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Main contributions of the Research Project

Consider a rocket, modeled by a cylinder, rotating and moving at high speed strikes

a target. It generate a longitudinal stress a and torsional stress r.

1-~A

If the material is a generally nonlinear isotropic elastic solid, the governing equations are a

system of hyperbolic conservation laws

Ux- F(U)t =0 (1)

which also arises in other physical problems such as in fluid dynamics and oil recovery

problems. The function form for F may be different for other physical problems but the

underlined mathematical problems are the same. Thus the results obtained from this

project and from other researchers on fluid dynamics and oil recovery complement each

other. The main contributions from the present project are as follows.

(1) Classification of 2x2 non-strictly hyperbolic system. For fluid dynamics, Eq.

(1) is a 2x2 system. For waves in solids, it can be reduced to a 2x2 system if the boundary

conditions are prescribed in terms of stress rather on velocity. There are two wave speeds

c and c3 and, as it happens in many applications, c1 = c3 for certain U which is called 0

the "umbilic" point. The system is then "non-strictly hyperbolic". Non-strictly 0

hyperbolic systems have been the subject of intensive study by many applied

mathematicians and fluid dynamicists. One of the fundamental problems for non-strictly
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hyperbolic systems is the geometry of the "wave curves" near an umbilic point. The 2x2

system can be classified " ccordiiig to the geometry of the wave curves near the umbilic

point. For example, the wave curves for nonlinear isotropic elastic solids whose strain

energy is a function of (o,, r) of order up to three, may have the geometry shown in Fig. 1

/

, A

, , -

Fig. 1. Simple wave curves for Case 1: k -- .

Point 0 is the zero stress state. If the stress is initially at point B' and the boundary

condition at x = 0 is at point A, the stress variation at a fix location x is, as time t

increases, follows the wave curve B'MA. The corresponding wave pattern in the (x, t)

t
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Fig. la Fig. lb
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plane consists of two simple wave fans as shown in Fig la. In Fig. 1, the solid lines denote

wave curves associated with the fast wave speed c1 ari td otted lines with the slow wave

speed c3 . One can only move along the direction of the arrows and can change from a solid

line to a dotted lines. If the path calls for changing from a dotted curve to a solid curve or

going against the direction of the arrows, a shock wave will be generated. For instance, if

the initial condition is at point B and the boundary condition is at A a shock wave is

generates as shown in Fig. lb. The region before the shock wave (denoted by a double line)

is the constant stress state B and the solution behind the shock wave is at A.
*

The point o in Fig 1 is the umbilic point at which c1 = c3 . Depending on the the

material constants, the wave curves have different geometry as shown in Figs. 2-4. Figs.

1-5 are based on the 2x2 hyperbolic system of conservation laws. The classification of the

geometry of the wave curves is one of the main contributions of this research. If the strain

energy is assumed to depend on (or) of order up to four, the umbilic point may not be at

the a axis. The wave curves near the umbilic point depend on two composite material

parameters m and k. Figures 1 - 4 are special cases in which m = 0. The geometry of the

wave curves near the umbilic point can be classified into five cases as shown in Fig. 5.

I

I i' ,,"

'I "

/ -I,
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A 2 L9 0

Fig. 2. Simple wave curves for Case 2: - I < k 0 0
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Fig. 3. Simple wave curves for Case 3: 0 <k I l For Case 3a. m > m,> a*. For Case 3b,

TeReinmun pr'oblem of p~m waves

17 / °

Fig.3.S .mple wave curves for Ca 3" 1  C 2

Case 2m. Case

, I I

so Case(3WL .. L

a /

3WL,1IL3WLW,,11)

* -(- - t '

: 0

Fig. f" Classificaton according to the number of wave lines (WL) and inflection lines (IL).
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This classification is simpler than what is available in the literature. We did more. We

classify in more acitail wittan each case. For instance, Case 2 in Fig. 5 can be further

classified as shown in Fig 6.

