Elements

Elements of quadrilateral shape can be set up as assemblages of triangular
elements.  Figure (4) shows quadrilateral elements built up from four LCCI-12,
LCCT-11 and LCCT-9 elements. The quadrilateral element in Figure 4(a) has a total
of 23 degrees of freedom for each variable and was designated by Felippa as Q-23.
Using four J.CCT-11 or LCCT-9 triangles, the Q-19 and Q-15 elements as shown in
Figures 4(b). 4(¢c) respectively are realized.

The quadrilateral element has interior nodal points not connected to the other
quadrilateral element in u finite element mesh. ‘These points can be eliminated through
a lJocal condensation process.  Thus, the final quadrilateral element has 24 degrees of
freedom, corresponding to the two in-plane displacement components and their first
derivatives with respect to spatial coordinates x and y at the four corners of the
elements and an additional eight degrees of freedom corresponding to the normal
derivatives of each of the displacement components at the mid-side nodes. A."uming
that the normal derivatives vary linearly along the edges of the quadrilateral, the
mid-side nodes can be dropped. This reduces the Q-23 to Felippa's Q-19 element with
12 degrees of freedom for each of the displacement components. It is a fully
compatible quadrilateral element, having a continuous cubic variation of displacement
and quadratic variation of strain both in the interior of the element and along the
entire boundary of the element, as well as a linear variation of normal slope along all
external edges. We note however that LCCT-9 and LCCT-11 do not use a complete
cubic polynomial. For this reason, Felippa's LCCT-12 element based on complete cubic

interpolation was considered an improvement upon Tocher's [40] LCCT-9.
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Figure 4:

(a) Q-23 (b) Q-19 (c) Q-15

Quadrilateral Flements formed from (a) LCCT-12 (b) LCCT-11 (¢)
LCCT-9
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4.3 Application to the Free-Edge Stress Problem

Figure (5) shows a symmetric laminated composite coupon under a state of
uniform axial strain. In this case, away from the ends, the transverse x=constant
plane displacement fields can be assumed to be independent of x. These assumptions
imply the following form for the three components of displacement [11).

ulx,v,2) = ex+ U(y,2)

vix,v,2)=\Vivy) (75)
wizyv,7)=Wiv )

where e, 15 the uniform in plane strain in the y-direction and u, v, w are components

of displacement along x, v and z axes respectively.

40




(a) Symmetric Laminate
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(b) x=constant Plane

Figure S: Geometry and loading of Symmetric Laminates
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43.1 Finite Element Formulation
The constitutive relationship for linear elastic anisotropic material obeys the
generalized Hooke's law
o,=Ce  1j=12,.6 (76)
where €, is namely the uniform extensional strain e, Based upon the minimum

potential energv principle (50) and substituting various interpolation functions for
displacement. body force and traction fields appearing in the governing functional (60).
a nodal force-displacement relation within each clement s expressed as

Ku=R (77)

where R, represents the resulant external nodal force, K, is the element stiffness

matrix which can be written as

1) im “mn nj

K. = B C BdV mn=1.2,...6 (78)
A\

The range of i, j depends upon the 'degree of freedom' of the element, B is the
displacement transformation matrix and V is the domain of the element.

Because of the longitudinal extensional strain is specified as constant, the
corresponding term in the stiffness matrix can be separated from the rest and (78)
rewritten as

KUuJ=Rl—R:’ (79)
where the range of summation on m, n is now 2, 3, ... 6 and R is the element

residual force due to uniform in-plane strain e, ie.

ml o

R'=f B _C_ edV (80)
v
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After forming the system stiffness matrix and nodal force vectors, the displacement
components can be obtained by solving the resulting set of linear equations in the

standard manner.

432 Higher Order Elements

For the free-edge stress problem, due to the fact that dependence of the
longitudinal displacement on the longitudinal coordinate X is made explicit, the three
displacement components are completely defined by three functions of two independent
transverse  coordinates voouand 7z as shown in (75).  Thus, the compatible cubic
interpolation functions used for plune elasticity problems can be extended to the pseudu
two-dimensional model of a Jaminate coupon, and a continuous strain field along both
in-plane and transverse directions ensured.

Figure (6) shows the nodal displacement degrees of freedom considered in the
stiffness matrix for the complete triangular element. These included the values of the
in-plane displacement components u, v, the transverse displacement w, along with the
first deriviatives uy, u, v, v, w,, w,_ about the y and z axes at each corners i=1,2,3
as well as the normal slopes at the three mid-side nodes, viz.

un4’ uns' unb’ \,n.,’ \"ns’ vr\

¢ Wne Woo W, . This is the 1L.CCT-12 element but with total

of 36 degrees of freedom. Further assuming the normal slope to vary linearly along
one or all three sides, the LCCT-11 and LCCT-9 elements, with total of 33 and 27
degrees of freedom respectively, are obtained as specializations.

As described for plane elasticity, quadrilateral elements, designated as Q-23, Q-19
and Q-15, were set up as assemblage of four LCCT-12, LCCT-11 and LCCT-9
respectively. After eliminating the interior nodal points through a local condensation

process, the final quadrilateral element, -23, had 36 degrees of freedom, corresponding
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Figure 6: Free-Edge Stress LCCT-12 Element
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to the three displacement components and their first derivatives with respect to the
spatial coordinates v and 2z at the four corners of the element and an additional 12
degrees of freedom corresponding to the normal derivative of each of the displacement
components at the mid-side nodes. It is a fully compatible quadrilateral element,
having a continuous cubic variation of displacement and quadratic variation of strain
not only within the elements as well as along element boundaries, but also across

laminate interlaces.




SECTION V
CONTINUOUS TRACTION FINITE ELEMENT
PROCEDURE FOR COMPOSITE LAMINATES

S.1  Introduction

In the continuous strain Q-23 element developed for the free-edge stress problem,
both displacement and strain are continuous along interelement as well as interlaminar
boundaries. llowever, the tractions calculated across the interfaces between differently
oriented layers are discontinuous due to different orientation of adjacent plies. Also,
traction-free boundary conditions associated with the finite-width Jlaminate coupon
cannot be satisfied. In order to remedy these two defects and make the numerical
model more representative of the real situation, it was necessary to ensure interelement
as well as interlaminar continuities of tractions and the traction-free boundary
condition along the free-edge. To accomplish this, nodal point degrees of freedom must
include some components of stress and exclude normal gradients of displacement which
will be dilferent across interelement boundaries. This was implemented by
transforming the displacements and their normal gradients at each of the nodal points
of the Q-23 element to a mixed set of degrees of freedom which would be continuous
across interelement boundaries. These included both displacement and interlaminar
traction components. Appropriate displacement-stress relationships derived from the
constitutive laws were used. For this element, traction-free boundary condition could

be satisfied in a point-wise sense.
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The continuous traction (J-23 element still has cubic variation of displacement over
the element and retains continuity of displucements across interelement as well as
interlaminar boundaries. The strains as well as stresses vary quadratically within each
subtriangle of the constituent LCCT-12 elements of the quadrilateral. However, certain
components of strain are not continuous across interelement boundaries but interelement
tractions are. This correctly allows for possible differences in orientation of adjacent
laminae. If' adjacent lavers have the same stress-strain relationships due to identical

orientation, stress continuity will imply strain continuity as well.

5.2 Derivation of Displacement-Stress Transformation

In the Q-23 element analysis, the number of nodal degrees of freedom is different
for the corner nodal points and the midside nodes. For this reason, derivation of
transformation matrices for displacements and their gradients at the corners of the
LCCT-12 element, and for normal ;radients of displacement at the midside nodes on the

element boundaries, is discussed separately in the following sections.

5.2.1 Corner Nodes

The strain-stress relationship for an orthotropic material expressed in the x-y-z
coordinate system is

€= SJO’J, 1,j=1,2,....6 (81)

or in matrix form
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€ $,5,8,; 0 05, o
€, 525,58, 0 05,0,
& _ 835,355 0 0 5,040, (82)
Yy 0 0 0SS, Ses O T
Yx2 0 0 05,5, T
Yy S16 556 556 0 0 S, Ty

where §,j are components of the compliance matrix for monoclinic materials which
have symmetry with respect to x-v plane (Figure 2) and are defined as [43]

= e 4 . . I
S,,=$,,m +(2512+5M‘)m n"+S,,n

S,,=(5,,48,,-28,,—S, Jm’n’+s ,

5

7]

e 2w L2
13—b|3m +.523n

Wl

165128, lm"'--2.*;22nz+(2sl2+S%)(nz—m2)]mn

§,,=S,,n"+(25,,+5,, )m’n’+s,,m*

g23_‘-513“2*'52?“2

265128, lnz-—2522m2+(2sl2+S()6)(m2—nz)]mn (83)
337553

§,,=2(5,,~S,)mn

wt w»l

e 2 2
“—S“m +555n

5
§45=—S“mn+855mn
355=S“n2+855m2
T - . . . 22
Shh——tl(Sll+522—-25|2—566)m n“+S,

where m=cosf’, n=sinf’, and
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i1 22 33
v v
- 12 _ 1 ___ Y32
TR, R, T,
(84)
S =-—ﬁ§. S =—VL3 S =_l..
’ ? 3
3 11 32 Ezz 3 E33
1 1 1
S, = S S =
» Yss 66
4 Gy > Gx GIZ

6" is angle of ply from global axis x to material axis 1, and L, G, », (i,jk=12.3)
are moduli of elasticity, shear moduli, Poisson’s ratios, respectively, in material
coordinates.

