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SUMMARY

To enable the Full Potential Equation method of computing transonic inviscid flows
to accurately predict the conditions at exit from a shock wave - a desirable aim which the
method fails to achieve 10 a greater or lesser extent - an improved relationship has been
derived between the density (p) and velocity (q) inside an inviscid shock wave. This
relationship replaces the conventional isentropic, isenergic relationship normally applied
there. The shock exit conditions thereby obtained are the correct Rankine-Hugoniot values,
for all shock inlet Mach numbers.

Zonal application of this improved (p.q) shock wave internal relationship shou]d
eliminate the prime cause of solution inuccuracy when using the conservative Full Potential

Equartion method.

Two alternative versions of this relationship are provided; CFD usage will indicate
which is superior.

The analysis has been applied first to normal shock waves and then extended 1o

oblique shock waves.
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1 INTRODUCTION

The abrupt changes occurring across a physical shock wave are not truly isen-
tropic. Instead, they obey the Rankine-Hugoniot relationship and depart more
and more from being isentropic flow changes as the shock wave strength in-
creases, that is as the shock wave entry Mach number M;, increases. How-
ever the full potential equation (FPE) approach, which has been widely used
(e.g. Refs. I-8) in CFD solutions of the transonic flows past aerofoils. wings. bod-
ies, wing-body combinations, intakes, cascades and helicopter blades. makes the
approximation that changes of state are isentropic throughout the entire flow
field including any shock wave(s) present. Thus when used with shocked flows
the FPE flow model may well introduce significant errors (see Refs. 9. 10) in the
computed physical quantities of the flow and thereby in the global quantities
Ci, Cp etc. For air flowing through a normal shock wave these physical errors
are listed in Table 1 and illustrated at Figs. 2-4. (In Table 1 AM., is the
error in shock wave exit Mach number My, APR and ADR are the percentage
errors in the pressure ratio PR and density ratio DR across the shock wave.)

These Table 1 errors vary approximately as a power of (Mia? - 1), and as

[M,, [ AM., [ APR% [ ADR% |
1.0 0 0 0
1.1 | -.00, 1 3
1.3 1 -.045 6% 3
1.5 { -.09, 16 13
1.6 | -.11s 224 19

Table 1: ERRORS RESULTING FROM THE FPE APPROXIMATION OF A
NORMAL SHOCK WAVE (y= 1.4)

M;, increases from 1.0 they are at first insignificant but in due course increase
rapidly to large values. There is thus a need for an improved model of the flow
changes across a shock wave, for use with the FPE approach, particularly for
transonic flows with relatively high Mach numbers at the shock wave entry.

The mathematical formulation of the conservative FPE flow model consists of
a set of equations in the FPE dependent variables — potential function $.
velocity q (together with its components) and density p. In particular, it in-
volves the use of an algebraic (p vs. q) equation that is based. as previously
indicated, on the assumption of universally isentropic flow; this is the source of
the errors mentioned above. The analysis which follows describes the develop-
ment of an alternative (p vs. q) continuous relationship that is non-isentropic
and that ensures that shock wave exit conditions are as given by the Rankine-
Hugoniot relations. The relationship applies only in the entire interior region of
an “inviscid” shock wave wafer. ! It is intended for zonal use with FPE flow

!The phrase “shock wave wafer” is used here and subsequentiy to emphasize the smal] but




compitations and should eliminate the errors referred to above. lsewhere
in the flow the usual FPE isentropic. isenergic flow law giving (p vs.q) would
apply. though with an allowance downstream of the shock wave for the reduced
stagnation density there.

In fashioning this relationship the principal aims have been that:

o The relationship should ensure the correct — i.e. Rankine-Hugoniot —
values of velocity q and density p at exit from the shock wave wafer.
Consequently mass. energy and total impulse must be conserved in the
transition from entry to exit locations of the shock wave wafer.

e The flow quantities must be piecewise continuous across the shock wave
wafer entry face.

It also appeared desirable that:

¢ p should be a monotonic function of q (to accord with physical reality).
and

¢ The finally chosen algebraic expression for p = p(q) should involve a
minimum of computational effort, consistent with satisfying the first two
requirements with high accuracy.

v has been assumed to be 1.4.

2 CONDITIONS AT EXIT FROM A NORMAL
SHOCK WAVE

The procedure adopted has been to derive first a (p,q) relationship for a normal
shock wave. In the Appendix this has then been extended to the more general
case of an oblique shock wave.

