Final Report:

CMS-2 Reverse Engineering & ENCORE/MODEL Integration

Contract # NO062-84-C-0240

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited
Final Report:

CMS-2 Reverse Engineering &
ENCORE/MODEL Integration

Contract # N00014-91-C-0240

May 1992

General Electric Company
Corporate Research and Development
P. O. Box 8
Schenectady, NY 12301

This work was supported in part by
Naval Surface Warfare Center (NSWCDD)
under contract #N00014-91-C-0240
with the Office of Naval Research
Table of Contents

CMS2 Reverse Engineering and ENCORE/MODEL Integration Study
Final Report

Part I CMS-2 Reverse Engineering Technology ... 1

Chapter 1.0 Technology Overview ... 1

Chapter 2.0 Automatic Operation, Installation, and Setup........................... 5
 2.1 Automatic Operation ... 5
 2.2 RET Installation .. 7
 2.3 System Setup ... 7

Chapter 3.0 Information Extraction ... 8
 3.1 User Perspective .. 8
 3.2 Internals .. 8

Chapter 4.0 Comment Processing ... 13
 4.1 User Perspective .. 13
 4.2 Internals .. 13

Chapter 5.0 System Integration ... 14
 5.1 User Perspective .. 14
 5.2 Internals .. 14

Chapter 6.0 Building the Teamwork/SD Reverse Engineering Database 15
 6.1 User Perspective .. 15
 6.2 Internals .. 15

Chapter 7.0 TeamWork Environment .. 15
 7.1 Invocation .. 15
 7.2 Basic Teamwork Displays .. 15
 7.3 GE-Supplied Extensions .. 16

Chapter 8.0 File Formats ... 17
 8.1 Middle Files .. 17
 8.2 Comment Files .. 19

Part II ENCORE-MODEL Integration Study ... 20

Appendix B: Introduction to ENCORE Internal Representation

Appendix C: ADL Description of the Ada Internal Representation

Appendix D: Introduction to the ENCORE Symbol Table

Appendix E: Model/ESL Internal Representation
CMS2 Reverse Engineering and ENCORE/MODEL Integration Study

Final Report

This is the final report for the contract N00014-91-C-0240. It is divided into two parts: one addressing the CMS-2 Reverse Engineering Technology, and the other the ENCORE/MODEL Integration Study.

Part I CMS-2 Reverse Engineering Technology

Part I presents an overview of the CMS-2 Reverse Engineering Technology (CMS RET) produced for this contract. It includes a description of the operation of the tool, as well as the work done, and the portions reused from other projects. Chapter 1.0 gives an overview of the work done, Chapter 2.0 presents installation information and recommended operation instructions, Chapters 3.0 through 7.0 provide detailed discussions of the functional areas involved, and Chapter 8.0 details the formats of two files which are crucial to anyone customizing or extending CMS RET.

Chapter 1.0 Technology Overview

The work done for this contract demonstrates that:

- Automated extraction of design information from an existing software system written in CMS-2 can be used to document that system as-built, and that

- The extracted information can be entered into the database of a commercially available CASE tool and manipulated via the CASE interface.

The delivered prototype operates on Sun/4 workstations and interfaces to the Cadre Teamwork/SD\(^1\) and Cadre Teamwork/C Rev\(^2\) CASE tools. In addition, documentation is provided in chapter 8.0 which will allow the Database Generator to be reimplemented in order to interface with other CASE tools which provide similar functionality to the Cadre technology.

1. Teamwork/SD is a registered trademark of Cadre Technologies Inc.
2. Teamwork/C Rev is a trademark of Cadre Technologies Inc.
The key features of the CMS RET system are:

* The interactive visual interface to the extracted information is provided by a commercially available CASE tool.
* Information describing software system design is automatically extracted from source files and organized in a language independent standard mode.
* A method has been developed which exploits project-specific commenting conventions in order to automatically extract comments to the database.

There are three major vehicles of communication provided by the Teamwork/SD interface:

* Structure charts illustrate the calling relationships between modules. (see Figure 1)
* Module specifications (Mspecs) present a description of each module. (see Figure 2)
* Data dictionary entries (DDEs) describe the global variables. (see Figure 3)

In addition the system will answer the following questions:

* Where is this variable referenced?
* Which modules call this one?

FIGURE 1. Structure Chart generated by CMS RET, displayed by Teamwork/SD
FIGURE 2. Mspec generated by CMS RET, displayed by Teamwork/SD

FIGURE 3. Two examples of DDEs produced by CMS RET, displayed by Teamwork/SD

The objective of the CMS-2 Reverse Engineering Technology is to provide the information for the displays in Figures 1, 2, and 3. To achieve this, GE built upon two past projects: a CMS-2 to Ada translator (CMS2Ada) [1] and a Jovial Reverse Engineering Technology (JRET) [2]. CMS2Ada provided CMS-2 language capabilities which could be reused, and JRET provided a framework for a general reverse engineering technology which could be adapted to fit CMS-2.

The CMS-2 Reverse Engineering Technology is made up of four functional areas: 1) Information Extraction, 2) Comment Processing, 3) Database Generation, and the 4) Cadre Teamwork interface. The first two functions (Information Extraction and Comment Processing) operate on a file-by-file basis, collecting relevant information into a language-independent format. Database Generation builds a system-wide view of the information, writing it into a form which Teamwork can process. The final functional area is Cadre Teamwork/SD. These four functions work together to visually present as-built architectural information about an existing system. Figure 4 shows how these areas fit together.
The bulk of the work for this contract was done on the first two functional areas: Information Extraction and Comment Processing. The Database Generator was reused from JRET and Teamwork/SD is a commercial product from Cadre, which was extended somewhat using their extensible interface. (These extensions were also reused from JRET.)

FIGURE 4. System Overview of CMS RET
Chapter 2.0 Automatic Operation, Installation, and Setup

2.1 Automatic Operation

CMS RET is run as a series of steps. These steps are usually run across all Computer Software Configuration Items (CSCIs) in a CMS system when the initial build of the Teamwork database is done. (See Section 2.3 for further details about CSCIs.) Over time, as files change, there may be a need to rebuild the database. If only a small number of CSCIs have been affected, it may be preferable to run rebuild only on the part of the database dealing with the affected CSCI’s.

The `$RET_DB_HOME/admin/build-ret` script will run all the steps, either for one CSCI or for the whole CMS system. It takes care of all the details and housekeeping involved, and produces log files so that the user can monitor its progress. It is invoked as follows:

```
$RET_DB_HOME/admin/build-ret [ n [ CSCI_name] ]
```

`n` - is an integer between 1 and 7 specifying which operation is to be performed. If it is not entered on the command-line, build-ret prompts for an input. The choices are as follows:

1. CMS Rev pass 3 (information extraction)
2. CMS Rev Comment Processing
3. CMS Rev pass 4 (system integration, part 1)
4. Post-Process CMS Rev (system integration, part 2)
5. Create TeamWork Database
6. Dump TeamWork Database
7. Restore TeamWork Database

`CSCI_name`- indicates the CSCI on which the specified operation should be performed. If omitted, the processing will affect all CSCI’s, as determined by the contents of `$RET_DB_HOME/src/search.paths`.

In normal operation, one would call the script with option 1, then 2, and so on, until option 5 had been performed. A CSCI name is not generally specified unless a particular CSCI is being rebuilt separately for some reason.

Here is the sequence of commands and system responses which would be issued to build a full CMS system which contains the CSCIs COLLECT and ANALYZE:

```
> $RET_DB_HOME/admin/build-ret 1
Begin RET Build Program, Tue Apr 21 10:01:36 EDT 1992
ANALYZE CMS Rev Pass 3 Tue Apr 21 10:01:39 EDT 1992
COLLECT CMS Rev Pass3 Tue Apr 21 10:01:54 EDT 1992
End RET Build Program, Tue Apr 21 10:02:14 EDT 1992
> $RET_DB_HOME/admin/build-ret 2
Begin RET Build Program, Tue Apr 21 10:02:28 EDT 1992
```

If the system had been built once already but changes had occurred only in ANALYZE, the user could rebuild only that CSCI by issuing the same set of commands, but with ANALYZE appended to each.

Options 6 and 7 are not a normal part of building the system. They are useful for backups and for transporting the database between systems. They simply invoke the appropriate Cadre utilities. When option 6 is invoked without a CSCI name, the dump is placed into $RET_DB_HOME/dump/twk-dump. If a CSCI name is specified, then the dump goes into $RET_DBHOME/dump/csci_name.twk-dump. When option 7 is chosen, it loads the files from the dump files written in option 6.

Build-ret also produces log files. These are found in the directory $RET_DB_HOME/log. Here is a list of the log files and where they are produced:

<table>
<thead>
<tr>
<th>Pass</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>csci_name.p3-log</td>
</tr>
<tr>
<td>3</td>
<td>csci_name.p4a-log, p4b-log, csci_name.p4c-log</td>
</tr>
<tr>
<td>5</td>
<td>csci_name.twk-log</td>
</tr>
<tr>
<td>6</td>
<td>twk-dump-log (if invoked without CSCI name)</td>
</tr>
<tr>
<td></td>
<td>csci-name.twk-dump-log (if invoked with CSCI name)</td>
</tr>
<tr>
<td>7</td>
<td>twk-load-log (if invoked without CSCI name)</td>
</tr>
<tr>
<td></td>
<td>csci-name.twk-load-log (if invoked with CSCI name)</td>
</tr>
</tbody>
</table>
2.2 RET Installation

Once the distribution tape is received, the contents should be extracted using tar (a Unix utility). This will create a directory named ret, with several subdirectories. All RET users will need to create an environment variable, $RET_DB_HOME, which contains the path name of this ret directory.

There are several files in the directory $RET_DB_HOME/sys which must be customized. In the files listed below, the string "$RET_DB_HOME" must be replaced with the hard-coded path name of your installation's ret directory (e.g. /common/sun4/ret). The affected files are:

- dd.menu (1 substitution)
- dde.menu (1 substitution)
- desktop.menu (1 substitution)
- dpi.menu (1 substitution)
- file.menu (1 substitution)
- ms.menu (1 substitution)
- pi.menu (2 substitutions)
- sc.menu (4 substitutions)
- config_file (10 substitutions)

The only other requirements are that the Cadre Teamwork and Crev products must be installed. Please refer to the Cadre documentation [4] for this procedure.

2.3 System Setup

Once RET has been installed, the user must load into it the source system to be examined. There are two steps involved with this:

1. in $RET_DB_HOME/src, update the file search.paths to contain only the names of the CSCIs which are part of the system to be examined.

2. in $RET_DB_HOME/src, create a soft UNIX link to each CSCI entered in search.paths. (Each CSCI should now have a directory)

3. filled with the source files associated with it.)

It should be noted that CMS RET views a CMS-2 system as a set of CSCIs. Each CSCI is a subdirectory of the overall system directory, containing source files which are presumably related. Even if there is only one source directory for a project, it should appear as a subdirectory of the project itself, and be considered a CSCI. It is generally advisable for the CSCIs' names to be all capital letters.
Chapter 3.0 Information Extraction

3.1 User Perspective

The user will run this pass on every complete source file in the CMS-2 system. (Include files are brought in automatically by the files which reference them.) This can be done using the build-ret script described in Section 2.1, or by issuing the command:

```
cms2cdif.p3 -csci csci_name (file_names)
```

so that each source file in every CSCI is processed. file_name is a non-empty list of the files to be processed and CSCI_name is the name of the CSCI containing these files. (csci_name must not contain wild cards, but file_name may.) The command must be issued within the appropriate CSCI. For each file processed, there will result a middle file and a comment file, which are used in the later steps. The formats of the middle and comment files are given in Chapter 8.0.

3.2 Internals

The Information Extractor is written in Ada, and has two basic parts (the parser and the extractor), both of which interface to our internal representation of the CMS-2 language. The parser and internal representation were completely reused from the CMS2Ada translator, with a few extensions to expand our language coverage. (These are detailed in the description of the parsing package in 3.2.2.) Parts of the extraction mechanism were adapted from JRET (the Jovial Reverse Engineering Technology), but much of it was rewritten because of the differences between the internal representations of CMS-2 and Jovial. The new version was written with liberal use of generics and non-language specific data structures, with the hope that most of it will be reusable should we ever want to reverse engineer another language.

The remainder of this section contains a brief description of the packages in the Information Extractor, the relationships between them, and a more detailed look at some of the more important packages.

3.2.1 The packages comprising the Information Extractor

In the list that follows, * indicates almost complete reuse, # indicates significant reuse, and italics indicate that the package is generic.

- Main * (contains main driver, handling command-line interface and file control)
- CMS_Records * (description of the nodes which make up the internal representation)
- CMS_Interface * (access routines for CMS_Records)
- CMS_Utils (some general utilities not available in CMS_Interface)
- Parse * (creates a parse tree, made up of structures from CMS_Records)
- Lexical Analysis *
Symbol tables and symbol table management *(several related packages)

Parse_Control *(helper package for parser and classification routines)*

Extract_Info # *(high-level node-processing routines; basically sorts out the nodes)*

Data_Processing # *(mid- and low-level routines specific to data declarations)*

Executable_Processing # *(mid- and low-level routines specific to executable statements)*

Option_Processing *(mid- and low-level routines specific to option statements)*

Structure_Processing *(mid- and low-level routines specific to structure statements)*

Subprogram_Processing # *(mid- and low-level routines specific to subprogram declarations)*

Print_Middle # *(language-independent printing routines; mainly utilities)*

Source_file_database *(associates nodes with file names and line numbers)*

Scoping *(determines which data items are global and which are local)*

Subprogram_Lists # *(data package for communication between Subprogram_Processing and Executable_Processing)*

System_Info *(data package indicating what options are currently in effect and what structure is being processed)*

Debug.Flags *(framework for debugging)*

Comment_Handler # *(received comments and context indications from the parser and prints to the comment file as appropriate)*

Comment_Helper *(Language specific utilities unique to comment handling)*

Figure 5 shows the with'ing relationships between these packages.
In addition, almost all the packages with and use cms_records and cms_interface, the packages containing the internal representation for CMS-2.

FIGURE 5. With'ing Relationships between Packages
3.2.2 Details of Important Packages

Parsing and Representation Packages: These include CMS_Records, CMS_Interface, and the parser, lexical analyzer, and symbol-table packages. As a baseline, we reused these packages from the CMS2Ada translator, but extended them as part of this contract to address certain CMS-2 constructs which were not previously handled. These include macro expansions (via the means and exchange statements), user-defined type declarations, and the terminate phrase. In addition, a means for processing cswitch directives was designed, but not implemented.

Parse_Control: is a generic package containing a pointer to the top node of the parse tree and the routine which calls the (instantiated) parser and extractor.

Extract_Info: contains the top-level extraction routine, and those generalized routines which classify each node and drive the processing. The top-level extraction routine also takes care of the file control for the middle file being created.

Visible Routines:
Process_A_Node
Process_Seq_Of_Nodes
Is_Receptacle
Process_Receptacle
Process_Seq_Of_Receptacles
Is_Expression
Process_Expression
Process_Seq_Of_Expressions
Extract

Data_Processing: contains routines to classify and process the nodes which represent data declarations. The processing includes checking the declaration for usages of other data items, and printing appropriate information to the middle file.

Visible Routines:
Is_Data_Decl
Process_Data_Decl

Executable_Processing: contains routines to classify and process the nodes which represent executable statements. The processing includes checking for data uses and subroutine calls, and keeping track of any which are found.

Visible Routines:
Is_Executable_Node
Process_Executable_Node

Option_Processing: contains routines to classify and process the nodes which represent option statements. The processing generally entails setting global variables to reflect the options found.

Visible Routines:
Is_Options_Node
Process Option Node

Structure Processing: contains routines to classify and process the nodes which represent structural statements. This processing generally consists of making sure all statements within the structure are processed.

Visible Routines:
- Is Structure Node
- Process Structure Node

Subprogram Processing: contains routines to classify and process the nodes which represent subprogram declarations. This processing includes setting up a framework in which to collect information about the subprogram’s activities, making sure all statements within the subprogram are processed, and writing the information collected to the current middle file.

Visible Routines:
- Is Subprogram Decl
- Process Subprogram Decl

Print Middle: is a generic package which contains a file pointer to the middle file, and routines to handle much of the printing for it. The idea behind this package is that the format of the middle file is language-independent, even though the internal representation of the information is not. Therefore, the routines in print_middle use language-specific instantiated “helper” routines in order to access any extra information needed, and then print everything out in a standard format.

Visible Routines:
- New Middle File
- Get Middle File
- Close Middle File
- Comma Space
- Print Component Decl
- Print Extended Name
- Print Formals
- Print Simple Decl
- Print Start of Composite Decl
- Print Source Info
- Print TW Attribute

Subprogram Lists: is a generic package which contains the infrastructure which the subprogram processing routines use to keep track of the reference information collected. It serves as the prime communication mechanism between the Subprogram Processing and Executable Processing packages.

Visible Routines:
- Add To Calls
- Print Calls
- Add To Reads
- Print Reads
Chapter 4.0 Comment Processing

4.1 User Perspective

The user will run this pass on every .comment file produced as a result of the Information Extraction. This can be done using the build-ret script described in Section 2.1, or by issuing the command

```
gawk -f $RET_DB_HOME/cmsrev/bin/comments.awk  *.comments
```

(see Section 2.2 for the proper setting of the $RET_DB_HOME environment variable). (gawk is gnu awk. If your installation does not own a copy, use the one in $RET_DB_HOME/cmsrev/bin.) Since this capability must be sensitive to the commenting conventions of the current project, it is recommended that the user customize the comments.awk program to reflect the prevailing conventions. Those planning to do this customization would be well-advised to read Section 8.2, which describes the format of the .comment files.

4.2 Internals

The .comment files written by the Information Extractor contain a line for each comment found, and one for each “interesting” construct encountered in the source code. Interesting constructs include data declarations, subprogram declarations, header blocks, proc and dd statements. Thus the files contain not only the comments, but some context condensed out of the source code. A distinction is made between COMMENT ... $ constructs and in-line comments, resulting in even more context information.

The purpose of the comments.awk program is to create an .ext_com file for each subprogram declaration found in a .comment file. This .ext_com file contains exactly the text that will eventually appear in the Mspec for that subprogram in the Cadre database. The standard comments.awk program, included with this release, selects as relevant the comments which fall between the subprogram’s declaration and its actual code.
Chapter 5.0 System Integration

5.1 User Perspective

There are several passes involved in this activity. They can be run via the build-ret script described in Section 2.1, or by issuing the following commands:

(in each CSCI directory)
\[\text{cms2cdif.p4a -csci csci_name \ *.middle} \]

(in parent directory)
\[\text{cat *.decls | sort | awk -f \$RET_DB_HOME/admin/p4b.awk} \]
\[\text{cms2cdif.p4b -P search.paths \ *.export} \]

(in each CSCI directory)
\[\text{cms2cdif.p4c -csci csci_name -crev -mspec -dde \ *.middle} \]
\[\$RET_DB_HOME/admin/do_post csci_name \]

(See Section 2.2 for a description of the $RET_DB_HOME environment variable.) If the passes are run outside of the build-ret script, there is a set of files which must exist before running them. In each CSCI, limits.txt must be present. This should be copied from $RET_DB_HOME/admin, or it can be made an empty file, in which case no DDE’s will be produced. In the CSCI’s parent directory, search.paths must exist. It will contain the names of the CSCI’s which are to be active (this would typically be all of the subdirectories).

The output of these steps is the set of files twk.script, ret.crev, ret.ctl, ret.dd and ret.ms. These are used in building the Teamwork/SD reverse engineering database.

5.2 Internals

The purpose of these steps is to reconcile any name clashes which may occur, either within or between CSCI’s, to resolve inter-CSCI references, and to build the CDIF\(^1\) representation of each CSCI’s information. Briefly, the processing responsibilities are divided as follows: cms2cdif.p4a compiles two lists for each CSCI, one for data item names and one for subprogram names. p4b.awk and cms2cdif.p4b create new names where necessary to avoid name clashes. cms2cdif.p4c creates the CDIF files which will be fed into the Teamwork database, and a script for loading them. do-post edits a few files so that the Teamwork extensions will read them correctly.