Replacing the strain components by their corresponding displacement gradients, for

small strain theory, and rearranging the constitutive relation, (82) becomes

u $,:5,5¢5; 0 0ffo,
v, s,ZS 5,65, 0 0flo,
u S S Sec Si¢ 0 O r,
o= Y (85)
v, S Sza sse S33 0 0O}jfo,
Wy+Vz 0O 0 0 O S“ S“s Tyz
u, 0O 0 0 O 45 SSS T,
or symbolically
€ D o
{ 1 = r)ll 12 i (86)
€ Dzn D, o2
where
u w
. Z
{el}= Vb {ez}z wy+vz
u, u,
(87)
o o
X 2
{Ul}z 0')_ X {o'z}z Tyz
T T
Xy A4
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and

Sn Snz §u, 3,3 00
[D“ =§|2 §zz gze,, [D12]= ~‘23 00
Sl6 S26 Sbb 536 00 w
_ _
13 523 S3e 533 A _0
D, )={o 0 o} D=0 S, 35,
0 0 O 0 §45 355

To relate the interlaminar strain components {€,} to their corresponding interlaminer

stress components {o,}, {o,} was eliminated through a static condensation process. This

yields
{e 1=[$ Ko ,} (89)
where
{e}={e,}-ID, ] [D, T '{e,} (90)
[$}=(D,,HD, ] [D, D] 91)

The inverse of [D,], namely, the compliance matrix in plane stress case, can be written

explicitly as

Qll 6!2 6lb
D,,]'=1Q,, Q,, Qy (92)
Q0 0z Oy

where
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Ql ]=Q| l.m4+2(Ql2+2be)n]2n2+Q22n4
Q,,=Q, l+Q.‘!2_4Q6b)m2n2+012(m4+n4)

_ 3 3~ 2_ 2
Q,,=—mn’Q,,+m nQ, —mn(m"-n"XQ,,+2Q,,)

4 2.2 4 (93)
022=Q“n +2(Q12+2Q66)m n°+Q,,m
626=—m3n022+mn301l+mn(m2—n2Xle+2Q66)

2
Qe6=(Q,,+Q,,—2Q,,)m ’n 2+be(m -n’)°
with
0. = Y - L,
v, v, TP 1-v L,
L ) (94)
_ Vo, s
Q= 1=, v, » Q. =0,
Substituting (92) into (91) and (90), (89) could be expressed as
'wz—Blu_\—Bzvy—B3uy 33—X 0O O o,
w tv, = 0 S5, L (95)
z 0 §45 SSS sz
where
B,=5,,0,,+5,,0,,+5,,Q) (96)
B,=5,,Q,,5,,0,,+5,,Q,, (97)
B,=S,,0,,+5,;0,,+5,.0,, (98)
and
X=B S, +BS,,+BS,, (99)

The gradients of displacement appearing in the expression for interlaminar strains were
then written in terms of interlaminar stresses using (95), i..

u = §45‘ry2+§55'rxz (100)

v, = (wy+vz)—w), =5,7 1507w, (101)
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w =(w—~Bu—-Bv —B.u)+Bu +B.v +B.u
4 2 17N 2y 37N [N 20y 37
=(S33—.\')O'Z+B‘ux+]32vy+133uy (102)

Combining (100){(102) with the rest of the displacement nodal degrees of freedom, u,

v, W, u, Vv

g Vy Wy, and noting that u =e

» the applied strain loading, the generalized

displacement components at the corner nodes of the LCCT-12 element were related to a

mixed set of degrees of freedom as follows:

Y rooo oo o0 o o Y 0
‘L proo oo o0 o o |V 0
I woro 00 0 0o o [|V 0
Wi oo 1 o0 0o o o [N |,
Velzfooo 0o 10 0 0 0 (v o (103)
wl 000001 0 0 0 k! |o
o| [0000 0085, 0 |} |o
v| pooo 05,5, o [] 0
z — R yz B e
w| 000B;B, 0 0 05X | Bied
or symbolically
{r}=[GHr}+{R} (104)

B,, B, B,, and X occurring in (103) have been defined by (96) through (99). Thus, at

each of the three corners in the IL.CCT-12 element, we have three displacement

components u, v, w along with three inplane strain components, Uy, Vi, W, and three

T o

yz? 2"

interlaminar stress components 7

b.yAd




522 Mid-side Nodes

Jn order to have traction continuity across interelement as well as interlaminar
boundaries, it is necessary that the three traction components calculated at the mid-side
nodes on the common boundary from two adjacent elements be the same. This was
accomplished by transforming the displacement normal gradients associated with each of
the mid-side nodes in the LCCT-12 element to three boundary traction components
through the following relationships.

Let x, and x; be two right-hunded Cartesian coordinate systems having the same
origin. Then the traction vector I on the plane with normal direction N, has
components t, and t| in the two systems. The two components are related through the
following transformation [44]

v=lt (105)
with

=€ (106)
where €, e, are unit vectors in the two coordinate systems. The traction vector can
also be expressed in terms of stress components, that is

1=0.n (107)

R
with
nJ=cos(ei,N) (108)
Substituting (107) into (105)
t=lLt=lo n (109)
For the free-edge stress problem defined in a pseduo two-dimensional space [11],

the traction vector T at any point on the element surface can be decomposed into

three components, t, i=12,3, in the x| coordinate svstem. [Iigure (7) shows these

i

53




A
ty t', .
0
t;
t, t
Y4
p
Yl
Zl
>Y
/O
X, X’
Figure 7: Components of Traction Vector Acting on an Arbitrary Plane N
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three traction components which indeed can be regarded as the out-of-plane shearing

stress o, the normal stress o . and the in-plane shearing stress o, . ‘The relation

between x, and X' coordinates as shown in Figure (7) yields

1,,=1, 1,,=0, 1,,=0
1,,=0, 1,,=m, 1,,=n (110)
1;,=0, 1;,=n, 1,;=m
and
nl=0. n,=m, n,=n (111}

3
where m=cosf, n=sinf und 0 is the angle between these two coordinates.  Subsututing

the above quantities into (109), we have

t'|=crm=m'rw+n‘ru (112)
- — 2 2

v,=0 =m cry+2mn‘ryz+n o, (113)
P — 2_ 2 o

t 3—dns—(m n )Tyz+mn(0'z O’y) (114)

Here, for interlaminar stresses acting on the element boundary are nothing but the

traction field, o, o, o, expressed in (112)4114) indeed represent the three traction

components as illustrated in Figure (7).

The stress-strain relationship for the orthotropic lamina expressed in the x-y-z

laminate coordinate system 1is

ol IC,C,C, 0 0 C,|le
o, C:z sz Cza 0 0 Czo €,
% Ci3CpuCyy 0 0 Culie (115)
T 0O 0 O C“ C45 0 Yy
7o |0 0 0T, C 0lly,
Ty Cio T CJb 0 0 Cg, Yy




w here (..‘” 18 the stiffness matrix for monoclinic symmetry with respect to x-y plane
and is defined as [43]

C,,=C, m"+2C,,+2C, Jm’°n’+C,,n"

C12=(Cll+C22—4C66)m2n2+C|2(m4+n4)

C|3=Cl3m2+C23n2

C,,=C, n*+2(C, ,+2C Im’n’*+C,,m’

C,.=C ,n?+(‘”m2

¢, ==C, mn Y W ln—((’]\,+3( T mnlm ) (116)

C,,=—C,,m 'in+(‘l ,mn "+ a2, imntm —n")
¢, =(C —C, Jmn

Cu:
C,=(C,,—C,,)mn

2 2
(,“m +(,55n

_ 2 2
Css—cssm +C, 40

_ . 2.2 2 2y
Cso_(C||+sz_2('|z)m n +Cbb(m —-n°)

where, with m=cosf’, n=sinf’, again 0" is angle bctween the global axis x to material

axis 1, and
C _(]_V23V33)Eu C __(V2|+V3|V’3)F‘n
11 A S T A
c :(l—vuuu)li33 ¢ Z(V“'FVZIUH)E“
22 A T A (117)
_O=vp, DI ¢ _ Wty v s,
33 A 237 A
C4a=6,, C5 =Gy, G =G,
with
AZ1=0 V) =33y V3 V372V, V0V (118)

(112)-(114) along with (115), gives
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o mC,, mC,, nC,; nC,, nC,.
2 2 2 25 < — —
o t=|m C26+n (73() m sz+n C,, 2mnC,, 2mnC, 2mnC,,

s} |(C,,—C,)mn (C,,—C,,)mn (m?‘—nz)C‘14 (mz--nz)Cd5 (n12—n2)C44

u
y
v
y
mC,, mC, e
2 e Wy (mC 2oe
mC,,+n°C,, . +{m°C +n (,H)eﬂ (119)
(C,,—C,)mn . (C, —C, mne_
FA
W
7/

(119) is the general relationship between traction components at the element mid-side
nodes and the corresponding displacement gradients. 1t is different lor each element
midside node.

In order to relate the displacement gradients at the mid-point to the mixed nodal
degrees of freedom at the two ends defining the element surface, let j and k denote
the first and second cyclic permutations of i=1,2,3 (ie. j2,3,1 and k=3,1,2), the
projected dimensions and the corresponding boundary length are defined as (see

Appendix A)
alzyk—y,l’ bl:z_l—zl' ll= V < 12+b|2 (]2())

Also, if the outward normal is defined as positive (]-'igure 8), the relation between

local and global Cartesian Coordinates is [42]

S. a b)) (y—y.
i 1 i i j
== (121
n.] 1L | -b =—all|z—z )
i i i i J
Considering (121) and using chain rule of differentation, we have
S n. a b
o= Q‘_) u®  eudn 3 b (122)
Yi+3 ov a3 08 Oy an Qv I S5+3 1 "
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Figure 8: Local and Global Cartesian Coordinates




au) _u® guon b A (123)

uz”}— 5 +3 0s, 0~ on oz I LS T

where u_ . (i=1,2,3) denotes the tangential derivatives of u at one of the mid-side

nodes (Figure 9), which can be further interpolated from the displacements and their
gradients at the two ends of the corresponding element boundary, ie.
3 a b 3 a b
u =—u———u_ +—u +-—u,——u_+—u (124)
Recalling (100), we have

=G S {125
u7J SSST\LI+SJST)~/I {(125)

t
o

ST, +§4,T {126)
2, " 738 sy Sty

]

u

Substituting (124), (125) and (126) into (122) and (1230, we can express u, u, at each
of the element mid-side nodes in terms of their corresponding normal derivatives u,, as

well as the mixed nodal degrees of freedom at the two ends defining the segment.