-28

22 --. 4

A2A, (k =0)2A2)

22A,

fri2c

-1 0

Fig. 6. Further classification of Case 2.

The geometry of wave curves in each subdivision is of course different. The implication is

that, in solving the Riemann problem, it would eliminate the problem of guessing which

wave curve geometry to choose for the solution.

(2). Wave curves with the presence of an umbilic point and an umbilic line. For the

2x2 system with the assumption that the potential function is of the third order in U,

there is only one umbilic point but no umbilic line. In applications one may want to

include fourth and higher order terms for a better accuracy. The system then may have

more than one umbilic point and/or an umbilic line. For instance, with the fourth order

term Fig. 1 is replaced by Fig. 7. Point 0 in Fig. 7 is the umbilic point and hence is
,

identical to the umbilic point a in Fig. 1. The wave curves near point 0 in Fig. 7 are

identical to that near point a in Fig. 1. However wave curves away from the umbilic

point in the two figures are different. We have studied several potential functions of fourth
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FI." 7 SimPle 'Ai.. ,Cur.efor, e 1, ,1, 0. - -

order in U and indeed found many interesting phenomena. For instance, in Fig. 7, there is

an umbilic line and also an inflection line across which the wave speed attains a maximum

or a minimum. The corresponding problems in fluid dynamics do not seem to have been

studied. There is no doubt that some of the results obtained are applicable to other

physical problems.

(3) Generalized Riemann problem. The standard Riemann problem for waves in

solids is that the initial conditions at t = 0, x > 0 are constant and the boundary

conditions at x = 0, t > 0 are another constant. This is sometimes call the

Goursat-Riemann problem. If the stress (a, 7-) at x = 0 after the impact is not a constant

(which is the case in most practical problems) we may assume that, for small t.

(0, t) = 00, 0) + &t,

7(0, t) = r(0, 0) + " t,

where a, " are constant. This is a generalized Riemann problem. It is a first order

approximation in the boundary conditions. We could also consider second and higher order

approximations but for the near field solutions near the impact point x = t = 0, the first

order approximation is sufficient. The generalized Riemann problems have only recently
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attracted the attentions of French applied mathematicians. As it turns out, our

approaches in solving the generalized Riemann problem which are 1.ased ca my earlier

investigations on plastic waves about ten years ago, coincide with the approaches suggested

by the French applied mathematicians. However, they did not apply their approaches to

any physical problems. We have been studying generalized Riemann problem with

applications to impact on solids in the past ten months or so. Preliminary results have

been reported at a workshop on shock waves and are appearing in one of the volumes in

SIAM Proceedings on Applied Mathematics. More results are being compiled and will be

reported in the near future. To show the difference in the solution for the Riemann

problem and for the generalized Riemann problem, consider the wave curve BA in Fig. 1

which results in a shock wave as shown in Fig. la. For the generalized Riemann problem,

the solution is shown in Figs. 8a or 8b depending on the values of , . In Fig. 8a there is a

non-steady shock wave with increasing speed and amplitude followed by a weak

discontinuity along c3 characteristics. In Fig. 8b the shock wave is not affected but the

region after c3 is not a constant region. It is a simple wave region.

AM i

x

Fi,. 3a Fig. 8b
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CLASSIFICATION OF 2 x 2 NON-STRICTLY HYPERBOLIC
SYSTEMS FOR PLANE WAVES IN ISOTROPIC ELASTIC

SOLIDS

GUANGSHAN ZHU and T. C. T. TING
Department of Civil Engineering, Mechanics and Metallurgy, University of Illinois at Chicago, Box

4348, Chicago. IL 60680. U.S.A.