1. CASE Data Interchange Format
Chapter 6.0 Building the Teamwork/SD Reverse Engineering Database

6.1 User Perspective

The CSCI's for the databases being constructed must exist in Teamwork. If they do not, then start Teamwork and create new models with these CSCIs' names. Once the models exist, construct their respective databases either by using the build-ret script described in Section 2.1, or by issuing the following command in each CSCI:

/bin/sh twk.script

6.2 Internals

This step invokes crev and twk_put to build the database. crev uses ret.crev and ret.ctl to produce the Teamwork structure charts, and twk_put creates Mspecs from ret.ms, and DDEs from ret.dd.

Chapter 7.0 TeamWork Environment

7.1 Invocation

In order to use the extensions GE-supplied extensions, Teamwork must be invoked using the RET config_file. This config_file must be customized during installation, as described in Section 2.2. Once that is done, invoke Teamwork as follows:

 teamwork -c $RET_DB_HOME/sys/config_file

(See Section 2.2 for the proper setting of the $RET_DB_HOME environment variable.)

7.2 Basic Teamwork Displays

Most of the Teamwork displays are standard to the Teamwork environment, and are explained in the Cadre documentation. The Mspec and DDE displays are somewhat customized for RET, so they are described here.

The Mspec (Module Specification) display is intended to describe the important aspects of a module. In this context, a module corresponds to a subprogram. The information contained is the following: subprogram parameter names and directions; global variables accessed, along with an indication of whether they are read or written; modules called; calling modules; and comments extracted from the source code of the module.

The DDE (Data Dictionary Entry) display is intended to convey the important features of a data item. The information supplied for a simple variable includes: type information; actual location (file and line number) of its declaration; and location of its declaration, taking into account include expansions. For arrays, the number of dimensions, direction, and any field names are also included.
7.3 GE-Supplied Extensions

The user should consult the Cadre documentation for information on the standard Teamwork environment [3]. What follows here is a description of the GE-supplied extensions to that environment, and guidelines for how to use them.

Displaying Source Files: There are times when the summarized information is not sufficient for the task at hand. In these cases, it is useful to have a quick method of viewing the actual source code. In order to do this, select a module of interest from a structure chart or Mspec, or a data item from a DDE, and choose the RET menu item “Display Module Source”. The corresponding source file will be displayed, and the user can then search on the name of the module or data item in order to find the desired declaration.

Displaying Data Usages: It is often important to know which modules use a particular global variable. This information is available from the full Data Dictionary as well as the Mspec display. To view it, simply select the desired global variable, and choose either “Display Where Ref” or “Display Where Ref All” from the RET menu (the latter extends the search across all active CSCIs). The information will be retrieved and displayed in a window which lists the modules in which that data item is referenced. From that window, the user may move to the Mspec for any of the referencing modules by selecting its entry and choosing the RET menu item “Show Module Spec”.

Displaying Calling Modules: Although the structure charts are effective in showing the called modules of a particular subprogram, it can be tedious working backwards to find the calling modules. There are two ways to find this information easily. The first method is to view the Mspec of the desired module and find the list of calling modules. The second method is to select the desired module from a structure chart and choose the RET menu item “Display Calling Modules”. The information will be retrieved and displayed in a window which lists the modules which call the selected one. From that window, the user may access the Mspec for any calling module by selecting its entry and choosing the RET menu item “Show Module Spec”. (From there, “Show SC” from the Whole_Mspec menu will bring up the corresponding structure chart.)

Displaying Msps from Structure Charts: When viewing a structure chart, select the desired module and choose the RET menu item “Open Module Spec”. The corresponding Mspec will appear.

Displaying DDE’s for the Fields of a Table: When viewing the DDE of a table or array, it is not enough to see just that item’s information; the component items’ entries are equally important. These can be viewed easily by highlighting the desired name within the table’s DDE and then choosing the RET menu item “Open DDE”. A new DDE window will open with the desired entry.

For a more in-depth description of the GE-enhanced Teamwork environment, please see the CMS RET User’s Manual found in Appendix A.
Chapter 8.0 File Formats

8.1 Middle Files

The middle files hold the information which is extracted from the CMS source files, before it is integrated into a system view. In the case that this technology were ported to a CASE tool other than Cadre, these files would be the starting place for the re-implementation. The following is the grammar for the middle files.

```
file ::= "file" string_literal ["csci" identifier] {declaration }

declaration ::= context_decl | external_decl | subroutine_decl | object_decl | group_decl | type_decl

context_decl ::= "context" identifier [ id_list ] [ source_info ]

context_list ::= { context_decl }

external_decl ::= "external" globa_declaration

global_declaration ::= subroutine_decl | object_decl | type_decl

subroutine_decl ::= procedure_decl | function_decl

procedure_decl ::= "procedure" identifier [source_info]

function_decl ::= "function" identifier [source_info] type_info

subroutine_info ::= "end"

object_decl ::= simple_decl | composite_decl

simple_decl ::= "simple" identifier ["constant"] [source_info]

["csci" identifier ] tw_attr type_info ["members"] list

composite_decl ::= "composite" identifier ["constant"] composite_class

[ source_info ] ["csci" identifier ] [ index_info ] tw_attr

( component_list | type_info )

index_info ::= "indexed" "(" integer literal ")"
```
tw_attr ::= [tw_prim] tw_flow

tw_prim ::= "PEL" | "CEL" | "DEL"

tw_flow ::= "controlflow" | "dataflow" | "bothflow" | "store"

group_decl ::= "group" identifier [source_info] ["csci" identifier]
 { declaration } "end"

formal_list ::= "formals" "(" formal { "," formal } ")"

formal ::= identifier direction type_info

local_list ::= "locals" id_list

a_call ::= identifier ["nested"] [actual_list]

actual_list ::= "(" actual { "," actual } ")"

actual ::= ("(" object_decl ")") | identifier

direction ::= ("in" | "out") | "out"

type_decl ::= "type" (simple_type_decl | composite_type_decl)

simple_type_decl ::= "simple" identifier [source_info] ["csci" identifier]
 tw_attr type_info ["members" list]

composite_type_decl ::= "composite" identifier composite_class
 [source_info] ["csci" identifier] [index_info] tw_attr
 (component_list | type_info ["members" list])

component_list ::= "(" [(simple_decl | composite_decl)
 { "," (simple_decl | composite_decl) }] ")"

composite_class ::= string_literal

type_info ::= string_literal

calls_list ::= "calls" "(" a_call { "," a_call } ")"

reads_list ::= "reads" id_list

writes_list ::= "writes" id_list

readswrites_list ::= "readswrites" id_list
8.2 Comment Files

The comment files contain both the CMS-2 comments and some condensed context information. These are the files which are input to the comment processor, which then produces one .ext_com file for each subprogram, containing any relevant comments. The awk script of the comment processor is user-customizable.

file ::= {entry }

entry ::= comment_entry | context_entry

comment_entry ::= same_line_entry | stand_alone_entry

same_line_entry ::= “SAME LINE: “ string

stand_alone_entry ::= “COMMENT: “ string

context_entry ::= data_decl | subprogram_decl | structural_entry | “CODE” | “UNKNOWN CODE”

data_decl ::= “DATA” | “EQUALS” | “FIELD” | “LOADVRBL” | “NITEMS” | “PARAMETER” | “SYS-INDEX” | “TABLE” | “VARIABLE”

subprogram_decl ::= “EXEC-PROC” identifier | “FUNCTION” identifier | “PROCEDURE” identifier | “END”

Part II ENCORE-MODEL Integration Study

Task III of this project sought to study the feasibility of integrating GE's ENCORE system with Computer Command and Control Corporation's (CCCC) MODEL system. The initial phase of the study compared the functionality of the two systems to determine whether it makes sense to integrate them. This was followed with the design of a method for integrating the two systems. As a result of our study, we have concluded that the two systems could functionally complement each other and that there are no insurmountable technical barriers blocking the integration. The issues involved with integrating the two systems are discussed in the following paragraphs.

The ENCORE system promotes reuse of heritage code via automatic translation and reengineering. Components of the ENCORE system include translators from FORTRAN to Ada and CMS-2 to Ada, control and data restructuring, basic metric capabilities, limited dataflow analysis, and the ability to parse and regenerate Ada programs. The restructuring components (control and data) provide an automated mechanism for understanding and improving the fine grained aspects of a software system. The MODEL system provides an environment for viewing and modifying the coarse grained architectural features of an existing software system. Combining ENCORE and MODEL would produce an environment for reengineering both at the fine grained and coarse grained levels.

Combining the two systems would require that they share the information about the code being reengineered. Currently both systems operate on their own distinctive internal representation of Ada code. (The ENCORE internal representation is called the IRep and the MODEL internal representation is called the ESL.) Since the implementations of the two representations are vastly different and a great deal of reengineering functionality has already been developed specific to each implementation, we recommend a loose coupling of the two systems via translation between the two internal representations. Though the implementations of the two internal representations are vastly different, they both embody the same information and the mapping from one internal form to the other appears to be straightforward.

This approach avoids the reimplementation of reengineering capabilities just for a different internal representation and it allows the two companies to further develop their products without having to tightly coordinate changes.

The only stumbling point in this integration scheme is a platform problem. The ENCORE system runs on a UNIX\(^1\) platform and currently uses the SunView\(^2\)-windowing system. The MODEL system is tightly coupled with the DECdesign\(^3\) system and therefore must run on a VMS platform. This problem can be overcome by either moving one system to the other platform, or creating a mechanism for passing the information between the internal representations (and therefore between machines) via ASCII files.

1. UNIX is a registered trademark of AT&T Bell Laboratories
2. SunView is a trademark of SUN Microsystems, Inc.
3. DECdesign is a trademark of Digital Equipment Corporation
If the ENCORE user interface were rewritten in X, then ENCORE could run on the VMS platform. To move MODEL to a UNIX platform, CCCC would have to either get an implementation of DECdesign for UNIX or replace the use of DECdesign in MODEL with some other database and visualization system. Either option involving MODEL is estimated to require more effort than moving ENCORE to VMS. We advocate changing the ENCORE user interface to X, if integrated performance on a single platform is required.

The alternative to changing platforms is to provide a mechanism for passing the information between the two reengineering systems via ASCII files. To use the systems in an integrated manner, one would follow the following sequence of steps: 1) a collection of Ada source code would be reengineered using one of the systems; 2) ASCII files capturing the all the necessary information would be generated and passed to the other system; 3) the other system would be used to further reengineer the Ada. (The passing of the ASCII files would be bi-directional.) When the reengineering is finished, new Ada code would be regenerated capturing the reengineering modifications made by both systems. With this scenario, the ASCII files would have to completely capture all the information in the internal representations and both systems would have to be able to parse and print these ASCII files.

Since the internal representations for the two systems currently contain the exact same information as is contained in an Ada program, we have the option of choosing either an abstraction of one of the internal forms or restructured Ada code for the format of the ASCII files. A shortfall of the latter option is that it precludes future expansion of the internal representations. We expect that in the future we will want to expand MODEL and ENCORE to be able share computed information about the Ada code. Using Ada code as the means of communication between the two systems would prohibit this expansion. Therefore we recommend choosing an abstraction of one of the internal forms.

The ENCORE system currently has a prototype version of an ASCII file parser and printer which consumes and produces an abstraction of the IRep. We call this software our IRep Inputter/Outputter. As mentioned above, this software is only in prototype form at this time, but with minimal effort it can be extended to handle the complete ENCORE IRep. The software is written in Ada and can easily be integrated into both MODEL (under VMS) and ENCORE (under UNIX).

In summary, we are suggesting translation between the MODEL ESL and ENCORE IRep as the best way to integrate the two systems. To accomplish this an ESL ↔ IRep translator must be built and either ENCORE will have to be moved to the VMS platform, or the IRep Inputter/Outputter will have to be made more robust and incorporated into both MODEL and ENCORE. The following pages provide an outline and estimates of the tasks involved with each option.
Figure 6 illustrates the envisioned system architecture for a merged ENCORE-MODEL system where ENCORE has been moved to the VMS platform.

To realize the integration shown in Figure 6, the following tasks must be completed:

- Software must be written to translate back and forth between ESL and IRep. (about 9 person months to complete)
- The ENCORE user interface must be rewritten in X. (about 9 person months)
- The ENCORE and MODEL user interfaces must be updated to allow the user to switch between the two systems (automatically transferring from one internal representation to the other). (about 1 person months - 1/2 person month for each system)

We believe a sound estimate for this form of integration is 20 person months.
Figure 7 shows how to integrate the two systems via ASCII IRep files.

To implement the above integration the following must be done:

- Software must be written to translate back and forth between ESL and IRep. (about 9 person months to complete) (This is the same as the first bullet with the previous integration option.)

- The IRep Inputter/Outputter must be made more robust. (about 3 person months to complete)

- The IRep Inputter/Outputter must be incorporated into the MODEL system: the file loading process must be updated to load IRep files using the Inputter and translate the IRep structure to an ESL structure, and the file writing process must be updated to translate the ESL structure to the IRep structure and generate the ASCII IRep files using the Outputter. (about 2 person months to compete)

- The ENCORE file load and file write must be updated to use the IRep Inputter/Outputter. (about 1 month to complete)

We estimate it will take 16 person months to achieve this form of integration.
References

[1] CMS2Ada - a CMS-2 to Ada translator developed at GE Corporate Research and Development. For information contact J. Sturman at GE Corporate Research and Development, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

[2] JRET - Jovial Reverse Engineering Technology developed at GE Corporate Research and Development. For information contact J. Sturman at GE Corporate Research and Development, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

Appendix A

CMS RET User’s Manual
1.0 Introduction

The CMS Reverse Engineering Tool (RET) consists of CMS-Rev and Teamwork/SD. CMS-Rev has been developed by GE CR&D and provides the ability to process CMS-2 source code and create a software maintenance database. This software maintenance database consists of a Teamwork database of structure charts, module specs, data dictionary entries and collateral files which contain information about the structure and contents of the source code being maintained. Teamwork/SD is a commercially supported product available from Cadre Technologies. It has been augmented by user menus, shell scripts and access programs to provide a customized and enhanced environment which utilizes the software maintenance database created by CMS-Rev.

This CMS RET User's Manual describes the procedures for using the RET software maintenance database. These procedures involve the use of the Teamwork/SD product from Cadre Technologies. The section Using the RET Database documents the basic operations that the software maintainer would need to perform in order to utilize the software maintenance database.

Also contained in this manual are the procedures for creating the RET software maintenance database using CMS-Rev, related programs and shell scripts. These procedures are performed in batch mode when necessary because of a new release of the source code being maintained, or as a result of a new version of CMS-Rev. The section Building the RET Database documents the steps necessary to build a new RET software maintenance database. The section Installing the RET Processors documents the steps necessary to install CMS Rev, related programs and shell scripts before beginning the process of building a new RET database.

2.0 Using the RET Database

2.1 Invoking RET

RET is invoked by executing Teamwork using the RET configuration file. This can be accomplished by manually typing the Teamwork command or by selecting the appropriate menu item from an OpenWindows workspace menu. The user then interacts with Teamwork to access the RET software maintenance database. The RET configuration file provides the user with access to the customized RET menus and to the specialized programs which access the RET software maintenance database.

A number of setup operations need to be performed before RET can be invoked: (1) Modify the Unix PATH variable to include the Teamwork directories. (2) Initialize the Unix environment variable RET_DEBUG to specify the RET root directory. (3) Verify that the Teamwork DC server is running on the Teamwork workstation server.

2.2 Using the Online Help

Each of the RET menus has a menu selection titled "Display Help Screen" that is the last selection on the menu. Selecting this menu item will cause the context sensitive help screen to be displayed in a Teamwork window. In addition to a description of each menu item available to the user, there may appear hints to the user on how to perform specific operations.
2.3 Selecting the Model of Interest

The first operation that the user must perform is to select the model of interest. Any further operations will then pertain to the model which corresponds to a Unix directory.

The model of interest is selected by pulling down the Index menu from the desktop menubar, and selected the menu item titled "Open Model Index." This will cause a list of the models in the Teamwork database to be displayed. Highlight the model of interest and select "Open Pr" from the pullright menu. The Teamwork process index for the selected model will be displayed. From this process index window, the user may access structure charts, module specs, and the data dictionary associated with the selected model.

2.4 Navigating Structure Charts

Structure charts provide a graphical representation of the calling relationships between software modules. The structure chart can be used as a "map" to guide the software maintainer in his/her understanding of the underlying software. Off-page connectors are used in structure charts so that the amount of information on a given structure chart is not excessive. The intent is to maintain readability when RET-generated structure charts are printed on 8 1/2 by 11 inch pages.

To navigate downward in the module calling hierarchy using structure charts, the user may open the structure charts for a specified off-page connector. This is accomplished by selecting the off-page connector with the mouse select button (left mouse button), pulling down the RET menu from the structure chart menubar and selecting the menu item titled "Expand Connector." The structure chart for the off-page connector will then be displayed.

To navigate upward in the module calling hierarchy using structure charts, the user may request to display a list of modules which call the current module. The current module is, by default, the module at the top of the structure chart. The user may override this default module by explicitly selecting another module on the structure chart as current. The list of calling modules is obtained by pulling down the RET menu from the structure chart menubar, and selecting the menu item titled "Display Calling Modules." This will cause a file window to open with a listing of calling modules. Any line of this file display may be selected to request the structure chart for that calling module by pulling down the RET menu from the file menubar and selecting the menu item titled "Open Structure Chart." The structure chart for the selected calling module will then be displayed. (NB: this is not currently working. Workaround: choose "Open Module Spec" from the RET menu and then choose "Show SC" from the Whole_Mspec menu).

During the search, an icon is displayed with the title "CALL." This icon will disappear when the search is completed, and at that time a Teamwork window will display the results of the search. The "Display Calling Modules" request may be aborted using the normal Unix window procedure to quit a task represented by the CALL icon.

2.5 Selecting the Module of Interest

A module is a CMS-2 subprogram. Modules are identified by the RET and a module spec is created for each module. In addition, the boxes on structure charts are used to represent modules.

Modules are listed on the process index which is displayed when the model of interest is selected. The process index lists the module specs and structure charts that are contained in the Teamwork database. The module of interest may be selected from the process index, and then either a module spec or a structure chart may be opened. Each process index entry has a SC or MS indicated. SC refers to structure chart and MS refers to module spec. A structure chart may be opened by selecting a module name flagged with an SC, pulling down RET from the process index menubar and selecting the menu item titled "Open Structure
Chart." A module spec may be opened by selecting a module name flagged with an MS, pulling down RET from the process index menubar and selecting the menu item titled "Open Module Spec."

Structure charts show the calling relationships between modules. The module of interest may be selected from a structure chart by pointing the mouse cursor at the structure chart that represents the module of interest, and pressing the select mouse button (left mouse button). Then, the user may pull down the RET menu from the structure chart menubar and select the desired menu item. The module of interest may be selected from a module spec by selecting the text in the module spec body which is the name of the module of interest. Text in the module spec body is selected by moving the mouse cursor on top of the first letter in the text string. The mouse cursor should turn from an arrow into a block. The select mouse button (left mouse button) is then pressed and the mouse cursor is dragged across the letters of the text string. The selected text will appear in reverse video. Then, the user may pull down the RET menu from the module spec menubar and select the desired menu item.

2.6 Determining Module Interfaces

A module interface is a relationship between modules where one module calls the other module. Module interfaces are represented graphically by structure charts, and textually by information in module spec bodies. Module interfaces may be obtained by displaying the appropriate structure chart or module spec. From a module spec, the user may open a Teamwork window for the structure chart containing the module spec. This is accomplished by pulling down the Whole Mspec menu from the module spec menubar, and selecting the menu item titled "Show SC." This will cause the appropriate structure chart to be displayed.

2.7 Viewing Module Source Files

Module source files are the raw CMS source files. Module source files may be displayed by selecting the module of interest from a structure chart, or from a module spec body. Then, the RET menu item titled "Display Module Source" may be selected to complete the request for a Teamwork file window to be opened on the raw source file.

An important distinction to remember is that the name of a module is not necessarily the same as the name of the source file containing the module. The boxes on structure charts and the "calls" and "called by" section of the module spec body all use module names, not file names.