That is
33.] alz +allS +a|1§
u = —e—U ———U T —_— i
Yis3 2]iz ! 4li2 Y; 412 557 xz, 4li2 45" vz,
3a az ab.g ‘*’a.b]S b (127)
+—ty —~——u +-=S 7 /5 7 -4 12
21'2 k 4112 Yi 412 AR Y 4112 45 N7y, l'u”|+\
3b,  ab b’ S : S
u = -—ut-——u —— 7. ——L8 .7
I R L A A I L
—ﬁ‘-u +3'Eu -——i§ T -——i2-§ T —iu (128)
2704l e e R T T L s

Following the same procedure and considering (103), the transformation equations for

Ve, V, Wi, W, at each of the element mid-side nodes are




A : Numbering for Element Assembly

Q : Numbering for Mid-Point Transformation

Figure 9: Numbering of Nodal Points in LCCT-12 Element
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zax dlz aib +a| |S 1 15
= e—V ——V ——W — T + T
Yi+3 212 J 412 142 3"3 412 45 xzj 412 44 \zJ
! i
3a. af ab ab _ ab _ b.
2y ——v ~Llw +1§ 7 +-18 7 —v

27 F a4 e o2 Y42 P g2 MR L e

v = Eb_’v +y +i“, —-_bi.g T b'2 S
“143 2].|2 ! 4].2 Y] 41|2 Y 4y’ 4378z, 4]‘3 447 vz,
3b ab . b’ b s b’ . a
—_tv Lty 4w = — Ry
2].* 1N 412 Yk ‘“f Y 417 43 a2y 4]I3 44 A ]I LI
3 : +—-'B Bv +—2(8,,—X) 2
w, =-e——w-——w +—Bu +—Bv +——( —XNo +—w
Y g2 g N a2 Y
af +%qB +§QB +%QG X)o +%WB i
——w_+—Bu +——Bv +--(S - —Be——w_
I L LI LR S S
3, b, b’ 5 b’ 5 b’ 5 00
w, =—w+—w ——Bu ——Bv ——(§, X))o ——w
R T L T e BT
+ 25 b B i B b (5,,~X) i Be —
—_—WwW ———Dbu ——b VvV - ~AJO ————D ¢ ——W
a7 Teoa? Ve g7 7 N g2 P T g e e

(129)

(130)

(131)

(132)

Substituting (127)(132) into (119), the relation between the surface traction components

at each of the element mid-side nodes and the corresponding displacement

gradients is

a

nx n
ann = [Tl]i Vn + [Tzll{r'},+3 + {T3}i
W
m3)i43 "i+3

where
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mz(fM+n z(ﬁ.‘i\ m°C, +n°C
[Tn].= m‘%(—_‘.%+mnQCM+2mn'(_?45 m3(w72?+mn:’C723+2mnzC“

2 2 3 = ~ 2 2 3
C,,—C,, )m n+(m°n—n")C,, (C,;—C,,)m n+(m"n—n")C,,
(C,+C,)mn

2m211(744+m2n(f23+n3(733 (134)

3 2\ tal ~ 2
(m”’'—mn )(_.“+((,7‘3—(.n)mn

b, sluanwu vow 77 o N W e N W T T O H (139
1+ b 1 \I )_| \l NN [ [ YY ‘i Mo v Ty
%(fhxnngﬂl——;-(ju‘xnllll+m(_f“‘
o ~ 2 2 1, 4= 2 20 2es 25
{r} =1 C,mmn B]——z-(m C,,;#m™n C,oB,+mC ,+n°C, | e, (136)
1 (m*n-mn®)B —1(C,.—C, )m*nB +T,,—C,)m
3 Caq M RTMRUL, TR 33T 23 1 137 /M
with
b. a
m=—]—‘. n=—]—‘ 137

and [T,] is the product of the transformation matrix shown in (119) with the

following matrix [TA]
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Rearranping (133}, the displacement-stress transformatons for the normal  displacement
gmng ¥ I

pradients at each of the mid-side nodes 1in the FOCT-12 element are
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un 0'“\
I AR R A R U [ VA R ) (139)
Wihies Tos). s
or symbolically,
{r),,=Hlr ) HLH +{S) (140)
where
o= (141)
1) =-r,)'Ir.] (142)
{$} =11t} (143)

Here, (] denotes the transformation matrix which directly related the normal slope
quantities at the mid-point, i+3, to the corresponding surface traction components. [L]
can be regarded as the coupling matrix between the normal gradients and the mixed
degrees of freedom associated with the nodal points, j and Kk, at the two ends of the

boundary. {S} is the local effect resulting from the applied uniform loading e,

5.3 Finite Element Formulation
The discretized form of (73) can be rewritten as
M
0= 5(%<q'”}'f[x "Nq"—tq")HE"D (144)
where [K"] is the element stiffness matrix, {F"} denotes the nodal force including the
local effect due to the uniform in-plane strain loading as shown in (80) for the
free-edge stress problem. {q™} is the set of generalized nodal displacement components

within the element m, and M denotes the total number of elements.
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In order to have both displucement and traction continuity along interelement as
well as interlaminar boundaries, assuming (144) is based on continuous strain cubic
displacement interpolation as in LCCI-12 described in 4.3.2, the displacement-stress
transformation matrices derived in the previous section were imposed on the generalized
degrees of freedom. Combining (104) and (140), the generalized displacement
components in the LCCT-12 element were transformed to the mixed type degrees of

Ireedom as follows:

{(l“.l[:{’l"”]:(l'“l>+{l)l“} (145)
where

G1 o o o o o
0o Gl o o o o
0o o 6] o 0o o
(™=l 1), o ), o o (146)
0o L], L], o [H]), o
[L]2 0 [L], o o [H],

P I={RIARLIRLISY S} A8} (147)

m
b—4 ; ’ ! ' 7 ’
g™ =fu v wou Uy Wy VW Wl Y W YW

T
ULV Wl WV WLV W N W Y W YW } (148)

3 Iy vty T oy ngt gt g ngtng g ng

n
=={u,v, W U NV W T T 0 ULN LMWV W T T ULV W
{qQ"™" fu, v w, . Wy T T, PPN VW T T T, U W
.

u o b (149)

'v 'w . ,T ‘T ‘G. ‘G " ‘U ’G ’U ’U '0 " 'o 9 ,U .
V3 \'3 y ‘; \13 VZ-; 1.3 n.\b lll\() ll\b ||\4 “"4 nhd n)\s n"s nhs
Fach of the [L) matrices in (146) was divided into two parts to match the mixed

degrees of freedom in (149). In the finite element computation, this transformation
was implemented during the formation of each of the subtriangular element stiffness

matrin  and  load  vector corresponding 1o the JLX(T1-12 element.  Thus, due 1o

6H5s




appearance of displacement and interlaminar traction components at the corners of the
triangle as well as traction components at the mid-side nodes, a cubic variation of
displacement and a quadratic variation of traction were ensured along element
boundary. More importantly, both fields are continuous across the common boundary
between two contiguous triangular elements. Substituting (145) into (144), we have

M
Q= Z(%{q,m}T[.]‘m]T_*_{Pm}T) [}\.m] ([.I.m]{q,m}+{])m})_({q,m}1’[.1,111]T+{pm}T){Fm})

m ol

—2(4 TN EE N L TR L 1

1

“)m} [I\m]{l)m m} “ m] “ m} {I)m} { m}) (150)
or
- 1
— M Trg>m ,m__,mT m m
Q—né(—i{q PIK™Kg ™} g™} {R"HC™) (151)
where
[Kmlz[.rm]T [Km] [Tm] (152)
{R™=[T"TF™ T TIK"}P™) (153)
m=%“)m} [}\m]“)m} {Pln}T“:m}zconswnt (154)

Using global coordinates, (151) could be written as
=23V Rilg-aHR+C,, (155)

Taking the variation of (155) with respect to {q'} yields the system generalized nodal

force-displacement equilibrium equations

{K}q'}={R} (156)
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The displacement as well as interlaminar stress components were then obtained by

solving the resulting set of linear equations in the standard manner.

54 Calculation of Stresses

Solutions of the finite element system gives the three displacement components,
their tangential gradients along the element edges, rotation about the longitudinal axis
and interlaminar stress field at the corner nodes of the Q-23 element, along with the
boundary traction components at the center point of each of the Q-23 element surfaces.
To vretrieve the rest of the displacement components at each corner node, the
transformation matrix used in (104) was reapplied to the calculated nodal point
solution. Having found the complete displacement gradients and hence strains, the
inplane stress components at the corner nodes of the Q-23 element could then be
computed using (115).

The interlaminar or interelement stress components at the mid-point of each
element boundary are merely the traction components directly produced by the solution
of the continuous traction Q-23 element provided a rectangular mesh is used in the
analysis. For determining the rest of the stress components, the normal displacement
gradients at mid-side nodes were recovered from the nodal point solution using (140).
Furthermore, the displacement und their gradients along the edge at the mid-point were
interpolated from the previously computed displacement components at the two ends of
the segment. Having transformed these displacement gradients from local to global
Cartesian coordinates, calculation of the remaining strain and stress components at the

mid-side of each of the element boundaries is direct.
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5.5 Boundary Conditions of a Quadrant of the Delamination
Specimen
For the free-edge delamination specimen, because of symmetries in the laminate.
only one quadrant of an x=constant plane Wwas considered (Figure 2). Along the

boundary, either displacements or tractions are specified at each point.

5.5.1 Boundary Conditions Along Lines of Symmetry
Symmetry of loading as well as geometry about the mid-plane implies that the

displacement functions satisfv the following condition

Ulv-2)=U(v,2) (157)
Viv, z)=Viy.z) (158)
W(v,-2)=—W(v,z) (159)

Using chain rule of differentiation,

-U (y,2)=U,(y.2) (160)
-—Vz(y,—z)=Vz(y,z) (161)
Wy( v,-z)=—W y(y,z) (162)

Setting z=0 in (5.79)(5.82), we have
W(v,0)=0 (163)
W (v0)=U( y 0=V (v.0)=0 (164)
From (5.84), y,,(y.0)=y,(y,0)=0, and consequently, for the layered orthotropic material.
7Ly 0=7 (3.0)=0 (165)
Also

(W -V Xy0)=0
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Invariance under a rotation of 180 degree about the z-axis through the center of the

specimen implies

U(-y,2)=—Ul(y,2) (166)
V(-y,2)=-V(y,2) (167)
W(-y,z)=W(y,2) (168)

(166) and (167) lead immediately to

L{0,2)=\V(0,72)=0 (169)

for all 7z, and consequently

U to)=\ (0.2)=0 (170)
By chain rule of dilferentiation, (166) vields

—Wy(-y,z)=Wy(y,z) (171)
Hence, for y=0

W (02)=0 (172)
(170) and (172) imply y,(02)=v,,(0,2)=0. Hence, for the layered orthotropic material,

7 02)=1_(02)=0 (173)
Also

(W =V X02) =0

Combining (163). (164), (165), (169). (172) and (173), along with U(0.0)=0 in order

to prevent rigid-body displacement of the laminate, the continuous traction finite
element model for a quadrant laminate under consideration should satisfy the following

conditions along lines of symmetry

U(0,0)=U(02)=V(02)=W(y,0)=W ( y.0)=W (02)=0 (174)

T v 0)=7_(v0)=1 (02)=71 (02)=0 (17%)
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5.5.2 Traction-Free Boundary Conditions
The traction-free boundary conditions associated with one-quadrant of the laminated
specimen are
1xz(y,H)='ryz(y,H)=crz(y,H)=0 (176)
at the top surface, along with

0"‘(8,7,)—'51'\\(B.Z)—"—'T\_Y(B,Z)z() (177)

at the dateral dree edge. Here 2B and 201 denote the total width  and  thickness
vespectivelv o the laminated speamen.  Using  the continuous  traction Q-23  model,
traction-free boundary conditions shown in (176} can be 1dentically satisfied for nodal
points on the top surfuce.  lowever, due to the lack ol inplane stress components as
nodal degrees of freedom, only the last condition shown in (177) can be specified at
those element corner nodes along the lateral free-edge. To completely satisfy the
traction-free condition along the lateral free-edge, the following device was developed.