Using q. p. p and a to denote speed, density, pressure and speed of sound.
the continuity, momentum and energy-conservation equations across a normal
shock wave, with upstream and downstream conditions denoted by suffices 1"
and =2” (Fig. | refers), are as follows:-

continuity
P292 = P11 (1)
momentum
P23 + P2 = P14t + 1
i.e.

p203[1 + a2/(14})] = prai(l + ai/(v4})] (2)

finite thickness of computational (as well as physical) shock waves.
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Figure 1: NORMAL SHOCKWAVE STATES
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where {5} denotes sonic condition in the upstream flow, when achieved isen-
tropically.

The set of four equations (1)-(3) yields the shock wave exit conditions. q2, p2,
p2 and az, in terms of the corresponding entry conditions and of q2,. The
solution is obtained as follows:

Dividing (2) by (1) and substituting for a3 and a? from (3) yields

2+ e=a+dia

or using (1) again
@2+ (g2 /ma)p = a1 + 65/ @ (4)

Adopting ~ to denote that the speeds and densities in (1) and (4) have been
normalized by divisors q3 and pZ,, and dropping the suffix “27. gives

g = P

and

i+p/(hrd1)=qi+ 1/ (4)

a,)




Thus for a given shock wave entry condition {q;.p,), referring to Fig. 3 the
shock wave exit condition ({,,57) is represented by the subsonic intersection B
of rectangular hyperbola (1) (the continuity condition) with straight line (4')
in the (q,p) plane, the other (supersonic) intersection being obviously the shock
wave entry point A (q;.01) in Fig. 5.

Eliminating p from equations (1') and (4') yields a quadratic in q:—
- (G +1/¢1)g+1=0
with roots q2 and q;. Hence the product of_the roots satisfies
G2q1 =1 (5)
and combining this with (1) normalized gives
pr/br = (6)

With the aid of equations (5) and (6) it is possible to derive an analytical 5 vs.
q relationship at the ezit from a normal shock wave, i.e. to derive the locus of
point “B” in Fig. 5 as the parameters q; and py of the shock entry condition
vary. This is achieved as follows:

At shock entry (suffix “17) the flow, which is isenergic throughout, has up to
that point been also isentropic. So substituting g, and 4; for p and q in the
isentropic, isenergic channel flow equation

N
2
+
—
|
2
i
—
3
~n
N—
4
e
~1

leads to

(8)
With (6) this gives

and using (3)




whicn simplifies to

where (9%)
R=1/¢§

The shock exit (density vs. speed) relationship (9) is presented on Fig. 5 as the
Pex VS. q curve, for 129> ,/ﬁ-% = -\713. As the normalized shock exit speed ¢
decreases from 1.0, gex at first increases up to 2 maximum value of about 1.17:
it then falls sharply to zero at q=713. '
The maximum p., occurs when ﬁd%l = 0 that is, differentiating (9’) logarithmi-
cally w.r.t. R, when

y+1 -1

1/R - [0.5/ (—2—-—2- )] =0

giving the normalized exit speed

q= 1/\/E= 1,;%' = .7638

(corresponding to a shock inlet Mach number of v/2). Substituting this § value
into (9) yields

(ﬁez)MAX = 1.166¢s

Shown also on Fig. 5 is the isentropic, isenergic flow relationship (7) presented

as the pis vs. q curve, for the complete q range from \/g (= V6 and corre-
sponds to infinite Mach number) down to 0. The subsonic intersection C of
this curve with the continuity equation (1’) curve gives the shock exit conditions
as predicted by the conventional FPE method. The wide gap between inter-
sections B and C thus represents the difference between the Rankine-Hugoniot
and FPE shock exit conditions. It demonstrates again, quite dramatically,
the large and rapidly increasing error (jc — gp) in the shock exit density when
determined by the conventional FPE method, particularly when B is to the left
of peak “II” of the pex curve (corresponding to the shock inlet Mach number
exceeding /2).

So within a normal shock wave the following two-part (density~velocity) rela-
tionship will ensure Rankine-Hugoniot conditions at shock exit:—

i1 b = pis(d) - equation (7)
i<t b = Pesl(d) - equation (9)

Adopting this approach, the only modification required to the FPE flow model
within the shock wave is to use equation (9) instead of equation (7) for the
subsonic (q< 1) portion of the wave.