2.8 Searching Source Files for Text

A facility for searching raw source files has been built into RET. This facility is available from the process index menubar. The user selects the model of interest and opens the appropriate Teamwork process index window. The user then pulls down the RET menu from the process index menubar, and selects the menu item titled "Search Source Files." This causes a Teamwork input window to be displayed which requests the user to input the filename and text patterns. The filename pattern is a standard Unix filename pattern, including the use of ? and * for wildcards. The text pattern is a grep regular expression, which needs to be enclosed within either single or double quotes if the text pattern contains special characters.

After the filename and text patterns are input, a Unix task is invoked to perform the search on the source files. During the search, an icon is displayed with the title "SCH." This icon will disappear when the search is completed, and that time a Teamwork window will display the results of the search. The "Search Source Files" request may be aborted using the normal Unix window procedure to quit a task represented by the SCH icon.

Source files may also be searched across all CSCIs. This is accomplished using the "Search Source Files" menu item on the RET menu of the Teamwork desktop menubar.
2.9 Selecting the Global Variable of Interest

Global variables are variables which are used outside of the module in which they are declared. These global variables are listed alphabetically within the data dictionary for each model, and also as part of the module spec for modules which reference the global variable. The data dictionary is displayed for the model of interest by pulling down the "Whole_Model" menu from the process index menubar, and selecting the menu item titled "Open DD." This will cause the requested data dictionary to be displayed. The global variable of interest may be selected from this display of the data dictionary by moving the mouse cursor to the desired line of the data dictionary and pressing the select mouse button (left mouse button).

When a module spec is displayed, the global variables listed may also be selected as the global variable of interest. This is accomplished by moving the mouse cursor on top of the first character of the name of the global variable. The mouse cursor will change from an arrow to a block. The user presses the mouse select button (left mouse button) and drags the cursor across the global variable name until all the characters are in reverse video. At this point, the global variable of interest on the module spec has been selected.

2.10 Viewing Data Dictionary Definition of Global Variables

The data dictionary contains an entry for each global variable. This entry contains information about the global variable, including the actual declaration of the global variable, and information about the raw or expanded source files. The declaration contains the type of the variable if the variable is an item. If the variable represents a table, then the declaration contains information about the types of the items in the table.

When a global variable of interest has been identified from the data dictionary display, then the RET menu from the data dictionary menubar is pulled down, and the menu item titled "Open DDE" is selected. This will cause the data dictionary entry to be displayed. When the global variable of interest has been identified from the module spec display, then the RET menu from the module spec menubar is pulled down, and the menu item titled "Open DDE" is selected. This will cause the data dictionary entry to be displayed.

A data dictionary entry may reference other data dictionary entries. This happens when the global variable represents a table or a block. In these cases, the name of the referenced data dictionary entry may be selected and the RET menu may be pulled down from the data dictionary entry menubar, and the menu item titled "Open DDE" selected. This will cause the selected data dictionary entry to be displayed in a new data dictionary entry window.

2.11 Searching Module Specs for Variable References

Global variables are associated with modules, and their module specs. A capability exists to perform a search for the modules which reference a particular global variable. This search is performed when the user selects a global variable of interest, from either the data dictionary or a module spec, pulls down the RET menu from the respective menubar, and selects the menu item titled "Display Where Ref."

After the global variable cross reference is initiated, a Unix task is invoked to perform the search within the Teamwork database. During the search, an icon is displayed with the title "REF." This icon will disappear when the search is completed, and at that time a Teamwork window will display the results of the search. The "Display Where Ref" request may be aborted using the normal Unix window procedure to quit a task represented by the REF icon. Module specs for modules identified in the cross reference display may be displayed by selecting the name of the module in the cross reference display, pulling down the RET menu from the file menubar, and selecting the menu item titled "Show Module Spec." This will cause the respective module spec to be displayed.
Global variable cross references may also be performed across all CSCIs. This is accomplished using the "Display Where Ref All" menu item on the RET menu of the data dictionary or module spec menubar.

2.12 Printing From the RET Database

The user may obtain printouts of the process index, the data dictionary index, structure charts, module specs, data dictionary entries, any Teamwork file window that has been opened, and any expanded module source file.

2.13 Terminating Teamwork

Before terminating Teamwork, be sure that all Teamwork windows have been closed. Then, pull down the "Stop" menu from the desktop menubar and select the menu item titled "Quit". This will terminate the current Teamwork session.

3.0 Building the RET Database

3.1 CMS Rev Processor

CMS Rev consists of three (3) separate passes. These passes combine to process the CMS-2 code, to process the comments and to generate the output files used to create the RET software maintenance database. The CMS Rev processor can be executed using the shell script called build-ret which is listed in the last section (Details of Setup). This shell script takes care of deleting old versions of the build log files, and allows the user to monitor its execution with time and date stamped messages informing the user of what pass is currently being executed. The file $RET_DB_HOME/src/csci-build is used to determine which CSCIs are being processed by CMS Rev in the current execution.

3.2 CMS Rev Post-Processors

The CMS Rev post-processors augment the processing performed by CMS Rev. Two operations are performed: (1) modify some CMS Rev output files before they can be used by the RET interactive programs, and (2) analyze some CMS Rev intermediate output files to create additional output files for use by the RET interactive programs. This CMS Rev post-processing has been combined into a shell script called build-twk. This shell script should be executed once for each CSCI.

3.3 C Rev and twk_put Processors

The C Rev and twk_put processors are Teamwork programs which are used to load the Teamwork data base. C Rev uses CMS Rev output to create structure charts in the Teamwork database. twk_put uses CMS Rev output to create both module specs and data dictionary entries in the Teamwork database. A shell script called ret_script is created by CMS Rev to be used in loading the Teamwork database.
4.0 Installing the RET Processors

4.1 Teamwork Processors

The Cadre Teamwork products that must be installed include Teamwork/SD and Teamwork/C Rev. The Teamwork/C Rev Browser is not needed by the RET.

4.2 CMS Rev Processors

The CMS Rev processors consists of multiple passes as follows: cms2cdif.p3, cms2cdif.p4a, cms2cdif.p4b, and cms2cdif.p4c. These executable programs should be installed before CMS Rev can be used to build the RET database.

4.3 CMS Rev Post-Processors

The CMS Rev post-processors consists of the following programs:

- build-ret
- build-twL
- build-csc
- do-errors

5.0 Details of Set-up

5.1 Environment Variables

There is one major environment variable which must be set before running RET:

RET_DB_HOME - the directory in which all the executables and shells live

5.2 Scripts (preliminary versions)

There are several scripts which are useful in running RET (although it can be run manually). These scripts can be found in RET_DB_HOME/admin, and they are as follows:

- build-ret - a multi-function script which asks for user direction upon invocation. It's current functions are: CMS Rev Pass3; CMS Rev Comment Extraction; CMS Rev Pass4; Post-Process CMS Rev; Create Teamwork Database; Dump Teamwork Database; and Restore Teamwork Database. The user is encouraged to review the script in order to get an understanding of how RET is put together.

- go-ret - a script which invokes Cadre Teamwork with the proper configuration file, etc.

5.3 Directories

There are two directories which the user should set up for each model. The first is $RET_DB_HOME/src/ model_name. This directory should contain the source files for the model. (This may be a soft link, if it
proves convenient.) The second directory is $RET_DB_HOME/lst/model_name. This should be created as an empty directory. CMS RET places files in there during its processing.

5.4 Files

There are two files which the user may wish to update. They are $RET_DB_HOME/dat/csci-build and $RET_DB_HOME/dat/csci-names. These are normally not needed for RET, but can be useful for rebuilding the entire system via build-ret. They should contain the model names for the system, one per line.

There is one file which the user must add to the $RET_DB_HOME/src/model_name directory: limits.txt. This file should have exactly one line in it which says "do globals".
Appendix B

Introduction to ENCORE Internal Representation
Introduction to the ENCORE Internal Representation

The Purpose of the Internal Representation.

The purpose of the ENCORE Internal Representation (or IRep, for short), is to allow the various tools in ENCORE to manipulate Ada programs in a straightforward and uniform way.

Some goals in the IRep design were:
1. There should be a logical abstract description of the IRep.
2. The IRep should be accessible via a logical interface that is independent of the physical representation of the IRep in memory.
3. There should be a clean separation between lexical information and semantic information.
4. One should be able to reconstruct the original source to an Ada program from the IRep (modulo differences in formatting).

The Logical Structure of the Internal Representation

Logically, the IRep is a tree, with some backlinks for handling references to definitions and labels, and symbol table structures to capture Ada programs. (The tree structure is quite similar to DIANA, the standard internal representation for Ada.) Each tree represents the statements in the Ada code and the symbol tables represent the scoping and visibility rules for the identifiers found in the code.

The IRep Program Tree

The tree structure consists of ‘nodes’ and ‘attributes.’ The nodes represent the information in the tree, while the attributes represent the edges of the tree.

The nodes are grouped into ‘classes,’ each class corresponding to a kind of Ada construct. The attributes are also grouped into named classes. As an example, consider the class of nodes corresponding to Ada assignment statements. Each such node must belong to the class ‘assignment_stmt.’ Furthermore, each such node must have two attributes -- one called ‘target,’ representing the destination of the assignment, and the other called ‘source,’ representing the expression to be assigned.
1. ADL: The Metalanguage Used to Describe the IRep Trees

The IRep tree is specified in a metalanguage called the Augmented Description Language, or ADL, for short.

An ADL description consists of a series of 'productions.' The productions, in turn, can be of the following kinds: stub productions, primitive productions, node productions, and class productions.

1.1 Stub Productions

Stub productions have the syntax

```
stub <name> ;
```

These productions are used to define certain special nodes that are used in processing Ada programs. There are exactly two stub productions

```
stub Empty;
stub Undefined;
```

The first production defines the 'empty' node, which is generally used to an optional attribute that is not supplied (for example, a missing 'else' clause in an 'if' statement. The second production generally indicates either an error condition or an unsuccessful operation. For example, the value returned by an unsuccessful symbol table search is the 'undefined' node.

1.2 Primitive Productions

Primitive productions have the syntax

```
primitive <name> ;
```

Primitive productions are used to define external data types that are used as data at the leaves of the IRep trees. The actual productions used in the Ada IRep tree are

```
primitive Boolean;
primitive Character;
primitive Float;
primitive Integer;
primitive String;
primitive Symbol;
```

The first five productions correspond to the five predefined scalar types in the Ada package Standard. The sixth production, 'Symbol,' corresponds to the type 'Symbol,' defined in the package 'IForm_Symbols.' This Symbol type is used to represent Ada identifiers.
1.3 Node Productions

Node productions have the form

\[\text{name} \to \text{attr1-name}: \text{attr1-descriptor}, \text{attr2-name}: \text{attr2-descriptor}, \ldots ; \]

Node productions describe the internal structure of an IRep tree. The left hand side of a node production indicates the class of the node involved, while the right hand side gives the names and attributes of a node of that class.

Attributes can be either simple attributes, whose value is a node, or sequence attributes, whose value is a sequence of nodes. Simple attributes have the form

\[\text{class-name} \]

while sequence attributes have the form

\[\text{seq of class-name} \]

An example of a node production having simple attributes is given by the production for an Ada assignment statement, which is written

\[\text{assignment_stmt} \to \text{source}: \text{EXP}, \text{target}: \text{REFERENCE}; \]

This production states that each node of the class 'assignment_stmt' has two attributes, a 'source' attribute, whose value must be of class 'EXP,' and a 'target' attribute, whose value must be of class 'REFERENCE.'

As an example of sequence attributes, consider the production for an Ada else clause, which is written

\[\text{else_clause} \to \text{statements}: \text{seq of STMT}; \]

This production says that each node of class 'else_clause' has the attribute 'statements,' whose value is a sequence of nodes of class STMT.

One final note. It is possible that a particular class of IRep tree node might not have any attributes. An example is the class of node that represents 'null' statements in Ada. The production for this class is written

\[\text{null_stmt} \to ; \]

We use a node production, rather than a stub or primitive production because

1. there can be more than one node of class 'null_stmt' in an IRep tree structure, which rules out using a stub production, and
2. the class 'null_stmt' is not imported from another package, which rules out using a
primitive production.

Class Productions

Class productions have the form

```
<class-name> ::= <subclass1> | <subclass2> | ... ;
```

The classes on the right hand side of the production are called subclasses of the class on
the left hand side.

Class productions are used for two purposes:
1. To group certain classes together in a manner similar to union types in some program-
ning languages, and
2. To enable several classes to inherit one or more attributes.

A production that satisfies the first purpose is

```
ACTUAL_COMPONENT ::= association | others_part | EXP;
```

This production says that a node of class 'ACTUAL_COMPONENT' can be either of
class 'association,' class 'others_part,' or class 'EXP.' Thus the node production

```
aggregate => components : seq of ACTUAL_COMPONENT;
```

indicates that a node of class 'aggregate' has an attribute called 'components,' which can
take, for its value, a sequence of nodes, each member of which must be either an 'associa-
tion,' an 'others_part,' or an 'EXP.'

To illustrate the second purpose of class productions, suppose we have several different
kinds of nodes that possess a given attribute. In Ada, for example, package specifications,
package bodies, procedure specifications, procedure bodies, etc. all have an attribute
called 'designator,' which denotes the name of the unit. Rather than include a separate
'designator' attribute in each node production, we could write the two following produc-
tions:

```
SINGLE_DESIGNATOR_ITEM => designator : Symbol;

SINGLE_DESIGNATOR_ITEM ::= pkg_spec | pkg_bdy | proc_spec | ... ;
```

The attribute 'designator' will then be inherited by all subclasses of the class
'SINGLE_DESIGNATOR_ITEM.'
2. The External Representation of IRep Tree Structures

Externally, IRep tree structures are represented as one or more node structures. Node structures are represented differently, depending on the kind of node involved.

1. Stub nodes are represented by the name of the stub class; thus the two stub nodes in the Ada IRep tree are represented by

 Empty
 and
 Undefined

2. Primitive nodes are represented by the class name, followed by the primitive value, enclosed in parentheses. Some examples are

 Boolean(TRUE)
 Integer(3)
 Float(5.38)
 Character('a')
 String("Abc")
 Symbol("ABC")

3. Structure nodes may be represented by the class name, followed by the attribute names and values, enclosed within square brackets. An example is

 assignment_stmt[target n_103^,
 source Integer(3)]

4. A structure node may be preceded by a label. This indicates that the node can appear as an attribute in more than one place in an Ada IRep tree. An example is

 n_103: named_ref[designator Symbol("x"),
 target n_102^]

5. Finally, a labeled node can be represented simply by its label, followed by a caret, as in the reference n_102^ in the previous example. This allows us to represent circular data structures in a linear ASCII form.

3. The Ada Interface to the Internal Representation

The interface to the Ada IRep tree is provided by three packages: AdaTran_Records, Primitive_Node_Creation, and Primitive_AdaTran_Interface. The package AdaTran_Records contains the definition of IRep tree nodes and sequences; the package Primitive_Node_Creation provides functions for building IRep tree nodes; and the package Primitive_AdaTran_Interface provides functions for accessing and changing the value of the attributes of nodes.
3.1 The Package AdaTran_Records

The package AdaTran_Records contains the following definitions.

3.1.1 The Type AdaTran_Node.Kind

The type AdaTran_Node.Kind is an enumerated type that is used to indicate the class of any given IRep tree node. The definition is

``` ada
type AdaTran_Node.Kind is (k_UNDEFIN,  
  k_EMPTY,  
  -- Primitive Node Classes  
  k_Boolean,  
  k_Character,  
  k_Float,  
  k_Integer,  
  k_String,  
  k_Symbol,  
  -- Structured Node Classes  
  k_ABORT,  
  k_ACCEPT,  
  ...  
  k_WITH_ELEM);
```

Note that the names of the various node kinds are all prefixed with 'k..'. This avoids any clashes with Ada reserved words. For example, ABORT and ACCEPT would clash with the reserved words 'abort' and 'accept' in Ada, unless we modified them somehow.

3.1.2 The Type AdaTran_Node

The type AdaTran_Node corresponds to the IRep tree nodes for Ada. It is implemented as a pointer to a record, which contains all the attribute information for the node. Thus, we have the definition

``` ada
type AdaTran_Node_Implementation(Kind : AdaTran_Node.Kind) is  
  record  
    ...  
  end record;
```

and the definition

``` ada
type AdaTran_Node is access AdaTran_Node_Implementation;
```
3.1.3 The Type Seq_Of_AdaTran_Node

The type Seq_Of_AdaTran_Node corresponds to sequences of AdaTran nodes. It is created by instantiating the generic package SEQ on the type AdaTran_Node. Thus, we have the three definitions

```plaintext
package AdaTran_Node_Seqs is new SEQ(AdaTran_Node, Eq, Equal);
subtype Seq_Of_AdaTran_Node is AdaTran_Node_Seqs.Seq;
function New_Seq_Of_AdaTran_Node return Seq_Of_AdaTran_Node
renames AdaTran_Node_Seqs.New_Seq;
```

The generic package SEQ provides a set of routines for creating and manipulating linked lists. Instantiating this generic package for the type AdaTran_Node, makes these operations available for use on nodes. In order to use these operations on sequences of AdaTran_Node(s), it is necessary to insert the clause

```plaintext
use AdaTran_Node_Seqs;
```

in the declaration part of the unit that uses these routines.

The subtype Seq_Of_AdaTran_Node corresponds to sequences of nodes.

The function New_Seq_Of_AdaTran_Node returns the empty sequence.

3.1.4 The Functions Eq and Equal

In dealing with a complicated structures, like AdaTran_Node(s), it is sometimes necessary to make a distinction between equivalence and identity in comparing nodes. The function Eq, defined by

```plaintext
function Eq(x, y : AdaTran_Node) return Boolean;
```

returns true if and only if x and y are the same node. On the other hand, the function Equal, defined by

```plaintext
function Equal(x, y : AdaTran_Node) return Boolean;
```

returns true if and only if x and y are equivalent. In this case we require that x and y be of the same class and that all the corresponding attributes of x and y be Eq.

3.2 The Package Primitive_Node_Creation

The package Primitive_Node_Creation provides functions for constructing new nodes. These consist of the generalized node creation functions, the functions for building primitive nodes, and the functions for building structured nodes. A node, once created, can be stored in the node data base (a table in memory that holds AdaTran nodes with symbols as
the keys). The user can even specify the name under which the node should be stored. This
data base is meant to provide unique names for all nodes that are attributes of two or more
other nodes. Many of the node creation functions have a parameter called ‘Label’ or
‘Node_Label,’ which defaults to The_Symbol_Undefined. If the user does not specify a
name, the system will generate one, if necessary.

3.2.1 The Generalized Node Creation Functions

The generalized node creation functions are

\[
\text{function Raw_AdaTran_Node(Kind : AdaTran_Node_Kind)} \\
\quad \text{return AdaTran_Node;}
\]

and

\[
\text{function New_AdaTran_Node(Kind : AdaTran_Node_Kind; Label : Symbol := The_Symbol_Undefined)} \\
\quad \text{return AdaTran_Node;}
\]

The function Raw_AdaTran_Node simply creates a new, uninitialized instance of an
AdaTran_Node. It will rarely be used by the programmer, however, since it is at a very
low level and requires that the programmer devote considerable attention to low-level
details.

The function New_AdaTran_Node, on the other hand, will handle many of the low level
details necessary to maintain consistency in the node data base. Thus, it can be used more
effectively by the programmers of ENCORE tools. The optional parameter ‘Label,’ indi-
cates a name under which the node is to be stored in the node data base.

3.2.2 Functions for Building Primitive Nodes

The package Primitive_Node_Creation provides a number of functions for building prim-
itive, or scalar, nodes, such as integers, strings, booleans, etc. Many of these functions are
overloaded, in order to allow different types of parameters. Consider, for example, the
function Make_Integer. There are three different versions

\[
\begin{align*}
\text{function Make_Integer(X : Integer) return AdaTran_Node;} \\
\text{function Make_Integer(X : String) return AdaTran_Node;} \\
\text{function Make_Integer(X : A_String) return AdaTran_Node;}
\end{align*}
\]

The first Make_Integer function allows one to build a node from an actual integer. The
second allows one to build a node from a string that represents an integer. Finally, the third
allows one to build a node from a pointer to a string.