Absuarat-The governing equations for plane waves in generally nonlinear isotropic elastic solids are
a system of 6 x 6 hyperbolic conversation laws. For the half-space Riemann problem in which the
initial conditions at t = 0, x > 0 and the boundary conditions at x = 0, t > 0 are constant, the system is
equivalent to 3 x 3 system in the full-space Riemann problem. It is further reduced to a 2 x 2 system
due to the fact that one of the characteristic wave speeds is linearly degenerate. For hyperelastic
materials for which there exists a potential W whose gradients provide the strains, the wave curves
near an isolated umbilic point are represented by the potential of the form

W(o, )= 1 ,+ lIkr,
3 +2 6

which contains two parameters k and m. The classification of the geometry of wave curves depends on
the values of k and m and can be classified into five cases. The potential function considered here is
equivalent to

W=a a3+bar + mo2
3

considered by Schaeffer and Shearer where a and b are parameters. The classification presented here
seems to provide simpler algebraic expressions. It also renders more refined classification as shown in
the paper.

1. INTRODUCTION

Consider a plane wave propagating in the xt-direction in a fixed rectangular coordinate system
x), x 2, x 3. The material occupies the half-space x1 --0. Let a, r2, T3 be, respectively, the
normal stress and the two shear stresses on a plane x, - constant. If u, v 2 , v 3 are, respectively,
the particle velocity in the xt, x 2 , x 3 direction, the equations of motion and the continuity of
displacements can be written as a 6 x 6 system of hyperbolic conservation laws [1,21

Ux - F(U), = 0,

U =-(, T2 , T3 , U, V2, V3), (1.1)

F(U) = (pu, pV 2 , ptl3, E, Y2, Y3)-J

In the above, x =-x, t is the time, p is the mass density in the undeformed state, and E, 72, Y-1

are, respectively, the extensional strain in the xj-direction and the two shear strains. The
constitutive equations of the material specify the relations between a, r 2, T 3 and E, y2 , Y3. For
general nonlinear elastic materials for which a, T2, r3 are known functions of e, yz, Y3, the
system of equations (1.1) has six characteristic wave speeds ± c,, i = 1, 2, 3 13,4]. Without loss
in generality, we let

0< C 3 : C 2 :- C1 .

The Riemann problem is a special Cauchy problem in which the initial conditions at t = 0,
x > 0 and at t = 0, x < 0 are constant [1,5-9]. For plane waves in a half-space, the Riemann
problem prescribes constant initial conditions at t = 0, x > 0 and constant boundary conditions
at x = 0, t>0. The solution in the (x, t) plane depends on one parameter xIt only. If the
solution is continuous in x/t, we have a simple wave solution in which x/t = c, the characteristic
wave speed. In particular, thc stresses a, T2, r 3 are continuous functions of c and, as c varies,
the stresses trace out a "simple wave curve" in the stress space. Since we are considering the

1621
[S 77:12-,



1622 GUANGSHAN ZHU and T. C. T. TING

half-space x - 0, we need only the positive wave speeds c,, c2, c3. We therefore have three
families of simple wave curves and (1.1) for the Riemann problem in the half-space is
equivalent to a 3 x 3 hyperbolic system.

The solution to the Riemann problem is of fundamental importance in finding the solution to
a more general initial and boundary v h,' problem [101. The solution requires precise
classification of the simple wave curves. The .?iemann problem appears not only in wave
propagation in solids, but also in other physical applications such as oil recovery problems
[10,11] as well as in solving two-dimensional Riemann problems [12,13]. In finding the solution
to the Riemann problem we need the knowledge of the geometry of simple wave curves. This
leads to the classification of the hyperbolic system according to the geometry of simple wave
curves. In the rest of the paper, we refer to simple wave curves as wave curves for brevity
because we will not be concerned with shock wave curves.