In order to enforce the remaining two inplane stress-free conditions in (177), it is
necessary to express these in terms of nodal point degrees of freedom. This results in
a linear relationship between the degrees of freedom at nodal points on the free edge.
The stress {ree condition can be written explicitly as

a :():F

‘ e +C, . w +C, v +C v (178)
Y 1270 23 7 ’¢

227y 26y

w40 v +C v (179)
[N 7 26 v

Y

T" \} =0=( l(;en+( 3

or symbolically

4

0} _ C,, Czs C,, Ch ¥
() Cl() C‘“- CZ(; be) v

u.
y

z

(180)

y
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where C, are components of the stiffness matrix defined by (116). Solving above
equation, the inplune strain  components u. v. can be expressed in - terms of

interlaminar normal strain w,, by

'S 1)) (e
’ =r“ ' [ °} (181)
u_v ]21 I22 (Wz
where
PRI SR Ry ol
n—: ol S Teh 12
[ TP
l”—a—(( " m—( o j‘)
] (182)
IZI:;((‘:H(‘IJ—(‘ G
=L@, T, -C.C.)
227 o 272y I3
and
_ 2
«=C,,C,,~C2, (183)

Substituting  (102) into (181) for w, we can further relate u, and v, to the

kAl Yy

interlaminar normal stress component O, through the following linear relationships

U_\=plo’7+p2eo (184)
V. 74,0,4q,e (185)
where
= : ,
Py =gl 5y, =M (186)
_ 1
p:"ﬁ(]nllzsz—l12121B2+12281+12|) (187)
_p T -
q,—gll,_,(sn—x)] (188)
_1 ,
R IURIL R IR RURS IR (189)
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and

B=1-1,,B.~1 B, (190)
Again, B,, B, B, and N occurring in (186) through (190) have been defined by
(96)(99). Thus, the variables associated with the nodal points of the free-edge in the
lateral continuous traction Q-23 element are no longer independent but related through
(184) and (185). Incorporating these linear relationships in the displacement-stress
transformations shown in (104) and (1400 fur elements on the lateral boundary implies

satisfaction of the truction free boundary conditions (177). The trunsformation becomes

u 10000 0 0 O 0 u )
AY 010000 0 O OV 0
W 0071000 O 0 OW O

u.l Doooo o o o pjlu.

¥ [ \ p.e|
Vy[=000000 0 0 gVl lge (191)
Wyl 000001 0 0 Offwy |g
u,[ 0000005, 5,0 | o
v,| [00000-15,8, 0]\ | |0
w| 000000 0 0 rlig | |"%
where
r,=S,,-X+4B,q,+B.p, (192)
r, =B +8,q,+8,p, (193)




SECTION VI
ANALYSIS OF FREE-EDGE DELAMINATION IN
LAMINATE COMPOSITE SPECIMENS

6.1 Introduction

Continuous traction finite element formulation developed in the previous section
was applied to obtain an approximation to displacement as well as stress fields in a
free-edge delamination specimen. The analysis consisted of two parts. The first
consisted of solving four-ply symmetric laminates. The purpose was to examine the
credibility of the continuous traction finite element model by comparing the numerical
solutions with those from Pagano's analysis based on a generalization of Reissner's
theory. At the same time, the deficiency in using the continuous strain free-edge
stress model described in Section IV was examined. The second part consisted of
studying of edge delamination tendency in two classes of multi-ply laminates subjected
to longitudinal loading.  For laminate specimens with stacking sequence of
((6/—6),/90,.,), displacement and stress fields calculated from the continuous traction
(Q-23 element were compared with those obtained using an overlay procedure with
constant strain elements [45] and with experimental observation [46] For the
[(6/—8),/90], laminate specimens, the continuous traction finite element code was used
in conjunction with some well known anisotropic failure criteria (47-50] to predict the
onset of transverse cracking and the onset of edge delamination in various laminate

specimens observed in experimental data [S1} The purpose was to evaluate the
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suitability of these failure criteria for application to the free-edge delamination problem.
Because of symmetries in the laminates, onlyv one quadrant (Figure 2) was considered

in each case.

6.2 Four-Ply Laminates

In this section, analysis of two Jong symmetric laminate strips made of
graphite-epoxy  materials, with fiber orientations of [45/-45] and [0/90] under uniform
inplane strain in the longitudinal direction is described.  The relation between laminate
width  and  thichkness was 2b=16h  Tollowing [&.  In the analysis, euch ply  was
idealized as a homogeneous, elastic orthotropic material.  For comparison purpose, the
material properties assumed here following Paganos work [8]

E,,=20x10°psi

=F = 6 i
E,,=E,,=2.1x10%psi

G,,=G,,=G,,=0.85x10°psi
vV, ,TV35V,,=021
The subscripts 1, 2 and 3 correspond to the longitudinal transverse and thickness
directions respectively. A 144-element model as shown in Figure (10a) was used to
discretize a typical x=constant plane. Numerical results based on the continuous
traction Q-23 and continuous strain Q-23 elements were compared with Pagano's (8]
analytical solution.

Figures (11) through (23) illustrate comparisons for both stress and displacement
fields at specific locations for the angle-ply and cross-ply laminates using different
solution techniques. The value of N in these figures corresponds to the number of

sublayers used in Paganos theory. Thus, N=6 indicates that each physical laver of

thickness h was modeled by three sublavers each of thickness h/3, while N=2 denotes
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(a)

(b)

Figure 10: 144-Element Mesh
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that each physical laver is treated as a unit [8] Also. the calculated displacements and

stresses were normalized by the applied uniform strain loading e, which has been

o

taken as unit in the present analysis.

6.2.1 Angle-Ply Laminate

Figures (11) and (12) show the distribution of o and 7, along the width of the
laminate at the center line of the top (45 degree) laver. The results obtained using
the continuous traction Q-23 element agreed quite well with those of Paganos \=6
solutions across the entire width of the laminate.

A compuarison of the shear stress (7) distribution along the interface of the
45/-45 lavers (lagure 13), indicated that the continuous traction (Q-23 solution had
sharp rise toward the free-edge similar to Pagano's solution with N=6. Satisfactorv
agreement was observed between these two solutions for stress across the width except
at the free-edge boundary where continuous traction Q-23 somewhat underestimated the
singular stress. Figure (14) shows the .hrough-thickness stress distribution of 7,
calculated from both continuous strain and continuous traction Q-23 elements at the
free-edge of the laminate. Very close agreement was generally observed between these
two solutions throughout the thickness. Also, at the interface of the 45/-45 lavers.
continuity of the interlaminar shear stress was ensured for both cases. This is because
of the rotational symmetry about z-axis in the particular angle-ply laminate considered.

The singular behavior of 7, which is highly localized at the interface between 45/-45

layers, is noticeable. The distribution of o, along the interface between 45° and -45°
plies, which was not indicated in [8], will be discussed in the next section.

For the axial displacement distribution across the width of the top surface,

continuous traction Q-23 results compared well with Pagano’'s N=6 solution (Fipure 15).
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Figure (16) shows the through-thickness distribution of axial displacement based on
continuous strain as well as continuous traction Q-23 elements at the free-edge of the

laminate. Again, these two solutions matched well throughout.

6.2.2 Cross-Ply Laminate

Distribution of o, along the width on the central plane of the [0/90] laminate.
shown in JVigure (17), indicates a sharp rise near the frec-edge boundary. Solutions
obtamed from the continuous traction Q 23 element nearly coincided with Pagano's N6
solution over the entire width of the laminate.

Figure (18) shows the varation of o, along the interface between the O and 90
plies.  Due to the presence of the discontinuity in elastic properties, a singular stress
behavior would be expected at the free-edge. On the boundary, result from the
continuous traction Q-23 element had a steeper gradient than that of Pagano’s theory.
Apparently, one possible reason for this discrepancy is that, in Paganos analysis, each
physical layer could be modeled by at most three sub-layers. However, in the finite
element analysis, the thickness was divided into eight elements. I a coarser
discretization were 1o be used, say 4X18, o, calculated from the continuou traction
Q-23 element would possiblv agree quite well with Pagano’s solution at the free-edge
interface.  Figure (19) shows the influence of through the thickness refinement of
mesh on o, Figure (20) shows through-the-thickness distribution of o, at the
free-edge of the laminate. In the vicinity of the interface, the continuous traction
Q-23 element, enforcing continuity of o, at the interface between differently oriented
layers, gave a stress distribution quite different from that given by the continuous

strain Q-23 analysis. Awav from the interface the two sets of results were close.

Also, the interlaminar stress o, was observed to have a maximum value in the interior
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of the 90-deg laver closer to the interface with the top layer. However, in both cases.
the solutions displaved oscillatory patterns near the interface. This could be due to the
finite element mesh used being not fine enough to approximate the steeply varying
stresses associated with abrupt change of material properties.

Values of 7,, along the interface between the [0/90], layers, calculated from the
continuous traction Q-23 element (Fiigure 21), showed satisfactory agreement with those
calculated by Pagano.  This is because the continuous traction Q-23 element evactly
satisfies the traction-free boundarvy condition similar to Pagano's theory. llowever. an
oscillatory error was observed near the free edge. Apparentlv, further mesh refinement
along the y-direction is required near the free-edge in order to approximate the singular
stress behavior. Figure (22) displays through-the-thickness stress distribution of 7,
calculated from both continuous strain and continuous traction Q-23 elements at the
free-edge of the laminate.  Apparently, satisfaction of the traction-free boundary
condition associated with the continuous traction Q-23 element represents an
improvement over the continuous strain Q-23 element.

Comparative results for the variation of transverse displacement along the top
surface of the [0/90] laminate are shown in Figure (23). Excellent agreement was
observed between results using the continuous traction Q-23 element and Paganos N=2

solution.

§8




@ CONTINUGUS TRACTION
— PAGANG (N=6)

0. 30

0.2u

0.18

1

-YZ—STR%SISZ/ e.x 107° (PSI)

[{s]

()

(3‘—

o ,4cr45/0/j

‘?4} o o ® ﬁh4mh4?/o’1 i -
W 0.20 0. 40 0.60 0.80 1.