The other creation functions for primitive nodes are Make_Boolean, Make_Character,
Make_Float, Make_String, and Make_Symbol.
There is also one function for building up sequences of symbol nodes. This is the function defined by

```pascal
function Make_Seq_Of_Symbol(S : Seq_Of_Symbol) return Seq_Of_AdaTran_Node;
```

This function accepts a sequence of actual symbols and builds a sequence of nodes, each of type k_Symbol.

Functions for Building Structured Nodes

The functions for building structured nodes allow the user to build a complete node with all the attributes in place. Some examples are

```pascal
function Make_Abort(p_Tasks : Seq_Of_AdaTran_Node;
  Node_Label : Symbol := The_Symbol_Undefined)
  return AdaTran_Node;
...
```

```pascal
function Make_Func_Spec(p_Body : AdaTran_Node;
  p_Context : Seq_Of_AdaTran_Node;
  p_Designator: AdaTran_Node;
  p_Parameters : SeqOf_AdaTran_Node;
  p_Return_Type : AdaTran_Node;
  Node_Label : Symbol := The_Symbol_Undefined)
  return AdaTran_Node;
...
```

```pascal
function Make_Others(Node_Label : Symbol := The_Symbol_Undefined)
  return AdaTran_Node;
```

The names of parameters that correspond to attribute values are all prefixed with ‘p_.’ This avoids any clashes with Ada reserved words. For example, several classes of node contain an attribute called ‘type.’ This would cause a conflict with the reserved word ‘type’ in Ada, unless we altered the name somehow.

3.3 The Package Primitive_AdaTran_Interface

The package Primitive_AdaTran_Interface provides routines for accessing and manipulating AdaTran_Nodes.

3.3.1 The Function Kind

The function Kind, defined by

```pascal
function Kind(x : AdaTran_Node) return AdaTran_Node;
```
allows the user to query a node as to its class. Quite often the various ENCORE tools will use a case-statement based on the result of Kind(x), then perform different operations depending on the actual kind of the node.

3.3.2 Accessing Primitive Nodes

Primitive nodes can't be altered, so the only operation available is to retrieve the actual primitive values from the nodes. For example, we can retrieve the integer value of an integer node. The actual functions are

```ada
function As_Boolean(N : AdaTran_Node) return Boolean;
function As_Character(N : AdaTran_Node) return Character;
function As_Float(N : AdaTran_Node) return Float;
function As_Integer(N : AdaTran_Node) return Integer;
function As_String(N : AdaTran_Node) return String;
function As_A_String(N : AdaTran_Node) return A_String;
function As_Symbol(N : AdaTranNode) return Symbol;
```

The function As_A_String needs some additional comments. The type A_String is an access type whose values are pointers to strings (A_String is described in the package Basic_Ranges). With string nodes, it is important to be able to view the string value of a string node as either an actual string or as a pointer to a string. This is because the type String in Ada is an unconstrained array type, which is inconvenient to use in some contexts.

Finally, there is a function defined by

```ada
function As_Seq_Of_Symbol(S : Seq_Of_AdaTran_Node) return Seq_Of_AdaTran_Node;
```

This function takes a sequence of AdaTran_Node(s), all presumed to be of type k_Symbol, and returns a sequence of Symbols. As such, it is the reverse of the function Make_Seq_Of_Symbol, defined in the package Primitive_Node_Creation.

3.3.3 Accessing Structure Nodes

For each attribute name, there are two corresponding functions, a 'Get_' function and a 'Set_' function. The Get function retrieves the attribute of the given name, while the Set function assigns a value to the attribute. Two examples are

```ada
Get_Type(N : AdaTran_Node) return AdaTran_Node;
Set_Type(N : AdaTran_Node; To_Be : AdaTran_Node);
```

and

```ada
Get_Declarations(N : AdaTran_Node) return Seq_Of_AdaTran_Node;
Set_Declarations(N : AdaTran_Node; To_Be : Seq_Of_AdaTran_Node);
```
The first two functions provide access to the 'type' attribute of any typed node, such as a var_decl, const_decl, etc.

The last two functions provide access to the 'declarations' attribute for any node corresponding to a scope. These include nodes of class pkg_spec, pkg_bdy, block, etc.
Appendix C

ADL Description of the Ada Internal Representation
-- ADL Description of the Ada Internal Representation

module AdaTran is

-- Primitive Node Types

primitive Boolean;
primitive Character;
primitive Float;
primitive Integer;
primitive String;
primitive Symbol;

stub Empty;
stub Undefined;

-- Structured Classes

-- 2.8 pragmas

pragma =>
 designator : Symbol,
 parameters : seq of EXP_OR_ASSOCIATION;

EXP_OR_ASSOCIATION ::= EXP | association;

-- 3. declarations and types

-- 3.1 declarations

DECL ::= pragma | use_elem |
 MULTIPLE_DESIGNATORS_ITEM | REP | SINGLE_DESIGNATOR_ITEM;

-- 3.2 objects and named numbers

MULTIPLE_DESIGNATORS_ITEM ::= num_decl | var_decl | const_decl;

EXP_OR_EMPTY ::= EXP | Empty;

SUBTYPE_INDICATION ::= constrained_reference REFERENCE;

num_decl =>
 designators : seq of Symbol,
 initial_value : EXP_OR_EMPTY,
 referencers : seq of named_ref,
type : SUBTYPE_INDICATION;

var_decl =>
 constraints : seq of CONSTRAINT,
 designators : seq of Symbol,
 initial_value : EXP_OR_EMPTY,
 referencers : seq of named_ref,
 type : SUBTYPE_INDICATION;

const_dcl =>
 constraints : seq of CONSTRAINT,
 designators : seq of Symbol,
 initial_value : EXP_OR_EMPTY,
 referencers : seq of named_ref,
 type : SUBTYPE_INDICATION;

-- 3.3 types and subtypes
-- 3.3.1 type declarations

SINGLEDESIGNATOR_ITEM ::= type_decl | subtype_decl;

type_decl =>
 designator : Symbol,
 info : TYPE_INFO,
 referencer : direct_ref;

-- 3.3.2 subtype declarations

subtype.decl =>
 base_type : SUBTYPE_INDICATION,
 constraints : seq of CONSTRAINT,
 designator : Symbol,
 referencer : direct_ref;

-- 3.4 derived type defintions

TYPE_INFO ::= derived_type_info;

derived_type_info =>
 base_type : SUBTYPE_INDICATION,
 constraints : seq of CONSTRAINT;
-- 3.5 scalar types

TYPE_INFO ::= enumerated_type_info;

enumerated_type_info =>
 values : seq of enumeration Literal;

enumeration_literal =>
 base_type : SUBTYPE_INDICATION,
 type : direct_ref,
 value : SYMBOL OR CHARACTER;

SYMBOL OR CHARACTER ::= Symbol | Character;

-- 3.5.4 integer types

TYPE_INFO ::= integer_type_info;

integer_type_info =>
 range : SIMPLE_RANGE;

-- 3.5.9 real types

TYPE_INFO ::= REAL_TYPE_INFO;

REAL_TYPE_INFO ::= float_type_info;
float_type_info =>
 digits : EXP,
 range : SIMPLE_RANGE OR EMPTY;

REAL_TYPE_INFO ::= fixed_type_info;
fixed_type_info =>
 delta : EXP,
 range : SIMPLE_RANGE OR EMPTY;

SIMPLE_RANGE OR EMPTY ::= SIMPLE_RANGE | Empty;

-- 3.6 array types

TYPE_INFO ::= array_type_info;

array_type_info =>
 base_type : SUBTYPE_INDICATION,
 ranges : seq of RANGE;

RANGE ::= discrete_range;
SIMPLE_RANGE ::= discrete_range;

discrete_range =>
 base_type : SUBTYPE_INDICATION,
 max : EXP,
 min : EXP;

RANGE ::= index_constraint;

index_constraint =>
 base_type : SUBTYPE_INDICATION,
 max : EXP,
 min : EXP;

RANGE ::= universal_index_range;

universal_index_range =>
 base_type : SUBTYPE_INDICATION,
 max : EXP,
 min : EXP;

RANGE ::= universal_integer_range;

universal_integer_range =>
 base_type : SUBTYPE_INDICATION,
 max : EXP,
 min : EXP;

RANGE ::= REFERENCE;

-- 3.7 record types

TYPE_INFO ::= record_type_info;

record_type_info =>
 components : seq of component_decl,
 discriminant : seq of component_decl;

MULTIPLE_DESIGNATORS_ITEM ::= component_decl;
COMPONENT ::= component_decl | pragma;

component_decl =>
 constraints : seq of CONSTRAINT,
 designators : seq of Symbol,
 initial_value : EXP_OR_EMPTY,
 referencers : seq of named_ref,
 type : SUBTYPE_INDICATION;
COMPONENT ::= null_component;
null_component => ;

COMPONENT ::= variant_part;
variant_part =>
 discriminator : named_ref,
 variants : seq of variant;

variant =>
 choices : seq of CHOICE_OR_OTHERS,
 components : seq of COMPONENT;

CHOICE_OR_OTHERS ::= EXP | GENERAL_DISCRETE_RANGE | others;

others => ;

-- 3.8 access types
TYPEINFO ::= pointer_type_info;

pointer_type_info =>
 base_type : SUBTYPE_INDICATION;

-- 3.8.1 Incomplete Type Declarations
TYPEINFO ::= TYPESTUB;

TYPESTUB ::= incomplete_type_info;

incomplete_type_info =>
 completion : DIRECT_REF_OR_EMPTY,
 discriminant : seq of component_decl;

TYPESTUB ::= private_type_info;

private_type_info =>
 completion : DIRECT_REF_OR_EMPTY,
 discriminant : seq of component_decl;

TYPESTUB ::= limited_private_type_info;

limited_private_type_info =>
 completion : DIRECT_REF_OR_EMPTY,
 discriminant : seq of component_decl;
TYPE_INFO ::= type_completion_info;
type_completion_info =>
 info : TYPE_INFO,
 stub : DIRECT_REF_OR_EMPTY;

DIRECT_REF_OR_EMPTY ::= direct_ref | Empty;

-- 3.9 declarative parts

-- 4 names and expressions

-- 4.1 names

-- 4.1.1 indexed components

REFERENCE ::= indexed_ref;
indexed_ref =>
 indices : seq of EXP,
 representations : seq of REP,
 target : EXP;

-- 4.1.2 slices

slice =>
 range : GENERAL_DISCRETE_RANGE,
 target : EXP;

GENERAL_DISCRETE_RANGE ::= constrained_reference | REFERENCE | SIMPLE_RANGE;

-- 4.1.3 selected components

REFERENCE ::= component_ref;
component_ref =>
 component : EXP,
 representations : seq of REP,
 target : EXP;

-- 4.1.4 attributes

SIMPLE_RANGE ::= attribute;

attribute =>
designator : Symbol,
exp : EXP;

SIMPLE_RANGE ::= attribute_call;

attribute_call =>
 attribute : attribute,
 exp : EXP;

-- 4.2 literals

EXP ::= LITERAL;

LITERAL ::= Boolean | Integer | Float | Symbol | Character | String;

-- 4.3 aggregates

LITERAL ::= aggregate;
aggregate =>
 components : seq of ACTUAL_COMPONENT;

ACTUAL_COMPONENT ::= association | others_part | EXP;

others_part =>
 exp : EXP;

-- 4.4 expressions

EXP ::= REFERENCE;

-- 4.4.B relations

EXP ::= membership;

membership =>
 exp : EXP,
 op : MEMBERSHIP_OP,
 set : discrete_range;

MEMBERSHIP_OP ::= in_op | not_in;

in_op =>;
not_in =>;

-- 4.5 operators and expression evaluation
-- See Function Calls

-- 4.6 type conversions

EXP ::= QUAL_CONV;
QUAL_CONV ::= conversion;

conversion =>
 exp : EXP,
 type : SUBTYPE_INDICATION;

-- 4.7 qualified expressions

QUAL_CONV ::= qualified_expression;

qualified_expression =>
 exp : EXP,
 type : SUBTYPE_INDICATION;

-- 4.8 allocators

EXP ::= ALLOCATOR;
ALLOCATOR ::= uninitialized_allocator;

uninitialized_allocator =>
 constraints : seq of CONSTRAINT,
 object_type : SUBTYPE_INDICATION,
 type : SUBTYPE_INDICATION;

ALLOCATOR ::= initialized_allocator;

initialized_allocator =>
 constraints : seq of CONSTRAINT,
 expr : qualified_expression,
 type : SUBTYPE_INDICATION;

EXP ::= null_exp;

null_exp => ;

-- 5 Statements

STMT ::= pragma;
STMT ::= labeled_stmt;
labeled_stmt =>$
 labels : seq of Symbol,
 referencers : seq of named_ref,
 statement : STMT;

STMT ::= null_stmt;

null_stmt =>$;

-- 5.2 assignment statement

STMT ::= assignment_stmt;

assignment_stmt =>$
 target : REFERENCE,
 source : EXP;

-- 5.3 if statements

STMT ::= if_stmt;
if_stmt =>$
 then_part : then_clause,
 else_parts : ELSES_OR_EMPTY;
then_clause =>$;
 cond : EXP,
 statements : seq of STMT;
ELSES_OR_EMPTY ::= elses_part | Empty;

elses_part =>$;
 else_part : ELSE_CLAUSE_OR_EMPTY,
 elsifs : seq of elsif_clause;
elsif_clause =>$;
 cond : EXP,
 statements : seq of STMT;
ELSE_CLAUSE_OR_EMPTY ::= else_clause | Empty;

else_clause =>$;
 statements : seq of STMT;

-- 5.4 case statements

STMT ::= case_stmt;
case_stmt =>
 alternatives : seq of altern,
 case_exp : EXP;

altern =>
 choices : seq of CHOICE_OR OTHERS,
 statements : seq of STMT;

-- 5.5 loop statements

STMT ::= loop_stmt;

loop_stmt =>
 iterator : ITERATOR,
 label : Symbol,
 referencers : seq of named_ref,
 statements : seq of STMT;

ITERATOR ::= while_iter;

while_iter =>
 condition : EXP;

ITERATOR ::= for_iter;

for_iter =>
 init_and_end : GENERAL_DISCRETE_RANGE,
 referencers : seq of named_ref,
 variable : Symbol;

ITERATOR ::= reverse_iter;

reverse_iter =>
 init_and_end : GENERAL_DISCRETE_RANGE,
 referencers : seq of named_ref,
 variable : Symbol;

-- 5.6 block statements

STMT ::= block;

block =>
 declarations : seq of DECL,
 exception_handler : seq of altern,
 label : Symbol,
referencer : direct_ref,
statements : seq of STMT;

-- 5.7 exit_statements

STMT ::= exit_stmt;
exit_stmt =>
 level : REFERENCE_OR_EMPTY,
 when_condition : EXP_OR_EMPTY;

REFERENCE_OR_EMPTY ::= REFERENCE | Empty;

-- 5.8 return statements

STMT ::= return_stmt;
return_stmt =>
 value : EXP_OR_EMPTY;

-- 5.9 goto statements

STMT ::= goto_stmt;
goto_stmt =>
 target : REFERENCE;

-- 6 subprograms

-- 6.1 subprogram declarations

SINGLE_DESIGNATOR_ITEM ::= func_spec;

func_spec =>
 body : DIRECT_REF_OR_EMPTY,
 context : seq of CONTEXT_ELEM,
 designator : Symbol,
 parameters : seq of FORMAL,
 referencer : direct_ref,
 return_type : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= proc_spec;

proc_spec =>
 body : DIRECT_REF_OR_EMPTY,
 context : seq of CONTEXT_ELEM,
 designator : Symbol,
 parameters : seq of FORMAL,
referencer : direct_ref;

-- 6.1.C formal part

FORMAL ::= in_formal | out_formal | inout_formal;

in_formal =>
 designators : seq of Symbol,
 initial_value : EXP_OR_EMPTY,
 referencers : seq of named_ref,
 type : SUBTYPE_INDICATION;

FORMAL ::= out_formal;
out_formal =>
 designators : seq of Symbol,
 referencers : seq of named_ref,
 type : SUBTYPE_INDICATION;

FORMAL ::= inout_formal;
GENERIC_PARAMETER ::= inout_formal;
inout_formal =>
 designators : seq of Symbol,
 referencers : seq of named_ref,
 type : SUBTYPE_INDICATION;

-- 6.3 subprogram bodies

SINGLE_DESIGNATOR_ITEM ::= func_bdy;

func_bdy =>
 context : seq of CONTEXT_ELEM,
 declarations : seq of DECL,
 designator : Symbol,
 exception_handler : seq of altern,
 parameters : seq of FORMAL,
 referencer : direct_ref,
 return_type : direct_ref,
 spec : DIRECT_REF_OR_EMPTY,
 statements : seq of STMT;

SINGLE_DESIGNATOR_ITEM ::= proc_bdy;

proc_bdy =>
 context : seq of CONTEXT_ELEM,
 declarations : seq of DECL,
 designator : Symbol,
exception_handler : seq of altern,
parameters : seq of FORMAL,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

-- 6.4 subprogram calls

STMT ::= proc_call;

proc_call =>
 parameters : seq of EXP_OR_ASSOCIATION,
 proc : REFERENCE;

EXP ::= function_call;

function_call =>
 function : REFERENCE,
 parameters : seq of EXP_OR_ASSOCIATION;

-- 7 packages

-- 7.1 package structure

SINGLE_DESIGNATOR_ITEM ::= pkg_spec;

pkg_spec =>
 body : DIRECT_REF_OR_EMPTY,
 context : seq of CONTEXT_ELEM,
 declarations : seq of DECL,
 designator : Symbol,
 private_declarations : seq of DECL,
 referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= pkg_bdy;

pkg_bdy =>
 context : seq of CONTEXT_ELEM,
 declarations : seq of DECL,
 designator : Symbol,
 exception_handler : seq of altern,
 referencer : direct_ref,
 spec : DIRECT_REF_OR_EMPTY,
 statements : seq of STMT;
-- 7.4 private type and deferred constant declarations

MULTIPLE_DESIGNATORS_ITEM ::= deferred_const_decl;

defered_const_decl =>
 decl : const_decl,
 designators : seq of Symbol,
 referencers : seq of named_ref,
 type : SUBTYPE_INDICATION;

-- 8 visibility rules

-- 8.4 use clauses

DECL ::= use_elem;
CONTEXT_ELEM ::= use_elem;

use_elem =>
 items : seq of Symbol;

-- 8.5 renaming declarations

MULTIPLE_DESIGNATORS_ITEM ::= exception_rename;

exception_rename =>
 designators : seq of Symbol,
 item : REFERENCE;

SINGLE_DESIGNATOR_ITEM ::= func_rename;

func_rename =>
 designator : Symbol,
 item : REFERENCE,
 parameters : seq of FORMAL,
 referencer : direct_ref,
 return_type : direct_ref;

MULTIPLE_DESIGNATORS_ITEM ::= object_rename;

object_rename =>
 designators : seq of Symbol,
 item : REFERENCE;

SINGLE_DESIGNATOR_ITEM ::= pkg_rename;

pkg_rename =>
designator : Symbol,
item : REFERENCE,
referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= proc_rename;

proc_rename =>
 designator : Symbol,
 item : REFERENCE,
 parameters : seq of FORMAL,
 referencer : direct_ref;

-- 9 tasks

-- 9.1 task specifications and task bodies

SINGLE_DESIGNATOR_ITEM ::= task_type_decl;

task_type_decl =>
 designator : Symbol,
 referencer : direct_ref,
 spec : DIRECT_REF_OR_EMPTY;

SINGLE_DESIGNATOR_ITEM ::= task_spec;
TYPE_INFO ::= task_spec;
task_spec =>
 body : DIRECT_REF_OR_EMPTY,
 context : seq of CONTEXT_ELEM,
 declarations : seq of DECL,
 designator : Symbol,
 referencer : direct_ref;