[S1]




Note that equation (9) is conveniently parameter-free, i.e. it requires no knowl-
edge of the shock wave inlet conditions q; and g; (unlike equation (4'})).

Flow conditions downstream of the shock. consistent with the modified shock
wave model, are dealt with later at §4.

The use of equation (9) has, however, two potential drawbacks, although these
may be only slight or non-existent in many cases. Firstly the exit stagnation
density. which is pivotal in determining the flow downstream of the shock wave.
is affected by any error in the perceived shock exit location and state. Secondly.
as indicated above and in Fig. 3, equation (9) when plotted has a slight peak
— i.e. ceases to be monotonic — if § < .7638; this happens only if M;, > V2.
The peak, if it occurs, does so towards the shock wave exit and the density then
declines until shock exit is reached. For M;, < 1.6 the decline is less than 21{%.
Some local numerical instability might conceivably result from this peaking,
during a CFD iterative solution of a transonic low. However such instability
could be prevented by clipping the density peak, so replacing it with a density
plateau. and then progressively eliminating the clipping in suitably conrolled
stages as the iterative solution proceeds.

To avoid these potential problems another (density~velocity) shock wave wafer
relationship is developed in the following section.

3 SECOND PROPOSED DENSITY vs. VELOC-
ITY RELATIONSHIP WITHIN THE SHOCK
WAVE WAFER

Referring again to Fig. 5, virtually any more-or-less monotonic curve joining
A to B (other than the continuity equation (1’) curve) appears suitable as
a replacement here for the isentropic, isenergic flow equation (7) of the FPE
method. Such a curve would intersect the continuity equation (1') subsonically
at B, which is on the (jex vs. ) curve — thereby ensuring Rankine-Hugoniot
exit conditions.

However, as previously mentioned, there exists a possible problem concerned
with pinpointing computationally the precise location of X, the exit point of
a streamline from the shock wave wafer (corresponding to state B in Fig. 5).2
This is another changeover point for the (density vs. speed) relationship: pro-
ceeding streamwise along the streamline through X the (4 vs. q) relationship
changes there from the shacx wave wafer internal form

Psw = ﬁ:w(d) (10)

2One way of establishing computationally the location of X is to compute the spatial density
gradient with respect to the streamwise, or nearly streamwise, coordinate of the flowfield. [n
the immediate vicinity of X this gradient is extremely large just upstream of X (being within
the shock wave wafer) but very much smaller just downstream of X. Such a test thus enables
X to be located approximately, with fair accuracy.




(not yvet determined) to the isentropic.’ isenergic form for flow downstream of

X:— v
. R 7_1_2) ( 12)} v~1)
= ] - —— -
p pB{( 7+lq I\ v+1 ()

Although this change is piece-wise continuous in ordinate, it is not necessarily
so in gradient. If due to the computational discretization of the flow fieid.
or for any other reason, a small normalized speed error Aq arises at X {rom
a slightly inaccurate determination of the precise shock exit location X. then
there will also be an error

dpaw

d ~ g
in the value of g (as used in (11)). Consequently at the presumed (but slightly

incorrect) shock exit state B there will be a fractional error — either overshoot
or undershoot — in the normalized stagnation density

) y =1 M0O-D
sl 1 1214
-3,
y=1 Y0~
Ag (d-log{Psw/[l'7+l(I] 5

1 dpsw 29 )
Ag ( + - (12)
Psw 4G Y+ 1-(v-1)¢

equal to

correct to the first order in Aq. As an accurate computation of the flowfield
downstream of the shock wave depends on accurately determining the stagna-
tion density at shock wave exit!, it is important that the form of psw(q) should
be chosen to make this error zero, if possible, but otherwise minimal.

Therefore from equation (12) a further desired condition, additional to those

listed at §1, is . )
(222 = - (FE=ra) (13)
Psw 44 /p T+1-(y-1)¢*/p

Equation (13) in fact expresses the criterion that the stagnation density — as
derived from (10) — is to be stationary just upstream of X. Downstream from
X the stagnation density of the flow is constant along a given streamline (as
expressed at equation (11)). Thus along a streamline, by imposing condition
(13) there will be at X piece-wise continuity of the stagnation density not just
in ordinate but also in first derivative w.r.t. q.