DISTANCE FROM CENTER LINE Y/B

Figure 21: Distribution of YZ-stress Along the 0/90 Interface

00

89




® CONTINUGUS TRACTION
A CONTINUOUS STRAIN

NE Z/H

L1
0

TER

|:4

»

-1.50

Figure 22:

>

-1.00 -0.50
YZ-STRESS/ €ox 1

o
o

0.50
PSIT)

o0
9

1.00

Through-Thickness Distribution of YZ-stress Along the Free-Edge

of {0/90]g LLaminate

90




1.00

© CONTINUGUS TRACTION
~— PAGANO (N=2)

0.80

60

-V (Y, 2H) / £h
0.40 0.

20

0.

Q

o

o
.00

Figure 23:

.20 Ui.QO 0;. 60 E 80 1.00
DISTANCE FROM CENTER LINE Y/B

Transverse Displacement Across Top Surface of [O/90]sl,aminate

9N




623 Effect of Traction-Free Edge on the Solutions

In order to investigate the efiect of requiring the satisfaction of a traction-free
boundary condition on the finite element solutions, the contihuous traction Q-23
element was employed with only the requirement that 7.,=0 along the lateral
free-edge of the four-ply laminate specimens. In other words, the displacement
constraint conditions developed in (188) and (189) used to specify the in-plane
stress-free boundary conditions were not impised in this model. Tor convenience in the
Following comparisons, this is designated as continuous traction (partial).

Figure (24) shows the distribution of 7_ along the interface of the 45/-45 layers.

N
Solutions calculated from the continuous traction (partial) had a steeper gradient in the
vicinity of the free-edge than that of previous continuous traction Q-23 element. A
similar observation is made for the variation of o, at the interface of [0/90] laminate
(Figure 25). Thus, it is concluded that the nonimposition of the conditions
0,=0 and 7,=0 would overestimate the magnitudes of the interlaminar stresses on the
interface near the free-edge. However, the nonsatisfaction of these two traction-free
boundary conditions had no significant effect on the displacement field in the laminate
specimens.  Figure (26) shows the solutions, for axial displacement distribution across
the width of the top surface in the [45.-45] laminate, obtained from the continuous
traction (partial) and from the continuous traction -23 element which satisfies all

traction free conditions at the free-edge.
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62.4 Effect of Mesh Refinement

The analysis of the four-ply laminate specimens was originally carried out by
using the continuous traction Q-23 element with a uniform 80-element model as shown
in Figure (27). However, for reliability of results, the finite element mesh must be
refined in regions of steeply varying stresses. This results in the present analysis
using the 144-element model which indeed was obtained by dividing the two elements
closest to the free-edge in the 80-element model into 10 elements along the v-direction.
To study the effect of mesh refinement on the continuous traction {inite element
solutions, comparisons were made for the stress distributions in the four-plv laminate
specimens between the uniform 80-element and the locally refined 144-element madels.

Figure (28) shows the distribution of 7 at the interface of [45/-45] laminate
based on the 144-element model. A steeper gradient of 7, was observed on the
boundary as compared with the result using 80-element model. A comparison of o,
distribution along the interface of the 45/-45 layers, indicates that the 144-element
model had a compressive finite maximum value at the free-edge rither than a tensile
quantity from the 80-element model (Figure 29). This indeed has demonstrated the
inappropriate sign of o, shown in Figure (1) based on the perturbation technique as
well as finite difference method. For variation of o, along the interface of [0/90]
laminate, Figure (30) indicates that a singular stress behavior was properly reproduced
by the 144-element model and did not show well in the results based on the
80-element mesh,

Use of 144-element model might still be insufficient to approximate the singular
stress behavior. One example is the 7, distribution, which had an oscillatory pattern

near the free-edge along the interface of [0/90L laminate, as mentioned before. To
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Figure 27: 80-Element Model
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overcome this, a more refined mesh (208-element model) obtained by further dividing
the two elements closest to the free-edge in the l44-element model into 10 elements,
was used in the analysis. Along with the results calculated from 80- and 144-element
models respectively, Figure (31) indicated the improvement of the 7, distribution along
0/90 interface over the boundary layer region as more refined elements were used near
the free-edge. However, regardless of mesh patterns used, there was an oscillatory
error in 7., in the two clements next to the free-edpe.

Figure (32) shows through-the-thickness distributions of o, at the free-edge of
[t).’()()]:‘ Jaminate based on the 144-element model but with finer mesh near the
interface (Figure 10b) and its refinement (288-element model) in the thichness direction.
It is observed that the oscillatory error near the interface was reduced by using the
refined 144-element model and was nearly disappeared under more refinement over the
Jaminate thickness. Meanwhile, the maximum value of o, within the 90-degree layer

was moving closer to the 0/90 interface.
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6.3 Free-Edge Delamination in Multi-Ply Laminate Specimens
Analysis of the four-ply laminate specimens described in the previous section
demonstrated some validity of using the proposed finite element procedures in solving
free-edge effect problems. Both continuous strain and continuous traction Q-23 elements
had similar prediction on the displacements and inplane stress distributions, which also
compared well with Pagano's analytical solutions. However, discrepancy between
continuous strain and continuous traction finite element models was apparent for the
interlaminar stresses near laminate interlfaces between differently oriented lavers or near
the traction-free boundary. Due to the fact that stress continuity across interlaminar
boundary as well as traction-free boundary condition are exactly satisfied in the
continuous traction (Q-23 element, solutions obtained from this approach were expected
to be more reliable than those from the continuous strain Q-23 element. In this
section, application of the continuous traction (-23 element to investigate the free-edge

effect as well as initiation of edge delamination in the multi-ply laminates is described.

6.3.1 Analysis of [(8/-8)n/90y,]sLaminates
Four types of laminates with predetermined fiber orientations [46] were used in
the present investigation. These are

Type Stacking Sequence Width Ply thickness Plies

A [(49.8/-49.8),/90). 1.0in  0.00506 in 22
B (30.8/-30.8),/90]. 1.0in 0.00508 in 22
C  [(255/-255),/90] 10in 0.00505 in 22
D [(47.9/-47.9),,/90) 10in 0.00499 in 2

The material used in the study was AS4/3501-6, graphite-epoxy, and the elastic

constants were [46)
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E,,=19.26X10°psi
E,,=1.32x10"psi
G,,=0.83X10"psi
v,,=035
All the specimens have been investigated both analytically and experimentally at
the AFWAIL/AFFDL [46]). The Delamination Moment Coefficients (DMC) were derived
and used to evaluate quantitatively the delamination tendency of the laminates. Also,
generalized constant strain element was applied 10 analyze half of the width ef the
laminate specimens. In the experimental aspect, various technigques including Transverse
Strain Gages, Cracked Silver Ink Instrumentation and Acoustic Emission Instrumentation,
etc. were used to determine the onset of delamination and to validate the analytical

results.

6.3.1.1 Numerical Evaluation

A 154-element model shown in Figure 33(a) was used to discretize one quadrant
of a typical X~constant plane in the laminate specimen Types A, B, C, and a
294-element model (Figure 33(b)) was used for speicmen Type D. Each ply was
modeled by a single element through its thickness. Interlaminar stress field within
various laminate specimens for an applied jongitudinal average stress of 100 psi were
computed.

Comparisons of o, distribution along the mid-plane of various multi-ply laminates,
(Figures 34-37) indicate that the continuous traction Q-23 solutions had sharp rise
toward the free-edge similar to constant strain element solutions [46) Satisfactory
agreement was gererally observed between these two solutions for stresses in the

vicinity of the free-edge except on the boundary where the stress calculated using the
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(a) 154-lement Model

(b) 294-Element Model

Figure 33: Finite Element Meshes
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Q-23 element was distinctly less than that from the constant strain solution.
However, the o, values calculated from the constant strain element were extrapolated
from the interlaminar stresses at z=0 obtained by lagrangian interpolation of the o,
values at the element centroids. This is unlike the continuous traction Q-23 solution
where o, at the free-edge was directly calculated as nodal degree of freedom and
would be expected to be more reliable.

Figures (38)-(41) show the through-the thickness stress distributions of @, and 7
calculated from continuous traction Q23 element at the [ree-edge of various laminate
specimens. It is observed that for the same applied axial stress, specimen 1) had the
largest value of normal stress o, at the free-edge, followed by specimens A, B and C.
Figure (42) illustrates this. The slope discontinuity of o, at the interfaces of the
free-edge shown in Figures (38)(41) was possibly attributed to the material as well as
geometrical discontinuities in that region. Figure (43) indicates that much smoother o,
distributions through the Jaminate thickness were recovered within the angle-ply
laminae at a small distance from the free-edge. In fact, with further refinement along
the free-edge. the solution of o, on the free-edge is even better. Figures (44)-(45)
show the solution for o, at the free-edge and at y=0.495 for specimen A with each
edge element being refined into four elements along v direction. Also, figure (46)
shows the functional dependence of longitudinal stress o, as well as interlaminar
normal stress o, on the fiber orientation, respectively, for the [(6/—6),/90) laminate
under the same applied loading. The ordinates of these curves are the respective
values of o, and o, at the intersection of the mid-plane and traction-free edge of the

laminate. Results obtained from the continuous traction (-23 element indicated that

both o  and o, attained their maximum values approximately in the {iber orientation
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0 = 30°.

The shear stress 7, distributions were similar for these specimens, and their
magnitudes are relatively smaller than the maximum normal stress o,. However, the
existence of 7,, evidently reflected a defect of the numerical model adopted in [46] in
which the delamination specimen was treated as an axially symmetric problem in
which 7, was inherently assumed to be zero throughout the laminate thickness. It
was noted that o, distribution hud a sjope discontinuity at the mid-plune surface
within the 90-degree laver. This does not appear to be reasonable for the present
symmetric laminate specimens. Presuming that this was associated with the use of a
single element through the thickness of 90-degree layer bLeing insufficient to
accommodate the mismatch at the interface between angle-ply and cross-ply laminae, a
study was carried out refining the mesh near the midplane. Figure (47) shows the
dramatical improvement of o, distribution near the mid-plane surface of specimen A
as increasing number of elements was used in the discretization of 90-degree layer. At
the same time, the maximum value of o, in the interior of the transverse layer was
observed to move closer to the interface with the angle-ply layer. Again, if both the
90-degree layer and the free-edge elements were refined, the improvement of o, was
not only on the 90-degree layer but also on the entire laminate. Figures (48)-(49)
show this improvement.