SINGLE_DESIGNATOR_ITEM ::= task_bdy;

task_bdy =>
 context : seq of CONTEXT_ELEM,
 declarations : seq of DECL,
 designator : Symbol,
 exceptionHandler : seq of altern,
 referencer : direct_ref,
 spec : DIRECT_REF_OR_EMPTY,
 statements : seq of STMT;

-- 9.5 entries, entry calls and accept statements
SINGLE_DESIGNATOR_ITEM ::= entry;

entry =>
 designator : Symbol,
 parameters : seq of FORMAL,
 range : RANGE_OR_EMPTY,
 referencer : direct_ref;

RANGE_OR_EMPTY ::= RANGE | Empty;

entry_call =>
 entry : direct_ref,
 index : EXP_OR_EMPTY,
 parameters : seq of EXP_OR_ASSOCIATION;

STMT ::= accept;
accept =>
 entry : REFERENCE,
 index : EXP_OR_EMPTY,
 parameters : seq of FORMAL,
 referencer : direct_ref,
 statements : seq of STMT;

-- 9.6 delay statements, duration and time

delay =>
 exp : EXP;

-- 9.7 select statements

-- 9.7.1 selective waits

select =>
 select_clauses : seq of SELECT_CLAUSE_ELEM,
 statements : seq of STMT;

SELECT_CLAUSE_ELEM ::= pragma | select_clause;

select_clause =>$
 cond : EXP,
 statements : seq of STMT;

STMT ::= terminate;

terminate =>$
-- 9.7.2 conditional entry calls

STMT ::= ENTRY_STMT;
ENTRY_STMT ::= cond_entry;

cond_entry =>
 failure_statements : seq of STMT,
 success_statements : seq of STMT;

-- 9.7.3 timed entry calls

ENTRY_STMT ::= timed_entry;
timed_entry =>
 failure_statements : seq of STMT,
 success_statements : seq of STMT;

-- 9.10 abort statements

STMT ::= abort;
abort =>
 tasks : seq of REFERENCE;

-- 10 program structure and compilation issues

-- 10.1 compilation units - library units

UNITDECL ::= GENERIC_INSTANTIATION ACTUAL_SPEC ACTUAL_BODY;

ACTUAL_SPEC ::= func_spec | func_instantiation |
 generic_func_spec |
 generic_pkg_spec |
 generic_proc_spec |
 pkg_spec |
 pkg_instantiation |
 pkg_spec |
 proc_spec |
 proc_instantiation |
task_spec;

ACTUAL_BODY ::= func_bdy |
func_instantiation_bdy |
generic_func_bdy |
generic_pkg_bdy |
generic_proc_bdy |
 pkg_bdy |
 pkg_instantiation_bdy |
 proc_bdy |
 proc_instantiation_bdy |
task_bdy;

CONTEXT_ELEM ::= with_elem;
-- CONTEXT_ELEM ::= use_elem;

with_elem =>
 items : seq of Symbol;

-- 10.2 subunits of compilation units

SINGLEDESIGNATORITEM ::= stub;

stub =>
 designator : Symbol,
 referencer : direct_ref,
 spec : DIRECT_REF_OR_EMPTY,
 subunit : DIRECT_REF_OR_EMPTY;

SINGLEDESIGNATORITEM ::= subunit;

subunit =>
 body : DIRECT_REF_OR_EMPTY,
 designator : Symbol,
 referencer : direct_ref,
 spec : DIRECT_REF_OR_EMPTY,
 stub : DIRECT_REF_OR_EMPTY;

-- 11 exceptions

-- 11.1 exception declarations

MULTIPLEDESIGNATORSTITEM ::= exception_decl;

exception_decl =>
 designators : seq of Symbol,
 referencers : seq of named_ref;
-- 11.2 exception handlers

-- 11.3 raise statements

STMT ::= raise_stmt;
raise_stmt =>
 exception : named_ref;

-- 12 generic program units

GENERIC_UNIT ::= generic_func_spec | generic_proc_spec |
 generic_func_bdy | generic_proc_bdy |
 generic_pkg_spec;

GENERIC_PARAMETER ::= generic_type_param |
 in_formal | inout_formal |
 GENERIC_SUBPROGRAM_PARAM;

SINGLE DESIGNATOR_ITEM ::= generic_type_param;

generic_type_param =>
 designator : Symbol,
 info : GENERIC_TYPE_INFO,
 referencer : direct_ref;

GENERIC_TYPE_INFO ::= generic_discrete_info | generic_integer_info |
 generic_float_info | generic_fixed_info |
 TYPE_INFO;

generic_discrete_info => ;
generic_integer_info => ;
generic_float_info => ;
generic_fixed_info => ;

GENERIC_SUBPROGRAM_PARAM ::= generic_func_param | generic_proc_param;

generic_func_param =>
 default_subprogram : SYMBOL_BOX_SUBPROGRAM_OR_EMPTY,
 designator : Symbol,
 parameters : seq of FORMAL,
 referencer : direct_ref,
 return_type : direct_ref;
generic_proc_param =>
default_subprogram : SYMBOL_BOX_SUBPROGRAM_OR_EMPTY,
designator : Symbol,
parameters : seq of FORMAL,
referencer : direct_ref;

SYMBOL_BOX_SUBPROGRAM_OR_EMPTY ::= box_subprogram | Empty | Symbol;

box_subprogram => ;

SINGLE DESIGNATOR ITEM ::= generic_func_spec;

generic_func_spec =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
designator : Symbol,
g_params : seq of GENERIC_PARAMETER,
params : seq of FORMAL,
referencer : direct_ref,
return_type : direct_ref;

SINGLE DESIGNATOR ITEM ::= generic_pkg_spec;

generic_pkg_spec =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
g_params : seq of GENERIC_PARAMETER,
priv_declarations : seq of DECL,
referencer : direct_ref;

SINGLE DESIGNATOR ITEM ::= generic_func_bdy;

generic_func_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_parameters : seq of GENERIC_PARAMETER,
parameters : seq of FORMAL,
referencer : direct_ref,
return_type : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

SINGLE_DESIGNATOR_ITEM ::= generic_proc_bdy;

generic_proc_bdy =>
 context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_parameters : seq of GENERIC_PARAMETER,
parameters : seq of FORMAL,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

SINGLE_DESIGNATOR_ITEM ::= generic_pkg_bdy;

generic_pkg_bdy =>
 context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

-- 12.3 generic instantiation

GENERIC_ACTUAL_PARAMETER := EXP; -- for now

SINGLE_DESIGNATOR_ITEM ::= func_instantiation;
GENERIC_INSTANTIATION ::= func_instantiation;

func_instantiation =>
 body : DIRECT_REF_OR_EMPTY,
 context : seq of CONTEXT_ELEM,
designator : Symbol,
SINGLE DESIGNATOR_ITEM ::= proc_instantiation;
GENERIC_INSTANTIATION ::= proc_instantiation;

proc_instantiation =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
designator : Symbol,
g_actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
parameters : seq of FORMAL,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY;

SINGLE DESIGNATOR_ITEM ::= pkg_instantiation;
GENERIC_INSTANTIATION ::= pkg_instantiation;

pkg_instantiation =>
body : DIRECT_REF_OR_EMPTY,
context : seq of CONTEXT_ELEM,
designator : Symbol,
g_actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
parameters : seq of FORMAL,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY;

SINGLE DESIGNATOR_ITEM ::= func_instantiation_bdy;
GENERIC_INSTANTIATION ::= func_instantiation_bdy;
func_instantiation_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

SINGLE DESIGNATOR_ITEM ::= proc_instantiation_bdy;
GENERIC_INSTANTIATION ::= proc_instantiation_bdy;
proc_instantiation_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

SINGLE_DESIGNATOR_ITEM ::= pkg_instantiation_bdy;
GENERIC_INSTANTIATION ::= pkg_instantiation_bdy;

pkg_instantiation_bdy =>
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator : Symbol,
exception_handler : seq of altern,
g_actuals : seq of GENERIC_ACTUAL_PARAMETER,
instance_of : REFERENCE,
referencer : direct_ref,
spec : DIRECT_REF_OR_EMPTY,
statements : seq of STMT;

-- 13 representation clauses and implementation dependent features

-- 13.1 representation clauses

REP ::= record_rep | EXP_REP;

type_attribute =>
designator : Symbol,
representations : seq of REP,
type : direct_ref;

(ADL EXP_REP => exp EXP)

(ADL EXP_REP := address_rep length_clause enumeration_rep)-- 13.3

-- 13.2 length clauses

EXP_REP ::= length_clause;
length_clause =>
exp : EXP, -- exp is a simple expression
target : REFERENCE_OR_TYPE_ATTRIBUTE;

-- 13.3 enumeration representation clauses

EXP_REP ::= enumeration_rep;
enumeration_rep =
 exp : EXP, -- exp is an aggregate
target : REFERENCE_OR_TYPE_ATTRIBUTE;

-- 13.4 record representation clauses

ALIGNMENT_OR_EMPTY ::= alignment | Empty;
alignment =
 atmod : EXP_OR_EMPTY,
 pragmas : seq of pragma;

REP ::= record_rep;
record_rep =
 alignment : ALIGNMENT_OR_EMPTY,
 component_reps : seq of COMPONENT_REP_ELEMENT,
target : REFERENCE_OR_TYPE_ATTRIBUTE;

COMPONENT_REP_ELEMENT ::= component_rep | pragma;

component_rep =
 at_exp : EXP,
 designator : Symbol,
 range : RANGE;

-- 13.5 address clauses

EXP_REP ::= address_rep;
address_rep =
 exp : EXP,
target : REFERENCE_OR_TYPE_ATTRIBUTE;

REFERENCE_OR_TYPE_ATTRIBUTE ::= REFERENCE | type_attribute;

type_attribute =
 designator : Symbol,
 representations : seq of REP,
 type : direct_ref;

-- 13.8 machine code insertions

machine_code =

exp : EXP,
type : REFERENCE;

-- 14 input-output

-- X.1 Constraints

CONSTRAINT ::= RANGECONSTRAINT | array_constraint | Empty;
RANGE_CONSTRAINT ::= EXP | RANGE;

array_constraint =>
element_constraints : seq of CONSTRAINT,
range_constraints : seq of RANGE;

-- X.1 References

REFERENCE ::= direct_ref named_ref indexed_ref
component_ref objectref pointerderef)

REFERENCE ::= direct_ref;
direct_ref =>
representations : seq of REP,
target : DECL_OR_STMT; -- points to single decls

DECL_OR_STMT ::= DECL | STMT;
REFERENCE ::= object_ref;
object_ref =>
representations : seq of REP,
target : EXP;

REFERENCE ::= named_ref;
named_ref =>
designator : Symbol,
representations : seq of REP,
target : REFERENCE;

REFERENCE ::= pointer_deref;
pointer_deref => -- the "all" construct
representations : seq of REP,
target : REFERENCE;
EXP_OR_ASSOCIATION ::= association;
ACTUAL_COMPONENT ::= association;
association =>
 names : seq of EXP,
 value : EXP;

GENERAL_DISCRETE_RANGE ::= constrained_reference;
SUBTYPE_INDICATION ::= constrained_reference;

constrained_reference =>
 constraint : CONSTRAINT,
 target : REFERENCE;

unconstrained =>
 base_type : SUBTYPE_INDICATION;

end module;
Appendix D

Introduction to ENCORE Symbol Table
Introduction to the ENCORE Symbol Table

1. The Purpose of the ENCORE Symbol Table

The purpose of the ENCORE Symbol Table is to allow the various tools in ENCORE to access definitions in Ada programs within the context of particular scopes.

Some goals in the symbol table design were:
1. The symbol table should be incrementally updatable. One should be able to add, remove, or replace symbol table entries at any time, not just when the program is being read in initially.
2. From any point in any scope of the program, the symbol table should appear logically the same as if one were processing the Ada code at that point in the program.
3. Any tool that works on the IRep should be able to access the symbol table.
4. More than one tool should be able to access the symbol table simultaneously, even within multiple scopes.

1.1 Basic Definitions

Symbol tables are used to store information that can be referenced from more than one point in a program. Each item of information in a symbol table consists of two parts, a ‘key,’ which gives a name to the item, and a ‘value,’ which gives the actual information. Adding the item with key ‘k’ and value ‘v’ to a symbol table is called storing the value ‘v’ under the key ‘k.’

Some of symbol table terminology has been used with slightly different meanings in the current literature. This report will adopt the following meanings for the common symbol table terms.
1. The phrase ‘the symbol table’ means the entire symbol table structure associated with a particular Ada program.
2. The non-specific term ‘symbol table’ will denote a table of key/value pairs. The keys will correspond to identifiers or characters in Ada, while the values will correspond to definitions in Ada. For flexibility in modifying Ada programs, the values will be references (nodes of type k_DIRECT_REF or k_NAMED_REF) rather than actual definitions.
3. The term ‘scope’ will mean a symbol table associated with a segment of a particular Ada program unit. Thus, a scope could hold information about a specification, a private part, or a body.
4. A ‘search’ is an object that is used for accessing symbol tables. A search object includes all the local and nesting information necessary for searching through the symbol table for an Ada program.
5. The ‘base table’ of a search object indicates the scope in which searching will start.
6. Since there can be several entries with the same key in the symbol table for an Ada program, it is necessary to keep track of which entries have been found and which are left to search. The 'search cursor' keeps track of this information.

7. One is said to be 'in' a particular scope if the base table of the search object corresponds to that particular scope.

1.2 A Simplified View of the Symbol Table

The various symbol table packages offer the programmer a great deal of power and flexibility; however, most programmers of ENCORE tools will only be interested in a relatively small set of operations. These include:

- determining the current scope,
- creating a new scope within a given scope,
- entering a previously created scope,
- leaving a given scope (returning to the parent scope),
- entering the scope associated with a given declaration,
- retrieving the local entry (or entries) associated with a given key in a given scope, and
- retrieving the entry (or entries) associated with a given key, visible in the given scope (i.e., those entries that are either in the local scope, in any of the parent scopes, or made visible via 'with' or 'use' clauses).
- adding an entry to a given scope,
- removing an entry from a given scope,
- replacing an entry in a given scope with another entry,

These operations are provided in the package Parser_Symbol_Table. The next sections discuss them in more detail.

1.3 Determining the Current Scope

The routine

 function Current_Scope return Symbol_Table;

returns the current table under consideration.

1.4 Creating a New Scope

To create a new scope, the programmer invokes the following routine:

 procedure New_Scope(name);
where ‘name’ is the name of the Ada program unit with which the new scope is to be associated. This procedure creates a symbol table with the given name and assigns the current scope as the parent table of the new table. It then enters the newly created scope. For example, suppose procedure P contains a subprocedure P1. Suppose one is currently in the scope of P. In order to create the symbol table for P1, one would call New_Scope with the designator of P1 as the parameter. This would create a symbol table for P1, the would place the search cursor in the scope of this new table.

1.5 Changing the Current Scope

In addition to the New_Scope routine, there are three routines for entering a previously defined scope. These are

```ada
procedure Enter_Scope(k);
procedure Leave_Scope;
procedure Enter_Associated_Scope(n);
```

The procedure Enter_Scope is used for entering a previously defined subscope of the current scope. In this procedure ‘k’ is the name of the scope being entered. This routine simply enters the given scope.

The procedure Leave_Scope simply enters the parent scope of the current scope; thus, a call to Enter_Scope, followed by a call to Leave_Scope, will result in the current scope being the original scope.

The procedure Enter_Associated_Scope is used for entering the scope associated with a given Ada program unit. The parameter ‘n’ is not a symbol key but, rather, an AdaTran node that corresponds to a particular Ada program unit. The function Enter_Associated_Scope allows the user to go directly to a given scope, without having to go up and down a tree of nested scopes. One example where this is important is searching through the ‘used’ units of a given scope.

For example, suppose one wishes to enter the scope of a particular compilation unit. The parameter ‘n’ corresponds to the unit with which the scope is associated.

1.6 Retrieving Symbol Table Entries

Logically, retrieval of symbol table entries should follow the visibility rules of Ada. This means that the retrieval process generally should first search through the local scope, then the parent scopes (in order), the through the ‘with’-ed units, then through the scopes of the ‘used’-units. Furthermore, there are times when a tool may wish to look just at entries in the local segment of the current unit (for example just in the ‘body’, the ‘private’ part, or the ‘specification’). At other times a given tool may be interested in searching through all parts of the current scope but not in searching through any of the parent scopes.
In Ada there can be more than one declaration with a given key visible at a given point in the program. This is the case, for example, with overloaded subprograms. In order to deal with multiple visible declarations with the same name, we have introduced the notion of a ‘search cursor’ that keeps track of the current position in a particular search through a symbol table. Most of the retrieval routines will have both a ‘First_’ and a ‘Next_’ version. The function whose name starts with ‘First_’ will find the first definition corresponding to a given key, starting with the given table. The function whose name starts with ‘Next_’ will find the first definitions corresponding to the given key, past the cursor position of the last retrieval.

One final note. The functions for retrieving entries all use the parameter ‘k,’ which represents the search key. The type of ‘k’ has not been specified. This is because these functions are all overloaded with respect to ‘k,’ with ‘k’ being an AdaTran_Node in the one case and ‘k’ being a Symbol in the other case. In the case where ‘k’ is an AdaTran_Node, ‘k’ must be of type k_Symbol or k_Character. This is to allow enumeration literals, some of which can be characters, to be entered in the symbol table. Since most keys will be symbols, and since many tools will deal exclusively with keys that are symbols, it is useful to overload the retrieval functions to allow symbols themselves, rather than just symbol nodes, as keys.

1.7 The General Search Process

The general search process is to search for all visible definitions corresponding to a given key. This facility is provided by the functions

function Get_First_Entry(k) return AdaTran_Node;
function Get_Next_Entry(k) return AdaTran_Node;

The function Get_First_Entry finds the first entry with key ‘k’ visible in the current scope, while Get_Next_Entry finds the first visible entry with the given key past the current search cursor position. The functions Get_First_Entry and Get_Next_Entry will both search through all definitions visible from the given table, whether in the local scope, parent scopes, ‘with’-ed units, or ‘used’-units.

1.8 The Local Search Process

To search locally in a given scope segment, such as a specification, a body, or a private part, one uses the functions:

function Get_First_Local_Entry(k) return AdaTran_Node.
function Get_Next_Local_Entry(k) return AdaTran_Node.

These work similarly to Get_First_Entry and Get_Next_Entry, except that the search never goes beyond the current segment.
1.9 The Unit Search Process

There are times when the user wishes to limit searching to the various segments of an Ada unit. For example, one might begin a search in the body of a package and be only interested in those definitions that occur in the body, private part, and specification. This facility is provided by the functions

function Get_First_Unit_Entry(k) return AdaTran_Node;
function Get_Next_Unit_Entry(k) return AdaTran_Node;

1.10 Modifying a Symbol Table

The basic routines for modifying a symbol table are

procedure Add_Entry(k, value);
procedure Remove_Entry(k, value);
procedure Replace_Entry(k, old_node, new_node);

These three routines only affect the current scope.

The procedure Add_Entry simply adds the entry whose key is given by the parameter ‘k’ and whose value is given by the parameter ‘value’ to the current scope. The procedure Remove_Entry deletes the entry with key ‘k’ and value ‘value’ from the current scope. Finally, the procedure Replace_Entry substitutes the value given by ‘new_node’ for that given by ‘old_node,’ under the key given by ‘k.’

2. The Underlying Symbol Table Mechanism

A complete discussion of the symbol table mechanism, in all its generality, is beyond the scope of this report. This section merely points out some of the novel features of the symbol table mechanism.

2.1 The Building Blocks for the Symbol Table Mechanism

The following Ada packages make up the symbol table mechanism:

 Associations
 Low_Level_Symbol_Table_Definitions
 Symbol_Table_Functions
 Search_Functions

2.2 The Low Level Packages.

The packages Associations and Low_Level_Symbol_Table_Definitions provide the basic definitions used by all the other symbol table packages. In particular, they provide the definitions for the data types ‘Symbol_Table’ and ‘Search,’ which are basic to all the other packages.
2.3 The Package ‘Symbol_Table_Functions’

The package Symbol_Table_Functions provides facilities for

- creating new symbol tables,
- associating symbol tables with program units,
- associating symbol tables with their parent and descendant tables, and
- associating symbol tables with their corresponding ‘with’ and ‘use’ clauses.