This piece-wise continuity of stagnation density at X could be extended to any
desired order of derivative w.r.t. 4 by suitable choice of the function psw(q) in
(10). However it is best to restrict (10) to a second order polynomial in q: third
and higher order polynomials run the risk of possible non-physical intersections
— i.e. intersections other than A and B in Fig. 5 — with equation (1.

3More precisely, isentropic along a streamline.
‘Refer to equation (11).

it |




From (5) and (6) B (4, p2) is (1/d1. A@i?); Ais (@1, p1). Also. substituting
these B coordinates into (13), the desired slope d—t‘i’}‘—' at B of the proposed
quadratic relationship (10) is

—-2p163/[(v + g - (v = 1))

The desired (5.q) equation (10) within the shock wave wafer is then readily
verified as being

s pn R .. R, a2, [Y+T.

plhr=(1+@) - ¢1d— (4 - )~ 1/q1)dl/ [:—1‘112 - 1] (14)
Note that equation (14) really contains only one parameter. q,, because p,
is obtained immediately in terms of §; from equation (8). Knowledge of q
requires the determination of shock wave entry location; this is achieved in
similar fashion to determining the shock wave exit X. (See footnote 2.)

An example of equation (14), for some chosen value of §,, is plotted in Fig. 6.

3.1 INTERSECTIONS OF EQUATION (14) WITH THE CON-
TINUITY EQUATION

Equation(14) intersects the continuity equation (1') at just three points: for
substituting (1) into (14) yields a cubic in §:—

G1=(1+¢)§-@d’ - §(d-a)d-1/qa)@ (13)
where 1
Ql=«i./[:fld¥—l] (16)
Note here that since 4, > 1, therefore Q; > % > 0.
(15) is:—

~ + Qi@+ /@) - @l + (@ +1-Qu)g-q =0
which factorizes to
(-Qui-qa)d-a)g-1/q)=0
The roots of this are

G (point A),
1/ (point B)
-41/Qr

Now Q; > 0. (Refer below (16).) Hence the third intersection (q=-d/Q1)
is illusory because it corresponds to a negative value of §. Thus there are only
two possible intersections of (14) and (1') — the two physical ones. A and B.
as required. (See Fig. 6.)

it u

g
g
and q




3.2 MONOTONICITY OF EQUATION (14)

[t is readily verified that equation (14) may be written as

plor = -Qi@ + (@1 - D1 + Qu/dild + (@ + 1 - Q] (14"
Differentiating,
L2 = 2Qui+[(@1 - i + Qi /i
pridg 19 1 Q 1/q
and 23 _
b
Ii; = '2QIP1A< 0

So p is stationary (a maximum in fact) only at

(1-1/Q)g +1/q)/2 = /G -[1/¢-(1-1/Q1)@]/2
Va—qi/v-1 from (16)

Thus, §, being positive, § <1/4; (= 43, the § value at B). Hence in Fig. 6
the vertex of parabola (14') is to the left of B. Therefore over the range of
application A to B parabolic arc (14’) is monotonic and convex upward; within
this range (as shown previously) it intersects the continuity equation (1’) only
at A and B.

-

i =g

4 CONDITIONS DOWNSTREAM OF THE SHOCK
WAVE

In the FPE flow field model the flow is assumed to be universally isentropic;
therefore the stagnation density and stagnation pressure are globally constant
throughout the flow field. With the modified flow field model resulting from the
new shock wave representation, however, these quantities — being dependent
on the local shock inlet Mach number M; — now vary along the exit face of an
embedded normal shock wave from its foot (M;=body surfaceM; > 1) to its
tip (M;=1), and then remain constant downstream of the shock only along a
given streamline,

4.1 DETERMINING THE STAGNATION DENSITY AT SHOCK
WAVE EXIT

Stagnation density is defined by

y-1 .2]1/(‘7-1)
=p/ |1 - —
PSTAG P/[ L
Therefore at shock wave exit the normalized stagnation density fsTacGy is given
by
X . 5 - 1 2 1/(v=1)
PSTAGp = PSTAGy/Po = PB/ [1 - mqs]

9




However exit state B lies on the B-locus (5 vs. q) curve defined by equation

(9). So
. [r=1fr+1, ) .2-y]l/h'”
PB—[ 5 (7__1‘18 1) /45
Therefore substituting for 5g,

+1 - 1/(~v=1)
PSTAGy = {(7 — 1) [,’_—lqﬁ _ l] } (17)
B8~ : .2 -1:21]
2 /4y [1 = 3?‘?5]

4.2 BODY SURFACE PRESSURES

The normalized stagnation pressure at shock wave exit, psTagy, is readily
derived from the fact that the stagnation temperature, Tstag, is constant
throughout the isenergic flow. Thus:—

PSTAGs _ PsTAGp TsTAGy _ PSTAGs

2 == == (18)
PSTAGe  PSTAGw ISTAGw  PSTAGe

(where pressures are normalized by the divisor pZ,).