Comparison of the interlaminar shear stress 7, at the center line of 90-degree
layer along the width of various laminate specimens are shown in Figures (50)(53).
Solutions from both methods indicate that 7, approached finite maximum values in the
vicinity of free-edge yet the traction-free boundary condition could only be satisfied by

using the continuous traction Q-23 element. The maximum values of 7, from the
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two models were comparable. the constant strain triangular element approximation
departed significantly from the Q-23 solution in the vicinity of the free-edge. This
could largely be due to the nonsatisfaction of the traction-free boundary condition
Figures (54)(57) illustrate through-the-thickness stress distribution of 7, along center
line of the second element from the free-edge for various laminate specimens. The
reason to choose this site for comparison was because of the singular stress behavior
being displayed in the finite element discretization for both methods (Figures S50-53).
A close agreement was generally observed between these two solutions. The continuous

tracuion Q-23 analvsis show that the maximum 7., occurred at the interface between

N
the negative angle-ply and the 90-degree lavers for all the specimens. The constant
strain element does not have the capability to predict this. It is also noted that for

the same applied axial stress, specimen D has the largest value of 7, followed by A,

y2’

B and C, similar to the observation for o,
Table (2) shows the values of interlaminar normal stress o, at the interface of

the free-edge for laminate specimens A, B, C and D based on constant strain element
and continuous traction (-23 element, respectively. The ratios of the normal stresses

o, to the relatively minimal value among them are 211 : 132 : 1.0 : 247 for

2
constant strain element, and 2.12 : 1.33 : 1.0 : 2.39 for continuous traction (-23
element. Thus, the normal stress ratios for specimens A, B, C and D, calculated from
these two finite element schemes are comparable with each other.

Figure (58) shows exaggerated views of the displacement fields based on the
continuous traction Q-23 element in specimens A, B and C. Figure (59) shows the
distortion of Specimen D. The maximum displacement in the y-direction calculated

from both constant strain element and continuous traction Q-23 element shown in
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Table 2: Comparisons of Delamination Tendency for Various Speimens
( unit : psi)
= oo m oo e e b e Lo eeepaooeooo
Classification Specimen A B c D
............................................................ e
Value 107 .74 67.65 51.12 126.22
o, from Constant
Strain element
Ratio 2.11 1.32 1.00 2.47
Value 82.07 51 .54 38 .68 92 43
o, from Continuous
Stress Element
Ratio 2.12 1.33 1.00 2.39
g
Note : Ratio=—=
o
Zin
134




Y

(a) Undeformed Model of A, B and C laminates

T
1

[
11

{I

(b) Deformed Model of A Laminate

by
-
g ]

(c) Deformed Model of B Laminate

—.'

(d) Deformed Mode!l of C Laminate

Figure 58: Finite Flement Models of A, B and C Laminate Specimens
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Figure 59: Finite Element Models D Laminate Specimen
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Table (3), were found to be in reasonable agreement for all these specimens. Also,
from these figures, it is observed that under the same applied axial stress, specimens D
had the largest distortion near the free-edge, followed by laminates A, B and C in
descending order. In other words, specimen D had the greatest tendency for edge
delamination among the four specimens, and the delamination would set in at the
lowest applied axial stress.  This again confirms the prediction based on the
interlaminar normal stress @ which had the largest values for specimen D as shown
in Fable (2).  Based upon above analysis, we conclude that bot;1 the distortions and
the values of normal stress o, near the [ree-edge o the specimens calculated from the

continuous traction QQ-23 element are consistent with those of the constant strain

element (46) which is much more economical to implement.
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Table 3:

Constant
Strain Element

Continuous
Traction Element

llote

Ratio=

min

Comparisons of Maximum ‘Fransverse Deformation for Various Specimens

( 1077 in)

..................... e m e m g mm—mmmempe—— o
Specimen A B C D

e N I IR I I I R I S A et ittt -{
Value 0.1309 { 0.1032 0.0829 0.1935
Ratio 1 5789 1.2448 L 1.00 2.3337
__________ R SR SIS S
Value 0.1171 0 .0888 0.0704 0.1638
Ratio 1 6641 1.2619 1.00 2.3274

138




6.3.12 Analytical-Experimental Correlation

An experimental study was conducted at AFWAL/AFFDL [46] to validate the
analytical results. Part of the test results are summarized in Table (4), which gives
the specimen type, strains, and stresses for the initiation of edge delamination
determined by transverse gages, silver ink, acoustic emission and visual observation.
The table also contains average axial stress for initiation of edge delamination
calculated from the continuous traction Q-23 element. The average initial delamination
stresses for laminates A, DB, and (€ were found to be 192, 233 and 264 (ksi)
respectivelv [45].  The corresponding finite element solutions were 15.883, 25.817 and
20935 (ksi). To calculate these values, the nodal axial stresses within each LCCT-12
triangular element had to be recovered from the stresses calculated along the boundary
of Q-23 quadrilateral. The axial loading applied on each triangular element could then
be computed by integrating the nodal stress values over each triangular area. Having
assembled the element axial loading over the whole system, the average axial stress

was obtained by dividing the total axial loading by the total cross-sectional area.
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Tabje 4:

Ixperimental Results for Various laminate Specimens

r — - = — = —

element (ksi)

140

Laminate Specimen A L B L C
................................................................... .
Axial Strain
10°® 6099 3300 2900
Initial Matrix Cracking Stress
( ksi ) 15.5 21.7 25.1
g S B e ] T b -~ -~ -
Gages 20.4 23.7 22 .1
Initial Silver Ink 17 .2 24 .6 24 .9
Delamination Acoustic
Stresses Emission 19.2 23.2 26 .4
( ksi )
Visual 18.1 23.5 25.9
________________ L--——--———-——-—--———_—r————_—_-—_—-.-______-__-_—-______—_
Average Stress Calculated
from Continuous traction Q-23 15.883 25.817 29.935




632 Delamination of [(8/-8)2/90lg Laminate
A sequence of tests had been conducted [51] to monitor the material damage in

[(0/—0),/90], laminate specimens under incremental loading. The value of 8 were

5°, 15° 25°, 35°, 45°. The material considered here was T300/5208 graphite epoxy
with the following elastic constants:

2, =22x10"psi

I, =1.54x10"psi

G,,=G,,=0.81x10"psi

v,,=V,,=0.28
The thickness of the ten-ply laminate averaged around 0.06 inch with width equal to
1 inch. All these laminate specimens had also been analyzed [51] using the assumed
stress hybrid finite element model [52] in conjunction with the quadratic tensor
polynomial failure criterion [53] to predict the onset of transverse cracking and
delamination. In the present study, continuous traction Q-23 element with a uniform
100 element-model shown in Figure (60) was used to analvze one quadrant of a
typical x=constant plane in the laminate specimens. The calculated stresses along the

traction-free edge were then substituted into the following failure criteria to determine

the possible sites for initiation of transverse cracks and delamination.
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Figure 60:

100-Element Model
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6.3.2.1 Anisotropic Strength and Failure Criteria
With macroscopically homogeneous but orthotropic materials, development of a

strength theory has been frequently accomplished by extending one of the isoiropic
analyses to account for anisotropy. Since strength theories are used primarily to
predict onset, rather than mode of failure, the macroscopic viewpoint will predominate.
It has been stated [53] that all the failure criteria are the degenerate cases of the
tensor polynomial failure criterion

l’ioi+1:ij0'i0'j+}~'ijk0'10'j0'k+....? 1 (194)
or, explicitly

F o +F.0,+F,0,+2F 0,0,+2F .0 0, +2F, 0,0,

2 2 3 2
+Fl 10'1+F220'2+F3302+F440'4

+F, 024F, 0F.n 21 (195)
Here, o are the stress tensor components in the material coordinates and F, F; and F,
etc. are the components of strength tensors, all components are referred to the material
principle axes. In (195), terms associated with o, o, and o, which are
F, F;, and F, are taken to be zero since shear strengths are the same for positive and
negative shear stress. It is also assumed that there is no interaction between shear
stresses and normal stresses, thus F,, F,, F,  etc. become zero.

The strength and failure criteria considered in the present study include the
maximum stress criterion, maximum strain criterion, Hoffman's criterion and the

Tsai-Wu criterion. The reason for choosing these criteria was not only their popularity

but also because they include unequal tensile and compressive failure strengths.




Maximum stress criterion

FFailure of material is assumed to occur if any one of the following conditions is

satisfied [47]

0'1>Xr; 02>YT; °'3>Zr
0'4>R; 0‘5>S; 0'6>T

(196)
where ©0,, 0, O, are the normal stress components; o, O o, are the shear stress
components: \,, Y,, Z, are the lamina normal strengths in the x, y, 7z directions
respectively; and R, S, 1" are the shear strengths in the yz, xz and xy planes,
respectively.  When oy, 0, o, are compressive, they should be compared with

N¢. Yo and Z,, the normal strengths in compression in the x, y and z directions.

Reddy [54] stated that the maximum stress criterion could also be expressed in the

form of tensor polynomial criterion as
(o, ~X Xo +X Xo ,~Y Xo ,+YXo ,~Z Xo ,+Z Xo ,—RXo +R)
(0 ,~SXo +SXo ,—TXa, +T)=0 (197)

Comparing (197) with (195) and ignoring those higher order terms, the strength tensors

are [54]
1 1 . 1 1 1 1
F = _—— ¥ S ——— .=
! .\T Xe 2 Y.r \( 3 Z’I‘ Z(‘
. 1 . 1 1
o= = —; F.,=
11 )&T‘\(‘ 22 YT\C 33 ZTZ( (198)
-1 ¢ -1 r _1
Fu’i—z’ FSs_'S—z’ FM—_T—Z
F =__F1F2' E =__F1F3, ___Fst

and the remaining strength constants are zero.
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Maximum strain criterion
Failure is assumed to occur if one of the following conditions is satisfied [48]

€l>xeT;
e4>R‘; €5>S€: e6>Te

62>Y€T; €3>ZeT (199)

where €,, €, € are the normal tensile strains in the X, y, z directions respectively;
€, €, €, are the shear strains in the yz, xz and xy planes respectively; X, Y, Z,

are the tensile strain strengths in the x, v, z directions and R, S. T, are the shear

strain strengths in the vz, xz and Xy planes respectivelv.  Again, expressing the
criterion in the form of tensor poiynomial (195),

(€,~X,Xe,+X  Xe, =Y  Xe,+Y  Xe,~Z  Ne +Z Xe,—R Xe +R)

(e,~S Xe +S Xe,~T Xe +T )=0 (200)

Expressing strains in terms of stresses via the compliance matrix for orthotropic

materials, (200) can be expressed in the form of (195) and we have [54]

S S
= 1A P13 pA
Fl-FAl+TzF2+—'