In Section 2 we point out that when the material is isotropic, (1.1) is linearly degenerate with
respect to c2. It suffices therefore to consider wave curves associated with c, and c3 only and
(1.1) is reduced to a 2 X 2 system. For hyperelastic materials for which the strains are
obtainable from the gradients of potential function W, the wave curves associated with c, and
c3 are orthogonal to each other. This is presented in Section 3. The classification of the 2 x 2
system is studied in Sections 4-7. For the system under consideration, there exists an umbilic
point at which cl = c3. The system therefore is not strictly hyperbolic [14-18]. For second order
hyperelastic materials for which W can be approximated by a polynomial in stress of order up
to three, there is one umbilic point which is located on the a-axis. The classification of 2 x 2
systems for second order materials is presented in Section 4. In Section 5 we consider the third
order materials. There are now more than one umbilic point. We may also have an umbilic
line. If the umbilic point is on the a-axis, the classification is identical to that for the second
order materials. If the umbilic point is not on the a-axis, we show in Section 6 that the
classification is identical to that of 2 x 2 systems of general potential function near an isolated
umbilic point. Section 7 contains the main results of our paper. We present the classification of
2 x 2 systems of general potential function near an isolated umbilic point. The classification is
different from that in [11] but can be shown to be equivalent if one rotates the coordinate axes
of the stress space. The classification presented here is more refined and appears to offer
simpler algebraic expressions for the boundaries between different cases.

2. EQUIVALENT TO 2 x 2 SYSTEMS FOR ISOTROPIC ELASTIC MATERIALS

When the material is isotropic, the relation
T21r3 = 2/I3

holds [8]. If we let

rT = r cos 9, r =r sin 0, r > 0,

y2 = Y cos 0, Y3 =y sin 0, y > 0,

the rectangular coordinate system (o, T2, r3) is transformed into a cylindrical coordinate system
(C, r, 8). It can be shown [8,9] that the wave curves associated with c, and c3 are plane
polarized on the 6 = constant plane. On the other hand, the wave curves associated with c, is
circularly polarized on the circle

a = constant, r = constant, for c = c.

Moreover, c2 is a constant on the circular wave curve. Therefore c, is linearly degenerate [10]
and the c, simple wave is in fact a shock wave. For the Riemann problem in which the initial
condition and the boundary condition for 0 are different, all we have to do is to introduce a c,
shock wave which changes the value of 6 from the initial value to the value prescribed at the
boundary. This is one of few special cases in nonlinear problems in which the principle of
superposition applies.



Plane waves in isotropic elastic solids 1623

It is therefore sufficient to consider 0 to be constant and the 6 x 6 system of (1.1) is reduced
to a 4 X 4 system UT - F(U), = 0,

U (c, r, u, v), (2.1)

F(U) (pu, pv, E, ,). j
The characteristic wave speeds cl. c, are the eigenvalues of the eigenrelation

(I + cA)U' = ]

A=[. G[ 
(2.2)

In the above, I is a unit matrix, a prime denotes differentiation with c and the subscripts o and
- denote differentiation with these variables. Here we have assumed that the relations between
G, r and e, y are invertable. If not, we limit our attention to the region where they are
invertable.

Since G depends on a and r only, the four equations in (2.2), can be reduced to two
equations as

(G - r/I)s' = ,

s = (a,r), 7= (PC )-" (2.3)

If we consider the 2 x 2 hyperbolic system

U, + F(U). = 0,

U = (0, r), F(U)=(, (2.4)

the Riemann problem for this system also leads to (2.3). Therefore, the Riemann problem for
the half-space of 4 x 4 system (2.1) is equivalent to the Riemann problem for the full-space of
2 x 2 system (2.4).

3. HYPERELASTIC MATERIALS

For hyperelastic materials there exists a potential W, the complementary strain energy [191,
such that

EW , y= W. (3.1)

The matrix G in (2.2) has the form

G=[oa W'

which is symmetric. The eigenvalues q of G are

= (W oo + WIT) - I(
2

3 {(W + WT,) + Y} = (pc)', (3.2)

Y= {14/. -W") 2 + 4W2,)"2.

The eigenvector s' of (2.3) provides the tangent of wave curves in the stress space (0 r). The
differential equation for wave curves is therefore

r' dr = 2W- (W.0  - WTI) TY Y((;' da (W, - W4/,) T: Y 2W,(3)
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in which the upper sign (or the lower sign) is for the c, (or C3) wave curves. Due to the
symmetry of G, the eigenvectors associated with cl and c3 are orthogonal to each other. This
means that the wave curves for cl and c3 are orthogonal to each other. Regarding z = W(a, r)
as a surface, it can be shown [111 that the wave curves are the projection of the lines of
curvature of the surface on the (a, -) plane.