2.4 The Package ‘Search_Functions’

The package Search_Functions forms the heart of the symbol table mechanism. It provides the mechanism for setting up and manipulating a search, on the symbol table for a given Ada program. This includes facilities for

- creating new searches,
- setting the base (or starting) table for a search,
- setting the mode (LOCAL, GLOBAL, etc.) of a search,
- handling the nesting mechanism for a search,
- setting the search key for a search,

- retrieving symbol table entries associated with a given search,
- adding, removing, and replacing entries in the base table of a given search,

Note that the word ‘search’ in this context refers to the actual Ada data type ‘search,’ which is a type of data object set up to support multiple searches through the symbol table of an Ada program.

One final remark. Most tool builders will not use the packages Symbol_Table_Functions and Search_Functions directly. Instead, they will use these packages via a simplified interface, such as that provided by the package Parser_Symbol_Table.
Appendix E

MODEL/ESL Internal Representation
TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. DATA STRUCTURE OF STATEMENT AND
 EXPRESSION NODE IN THE PROGRAM TREE 1

 2.1. DATA STRUCTURE OF THE PROGRAM TREE
 STATEMENT NODES .. 1

 2.1.1. LANGUAGE .. 3

 2.1.2. STATEMENT TYPE 3

 2.1.3. AUXILIARY .. 3

 2.1.4. ENCODE1 AND ENCODE2 4

 2.1.5. STRUCTURE POINTERS 5

 2.1.6. LABEL_POINTER 5

 2.1.7. EXPRESSION POINTERS 5

 2.2. DATA STRUCTURE OF EXPRESSION NODES 6

 2.2.1. EXPRESSION TYPE 7

 2.2.2. POINTERS TO BROTHER EXPRESSION 7

 2.2.3. NUMBER OF DESCENDANTS 7

 2.2.4. POINTERS TO DESCENDANTS 8

 2.2.5. NUMBER OF CHARACTERS IN STRING 8

 2.2.6. STRING ... 8

3. EXECUTABLE STATEMENTS ... 9

 3.1. CONDITIONAL BLOCK 10

 3.2. LOOP BLOCK .. 11

 3.3. ASSIGNMENT STATEMENT 12

 3.4. PROCEDURE CALL ... 12

 3.5. MESSAGE STATEMENTS 13

 3.6. INPUT/OUTPUT ... 13

 3.7. INPUT/OUTPUT AUXILIARY STATEMENT 13

 3.8. CONTEXT STATEMENTS 13

 3.9. CONTROL TRANSFER 14

4. DECLARATION STATEMENTS ... 16

 4.1. PROGRAM TYPE .. 17

 4.2. STRUCTURE TYPE ... 17

 4.3. VARIABLE TYPE .. 18

 4.4. PROGRAM UNIT .. 18

 4.5. STRUCTURE DECLARATION 20

 4.6. VARIABLE .. 21

 4.7. FILE .. 21

 4.8. COMMENT DECLARATION 21

5. EXPRESSION NODES .. 22

 5.1. TYPES OF EXPRESSION NODES 22

 5.2. FIELDS IN EACH EXPRESSION NODE 23

 5.3. TREE CONSTRUCTION EXAMPLES 31

APPENDIX: ESL STATEMENT CODE 39
1. **INTRODUCTION**

This memo describes the program tree for storing Elementary Statement Language (ESL) programs in a tree structure in memory. Block statements are nodes that have branches which fan–out to their constituent statements. Terminal statement form the leaves of the tree. Each statement is also the root of a subtree of expression nodes that contain the arguments of the statement. This memo consists of four sections. Section 2 discusses the statement and expression node structures. Section 3 describes the structure for storing executable statements. Section 4 describes the node structure for storing ESL declaration statements. Section 5 discusses the expression nodes structure. The ESL tree is used as an intermediary in translation of source real–time programming languages into Ada. A source language program is translated first to ESL. ESL has semantics similar to those of Ada. However, the ESL tree is reorganized and modified prior to translation to Ada.

2. **DATA STRUCTURE OF STATEMENT AND EXPRESSION NODE IN THE PROGRAM TREE**

2.1. **DATA STRUCTURE OF THE PROGRAM TREE STATEMENT NODES**

This subsection describes the node structure of statements. The statement node structure is shown below in MODEL, C, and Ada in a structure of type node.
typedef int stat_kind;
typedef char languages;

struct _Node {
 languages language;
 stat_kind stat_type;
 char stat_num[8]; /* Statement sequence number in the program */
 /* It takes 8 character positions */
 struct _Ainode *aux; /* attribute node for future use */
 char encode1, encode2; /* encode1 encodes the 5 structure pointers */
 /* encode2 encodes the 3 expression pointers */
 struct _Node *father; /* the father statement */
 struct _Node *pbrother; /* the previous sibling statement */
 struct _Node *nbrother; /* the next sibling statement */
 struct _Node *sSon; /* the first statement of the */
 /* block if the current node represents a */
 /* compound statement. If it is an */
 /* 'if-then-else', it points to the first */
 /* statement of the 'then' block. */
 struct _Node *eSon; /* the first statement of the */
 /* 'else' block if it is an 'if-then-else'*/
 /* statement and if there is an 'else' */
 /* block, 'NULL' otherwise. */
 struct _Expwode *label_pointer;
 struct _Expwode *ex0, *ex1, *ex2;
};

TYPE NODE IS RECORD
 LANGUAGE: CHARACTER;
 STAT_TYPE: INTEGER;
 STAT_NUM: INTEGER;
 AUX: AUNIXOIDFTR;
 ENCODE1: CHARACTER;
 ENCODE2: CHARACTER;
 FATHER: NODEPTR;
 PBROTHEF: NODEPTR;
 Nbrother: NODEPTR;
 T_Son: NODEPTR;
 E_Son: NODEPTR;
 LABEL_POINTER: EXPNODEPTR;
 EX0: EXPNODEPTR;
 EX1: EXPNODEPTR;
 EX2: EXPNODEPTR;
END RECORD;

Prepared Under Contract No. N60921-90-C-0298
This structure is graphically described as follows:

```
language
stmt_type
stmt_num
aux
encode1
encode2
5 structure pointers
label pointer
3 expression pointers
```

Three expression pointers ex0, ex1, and ex2 are used to store statement arguments in expression nodes. The fields of the statement structure are as follows:

2.1.1. LANGUAGE

This field is reserved for temporary and future use to denote the translation from a source language to a version of ESL. It indicates the need to reorder the programs and to use procedures that correspond to source program special functions and operating system calls. This must be done in the translation from ESL to Ada.

2.1.2. STATEMENT TYPE

Statement types are discussed in Section 3 for executable statements and in Section 4 for declaration statements. The statement type are represented in this memo by symbolic names. The statement types are listed in the tables in Section 3 and 4. The corresponding identification number of each statement type is given in Appendix I.

2.1.3. AUXILIARY

This field is reserved for temporary use in the processing of an ESL tree.
2.1.4. ENCODE1 AND ENCODE2

Encode1 and Encode2 are represented each by one character. Encode1 encodes the presence/absence of 4 structure pointers:

\[
\begin{align*}
\text{pbrother} \\
\text{nbrother} \\
\text{t_son} \\
\text{e_son}
\end{align*}
\]

The presence/absence of each pointer above is a binary number in this order. The presence/absence of the above four pointers is encoded by one of the following 16 characters:

\[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\]

Since every statement (except the root) has a father pointer, the presence of the father pointer is not encoded.

For instance, encode1 = '7', corresponds to the binary number

\[0111\]

from the encoding rule, we find

\[
\begin{align*}
\text{pbrother} &= \text{null} \\
\text{nbrother} &= \text{null} \\
\text{t_son} &= \text{null} \\
\text{e_son} &= \text{null}
\end{align*}
\]

Similarly, the character encode2 encodes use of four expression pointers:

\[
\begin{align*}
\text{label_pointer} \\
\text{ex0} \\
\text{ex1} \\
\text{ex2}
\end{align*}
\]

as one of the 16 characters:

\[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\]

Encode1 and Encode2 are also used to unload the program tree to a disk file in depth first left to right order and to load back the disk file to memory and rebuild the tree.
2.1.5. STRUCTURE POINTERS

A statement is graphically portrayed as having five pointers to its neighbors, if any.

![Diagram showing a statement with five pointers: father, pbrother, nbrother, t_son, e_son.]

2.1.6. LABEL POINTER

This field contains the pointer to a label expression, if any. Its presence is included in encode2.

2.1.7. EXPRESSION POINTERS

There may be as many as three main expressions representing the arguments of each statement. The existence of such expressions is coded in encode2. Each expression may consist of further subexpressions, as discussed further.
2.2. DATA STRUCTURE OF EXPRESSION NODES

An expressions node has a structure of type expnode. Following is the definition of the structure in MODEL, C, and Ada:

```c
typedef int exp_kind;               /* PIC '999' */

struct _Expnode{
    exp_kind exp_type;       /* Numeric code of the expression */
                            int nb;            /* It is 0 if nbrother is NULL, 1 otherwise */
                            struct _Expnode *nbrother;    /* Pointer to next brother */
                            int no_of_desc;     /* Number of sons of current node */
                            struct _Expnode *point[3];   /* Pointers to sons of this node */
                            int no_of_char;      /* Length of str_value */

    char str_value[64];       /* Variable length string value, up to 4046 */
}

TYPE EXPNODE(LEN_STR_VALUE: integer:=0)
IS RECORD
    EXP_TYPE: INTEGER;
    NB: INTEGER;
    NBrother: EXPNODEPTR;
    NO_OF_DESC: INTEGER;
    POINT: EXP_VECTOR(1..3);
    NO_OF_CHAR: INTEGER;
    STR_VALUE: STRING(1..LEN_STR_VALUE);
END RECORD;

where

TYPE EXP_VECTOR IS ARRAY(POSITIVE RANGE <$>) OF EXPNODEPTR;
```
This structure is graphically described as follows:

<table>
<thead>
<tr>
<th>exp_type</th>
<th>nb</th>
<th>nbrother</th>
<th>no_of_desc</th>
<th>3_point</th>
<th>no_of_char</th>
<th>str_value</th>
</tr>
</thead>
</table>

Each field of the structure expnode is explained in the following.

2.2.1. EXPRESSION TYPE

The field exp_type is an integer which identifies the type of the expression. The expression types and respective numbers are given in Section 5.

2.2.2. POINTERS TO BROTHER EXPRESSION

The field nb records the presence (nb=1) / absence (nb=1) of next expression nbrother. This enables creating a sequence of expressions. For instance, a function definition may have several formal parameters.

```
stmt_type = FCN_SPEC
ex0 -> function_name
ex1 -> parameters p1, p2, p3
ex2 -> data type of return value
```

The structure of such a statement is:

```
        ex1
       /|
      / |
    p1  p2  p3
```

2.2.3. NUMBER OF DESCENDANTS

The field no_of_desc records the number of sons of the current node. When the node is a terminal node, it has zero descendants.
2.2.4. **POINTERS TO DESCENDANTS**

The field point is an array of pointers to son expression nodes. It is a three element array.

2.2.5. **NUMBER OF CHARACTERS IN STRING**

The string str_value has a variable length. The length (number of characters) of the str_value field is recorded in this field. A value of 0 in this field indicates that the str_value field of the expression node is not used.

2.2.6. **STRING**

This field str_value of the USAGE_EXPR (see Section 5 for expression types) is used to store the function of some expressions as follows.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMENT @C</td>
<td>an inline comment.</td>
</tr>
<tr>
<td>DELTA @D</td>
<td>precision of a fixed type.</td>
</tr>
<tr>
<td>ENUMER @E</td>
<td>a list of enumerated data types.</td>
</tr>
<tr>
<td>INITIAL @I</td>
<td>initial value.</td>
</tr>
<tr>
<td>LAYOUT @Y</td>
<td>bit range of component.</td>
</tr>
<tr>
<td>LENGTH @L</td>
<td>the length of a record in terms of bits.</td>
</tr>
<tr>
<td>NEW @N</td>
<td>new instantiation of type or generic name.</td>
</tr>
<tr>
<td>PACKING @P</td>
<td>word and byte information for a variable packing clause.</td>
</tr>
<tr>
<td>RANGE @R</td>
<td>range of a scalar type.</td>
</tr>
</tbody>
</table>
3. EXECUTABLE STATEMENTS

The executable statements in ESL are listed in the following table.

<table>
<thead>
<tr>
<th>STATEMENT TYPE</th>
<th>STATEMENT SUBTYPE</th>
<th>STMT_TYPE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Condition</td>
<td>if-then-else</td>
<td>IF_STAT</td>
</tr>
<tr>
<td>Block</td>
<td>case</td>
<td>CASE_STAT</td>
</tr>
<tr>
<td></td>
<td>when</td>
<td>WHEN_STAT</td>
</tr>
<tr>
<td>2. Loop</td>
<td>while</td>
<td>WHILE_STAT</td>
</tr>
<tr>
<td>Block</td>
<td>until</td>
<td>UNTIL_STAT</td>
</tr>
<tr>
<td></td>
<td>for</td>
<td>FOR_STAT</td>
</tr>
<tr>
<td>3. Assignment</td>
<td>assignment</td>
<td>ASSIGN_STAT</td>
</tr>
<tr>
<td>Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Procedure Call</td>
<td>call</td>
<td>CALL_STAT</td>
</tr>
<tr>
<td>Terminal</td>
<td>raise</td>
<td>RAISE_STAT</td>
</tr>
<tr>
<td></td>
<td>exception</td>
<td></td>
</tr>
<tr>
<td>5. Message</td>
<td>send/receive</td>
<td>MSG_CALL</td>
</tr>
<tr>
<td>Terminal</td>
<td>message</td>
<td>MSG_ACCEPT</td>
</tr>
<tr>
<td></td>
<td>accept message</td>
<td></td>
</tr>
<tr>
<td>6. Input/Output</td>
<td>read</td>
<td>READ_STAT</td>
</tr>
<tr>
<td>Terminal</td>
<td>write</td>
<td>WRITE_STAT</td>
</tr>
<tr>
<td>7. I/O Auxiliary</td>
<td>open</td>
<td>OPEN_FILE</td>
</tr>
<tr>
<td>Terminal</td>
<td>close</td>
<td>CLOSE_FILE</td>
</tr>
<tr>
<td></td>
<td>position</td>
<td>POSITION_FILE</td>
</tr>
<tr>
<td>8. Context</td>
<td>with</td>
<td>WITH_STAT</td>
</tr>
<tr>
<td>Terminal</td>
<td>use</td>
<td>USE_STAT</td>
</tr>
<tr>
<td></td>
<td>program_separate</td>
<td>PACK_SEP</td>
</tr>
<tr>
<td></td>
<td>separate</td>
<td>PROC_SEP</td>
</tr>
<tr>
<td></td>
<td>pragma</td>
<td>FCN_SEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TASK_SEP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEPARATE_STAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRAGMA</td>
</tr>
<tr>
<td>9. Control Transfer</td>
<td>return</td>
<td>RETURN_STAT</td>
</tr>
<tr>
<td>Terminal</td>
<td>go-to*</td>
<td>GOTO</td>
</tr>
<tr>
<td></td>
<td>exit*</td>
<td>EXIT</td>
</tr>
<tr>
<td></td>
<td>null*</td>
<td>NULL</td>
</tr>
</tbody>
</table>

* Statements eliminated in later processing of ESL.

The expressions used with each statement type are discussed below.
3.1. CONDITIONAL BLOCK

A conditional block can be of types IF_STAT, CASE_STAT and WHEN_STAT.

IF_STAT statements represents:

\[
\text{IF} \ <\text{condition}> \ \text{THEN} \ <\text{statements1}>; \\
\quad \text{(ELSE} \ <\text{statements2}>)
\]

<condition> is a Boolean expression. The ESL statement format is:

\[
\text{stmt}_\text{type} = \text{IF}_\text{STAT}; \\
\text{ex0} \rightarrow <\text{condition}>; \\
\text{t}_\text{mon} \rightarrow <\text{statements1}>; \\
\text{e}_\text{mon} \rightarrow <\text{statements2}> , \text{if any};
\]

A CASE_STAT statement represents choice of one of several blocks \(<\text{statements1}>,..., <\text{statementsn}>\) according to the values \(\text{value1},... ,\text{value n}\). The CASE statement contains blocks of WHEN and ELSE statements. Each of these blocks contains the respective \(<\text{statementsi}>\):

The format of the CASE statement is:

\[
\text{stmt}_\text{type} = \text{CASE}_\text{STAT}; \\
\text{ex0} \rightarrow <\text{expression}>; \\
\text{t}_\text{mon} \rightarrow <\text{first WHEN statement}> \\
\text{e}_\text{mon} \rightarrow <\text{first statement under the ELSE statement, if any}>
\]

The format of the WHEN statement is:

\[
\text{stmt}_\text{type} = \text{WHEN}_\text{STAT} \\
\text{ex0} \rightarrow <\text{valuei}>; \\
\text{t}_\text{mon} \rightarrow \text{first of statementsi};
\]

The CASE statement tree representation is illustrated below.
3.2. LOOP BLOCK

The loop statement has three forms: WHILE_STAT, UNTIL_STAT, and FOR_STAT.

A WHILE_STAT statement represents:

```
WHILE <condition>
```

It is followed by descendants forming the loop body.

```
<condition> is a boolean expression.
```

The ESL format is:
```
stmt_type = WHILE_STAT;
ex0 -> <condition>;
t_son -> first statement in loop body;
```

An UNTIL_STAT statement represents:
```
DO UNTIL <condition>;
```

The ESL format is:
```
stmt_type = UNTIL_STAT;
ex0 -> <condition>;
t_son -> first statement in loop body;
```
A FOR_STAT statement represents:

```
FOR <loop variable> = FROM <initial value> THRU <final value>
   [BY <step length>]
```

Its ESL format is:

```
stmt_type = FOR_STAT;
ex0 -> <loop variable>;
ex1 -> <initial value>, <final value>, <step length>;
t_son -> first statement in loop body;
```

3.3. ASSIGNMENT STATEMENT

An assignment always has a left hand side variable and a right hand side expression. It has the ESL format:

```
stmt_type = ASSIGN_STAT;
ex0 -> the left hand side variable(s);
ex1 -> the right hand side expression;
```

3.4. PROCEDURE CALL

This statement represents regular as well as operating system calls. The source program may call the operating system to provide certain services. Operating system calls in a source language for input/output and task communication are represented by ESL statements in the Input/Output (Section 3.5) and Message (section 3.6) categories described below respectively. Other operating system calls are handled as this type of procedure call statement.

The ESL format for a procedure call is:

```
stmt_type = CALL_STAT;
ex0 -> name of the procedure;
ex1 -> list of parameters;
```

ex1 points to a list of parameter expressions. Each parameter expression consists of a parameter name.

Operating system calls in a source language program perform a variety of functions which may not have a direct equivalent in Ada. Their call name and parameters will be stored for later analysis. Operating system calls for task messages and I/O are discussed separately below.