533 3
S S,
F=—l2FA4Fh4+ 2B F)
2os, sy
S,
F,=— P+ 221041
g 23
1t 22
Foecd gy 1 Sy L Sipaps Supaps i paps
> - 7 3
" N Xe 8, YiYe 33 Lylc Sy 130s,, ! $,2533 :
1 1242 1 232 1 SIZ AA 23 ~ArA Slzszg A-A
F=— 4+ ") —+(-=2) — ——=FF ——=F F — F'F
22 , T
Y. Ye n XeXe 3 Lle Sy te S35 2 5,1533 r
1 SIZ 2 1 23y2 1 513 As-A st Ar-A 513823 AL A
F,,= (=12) HBY 1 B pApA B pApA_ D3 2 Ay
33 o d ~ - - - 2 K ~ 2
L2 S, NyXe o S, oY re Sy 18,8, :
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F o252 1 Snz 1 $1352 1
S = S, ZZ
2
1, Si, A lslaslz 23 A S5,
=( +DFFA— S (12 4 2R 2 518, S 13 )F2FS
28,8, 22 511833 S33 3 Sﬂzsn Sas
poSn 1 S o1 S8y g
' 11 '\T\(‘ 533 Z'rzr 3;2 Y'l'\(‘
2 . .
S S S . S . 1.5.5. S,
L YT B\ E WA E b E Bt A R N G K AE R 4
2 5,5y, 2 85,8, Sy =2 5,55 Sy
e Sn 1 Se 1SS,
2 S, YTYC 533 .7 7 XX

11

S
BT 1F3F4— ‘( s o1 yppo L Sadis Sz g (201)
2 22733 ll 22 Sll 2 Slls33 SH

Here, S, (i,j=12,3) are the components of the compliance matrix, and Fj, F, Fy are

the expressions given for F, F, F, in the maximum stress criterion.

Hoffman's criterion

Hoffman's criterion [49]) is a special case of the tensor polynomial criterion for the

following choice of the parameters F, and F;
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pea-top=t 1 op=1_1
X, Xeo Y, YO Yz, Z,
S S B

F“=E15; Fsszé’ F“:#

Fl ==y XTlxc v Y1'1Yc B ZTIZC )
‘.f‘%( x.:.\'r * ZT]Z(- - YT]\'(- )
'E.F“%( z,,.lz(. ! \'.,.]\'(. - -\'1‘]'\(' !

Tsai-Wu criteria
The 'T'sai-Wu criterion is given by

Fo+Foo.21
(] i g

where
1 1 1 1 1 1
Fe=e———F=c-—o— F, =~
! )\T XC 2 YT YC 3 ZT ZC
1 - 1 1
F, =< F,,= i F,,=
11 )\’IXC 22 YTYC 33 ZTZC
=1 . g =1.p 1
Fu'"R—z” Fss—;z" be_ T2
Po=— !

¥V = ——mm e
"X XZZ,

F, = !

?YYZZ

Here, it is noted that the maximum stress and maximum strain criteria

(202)

(203)

(204)

involved

several separate equations, and there was no allowance for interaction of the stresses or

fajilure modes. The Hoffman criterion and Tsai-Wu criterion, however, do provide for
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interaction, and the interaction is fixed. That 1is, these failure expressions are not
invariant with respect to coordinate system. As expressed in terms of quadratic tensor
polynomial shown in (202) and (204) respectively, the only difference between these

two criteria was on the determination of strength tensors F,,, F,;, F,.

6.32.2 Onset of Material Damage

Ilach laminate specimen was tested individually in an electro-hydraulic,
servo-controlled closed-loop testing machine {51} The strain and nominal stress at the
first sight of transverse cracking and onset of delamination are summarized in Table
(5.

The measured strength (ksi) of T300/5208 graphite epoxy are given by [50]

Longitudinal tension : X, = 210
Longitudinal compression : X = 200
Transverse tension : Y =10
Transverse compression : Yo = 21

Shear in 1-2 plane : $ =13

It is further assumed that Z,=Y,, Z.=Y. R=S and T=S/2. Substituting above
information into (198), (201), (202) and (209) to calculate F, and F,, the strength
tensor for any complex stress state can then be obtained and compared with the actual
stress tensor. Failure is assumed to occur when the magnitude of the actual stress
tensor exceeds that of the strenth tensor.
Transverse Cracking

Based on the stress field calculated from the continuous traction Q-23 element, the
four failure criteria discussed in 6.3.2.1 were applied to every point along the
traction-free edge for all five laminate specimens at the strain levels shown in Table

(5), respectively, when the first sight of transverse cracking was detected. The results

14§
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are shown in Vigures (61)465) along with Chou's [50] predictions. Those points that
lie in the region where the actual stress-to-strength tepsor ratio is greater than unity
represent failure. Due to the discrepancy of the calculated stress field based on
different numerical schemes, the prediction of the lamina failure surface from the same
failure criterion (such as Tsau-Wu theory) varied significantly through the laminate
free-edge. An obvious failure phenomenon resulting from the transverse cracking
within the 90-degree laver was detected based on the continuous traction Q-23 element
for all the laminate specimens. At the same time, initiation of edge delamination at
the interfaces between € and —@ become apparent as the value of € increases, which
was not indicated according to Chou's analyvsis.  However, the fact that transverse
cracks alwayvs occurred prior to delamination in all cases is noticed, and this indeed
matches experimental observation [51] Here, it is noted that the magnitudes of
stress-to-strength ratios shown in these figures sometimes departed significantly from
unity particularly in the interior of transverse layer and near the interfaces. This
could possibly be due to the inaccurate insitu transverse strength data and the

inappropriate assumption of the interlaminar strengths.

Edge Delamination

Following the same procedure as in the prediction of transverse cracking, maximum
stress, maximum strain, Hoftman and Tsui-Wu criteria  were applied to every point
along the free-edge of various laminate specimens at the respective strain level
correponding to the onset of delamination. For illustration, failure surfaces predicted
from the continuous traction Q-23 element for 6=5" and 0=25° laminate specimens are
shown in Figures (66) and (67). In the case of 6=5°, Figure (66) shows that

following the transverse cracks formed in the 90-degree layer, delaminations were




developed at the interfuces between 5/-5 layers. Meanwhile, transverse cracks also
extended to the angle-ply lavers under incremental louding. The fact that all the

failure surfaces exceeded unity shown in Figure (67) might result from the inaccurate

material strength data. For the 0=25° laminate, however, transverse cracks were still
confined to the 90-degree layer as delamination propagated at the 25/-25 interfaces.
Based on these observations, we can infer that fiber orientations of the laminates with
the same stacking sequence have plaved an important role on the determination of
damage muodes under incremental loading.

In general, the Hotfman theory had more conservative predictions than the others
on the initation of transverse cracking within the 90-degree layer, and the maximum
strain criterion predicted conservatively on the subsequent edge delamination at the
interfaces between angle-ply laminae. Since the materials were assumed linear elastic
in the analysis, the applied strain loading corresponds to the onset of transverse cracks
or delamination based on the continuous traction Q-23 model, and the failure criteria
would be expected to be lower than the experimental observation. However,
throughout the analysis, delamination was assumed to occur in a state of generalized
plane strain without the influence of transverse cracking. In reality, this is not the
case. More work needs to be done to study the interrelationships between delamination
and other damage modes such as matrix cracking and fiber breakage, etc. Also, many
practical composite systems actually exhibit extensive nonlinear mechanical response in
shear and transverse to the reinforcement, resulting in nonlinear laminate mechanical
behavior. [Extension of the present continous traction finite element procedure to
include nonlinear material behavior, along with careful determination of material
properties and strength data, may lead to better estimation of initiation of various

damage modes under incremental loading.
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SECTION VII
DISCUSSION

The problem of free-edge delamination in composite laminate coupons subjected to
unitorm inplane extension has been mvesugated.  Before delamination can be predicted
Via oa o stress based  Tatlure coriterion. an accurate stress caleulation within the laminate.
particularly near the interfuces and traction {ree boundary, is necessary. However, the
stress field under this situation is highly complex in nature. Besides, the anisotropy
and heterogeneity of the material system, and presence of the traction-free boundary
makes the analysis difficult. Literature on this subject was abundant but an effective
as well as reliable solution had not been found.

The present research effort has resulted in developement of a continuous strain
finite element model in plane elasticity based on the compatible cubic interpolation
function proposed by Clough and Felippa [40] in which the normal slope continuity
was ensured across the interelement boundaryv. Dxtending the continuous strain model
to the analysis of a pseudo two-dimensional  free-edge delamination coupon under
uniform extension, a continuous strain field along both inplane and transverse directions
was obtained. However, due to material anisotropy, the stresses along the interfaces
between differently oriented layers were discontinuous. Also, traction-free boundary
was not satisfied. The continuous strain model was used as the basis for the
developement of a continuous traction finite element procedure. Knowing the fact that

the displacement field within each element is described by nodal  displacement
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components and their gradients, to ensure traction continuity, a transformation procedure
was developed to map the gradients normal to element boundary to a mixed set of
degrees of freedom through appropriate displacement-stress relationships. For global
assembly, the nodal degrees of freedom of this element include interlaminar stress
components at the corner nodes, as well as traction components at the mid-side nodes
of each element. This ensures continuity of displacement and traction along
interelement  boundaries as  well as across  laminate interfaces providing a  small
deformation  situation s considered. At the same time, equilibrtum  condition 1s
maintained  between two  adjocent  elements  (favers). A significant  aspect of  this
displacement-based formulation is that it allows traction-free boundary conditions to be
specified in a point-wise sense.

In the four-ply laminate analysis, numerical results calculated from the continuous
traction (Q-23 element generally agreed well with Pagano's analytical solutions [8]
although these two schemes were based upon quite different theories. For illustration,
Table (6) outlines the basic characteristics associated with each of these approaches.
The approximate solutions for stress components 7., and 0, which play an important
role in delamination of composite laminates, were calculated using both approaches and
found to have similar distribution. The study also revealed that the pattern of mesh
relinement had significant effect on the estimates of interlaminar stress field in the
vicinity of traction-free edge or near the interface between two differently oriented
layers. Here, it is essential to realize that the continuous traction finite element
procedure is only applicable to the (Q-23 element and cannot be simplified to Q-15 and
Q-19 elements. This is because the continuity of traction across laminate interface

cannot be simplified in the absence of mid-side nodes at the interface between two
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Table 6: Comparison of Paganos Theory and Continuous Traction Q-23 Element
Method Pagano Continuous traction Q-23
Variational Reissner's variational | Minimum potential
principle principle energy principle

Type of formulation

Mixed

Displacement

Basis of field
equations

Plate theory

Elastic solid

Assumed inside each
layer (element)

¥inematic relations
& Stress equilibrium

Kinematic relations
& constitutive lav

Along interlaminar
boundary

Continuous traction
4 weighted displacement]

Continuous displacement
& traction

equations

& interlaminar stresses|

Assumed stress Inplane---linear Quadratic
wv.r.t. Z-axis Transverse---cubic
Unknowns in final Weighted displacements | Displacements

& interlaminar stresses

Solution technique

Direct solving
differential equations

Finite element method
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adjcent lavers. In  comparison  with the continuous strain Q-23  element, the
introduction of the transformation process in the -23 element makes the continuous
traction procedure more expensive. However, the continuous traction Q-23 element
significantly improves the reliability of the stress field solution because of the
interlaminar stress continuity at the interface between differently oriented fiber layers,
along with satisfaction of traction-free boundary condition along specimen edges.