Now
1 1/{(~-1)
PSTAG. = PSTAGs /Po = Critical density ratio = (—T)
and
+1 ¥/ {(v=1)
DSTAG. = PSTAG../Po = critical presssure ratio = (—2—>

Therefore inserting these values into (18)
. T+ 1\.
PSTAGg = T PSTAGy

with gstagy determined from (17). Along the body surface streamline PsTAG
is (discontinuously) constant, with the values pstag, upstream and PsTAGy
downstream, respectively, of the shock wave. Also q is known throughout the
flowfield, and in particular on the body surface, from the converged flow solu-
tion. Hence the body surface pressure distribution is immediately calculable

i
rom =1
P = PSTAG [ - mq

5 CONCLUDING REMARKS

1. In view of the importance of correctly predicting shock wave exit conditions
in CFD solutions of shocked transonic flows, a new improved relationship has

10




been erived between density (p) and velocity (q) inside an inviscid normal
shock wave. This relationship is much superior to that conventionally applied
there by the conservative full potential equation (FPE) method and should
improve very considerably its accuracy and range of applicability. especially for
flows containing strong shock waves.

2. In deriving the improved (p,q) relationship the FPE assumption of globally
isentropic flow has been discarded inside the normal shock wave and. instead.
the correct physical conditions at shock exit have been enforced. Additionally.
the relationship (equation (14)) ensures that the shock exit stagnation density.
a vital element in determining the post-shogk flow, is unaffected (to the first
order) by any small error that may be present in the perceived shock wave exit
location (and state).

3. The only parameter appearing in the new (p,q) relationship (14) is the
normalized velocity (or alternatively the Mach number) at shock entry. This
can be determined — and continuously updated — from the developing iterative
flow field solution once the shock becomes recognisable.

4. An alternative version of the (p,q) relationship, equation (9), which has the
advantage of being parameter-free, is also presented. With this relationship,
however, the exit stagnation density is subject to any error in the perceived
shock wave exit location (and state). As well, if the normal shock wave inlet
Mach number M, is higher than v/2 a slight non-monotonicity develops in this
alternative (p,q) relationship. This occurs near to the shock wave exit, with
the density peaking and then declining slightly to its value at exit. The den-
sity decline is at most only 24% for M; <1.6. In theory this peaking effect
might conceivably trigger some numerical instability in an iterative computa-
tional solution. Such instability can be avoided by clipping the density peak,
thus replacing it with a density plateau, and then progressively eliminating the
clipping in suitably controlled stages as the iterative solution proceeds.

5. The two versions of the improved (p,q) relationship applicable inside an
inviscid normal shock wave are given by equations (14) and (9) (as stated):
CFD usage will indicate which is superior.

6. A simple rule for extending the (p.q) relationship to the case of an oblique
shock wave is given in the Appendix; equations (A22). (A220b). (A25) and
{A26) refer.

11
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Appendix A

EXTENSION TO OBLIQUE SHOCK WAVES

(QI; Pis Py a,)

Figure Al: OBLIQUE SHOCKWAVE STATES
Al FUNDAMENTAL AND DERIVED EQUATIONS

When the shock wave is oblique, the continuity, momentum and energy equa-
tions become with the notation of Fig. Al:—

continuity
P292n = P1q1n = mftux (AD)
(where mfiux is the mass flux rate normal to the shock wave and (qin.q:)-

(q2n,q¢) are the velocity components normal and parallel to the shockwave at
entry and exit)

momentum

(P2 = p1) = mflux(qin ~ q2n) (A2)
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which. using equation (Al), may be written 4s

qfn-q§n=(QI"+?;;)li52_le=<p_11+;l;)(p7—p‘) (A3}
energy (& 'l’)
2 2 y-1pp 2Ay-1)">
energy (@ ')
(%+?—;)+711%=2(77+—11)q; 4

Expressions for q2, and p; analagous to those for the normal shock wave case
are found as foilows.