The ESL format for a RAISE statement is:

```
stmt_type = RAISE_STAT
ex0 -> name of exception
example: RAISE_STAT (ERROR);
```
3.5. MESSAGE STATEMENTS

These statements are used to indicate communications between tasks. There are two statement types. MSG_CALL is used when the caller specifies the name of the other communicating task. MSG_ACCEPT is used when the communication may involve unknown other tasks. A communication must pair a MSG_CALL in one task with a MSG_ACCEPT in another task. Their ESL format is:

\[
\begin{align*}
\text{stmt_type} & \rightarrow \text{MSG_CALL} \\
\text{ex0} & \rightarrow \text{name of a procedure used to interpret a message send/receive operation of source program.} \\
\text{ex1} & \rightarrow \text{list of parameters with modes} \\
\text{ex2} & \rightarrow \text{a list of task and entry names} \\
\text{stmt_type} & \rightarrow \text{MSG_ACCEPT} \\
\text{ex0} & \rightarrow \text{name of a procedure used to interpret source program send/receive} \\
\text{ex1} & \rightarrow \text{list of parameters with modes} \\
\text{ex2} & \rightarrow \text{entry names}
\end{align*}
\]

3.6. INPUT/OUTPUT

Input/Output statements represent I/O activities in the source language or its operating system. The ESL format provides for storing the operating system call name and its arguments as follows:

\[
\begin{align*}
\text{stmt_type} & \rightarrow \text{READ_STAT (for input) or WRITE_STAT (for output)} \\
\text{ex0} & \rightarrow \text{name of a procedure that interprets the operation of the source language and operating system} \\
\text{ex1} & \rightarrow \text{list of parameters} \\
\text{ex2} & \rightarrow \text{file name, format}
\end{align*}
\]

3.7. INPUT/OUTPUT AUXILIARY STATEMENT

There are three input/output auxiliary statements: OPEN_FILE, CLOSE_FILE, and POSITION_FILE. They are stored as follows.

\[
\begin{align*}
\text{stmt_type} & \rightarrow \text{OPEN_FILE, CLOSE_FILE or POSITION_FILE} \\
\text{ex0} & \rightarrow \text{procedure name that interprets source program I/O auxiliary commands. Empty expression () if not applicable.} \\
\text{ex1} & \rightarrow \text{list of parameters} \\
\text{ex2} & \rightarrow \text{file name}
\end{align*}
\]

3.8 CONTEXT STATEMENTS

These statements indicate that definition of a program entity is dependent on other definitions or incomplete.

WITH_STAT and USE_STAT refer to other packages. The format is
statement type = WITH_STAT or USE_STAT;
ex0 -> package names for USE_STAT
 package and program unit name for WITH_STAT;

PACK_SEP, TASK_SEP, PROC_SEP and FCN_SEP are used to indicate that the body of
these program units (package, task, procedure or function, respectively) is provided elsewhere
and compilable separately in Ada. The format is:

statement type = PACK_STAT, TASK_SEP, PROC_SEP or FCN_SEP

There are no arguments. This is a terminal statement with the respective program unit
specification as the parent.

The SEPARATE_STAT statement is used to indicate that the body of a program unit
follows, where the specification is in another package. The format is

statement type = SEPARATE_STAT
ex0 = package name where unit specified

This is a terminal statement preceding the program unit body declaration.

The PRAGMA statement provides information used in the compilation. The format is:

statement type = PRAGMA
ex0 = pragma name
ex1 = list of attributes

3.9 CONTROL TRANSFER

A return statement returns the control from a called procedural or function to a calling
procedure or function. A return statement may include an expression for a returned value.

A return statement is stored as:

statement type = RETURN_STAT;
ex0 -> expression, if any;

The following three statements extend ESL: GOTO, EXIT, NULL. These statements can
have one or more labels. They are eliminated in later processing of ESL. Each of these
statements is stored in a node statement structure, as a terminal ESL statements.

A Goto statement has its usual meaning.

GOTO <label>

The format is:

statement type = GOTO_STAT;
ex0 -> <label>
ex1 -> procedure or function name; if <label> is not in the scope of the
 immediate enclosing procedure or function.
An EXIT statement nested in a loop transfers control to the statement following the end of a nesting loop. If an EXIT does not have a label, the control always transfers to the end of the immediate nesting loop. If an EXIT statement has a label, the control transfers to the end of the labelled loop. The labelled loop must nest the EXIT statement.

The format is

\[
\text{stmt_type \,= \, EXIT;} \\
\text{ex0 \,\rightarrow \, \langle label \rangle;}
\]

A NULL statement provides a holder for a statement label, as the destination of a GOTO statement. A NULL statement format is:

\[
\text{stmt_type \,= \, NULL;}
\]
4. DECLARATION STATEMENTS

The table below summarizes the ESL declaration statements.

<table>
<thead>
<tr>
<th>STATEMENT TYPE</th>
<th>STATEMENT SUB_TYPE</th>
<th>STATEMENT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Program Type:</td>
<td>task</td>
<td>TASK_TYPE</td>
</tr>
<tr>
<td>Block</td>
<td>generic program</td>
<td>PACK_GEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROC_GEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCN_GEN</td>
</tr>
<tr>
<td>2. Structure Type:</td>
<td>record type</td>
<td>RECORD_TYPE</td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Variable Type:</td>
<td>variable type</td>
<td>VARIABLE_TYPE</td>
</tr>
<tr>
<td>Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Program Unit:</td>
<td>system</td>
<td>SYSTEM</td>
</tr>
<tr>
<td>Block</td>
<td>program file</td>
<td>PROGRAM_FILE</td>
</tr>
<tr>
<td></td>
<td>package</td>
<td>PACK_SPEC</td>
</tr>
<tr>
<td></td>
<td>task</td>
<td>TASK_SPEC</td>
</tr>
<tr>
<td></td>
<td>procedure</td>
<td>PROC_SPEC</td>
</tr>
<tr>
<td></td>
<td>function</td>
<td>FCN_SPEC</td>
</tr>
<tr>
<td></td>
<td>program body</td>
<td>PACK_BODY</td>
</tr>
<tr>
<td></td>
<td>begin-end</td>
<td>PROC_BODY</td>
</tr>
<tr>
<td></td>
<td>exception</td>
<td>FCN_BODY</td>
</tr>
<tr>
<td></td>
<td>select</td>
<td>TASK_BODY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BEGIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXCEPTION_DCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXCEPTION_HNDLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SELECT</td>
</tr>
<tr>
<td>5. Structure of Variable:</td>
<td>record</td>
<td>RECORD</td>
</tr>
<tr>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Variable:</td>
<td>variable</td>
<td>VARIABLE</td>
</tr>
<tr>
<td>Terminal</td>
<td>constant</td>
<td>CONSTANT</td>
</tr>
<tr>
<td>7. File:</td>
<td>i/o file</td>
<td>IO_FILE</td>
</tr>
<tr>
<td>Terminal</td>
<td>i/o device</td>
<td>IO_DEVICE</td>
</tr>
<tr>
<td></td>
<td>task entry</td>
<td>TASK_ENTRY</td>
</tr>
<tr>
<td>8. Comment:</td>
<td>:</td>
<td>ORD_COMMENT</td>
</tr>
<tr>
<td></td>
<td>ordinary</td>
<td>PREP_COMMENT</td>
</tr>
<tr>
<td></td>
<td>preprocess</td>
<td>COMPCOMMENT</td>
</tr>
<tr>
<td></td>
<td>compiler</td>
<td>DEBUG_COMMENT</td>
</tr>
<tr>
<td></td>
<td>debugging</td>
<td></td>
</tr>
</tbody>
</table>

These types of statements are further described below.
4.1 PROGRAM TYPE

Task type is stored in the ESL program tree as follows:

```
stmt_type = TASK_TYPE
ex0 -> type name;
```

There are three generic statement types for package: PACK_GEN, for procedure: PROC_GEN and for function: FCN_GEN. They have the following points.

```
stmt_type = PACK_GEN, PROC_GEN or FCN_GEN
ex0 -> name
t_son -> first generic formal parameter
youngest sibling of t_son -> specification of generic program unit
```

This is illustrated in the figure below.

4.2 STRUCTURE TYPE

A record type declaration which has the following format:

```
stmt_type = RECORD_TYPE;
ex0 -> type name;
ex1 -> length
t_son -> first entity of the record;
```
4.3 VARIABLE TYPE

The variable type declaration is stored as:

```
stmt_type = VARIABLE_TYPE;
ex0 -> type name;
ex1 -> type definition, range, enumeration type values, initial value, length, packing and layout.
ex2 -> dimension ranges, if any;
```

4.4 PROGRAM UNIT

A program unit declaration is a block statement. It denotes begin-end, a system, a subsystem, a package, a task, a procedure or a function.

Begin_end has the following format:

```
stmt_type = BEGIN;
t_son -> first statement in the block;
```

A system or subsystem head is stored as:

```
stmt_type = SYSTEM;
ex0 -> system or subsystem name;
t_son -> first statement in a system;
```

A package or a task do not have parameters. Their format is:

```
stmt_type = PACK_SPEC or TASK_SPEC
ex0 -> name, [name of generic package being instantiated]
```

Their body block has a similar format:

```
stmt_type = PACK_BODY or TASK_BODY
ex0-> name
ex1 -> first statement
```

Note: there is no PACK_BODY of the package instantiate a generic package.

A function may have multiple IN mode parameters and returns a value. A procedure may have none or multiple IN, OUT and INOUT mode (including no value at all).

A function format is:

```
stmt_type = FCN_SPEC;
ex0 -> function name, [name of generic function being instantiated];
ex1 -> formal parameters; (or generic formal parameters if the function is an instance of a generic function);
ex2 -> type of return value;
```
A function body is stored similarly as:

\[
\begin{align*}
\text{stmt_type} & = \text{FCN_BODY}; \\
\text{ex0} & \rightarrow \text{function name}; \\
\text{ex1} & \rightarrow \text{input formal parameters, names and types} \\
\text{ex2} & \rightarrow \text{type of return value}; \\
\text{t_son} & \rightarrow \text{first statement}; \\
\end{align*}
\]

Note: there is no function body if it is an instantiation of a generic function.

A procedure is stored as:

\[
\begin{align*}
\text{stmt_type} & = \text{PROC_SPEC}; \\
\text{ex0} & \rightarrow \text{procedure name}; \\
\text{ex1} & \rightarrow \text{formal parameter name, mode, and type or generic formal parameters if the function is an instance of a generic function}; \\
\end{align*}
\]

The body of a procedure is:

\[
\begin{align*}
\text{stmt_type} & = \text{PROC_BODY}; \\
\text{ex0} & \rightarrow \text{procedure name}; \\
\text{ex1} & \rightarrow \text{formal parameter name, types, mode and default value}; \\
\text{t_son} & \rightarrow \text{first statement}; \\
\end{align*}
\]

Note: there is no procedure body if it is an instance of a generic procedure.

The storage of a parameter in a function or a procedure declaration is further explained below.

Each formal parameter may have a name, a mode, a data type, and a default value. These associated attributes are stored in expression data structure expnodes as follows:

\[
\begin{align*}
\text{ex1} & \rightarrow \text{expnode exp_type: FORMAL_PARA}; \\
\text{nb}_\text{rother} & : \text{points to next parameter}; \\
\text{no}_\text{of_desc} & : 3; \\
\text{point(1)}: & \text{points to a NAME expnode which contains the parameter mode}; \\
\text{That is, one of "IN", "OUT", or "INOUT"}; \\
\text{point(2)}: & \text{points to a NAME expnode, which contains the data type}; \\
\text{point(3)}: & \text{points to an expression expnode, which is the default value of the parameter}; \\
\text{no}_\text{of_char} & : \text{length of the parameter name}; \\
\text{str_value} & : \text{parameter name}; \\
\end{align*}
\]

The formats for EXCEPTION and SELECT are

\[
\begin{align*}
\text{stmt_type} & = \text{EXCEPTION} \\
\text{example: EXCEPTION}; \\
\text{(descendants are the WHEN <conditions>)} \\
\text{stmt_type} & = \text{SELECT} \\
\text{example: SELECT}
\end{align*}
\]
This is illustrated below:

4.5 STRUCTURE DECLARATION

A record declaration is of a single or an array of records. This declaration is stored in the program tree as:

```plaintext
stmt_type = RECORD;
ex0 -> record name;
ex1 -> type, length;
ex2 -> dimension ranges;
    (if ex2=null, it represents a single record);
t_son -> first field of the record;
```

The fields are stored as descendents of the record.
4.6 VARIABLE

There are two declarations in this category: variable and constant declarations. They are stored in the program tree as follows.

variable:
stmt_type = VARIABLE;
ex0 -> variable name;
ex1 -> type, range, initial value, packing, length;
ex2 -> dimension ranges;
 (if ex2=null, it represents a single variable);

constant:
stmt_type = CONSTANT;
ex0 -> constant name;
ex1 -> type, value, packing, length;
ex2 -> dimension ranges;
 (if ex2=null, it represents a single constant);

4.7 FILE

A file declaration of a file is stored as:
stmt_type = IO_FILE, IO_DEVICE;
ex0 -> file name;
ex1 -> list of parameters;
ex2 -> <$file type>
 <$file type> could be 'sequential', 'post', 'mail', 'isam', 'rel', 'screen', 'direct' or others used in the source language or operating system.

A task entry is declared as:
stmt_type = TASK_ENTRY
ex0 -> name
ex1 -> list of parameters, modes and types.

4.8 COMMENT DECLARATION

A comment may originate in a user comment, a keyword or comment in the source language program. Additionally, a source language keyword may be stored as a comment expression. It may affect the translation of a program from ESL to Ada.

There are four kinds of comments: ordinary user comment and source language preprocessor command, compiler command, or debugging command:

Their format is
stmt_type = ORD_COMMENT, PREP_COMMENT COMD_COMMENT,
or DEBUG_COMMENT
ex0 -> comment
5. EXPRESSION NODES

5.1 TYPES OF EXPRESSION NODES

The table below describes the type of expnodes.

Logical Expressions

<table>
<thead>
<tr>
<th>Code</th>
<th>Expr Name</th>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OR_EXPR</td>
<td>inclusive disjunction</td>
<td>OR</td>
<td>a OR b</td>
</tr>
<tr>
<td>2</td>
<td>XOR_EXPR</td>
<td>exclusive disjunction</td>
<td>XOR</td>
<td>a XOR b</td>
</tr>
<tr>
<td>3</td>
<td>AND_EXPR</td>
<td>conjunction</td>
<td>AND</td>
<td>a AND b</td>
</tr>
<tr>
<td>4</td>
<td>NOT_EXPR</td>
<td>logical negation</td>
<td>NOT</td>
<td>NOT a</td>
</tr>
</tbody>
</table>

Relational Expressions

<table>
<thead>
<tr>
<th>Code</th>
<th>Expr Name</th>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>GT_EXPR</td>
<td>greater than</td>
<td>></td>
<td>a > b</td>
</tr>
<tr>
<td>12</td>
<td>GE_EXPR</td>
<td>greater than or equal to</td>
<td>>=</td>
<td>a >= b</td>
</tr>
<tr>
<td>13</td>
<td>EQ_EXPR</td>
<td>equal to</td>
<td>=</td>
<td>a = b</td>
</tr>
<tr>
<td>14</td>
<td>NE_EXPR</td>
<td>not equal to</td>
<td>/=</td>
<td>a /= b</td>
</tr>
<tr>
<td>15</td>
<td>LT_EXPR</td>
<td>less than</td>
<td><</td>
<td>a < b</td>
</tr>
<tr>
<td>16</td>
<td>LE_EXPR</td>
<td>less than or equal to</td>
<td><=</td>
<td>a <= b</td>
</tr>
</tbody>
</table>

Arithmetic Expressions

<table>
<thead>
<tr>
<th>Code</th>
<th>Expr Name</th>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>PLUS_EXPR</td>
<td>addition</td>
<td>+</td>
<td>a + b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>identity</td>
<td>+</td>
<td>+3, +a</td>
</tr>
<tr>
<td>22</td>
<td>MINUS_EXPR</td>
<td>subtraction</td>
<td>-</td>
<td>a - b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>negation</td>
<td>-</td>
<td>-22.5, -a</td>
</tr>
<tr>
<td>23</td>
<td>TIMES_EXPR</td>
<td>multiplication</td>
<td>*</td>
<td>a * b</td>
</tr>
<tr>
<td>24</td>
<td>DIV_EXPR</td>
<td>division</td>
<td>/</td>
<td>a / b</td>
</tr>
<tr>
<td>25</td>
<td>EXPNT_EXPR</td>
<td>exponentiation</td>
<td>**</td>
<td>a ** b</td>
</tr>
<tr>
<td>26</td>
<td>MOD_EXPR</td>
<td>modulus</td>
<td>MOD</td>
<td>a MOD b</td>
</tr>
<tr>
<td>27</td>
<td>REM_EXPR</td>
<td>remainder</td>
<td>REM</td>
<td>a REM b</td>
</tr>
<tr>
<td>28</td>
<td>ABS_EXPR</td>
<td>absolute value</td>
<td>ABS</td>
<td>ABS a</td>
</tr>
</tbody>
</table>
String Concatenation

<table>
<thead>
<tr>
<th>Code</th>
<th>Expr Name</th>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>CONCAT_EXPR</td>
<td>concatenation</td>
<td>&</td>
<td>a & b</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Code</th>
<th>Expr Name</th>
<th>Operation</th>
<th>Operator</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>PAREN_EXPR</td>
<td>parentheses</td>
<td>()</td>
<td>(a+b)</td>
</tr>
<tr>
<td>42</td>
<td>SUBSCR_EXPR</td>
<td>subscripts</td>
<td>()</td>
<td>a (i, j, k)</td>
</tr>
<tr>
<td>43</td>
<td>FUNCTION_EXPR</td>
<td>function</td>
<td>()</td>
<td>f (a,b)</td>
</tr>
<tr>
<td>44</td>
<td>QUALIF_EXPR</td>
<td>qualification</td>
<td>.</td>
<td>file1.field1</td>
</tr>
<tr>
<td>45</td>
<td>ATTR_EXPR</td>
<td>attribute</td>
<td>.</td>
<td>m_integer’ image</td>
</tr>
<tr>
<td>46</td>
<td>DOTS_EXPR</td>
<td>range</td>
<td>.</td>
<td>1 .. 10, a .. b</td>
</tr>
<tr>
<td>47</td>
<td>COMMA_EXPR</td>
<td>delimiter, separation</td>
<td>.</td>
<td>f (a, b, c), a(i, j, k)</td>
</tr>
<tr>
<td>48</td>
<td>FORMAL_PARA</td>
<td>formal parameter clause</td>
<td>.</td>
<td>p1: in, integer</td>
</tr>
<tr>
<td>49</td>
<td>USAGE_EXPR</td>
<td>defines attributes</td>
<td>.</td>
<td>@e: red, blue</td>
</tr>
</tbody>
</table>

Terminal Nodes

<table>
<thead>
<tr>
<th>Code</th>
<th>Expr Name</th>
<th>Operation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>STRING_CONST</td>
<td>character string</td>
<td>"abcdefg"</td>
</tr>
<tr>
<td>62</td>
<td>NUMBER_CONST</td>
<td>numeric constant</td>
<td>3.14</td>
</tr>
<tr>
<td>63</td>
<td>NAME</td>
<td>name</td>
<td>abc, m1</td>
</tr>
</tbody>
</table>

5.2 FIELDS IN EACH EXPRESSION NODE

Of the 7 fields in the expression node structure, 'nb' and 'nbrother' are not used for the purpose of storing expressions per se. They are used to indicate the existence of other related expressions. Normally, if an expression has an 'nbrother', the 'nb' field of the root node of the expression is set to 1, and the 'nbrother' field points to its 'nbrother' expression. Otherwise they are 0 and NULL respectively. Therefore, in the following description, 'nb' and 'nbrother' are not mentioned.
Logical Expressions

1. OR_EXPR (inclusive disjunction): <expr1> OR <expr2>
 exp_type = 1 (OR_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

2. XOR_EXPR (exclusive disjunction): <expr1> XOR <expr2>
 exp_type = 2 (XOREXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

3. AND_EXPR (conjunction): <expr1> AND <expr2>
 exp_type = 3 (ANDEXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

4. NOT_EXPR (logical negation): NOT <expr>
 exp_type = 4 (NOT_EXPR)
 no_of_desc = 1
 point(1) = <expr> subtree
 point(2) = null
 point(3) = null
 no_of_char = 0
 str_value = empty string

Relational Expressions

1. GT_EXPR (greater than): <expr1> > <expr2>
 exp_type = 11 (GT_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string
2. GE_EXPR (greater than or equal to): <expr1> >= <expr2>
 exp_type = 12 (GE_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

3. EQ_EXPR (equal to): <expr1> = <expr2>
 exp_type = 13 (EQ_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

4. NE_EXPR (not equal to): <expr1> /= <expr2>
 exp_type = 14 (NE_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

5. LT_EXPR (less than): <expr1> < <expr2>
 exp_type = 15 (LT_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

6. LE_EXPR (less than or equal to): <expr1> <= <expr2>
 exp_type = 16 (LE_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string
Arithmetic Expressions