When c1 = c3, i.e., 177 = 73, the system is not strictly hyperbolic. The stress ( , ) at which
C1 = c3 is called the umbilic point. We see from (3.2) that the umbilic point is located at

W. = W1, I Wo, = 0. (3.4)

If (3.4) are satisfied for a one-parameter family of points, we have an umbilic line. Since the
umbilic line is a line of curvature of the surface z = W(a, r), the umbilic line is a wave curve.
We also see that at the umbilic point or the umbilic line, the wave curves for c, and c3 may not
be orthogonal to each other [8,91.

The differential equation (3.3) for the wave curves has the following invariance properties:

(i) If we multiply or divide W by a constant, (3.3) remains unchanged.
(ii) Equation (3.3) is invariant with a translation and/or a rotation of the coordinate axes

a and r [111.
(iii) If we expand W(o, r) in powers of a and r, (3.3) remains the same if we ignore the

constant terms and the linear terms. It also remains the same if we ignore the term
(a' + r2 ) because this term contributes nothing to W, - W, and W, which appear in
(3.3).

The above invariance properties form the bases in the sequel for reducing the potential
function W to an equivalent form for classification.

4. CLASSIFICATION FOR SECOND ORDER HYPERELASTIC MATERIALS

From (3.1), if the strains are to be expressed in powers of a, r of order up to two, we have to
expand W in terms of a and r of order up to three. We may ignore the constant term in W
since it contributes nothing to the strains E and y. We ignore also the first order terms in a and
r because the strains would otherwise be non-zero when the stresses are zero. Noticing that for
isotropic materials W should be an even function in the shear stress r, we have, for the second
order hyperelastic materials,

a+ 3 ,r- d4.1W ( , T) - c +r 6 + ' 4 1
S 2 2 6 2

in which a, d, b, e are constants. From (3.1),

E aa + I (ba' + er),
2 (4.2)

y = dr + ear, I

and hence a and d are the elastic constants for linear materials while b and e are the second
order elastic constants. The constants a and d are related to Lame constants A and 0 by

a-' =,+2Y, d-1 = M.

With W given by (4.1), the umbilic point obtained from (3.4) is located at

a=a., T =0,

where

d-a

b-e"

Therefore, the umbilic point is on the a-axis.
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Equation (4.2) tells us that, when e = 0, the stress-strain laws for tension and shear are
uncoupled. The 2 x 2 system is then decoupled into two 1 x 1 systems. This special case has
been studied in [20]. We assume here that e * 0. Next, we see that if we change the sign of e,
(4.1) and (4.2) remain the same if we also change the sign of b, a and E. The wave curves for
e < 0 can therefore be obtained from that for e > 0 by reversing the direction of the a-axis and
the sign of b. Hence it suffices to consider e > 0. Finally, using the invariance properties (i), (ii)
and (iii) discussed in Section 4 we divide W by e and move the origin of (a, r) plane to (a., 0).
Equation (4.1) is then replaced by

-= 2+ ' (4.3)

6 2

bk = 1- -, 6Fo o.
e

and the differential equation (3.3) for the wave curves can be written as
d"'r 0 : (1 + 02)'2 = {0 :F (1 + 02t2-,(4.4)
d&

kbF
2=r'

which contains only one parameter k.
Equation (4.4) can be integrated in a closed form 121]. The wave curves have different

geometry depending on the value of k. They can be classified into four cases as follows [8, 9]:

Case 1: k<-1.

Case 2: -1sk<-0.

Case 3: 0< k:- 1. (4.5)

Case 4: 1<k.

The geometry of wave curves for each case and the solution to the Riemann problem have
been discussed in detail in [8,9]. We will see that the classification (4.5) is a special case of the
classification of general 2 x 2 systems to be considered in Section 7.