Differencing equations (A4) and (A3) gives

2y (p2 P
q?n - qgn = :’__—1 (— - _> (A6)

Combining equations (A3) and (A6)

1 1 ) 2y (P? Pl)
— = _ - s
(Pl P2 (P2 =p1) y=1\p2 m

i.e.

which leads to

P2 _\-l/er (AT)

p2/p1 may be found in terms of the initial state ‘1’ as follows:-

From equations (A2) and (Al)

Tn—@n = —o— - 2
" " P29 P1Qin
+1 .2 9 L a2 3t
_ ( - 1) [ﬂ:‘y_—_ﬁq*x - _ZL} _ ?2_" _ [Ziw—liqw —ZL + &1_
Y q2n 2 qin 2

from equations (A5) and (A4). Hence

{q1n — q2n) { [("wi‘.)q;? '(l:—l)qu] + ¥y - 1}

( - =
(q1n — 92n) 2 G2ndin ¥

Since qan #q1a. therefore

+1 =2 =1
9= (’—,-)qx -{—=)q + y-1
9nq1n Y
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giving
Gondin = @32 ~ (1=b)gf TAR,

From (Al) and (AS8)

P _ Qin _ Tin

e V%] tA9)
Pl Qn Qi (m)q;

So with equations (A8) and (A9) — together with energy equations | A4; and

(A3) - in mind. replace q7, as a normalizer by §° =,/q3 - \~+: jq:.*. Equation

(A8) then becomes
(312> (‘“—“) =1 (A10)
VAN

which is analogous to equation (5) of the main text for a normal shock wave.

Now referring to rig. Al,

7 = 22 - (35hed] = [63F - (33 )ebeos?d] (ALL)

3 being the acute angle between the oblique shock wave and the velocity vector

q: at entry
1) |+ =) oo
= 1 - 3
()4 MCED

(from main text equation
(3) with My=q,/a;)

-1 9 sin »3+——'2
(7 ) ¢ [sinzﬂ + ———2] =q32 -————-)
T+1 (v -~ 1)M{ l+(——)w

-1

(using (3) again).
i.e. since qsind =q;,

‘v—l 2:in2.
a2 7—1) 2 2 | LH M) )
= 1 = (Al2)
1 <‘7+1 q“[ +(7—1)MfSin23] qm[ 1““ )Mi

A2 COMPARISON WITH NORMAL SHOCK WAVE RE-
SULTS

Now from (All) the energy equations (A4) and (A5) become:-

gf_n+ T Pk v+l i
2 y-1lpp 2(v-1 (A4

and

B Y P2 _ 1+ e
2 y-lp2 2Av-1)
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Also the continuity and momentum equations | previousiy presented in this Ap-
pendix ' are:—
P1qin = P2qan = mflux (AL
and
(P2 = p1) = mBux(qin ~ q2n) (A2)

These four equations are formally identical to those for a normal shock wave
provided that:—

| Eqn. nos. I OBLIQUE S.W. — Replacing — | NORMAL S.W. |
(A1), (A2). (A4)) 9in " Q1
(Al)v (A2)v (Asl) Q42n ! q2

. 1+[251 [M3sin20 " )
S R her %

From the above four basic equations (A4’), (A5'), (Al) and (A2) the following
results can be derived (via the equations tabulated):—

(A10) qlnq2n=q'7 " Q1Q2=q;§
. : (v+1)M2
t - (v+1)M3?3in?8 " a2 —
(A9) with (A12) | &2 = CHUNLeete, o Te-IM]
. - 2 y=—1
pDITTO with (A7) xg = %M%Sin23 - :_:% " E = ﬁ.\(f - =

Qi1n and g, replace q; and q;
Thus from the two tables above if { §* replaces q3, (A13)
M;sin3 replaces M,

then the basic equations and the results derived therefrom are the same for an
oblique shock wave as for a normal shock wave.