1. PLUS_EXPR (addition, binary operation): \(<\text{expr1}> + \text{expr2}\>

 \[
 \begin{align*}
 \text{exp_type} &= 21 \text{ (PLUS_EXPR)} \\
 \text{no_of_desc} &= 2 \\
 \text{point}(1) &= \text{expr1} \text{ subtree} \\
 \text{point}(2) &= \text{expr2} \text{ subtree} \\
 \text{point}(3) &= \text{null} \\
 \text{no_of_char} &= 0 \\
 \text{str_value} &= \text{empty string}
 \end{align*}
 \]

2. PLUS_EXPR (identity, unary operation): \(+ \text{expr}\>

 \[
 \begin{align*}
 \text{exp_type} &= 21 \text{ (PLUS_EXPR)} \\
 \text{no_of_desc} &= 1 \\
 \text{point}(1) &= \text{expr} \text{ subtree} \\
 \text{point}(2) &= \text{null} \\
 \text{point}(3) &= \text{null} \\
 \text{no_of_char} &= 0 \\
 \text{str_value} &= \text{empty string}
 \end{align*}
 \]

3. MINUS_EXPR (subtraction, binary operation): \(<\text{expr1}> - \text{expr2}\>

 \[
 \begin{align*}
 \text{exp_type} &= 22 \text{ (MINUS_EXPR)} \\
 \text{no_of_desc} &= 2 \\
 \text{point}(1) &= \text{expr1} \text{ subtree} \\
 \text{point}(2) &= \text{expr2} \text{ subtree} \\
 \text{point}(3) &= \text{null} \\
 \text{no_of_char} &= 0 \\
 \text{str_value} &= \text{empty string}
 \end{align*}
 \]

4. MINUS_EXPR (negation, unary operation): \(- \text{expr}\>

 \[
 \begin{align*}
 \text{exp_type} &= 22 \text{ (MINUS_EXPR)} \\
 \text{no_of_desc} &= 1 \\
 \text{point}(1) &= \text{expr} \text{ subtree} \\
 \text{point}(2) &= \text{null} \\
 \text{point}(3) &= \text{null} \\
 \text{no_of_char} &= 0 \\
 \text{str_value} &= \text{empty string}
 \end{align*}
 \]

5. TIMES_EXPR (multiplication): \(<\text{expr1}> * \text{expr2}\>

 \[
 \begin{align*}
 \text{exp_type} &= 23 \text{ (TIMES_EXPR)} \\
 \text{no_of_desc} &= 2 \\
 \text{point}(1) &= \text{expr1} \text{ subtree} \\
 \text{point}(2) &= \text{expr2} \text{ subtree} \\
 \text{point}(3) &= \text{null} \\
 \text{no_of_char} &= 0 \\
 \text{str_value} &= \text{empty string}
 \end{align*}
 \]
6. **DIV_EXPR** (division): `<expr1> / <expr2>`

 exp_type = 24 (DIV_EXPR)
 no_of_desc = 2
 point(1) = `<expr1>` subtree
 point(2) = `<expr2>` subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

7. **EXPNT_EXPR** (exponentiation): `<expr1> ** <expr2>`

 exp_type = 25 (EXPNT_EXPR)
 no_of_desc = 2
 point(1) = `<expr1>` subtree
 point(2) = `<expr2>` subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

8. **MOD_EXPR** (modulus): `<expr1> MOD <expr2>`

 exp_type = 26 (MOD_EXPR)
 no_of_desc = 2
 point(1) = `<expr1>` subtree
 point(2) = `<expr2>` subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

9. **REM_EXPR** (remainder): `<expr1> REM <expr2>`

 exp_type = 27 (REM_EXPR)
 no_of_desc = 2
 point(1) = `<expr1>` subtree
 point(2) = `<expr2>` subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

10. **ABS_EXPR** (absolute value): `ABS <expr>`

 exp_type = 28 (ABS_EXPR)
 no_of_desc = 1
 point(1) = `<expr>` subtree
 point(2) = null
 point(3) = null
 no_of_char = 0
 str_value = empty string
String Concatenation

1. CONCAT_EXPR (concatenation): <expr1> & <expr2>

 exp_type = 31 (CONCAT_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

Miscellaneous Expressions

1. PAREN_EXPR (parentheses): (<expr>)

 exp_type = 41 (PAREN_EXPR)
 no_of_desc = 1
 point(1) = <expr> subtree
 point(2) = null
 point(3) = null
 no_of_char = 0
 str_value = empty string

2. SUBSCR_EXPR (subscripted variables): <expr1>(<expr2>)

 exp_type = 42 (SUBSCR_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree, the variable
 point(2) = <expr2> subtree, the subscripts
 point(3) = null
 no_of_char = 0
 str_value = empty string

3. FUNCTION_EXPR (function calls): <expr1>(<expr2>)

 exp_type = 43 (FUNCTION_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree, the function name
 point(2) = <expr2> subtree, the actual parameters
 point(3) = null
 no_of_char = 0
 str_value = empty string

4. QUALIF_EXPR (qualification): <expr1> . <expr2>

 exp_type = 44 (QUALIF_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree, such as record name
 point(2) = <expr2> subtree, such as component in record
 point(3) = null
 no_of_char = 0
 str_value = empty string

5. ATTR_EXPR (attribute): <expr1> ' <expr2>

 exp_type = 45 (ATTR_EXPR)
 no_of_desc = 2
point(1) = <expr1> subtree
point(2) = <expr2> subtree
point(3) = null
no_of_char = 0
str_value = empty string

6. DOTS_EXPR (range): <expr1> .. <expr2>
 exp_type = 46 (DOTS_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree
 point(2) = <expr2> subtree
 point(3) = null
 no_of_char = 0
 str_value = empty string

7. COMMA_EXPR (delimiter, separation): <expr1>, <expr2>
 exp_type = 47 (COMMA_EXPR)
 no_of_desc = 2
 point(1) = <expr1> subtree, subscript or actual parameter
 point(2) = <expr2> subtree, subscripts or actual parameters
 point(3) = null
 no_of_char = 0
 str_value = empty string

8. FORMAL_PARA (formal parameters): [<expr1>] [<expr2>] [<expr3>] [<expr4>]
 where <exp1> = formal parameter name
 <exp2> = mode, 'IN', 'OUT', or 'INOUT'
 <exp3> = parameter type name
 <exp4> = default parameter value, may or may not be present

 exp_type = 48 (FORMAL_PARA)
 no_of_desc = 3 if <exp4> present, 2 if not
 point(1) = <expr2> subtree, the mode
 point(2) = <expr3> subtree, the type name
 point(3) = <expr4> subtree, the default value if present
 null if absent
 no_of_char = length of the formal parameter name, <expr1>
 str_value = the formal parameter name
9. **USAGE_EXPR** (expression usage indication): \(\text{GC: } <\text{expr}> \)

where \(C \) is a single character indicating the usage of \(<\text{expr}> \).

```plaintext
exp_type = 49 (USAGE_EXPR)
no_of_desc = 1
point(1) = <expr> subtree
point(2) = null
point(3) = null
no_of_char = length of the character string in 'str_value'
str_value = "COMMENT" if \( C = 'C' \)
"DELTA" if \( C = 'D' \)
"ENUMER" if \( C = 'E' \)
"DIGIT" if \( C = 'G' \)
"INITIAL" if \( C = 'I' \)
"LENGTH" if \( C = 'L' \)
"NEW" if \( C = 'N' \)
"PACKING" if \( C = 'P' \)
"RANGE" if \( C = 'R' \)
"LAYOUT" if \( C = 'Y' \)
```

For each comment a usage expression node (\(\text{exp_type=USAGE_EXPR} \))
with a string constant node (\(\text{exp_type=STRING_CONST} \)) has its only de-
scentent (point(1)), which contains the comment as its 'str_value'.

In general, the usage expression of the comment is 'pbrother' (before) or 'nbrother' (after) of the neighboring expression node which has higher prece-
dence.

Terminal Nodes

10. **STRING_CONST** (character strings): "abc xyz"

```plaintext
exp_type = 61 (STRING_CONST)
no_of_desc = 0
point(1) = null
point(2) = null
point(3) = null
no_of_char = length of str_value, not including quotes,
7 in this example
str_value = character string "abc xyz"
```

11. **NUMBER_CONST** (numbers): 3.1416

```plaintext
exp_type = 62 (NUMBER_CONST)
no_of_desc = 0
point(1) = null
point(2) = null
point(3) = null
no_of_char = length of str_value, 6 in this example
str_value = character string "3.1416"
```
5.3 TREE CONSTRUCTION EXAMPLES

Example 1

In the following, an expression, a*b+c/d, is used to illustrate how an expression subtree is constructed. A horizontal rectangle represents a non-terminal node; while a vertical rectangle represents a terminal node. Each small box in the rectangle represents a field in the structure. A field from which an arrow comes out means a pointer, otherwise, it is an integer or a character string with its value indicated. For clarity only the fields involved are indicated.

In the above diagram, x, y, and z represent the expression types as well as the operators. They have the following value:

x = PLUS_EXPR
y = TIMES_EXPR
z = VAR_NAME
Example 2

A function call, f(a*b+c/d,x+y), is used to illustrate how such an expression tree is constructed.

In the above diagram, M, N, L, K and J represent expression types as follows:

M = FUNCTION_EXPR
N = PROGRAM_NAME
L = COMMA_EXPR
J = VAR_NAME
Example 3

A qualified name a(k).b(i,j+1) can be stored as follows:

In the above diagram, X< Y< Z, W, V, and U represent expression types as follows:

X = QUALIF_EXPR
Y = SUBSCR_EXPR
Z = VAR_NAME
W = COMMA_EXPR
V = PLUS_EXPR
U = NUMBER_CONST
Example 4

VARIABLE_TYPE {alpha_first_type} IS (CHARACTER) of ((0..15));

ex0 →
exp_type=NAME
 nb=0
 nbrother=null
 no_of_desc=0
 point(1)=null
 no_of_char=16
 str_value=
 "alpha_first_type"

ex1 →
exp_type=NAME
 nb=0
 nbrother=null
 no_of_desc=0
 point(1)=null
 no_of_char=9
 str_value=
 "CHARACTER"

ex2 →
exp_type=DOSP_EXPR
 nb=0
 nbrother=null
 no_of_desc=2
 point(1)=
 point(2)=
 point(3)=null
 no_of_char=2
 str_value=empty

exp_type=NUMBER_CONST
 nb=0
 nbrother=null
 no_of_desc=0
 point(1)=null
 no_of_char=1
 str_value="0"

```
exp_type=NUMBER_CONST
  nb=0
  nbrother=null
  no_of_desc=0
  point(1)=null
  no_of_char=2
  str_value="15"
```
Example 5

```
RECORD_TYPE (alpha_type) IS RECORD (SL: 160);

ex0
   exp_type=NAME
   nb=0
   nbrother=null
   no_of_desc=0
   point(1)=null
   no_of_char=10
   str_value=
      "alpha_type"

ex1
   exp_type=USAGE_EXPR
   nb=0
   nbrother=null
   no_of_desc=1
   point(1)=
   point(2)=null
   point(2)=null
   no_of_char=6
   str_value="LENGTH"

   exp_type=NUMBER_CONST
   nb=0
   nbrother=null
   no_of_desc=0
   point(1)=null
   no_of_char=3
   str_value="160"
```

Example 6

```
VARIABLE (third) : ((INTEGER) (0:255) (0:WORD) (0:7));
```
\[\text{exp_type} = \text{NAME} \\
\text{nb} = 0 \\
\text{nbrother} = \text{null} \\
\text{no_of_desc} = 0 \\
\text{point(1)} = \text{null} \\
\text{no_of_char} = 5 \\
\text{str_value} = \text{"third"} \]

\[\text{exp_type} = \text{USAGE_EXPR} \\
\text{nb} = 1 \\
\text{nbrother} = \text{null} \\
\text{no_of_desc} = 0 \\
\text{point}(1) = \text{null} \\
\text{no_of_char} = 7 \\
\text{str_value} = \text{"INTEGER"} \]

\[\text{exp_type} = \text{DOTS_EXPR} \\
\text{nb} = 0 \\
\text{nbrother} = \text{null} \\
\text{no_of_desc} = 2 \\
\text{point}(1) = \text{null} \\
\text{point}(2) = \text{null} \\
\text{point}(3) = \text{null} \\
\text{no_of_char} = 5 \\
\text{str_value} = \text{"empty"} \]

\[\text{exp_type} = \text{NUMBER_CONST} \\
\text{nb} = 0 \\
\text{nbrother} = \text{null} \\
\text{no_of_desc} = 0 \\
\text{point}(1) = \text{null} \\
\text{no_of_char} = 1 \\
\text{str_value} = \text{"0"} \]

\[\text{exp_type} = \text{NUMBER_CONST} \\
\text{nb} = 0 \\
\text{nbrother} = \text{null} \\
\text{no_of_desc} = 0 \\
\text{point}(1) = \text{null} \\
\text{no_of_char} = 1 \\
\text{str_value} = \text{"255"} \]

\[\text{exp_type} = \text{NUMBER_CONST} \\
\text{nb} = 0 \\
\text{nbrother} = \text{null} \\
\text{no_of_desc} = 0 \\
\text{point}(1) = \text{null} \\
\text{no_of_char} = 1 \\
\text{str_value} = \text{"0"} \]

\[\text{exp_type} = \text{NAME} \\
\text{nb} = 0 \\
\text{nbrother} = \text{null} \\
\text{no_of_desc} = 0 \\
\text{point}(1) = \text{null} \\
\text{no_of_char} = 4 \\
\text{str_value} = \text{"MORD"} \]
Example 7

VARIABLE (tran) : {alpha_type} (0R:0..4);

ex0 -> exp_type=
 NAME
 nb=0
 nbrother=null
 no_of_desc=0
 point(i)=null
 no_of_chars=4
 str_value=
 "tran"

ex1 -> exp_type=
 NAME
 nb=0
 nbrother=null
 no_of_desc=0
 point(i)=null
 no_of_chars=10
 str_value=
 "alpha_type"

ex3 -> exp_type=
 USAGE_EXPR
 nb=0
 nbrother=null
 no_of_desc=1
 point(i)=
 point(2)=null
 point(3)=null
 no_of_chars=5
 str_value=
 "RANGE"

exp_type=
 DOTS_EXPR
 nb=0
 nbrother=null
 no_of_desc=2
 point(i)=
 point(2)=
 point(3)=null
 no_of_chars=0
 str_value=empty

exp_type=
 NUMBER_CONST
 nb=0
 nbrother=null
 no_of_desc=0
 point(i)=null
 no_of_chars=1
 str_value="0"

exp_type=
 NUMBER_CONST
 nb=0
 nbrother=null
 no_of_desc=0
 point(i)=null
 no_of_chars=1
 str_value="4"
Example 8

The comma operator "," is used for delimiting the lists of subscripts such as those in $A(i,j)$ or actual parameters in functions such as $ADD(a,b,c)$. They are stored as follows:

```
SUBSCR_EXPR
  NAME "A"
  COMMA_EXPR
    NAME "i"
    NAME "j"
```

```
FUNCTION_EXPR
  NAME "ADD"
  COMMA_EXPR
    NAME "a"
    COMMA_EXPR
      NAME "b"
      NAME "c"
```
Appendix: ESL Statement Code

A.1. Declaration Statements

<table>
<thead>
<tr>
<th>STATEMENT TYPE</th>
<th>STATEMENT SUB_TYPE</th>
<th>STATEMENT TYPE NAME</th>
<th>CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Program Type Block</td>
<td>task</td>
<td>TASK_TYPE</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>generic</td>
<td>GENERIC</td>
<td>2</td>
</tr>
<tr>
<td>2. Structure Type Block</td>
<td>record type</td>
<td>RECORD_TYPE</td>
<td>11</td>
</tr>
<tr>
<td>3. Variable Type Terminal</td>
<td>variable type</td>
<td>VARIABLE_TYPE</td>
<td>21</td>
</tr>
<tr>
<td>4. Program Unit Block</td>
<td>system</td>
<td>SYSTEM</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>program file</td>
<td>PROGRAM_FILE</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>package</td>
<td>PACK_SPEC</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>task</td>
<td>TASK_SPEC</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>procedure</td>
<td>PROC_SPEC</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>function</td>
<td>FCN_SPEC</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>program body</td>
<td>PACK_BODY</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>begin-end</td>
<td>BEGIN</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>exception</td>
<td>EXCEPTION_DCL</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>select</td>
<td>SELECT</td>
<td>43</td>
</tr>
<tr>
<td>5. Structure Block</td>
<td>record</td>
<td>RECORD</td>
<td>51</td>
</tr>
<tr>
<td>6. Variable Terminal</td>
<td>variable</td>
<td>VARIABLE</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>constant</td>
<td>CONSTANT</td>
<td>62</td>
</tr>
<tr>
<td>7. File Terminal</td>
<td>i/o file</td>
<td>IO_FILE</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>i/o device</td>
<td>IO_DEVICE</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>task entry</td>
<td>TASK_ENTRY</td>
<td>73</td>
</tr>
<tr>
<td>8. Comment Terminal</td>
<td>ordinary</td>
<td>ORD_COMMENT</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>preprocess</td>
<td>PREP_COMMENT</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>compiler</td>
<td>COMPCOMMENT</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>debugging</td>
<td>DEBUG_COMMENT</td>
<td>84</td>
</tr>
</tbody>
</table>
A.2. Executable Statements

<table>
<thead>
<tr>
<th>STATEMENT TYPE</th>
<th>STATEMENT SUBTYPE</th>
<th>STMT_TYPE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition Block</td>
<td>if-then-else</td>
<td>IF_STAT 101</td>
</tr>
<tr>
<td>Block</td>
<td>case</td>
<td>CASE_STAT 102</td>
</tr>
<tr>
<td></td>
<td>when</td>
<td>WHEN_STAT 103</td>
</tr>
<tr>
<td>Loop Block</td>
<td>while</td>
<td>WHILE_STAT 111</td>
</tr>
<tr>
<td></td>
<td>until</td>
<td>UNTIL_STAT 112</td>
</tr>
<tr>
<td></td>
<td>for</td>
<td>FOR_STAT 113</td>
</tr>
<tr>
<td>Assignment Terminal</td>
<td>assignment</td>
<td>ASSIGN_STAT 121</td>
</tr>
<tr>
<td>Procedure Call Terminal</td>
<td>call</td>
<td>CALL_STAT 131</td>
</tr>
<tr>
<td></td>
<td>raise exception</td>
<td>RAISE_STAT 132</td>
</tr>
<tr>
<td>Message Terminal</td>
<td>send/receive message</td>
<td>MSG_CALL 141</td>
</tr>
<tr>
<td></td>
<td>accept message</td>
<td>MSG_ACCEPT 142</td>
</tr>
<tr>
<td>Input/Output Terminal</td>
<td>read</td>
<td>READ_STAT 151</td>
</tr>
<tr>
<td></td>
<td>write</td>
<td>WRITE_STAT 152</td>
</tr>
<tr>
<td>I/O Auxiliary Terminal</td>
<td>open</td>
<td>OPEN_FILE 161</td>
</tr>
<tr>
<td></td>
<td>close</td>
<td>CLOSE_FILE 162</td>
</tr>
<tr>
<td></td>
<td>position</td>
<td>POSITION_FILE 163</td>
</tr>
<tr>
<td>Context Terminal</td>
<td>with</td>
<td>WITH_STAT 171</td>
</tr>
<tr>
<td></td>
<td>use</td>
<td>USE_STAT 172</td>
</tr>
<tr>
<td></td>
<td>program_separate</td>
<td>PACK_SEP 173</td>
</tr>
<tr>
<td></td>
<td>separate</td>
<td>TASK_SEP 174</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PROC_SEP 175</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FCN_SEP 176</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEPARATE_STAT 177</td>
</tr>
<tr>
<td>Control Transfer Terminal</td>
<td>return</td>
<td>RETURN_STAT 181</td>
</tr>
<tr>
<td></td>
<td>go-to *</td>
<td>GO_TO 182</td>
</tr>
<tr>
<td></td>
<td>exit *</td>
<td>EXIT 183</td>
</tr>
<tr>
<td></td>
<td>null *</td>
<td>NULL 184</td>
</tr>
</tbody>
</table>

* Extension eliminated in later translation.