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INTRODUCTION

In order to properly develop a composite material or structure which may be exposed to
even moderate excursions in temperature, it is necessary to know the thermal behavior of
the composite and its constituent materials. In addition, in order to bond these compos-
ites together for fabrication of dielectric skins or other applications, knowledge of the coef-
ficients of thermal expansion (CTE) of the components is essential.

The relationship for the thermal expansion of a solid is:
AL = a L AT (1)

where a is in units (I/C°), AL is the change in length (mm), length (mm), and AT is the tem-
perature change. Equation 1 assumes a linear relationship with a being the slope of the line.

EXPERIMENTAL

The resins that were measured were 50.0 parts by weight (PBW) EPON® 828 (Shell
Chemical) epoxy combined with 50.0 PBW EPON® V.40 polyamide curing agent (Shell
Chemical) and Owens Corning (E-780) polyester combined 1 PBW MEKP and 0.1 PBW
co-napthanate. The epoxy syntactic was fabricated using 52.0 PBW EPON® 828 43.3
EPON V-40, and 4.6 PBW Grace Syntactics (Type S) microballoons. The polyester
syntactic was 94.2 PBW polyester (E-780), 1 PBW MEKP, 0.1 PBW co-napthanate, and 4.3
PBW microballoons. The resins and syntactics were processed in air using the standard cure
cycle for the resins. The S-2 glass and E-glass composites contained the following fabrics:

e JP Stevens (JPS) S-2 glass fabric, style 016781, an 8.8 oz. five harness satin weave,
55 picks by 57 ends with a JPS 09827 finish.

e A 5x 5, S-2 glass with 24 oz. woven roving with an Owens Corning 463 finish.

e A 3 x 1, S-2 glass with 27 oz. woven roving with an Owens Corning 933 finish,
nominally equivalent to JPS 09827 finish.

e A (0,90) 18 oz. stitched E-glass fabric.

The composites were fabricated by hand laminating the layers of fabric with wet
polyester resin (Owens Corning E-780) and subsequently processing the composites using
the standard vacuum bag cure cycle for this polyester-based material.

All of the samples were subsequently cut into 1/4" x 3/4" pieces. Flat parallel top
and bottom sections are essential for accurate data acquisition since contact with the en-
tire sample surface with the expansion probe is required.

The thermal expansion data was obtained using a Perkin Elmer, Series 7 Thermal
Mechanical Analyzer. The experimental conditions consisted of: an applied load of
10 mN, a temperature ramp of 5°C/min to 40°C/min, and temperature ranges of -77°C to
120°C for the polymers and 30°C to 400°C for the nonpolymeric materials used for stan-
dards. The best results were obtained by surrounding the sample chamber with liquid
nitrogen thercby providing a thermal sink for consequently stabilizing the temperature ramp.




As a check on the calibration of the instrument, the CTEs of several standard materials were
measured. The results are shown in Table 1. The percentage error is the difference be-
tween the average of two or more measurements and available literature values.!

Table 1. THE COEFFICIENTS OF THERMAL EXPANSION, @ (1/C%
FOR SOME S1..\DARD MATERIALS

Measured Error
Material (/% (%)
Steel 11.4x10° 4
Silica 425x10°% 8
Teflon 14.6x10° Not Known
Aluminum 23.8x10° 4

The increased error for the silica sample is due to the measurement nearing the sensitiv-
ity limit of the instrument. The above results indicate that the results for unknown polymeric
material baseg systems may, therefore, be accurate within ~4% since the order of magnitude
is around 10™.

RESULTS AND DISCUSSION

As shown in Figures 1a and 1b, respectively, the thermal expansion data obtained for
epoxy and epoxy syntactic are nonlinear. The figures show that the epoxy resin and syntac-
tic have two distinct thermal expansion behaviors in this temperature range. The thermal
expansion of the epoxy resin increases nonlinearly above 60°C, while the syntactic shows a
similar increase above ~70°C. For the epoxy resin, the ratio of the thermal expansion
found in the first temperature region (30°C to 60°C), to that of the second (60°C to
120°C) is 2.8. For the epoxy syntactic. the ratio of the thermal expansion found in the
first region (30°C to 70°C) to that of the second region (70°C to 120°C) is 2.1. The
epoxy resin thus appears to be more nonlinear in behavior than the syntactic. As shown
in Figures 2a and 2b, similar behavior is observed for the polyester resin and the polyester
syntactic. Table 2 summarizes the thermal expansion measurements obtained for the resins
(polyester and epoxy and their syntactics).

Table 2. THE COEFFICIENTS OF THEMAL EXPANSION (CTE),
a (1/C% FOR RESINS AND RESIN SYNTACTICS

TEC
Material (1/c%
Polyester 90.4 x 10°®
Polyester Syntactic 459x 10
Epoxy 725x 10%, 20.4 x 10°
Epoxy Snytactic 54.7x 10% 11.5x10°

1. Handbook for Physics and Chemistry. 55th Edition. R. C. Weast, ed., CRC Press, Cleveland, OH, 1975, p. D152.
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Figure 1b. The thermal expansion of epoxy syntactic.
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Figure 2a. The thermal expansion of polyester resin.
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Figure 2b. The thermal expansion of polyester syntactic.