One further replacement is required, that for the density normalizer p3,. This
is obtained as follows:—

Considering the density at the shock wave entry face

v=1 2 —
(:_;) - 1_7_-_1(4_1) ,[1_7_1 (Al4)
> T+ 1\4% T+1
(This is essentially the same equation as main text equation (8).) Therefore

¥=-1 2 1 ] 2 )
2<:1) =7+1_(7_1)(:-12) =q-2 [7(‘7;3"7?)'*'%34"11] (A13)
0

20+ o0

T 2 - 2 2

Now i = ‘_Il_rzn+q§,_l 2 (A16)
and from (All) 2 = M+ (FH)e
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Substituting from (A16) for qf and q3° into (A153) gives

5 (P! a2 2 2 a2, 2, 2y .
Z(E) =[7(¢I —‘hn-m#z +19q TqumfIﬂ) /q;

= {7+ 0% = (v - Vgk,] /432

Therefore
2
2 v-1 1- ﬂ(m)
299. ﬁ‘_ = _ _ 2 /%2 _ y+1\g® -
7 <pm) = [(v+ 1= (v - Daf/g fr2= =l (ALT)
Now let (@) o™ = pr0o-y }
ie. P = pL(§"/95%)Y Y
(A18)
Therefore from (A12)
- -1 e
p* = ol { [1 + 3’2—1.wfsin23] / [1 +2 5 M,’]} ' (A19)

Substituting (A18) into (A17) leads to

A 7-1(qm)2 [ 7—1]
(ﬁ‘) [1 T+1\¢ / T+1 (420)
with 5* given by (A18).
(A20) is formally identical to main text equation (8) but with
p* replacing p5,
{q’ replacing q;o} (A21)
Q1n replacing q

Thus for an oblique shock wave the appropriate density normalizer is p°.

A3 DENSITY vs. VELOCITY RELATIONSHIP FOR OBLIQUE

SHOCKS
The (p vs. q) law that has been derived for the interior of a normal shock wave
can be written as 2
P . q ;
—— = function (_-2') (A22)
b 95 «

This equation is adapted to the oblique shock wave case by applying appropriate
replacements as indicated by (A13) and (A21), yielding

&)

. q;‘: . qz Qtz . ik
= function{ =2} = function | — — =5 | = function(k2¢" - k3)
q° T T

h Y1
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p = kyfunction(k,¢° — k3 {A220b)
with:
ki o= p°/py = {{1+0.2M2sin?3)/[1 +0.23M2]}*° by (A19)
ky = ¢32/3" = [1+0.2M2)/[1 + 0.2M?%sin23) by (A12)
and d
ks = ¢f/§"? = (qicos?B/q")(q2/7?)

_ [H MPcos?s 1+ M3
L+ 2332 M2 [ 1+ S5 M3sin?
by main text equation (3) and equation (A12);

hence

ks = 1.2MEcos?3/(1 + 0.2M?3sin?g) )
(A23)
Using the isentropic isenergic flow relationship at equation (3) again. Mf is
given by

M} = 5(¢}/932)/(6 - ¢} /953) = 5¢1/(6 - 4}) (A24)
leading to
1
e — A25
k2 1 - (§%cos?3)/6 (425)
From (A23) k;, k7 and ki are inter-related thus:
kl - k2-2.5 )
A26
and k3 = G(kg - 1) (A )

Equation (A22) thus converts, by simple linear transformations. into the (more
general) oblique shock wave case (A220b), with the aid of equations (A25) and
{A26).

Note that the angle J appearing in equation (A25) is a function of M, and 6.
the flow deflection angle (see Fig. A1). Hence from (A25) and (A24) k is a
function of 4, and 6.
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1.0
= (3 -7 (= pa)
X (Equation (7))
8 /
b= {(qu _ %)f‘ﬁ"} (05T (= pe Shock
(Equation (9)) Entry
4 i / AK !
/ ‘ \ (g1, 51)
P9 = Pqh )
(Equation (1)) \
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Fig 5. (p vs q) Relationships for Isentropic Flow and for Normal Shock Waves
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!\ p= (3 - 3) ™ (= )
j o8 / (Equation (7))
.8
|
3y
5= {3 - )77} /40 (= e
(Equation (9))
4 4\
4 .. \ (‘ilvp.l)
P9 = P1qh ),
(Equation (1))
2 \
&
\T\ §=4/4%
0 —
/ 0.5 1.0 15 2.0 / 25 3.0
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Fig 6. (5 vs q) Relationships for Isentropic Flow and for Normal Shock Waves

(with Equation 14)
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