Application  to the mulu-ply  laminate  specimens  with  stacking sequence of
[0 —-0)_-90,_,] further illustrated the potentiul of the continuous traction finite element
procedure in the analvsis of edge delamination problem.  Satisfactory agreement Was
generully observed for interlaminar stress distributions as well as laminate displacement
field between continuous traction Q-23 element and constant strain element solutions
[44] except that, in the vicinity of the free-edge, the constant strain element was
deficient due to nonsatisfaction of traction-free boundary condition (Tyz=0) and the
assumption of (7,=0) imbedded in the axisymmetric analysis. The results from the
continuous traction (Q-23 element would be expected to be superior to the constint
strain element (conventional assumed displacement elements) for prediction of stress
field in the' free-edge delamination specimens. Of course the simple axisymmetric
model is economical to use.

Regarding  prediction of damage inittation in  laminate composite coupons,
((8/—6),/90], under incremental loading, the continuous traction finite element procedure
along with some popular anisotropic failure criteria was found to be successful in
modelling some failure phenomena observed in the experiments. Basically, the laminate
specimens under analysis were assumed to be made of linear elastic brittle materials.

Thus. initiation of delamination directly led to catastrophic laminate failure regardiess
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of the damage accumulation process. Numerical experiment discussed in the last section
revealed that the lloffman criterion had a more conservative prediction on the
initiation of transverse cracking within the 90-degree layer, and the maximum strain
criterion on the subsequent edge delamination between the angle-ply laminae interfaces.

In summary, we conclude that the proposed continuous traction finite element
scheme not only overcomes the drawback of deficient stress calculation arising in the
conventional assumed displacement approach. but alse provides a reliable as well as
ellective numerical  solution  procedure with o wider range of applicability o the
analvsis  of  the free-edge delamination  problem.  Though based on a completely
different variational formulation, this model has shared the characteristic of contnuous
displacement as well as traction fields across laminate interface, with Pagano’s
approximate theory derived from a mixed formulation. Though developed for
evaluation of stresses in composite laminates, the continuous traction procedure is also
applicable to analysis of layered media involving material interfaces where a
two-dimensional or pseudo two-dimensional representation is applicable. This would
include stresses in layered airfield and highway pavements, pressures on tunnel lining,

etc.
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Appendix A
DERIVATION OF COMPATIBLE CUBIC
INTERPOLATION FUNCTIONS

This appendin contoins a summary ol Fehppa's [41.42] approach in deriving the
cubic compatible interpolations for in-plane displacement u in a more detviled format.

In order to derive the cubic interpolation functions for the complete triangular
element, three different coordinate systems, i.e. triangular coordinate, local and global
Cartesian coordinates should be defined as illustrated in Figure (A.1). The geometry of
an arbitrary triangular element can be expressed in a Cartesian coordinate system by
its nodal coordinates or its projected dimensions as shown in Figure (A.2), or
alternately by its intrinsic dimensions as defined in Figure (A.3).

let j and k denote the first and second cyclic permutations of i=1,2,3 (ie. j=2.3,

and k=3.1,2), the projected dimensions may be written as

=N Tx 0 b=y~ (A.1)
Also, the intrinsic dimensions may be defined in terms of the projcted dimensions.

Referring to Fioure (A.2), define

A=

d,
= (A2)
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u=1-x (A.3)

(aa, +bb,) ‘
g = -t (A4)

The triangular coordinates {;, {,, {, of any point ”P” in the triangle .ray be defined
either as the ratios of the areas A of the subtriangles subtended by the point to the
total arca A of the triangle. or as the ratios of the normal distances n, to the height

h. ie

A

oD (A.5)
gl_T_F’ P T

as shown in Figure (A.1). It is noted that the triangular coordinates are related by
the constraining condition {,+§,+¢{,=1

With reference to Figure (2), the displacement interpolation functions for each
subelement (i) express the relationship between the displacement u” within the element

and the ten displacement components of its nodal points r'*' as follows

u(H: {¢(u’}1{r‘l)} (A.())

FFor example, the nodal displacement vector for subelement 1 is

(T _
{r’} = {u,u 7,uy2.u 3,u\B,uy},u“,u‘__“,uy”,u “5} (A7)

<

The corresponding ten cubic interpolation functions expressed in triangular coordiates are
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L33-20 )+60,) ¢ 4L

2, 41 (n (1 (D)
§a = @, —a A 8.8,

¢''=1" ; (A.8)
U R B A A

33-24,)
{i( ul; )§ l—u(l' !{2)
gi(b(;l )gz‘b‘.’l 21 )

(%2

—4h 8L,

where the subscrnipts correspond to the renumbered nodes of the subelement, and  are
the local triangular coordinates of points in subtriangle 1. With this convention, the
interpolation functions for subelements 2 and 3 are the same as (A.8) appropriately
permuting the subscripts and superscripts. It should be noted, however, that the nodal
displacements in (A.6) are identified by node numbers defined for the complete element
assembly.

If the vector {r} of all nodal displacements of the complete element assembly is

written as the ordered set

|
{7}’ = {u U LU UL LU U U U u (A9)

the displacement in subelement 1 can be expressed as

WV = {¢m,'r{,r} =[¢':,”1 l¢f‘l )T]|:] (A.10)

o
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where {@"'"} is similar w0 (A.8), but expanded with § zeros 10 account for the nodal
displacements not associated with subelement 1, and with appropriate arrangement of
terms.  The vectors {¢.'} and {¢!'} represent the interpolation functions for the
external and internal nodal displacements respectively.

Expressing the displacements in the other subelements similarly, the complete

svstem of displacements can he written as

o T
[} i
T Ry
u v ¢ T
| P STRILRRIL | (A1)
u b Lo, A
©3) . T T\
u i3 &) '
¢\ | ¢t\

(A.11) is an expression of the cubic displacement patterns in the three subelements.
The displacement of two adjacent subtriangles are identical along their common
boundary. The normal slope at any of these nodes (say 7 of subelement 1) is given

by

() =l = i) (A12)

9., 80"
gn = 9n

where b‘,:,), by respectively are values of { } at node 7 for subelement 1,

and n denotes the axis normal to the element boundary. To maintain internal slope
continuity, it is necessarv that 9(7”=—-@‘,3), where the negative sign results from the

convention that the positve normal is directed outwards. For the three points 7, §, 9,
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(1 (3) (1), . (3) (1), ,(3)

07 +G7 b7e+b7c l b70+b70 T 0
0,7+0.l = b +b,. | b2+b i =1o (A.13)
(3), A(2) (3),,(2 3, 2 0
69 +69 b‘)e +b9e l b90+b90 ‘
or symbolically
T
(BB J{—1=0 EWEY
r

O

The wvalues of r, which will satisfy these compatibility conditions are obtained by

solving (A.14), ie.

re=—B:Br=Lr (A.15)

Substituting the slope continuity constraint of (A.15) into (A.11), the fully compatible

displucement field in the three subelements becomes

T T

(1 (o T
< (
() ®, ?. ey
T T .
() (2) (2) I A
= + L =i {r .

u &, b {r} =i} {r} (A.16)
(3) T
u Tt T )

b, o

Explicit expressions of these functions for subelement 3 are

: (3 2 2
B, 7= £i3=2, ol £, +EIB=p ), 420 =N =30 L )
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2 (3)
¢ =
y3

2
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u
O

The above set of interpolants is applicable to all points lying in subtriangle 3. For
points lying in subtriangle 1 and 2, {®"}, {#”} can be written down by cyclic
permutation of all subscripts and superscripts in (A.17). All the symbols on the right

side of (A.17) relate to the complete triangle.
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LIST OF SYMBOLS

A list of the most commonly used symbols and their general meaning follows.

a, b Global dimensions of a triangle

A Area of triangle

A Area of subtnangle i

B Material constants

C Components of the stiffness matrix in the

global coordinate system

Components of the stiffness matrix in the

1)
material coordinate system
—U. Components of the compliance matrix in the
global coordinate system
" Components of the compliance matrix in the
material coordinate system
(:I Components of the transformed reduced
suffness matrx
Q. Components ol the reduced stiffness matrix
d, Projection of a corner of a triangle over opposite side
D, Inversion of (_)IJ
b, b, b, Components of the reduced material
comphance matriy
I: Young's moduli
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Cartesian components of the body force vector
Triangle heights

Lamina thickness

Elements of Stifiness matrix

Triangle side lengths

Normal 1o boundary

Linear operasor or matrin of linear operators
on a region R

Linear operator or muatrix of linear operators
on the boundary of R

Domain of operator A
n-dimensional uclidean space
Open connected region in L
Boundary of R

Complementary subset of S

Closure of R

local cartesian components nof the unit

normal to a surface

Local cartesian components of the unit

tangential to a surface

Open connected subregion of R

Boundary of subregion R

Cartesian components of the stress tensor
Cartesian components of the displacement vector

Cartesian components of the truction vector
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m

u

4

(artesian components of the prescribed

traction vector
Kronecker's delta

Cortesian components of the isothermal
elasticity tensor

Interpolation functions
Assumed displacements in element m

Assumed generalized nodal displacements at the
boundary of element m

Assumed generoiized nodal displacements internal
0 element m

Vector of strains in element m deriving from u"
Stiffness matrix

Load vectors

Cartesian coordinates in E’

Poisson's ratio

Shear moduli

Components of infinitesimal or linear strain tensor
Natural coordinate

Rotation angle from global axis x
to material axis 1

Transformation matrix
Applied uniform strain loading

Displacement component in x-direction
Displacement component in y-direction

Displacement component in z-direction
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g < C

>

Displacement function in x-direction

Displacement function in y-direction

Displacement function in z-direction

fiber orientation

Geometric parameters

Linear functional

Displacement-stress transformation matrix for corner node
Displacement-stress transformation matrix for mid-side node

Bilinear mapping on V XV,

Coordinate transformation tensor
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