The expansion of the polyester syntactic is reduced by a factor of 2 when compared to
the base polymer. The epoxy syntactic displays a reduction of 1.3 in the first region of
the thermal expansion and a reduction of about 2 in the second region of expansion as
compared to the epoxy resin. As observed, bonding the syntactics to the higher CTE base
resins or to lower CTE glass-reinforced composites (to be discussed) at elevated tempera-
tures may result in the fracturing of the syntactic.

Thermal expansion measurements were also obtained for composites fabricated from the
glass fabrics listed above. The thermal expansion data from 30°C to 120°C for the S-2 glass
(8.8 0z.) polyester resin matrix composite was taken both as parallel (see Figure 3a) and per-
pendicular (see Figure 3b) to the fibers. In addition, the thermal expansion was obtained for
a composite fabricated from the same fabric that had been treated with polypyrrole (measured
parallel to the fibers). As expected, the treatment does not alter the thermal expansion prop-
erties (see Figure 4). Figures Sa and 5b display the results obtained for the E-glass compos-
ite. Figures 6a and 6b show the data obtained for the S-2 glass 5 x 5 (24 oz.) composite.
Figures 7a and 7b show the results for the S-2 glass 3 x 1 (27 oz.) composite. Table 3 sum-
marizes the results obtained for the thermal expansions of the various composites examined
which were measured both perpendicular and parallel to the laminate fibers. The values re-
ported here reflect measurements obtained on samples which were annealed for various times
in order to minimize error due to strain in the material.

Table 3. THE CTE, a (1/C°) FOR THE COMPOSITE MATERIALS MEASURED PARALLEL AND
PERPENDCULAR TO THE FIBERS. ALL TEXTILES ARE WITHIN A POLYESTER RESIN

Perpendicular to Fibers Paraliel to Fibers
Material (1/c% (1/C%
E-Glass 781 x 10° 150 x 10°
$-2,5x5 (24 0z2) 287 x 10° 50 x 10°
80 x 10°
5288 02) M7 x 10° Ay Ll e
$-2,3x1(270z2) 815 x 10° 149 x 10°

The E-glass and S-2, 3 x 1 (27 oz.) composites have CTEs which are similar in value and
show a ratio of the CTE measured perpendicular over the parallel measurement of about 5.3.
In contrast, the S-2, S x 5 (24 oz.) composite shows a ratio of 6 between the perpendicular
and parallel measurement of the thermal expansion. The S-2 glass (8.8 0z.) composite shows
a difference in the measurements taken parallel and perpendicular to the fibers of the fabric
of about 4.8. The S-2 glass (8.8 0z.) composite (when measured perpendicular to the fabric)
has a CTE about the same as the polyester syntactic, whereas the E-glass and the S-2 glass
3 x 1 (27 oz.) composites when measured perpendicular to the fibers have a CTE about the
same as the polyester resin itself. This type of thermal behavior is expected since the expan-
sion is directly related to the volume filling fraction, Vggsin, Young’s modulus (tensile modu-
lus), Ergsin, of the resin and inversely related to the volume filling, Vgiggrs, and Young's
modulus, Egjgers of the fibers, as seen from the following expression

5V resin Eresin @ REsIN

@ COMPOSITE = @ FIBER v E . (2)
FIBER = FIBER

2. Thermal Characterization of Polymeric Materials, R. Bruce Prime and E. A. Tun, ed.




Expansion (mm)

Expansion (mm)

.009 -
.008
1
.007 -
.006 -
.005 -
.004 J
.003
.002
.00¢

.000

.026
.024
.022

.029 A

T T ]
40.0 50.0 60.0 70.0 80.0 %.0 100.0
Temperature (°C)
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Figure 7b. The thermal expansion for a S-2 glass 3 x 2 (27 oz.) polyester resin
matrix composite perpendicular to the fibers.

The fiber volume filling fraction is somewhat smaller for the E-glass and 27 oz.
S-2 glass composites. It is also observed the CTEs for the E-glass and S-2 glass 27 oz.
composites were higher than those measured for the 8.8 oz. S-2 and the 24 oz. S-2 glass
composites; therefore, this behavior is consistent with Equation 2 above.

The composites consistently show an erratic behavior in the expansion coefficient when
measured parallel to the fibers. A representative result is shown in Figure 8 for the
S-2 glass 5 x 5 (24 oz.) composite. This type of behavior may be caused by small voids
which are present in the lamination. The behavior is eliminated or lessened when the
samples are annealed under an applied force; however, annealing in an oven without an
applied load and then subsequently acquiring the data does not eliminate this behavior as
readily. The results reported in Table 3 were all taken after this conditioning treatment.
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Figure 8. The thermal expansion for S-2 glass composite showing a very
nonlinear behavior caused by the inclusion of voids in the laminate.

CONCLUDING REMARKS

The coefficients of thermal expansion for polyester resin, polyester syntactic, epoxy and
epoxy syntactic, and glass-polyester resin matrix composites have been determined using a ther-
mal mechanical analyzer. The thermal behavior for the polymers is generally nonlinear and
the epoxy resin and syntactic composites show an exaggerated nonlinearity above 60°C. The
thermal expansion for the composites is related to the volume filling fraction of the fibers
and increases when measured perpendicular to the fibers. An interesting erratic thermal ex-
pansion is observed for all the composites when measured parallel to the resin and may be re-
lated to voids within the lamination. Further study on the effect of annealing and force on
this behavior should be carried out in the future.
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