5. CLASSIFICATION FOR THIRD ORDER HYPERELASTIC MATERIALS

We now include the third order terms in a and r for the strains E and -y. This means that W
must contain the fourth order terms and we write

W=a2+d2 +b+ e or + I6'a+i 6,T+! 3 0r2,
2 2 6 2 12 12 2

in which 61, 62, 63 are the third order elastic constants. The strain-stress relations (3.1) have
the expressions

E= aa + (ba2+er2)+ 16o'a2+6'r2 ),

y = dr + ear + 62r2 + b3 a) r.

There are now more than one umbilic point and there may be umbilic lines. With (5.1). the
conditions (3.4) for the umbilic point are

a + ba + 6,o2 + 6 3r2 = d + ea + 6o2 + 6,r 2,
r(e + 26 3 ) =0. 1(5.2)
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There are several solutions to the two equations. We discuss the solutions separately below.
(A) Let or.2), a,2 satisfy the equation

a + bo + 6,a2 = d + eo + 63o 2. (5.3)

We thcr. htv- two umbitic points at (a(.), 0) and (a(; ), 0). They are on the a-axis. To study the
gLome:ry of wave curves near the umbilic points, we rewrite the right hand side of (5.1) in
terms of ZY and r where

=- o i = 1, 2.

Using the invariance properties (ii) and (iii) and ignoring the fourth order terms, we replace
(5.1) by

+ 2

6 2
b + 26,(. ), j = e + 2630(.

Assuming that j * 0 and using the invariance property (i), we have
-k 1 b

-____k a, + 1Tr, k = 1 -- (5.4)
6 2

This is identical to (4.3). The geometry of wave curves near the umbilic point (a('), 0) or
(a (2 ) , 0) is therefore identical to that discussed in the last section.

(B) If 63 * 0 and 62 0 63, (5.2) have the solution

e
263

{(d - a) + (e - b)o + (63 - 6,)ao} (5.5)
TO - ~ (453- 62) I

If ro = 0, the umbilic point is on the a-axis and the discussion in Case (A) applies. If ro * 0, we

have an umbilic point at (a0 , r0 ) which is not on the a-axis. Let

= = a - 0 , t = T - o.

Using the invariance properties (ii) and (iii) and ignoring the fourth order terms we obtain

W+ b 3 '

6 2 6

g = b + 261ao, b = 26 2ro, = 26 3ro.

Since i * 0, we may divide W by i to obtain

= 6 e +I&2f + -V, (5.6)
6 2 6

g t;
m=, k=l--.

e

We will show in the next section that for a general potential function W near an isolated
umbilic point, W also has the expression (5.6). The classification of 2 x 2 systems with W given
by (5.6) is studied in Section 7.

(C) If 62 = 63 * 0, and (5.5) satisfies (5.3), we have an umbilic line at

e
o 6 r arbitrary.

This case is being studied separately in [221.
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(D) If 63 = e = 0, we have the umbilic line given by

a + ba + 6 a= d + 6,r 2.

If 62*0, the umbilic line is a parabola. hyperbola or ellipse depending on whether 6,6, is
zero, positive or negative. This case has been studied in [201. The degenerate case 6, = 0 leads
to two straight umbilic lines.

6. THE GENERAL POTENTIAL FUNCTION NEAR AN ISOLATED UMBILIC
POINT

We now consider a general function Wand assume that (ao, ro) is an isolated umbilic point.
This means, from (3.4),

Wo'o(Oo, To)= W",(co, To),

Wa(Oo, ro) = 0.

If we expand W in Taylor series at the umbilic point, use the invariance properties (ii) and (iii)
and ignore the fourth order terms, we obtain

W =g&3 be +.h,
W=ggo3+eo&t+ i++-t,(6.1)

6 2 2 dt'+6(61
&= a - o, ="--- r - To,

In the above, g, e, h and b are the third order derivatives of W at the umbilic point (CO, r0).
Without loss in generality, we may assume that h =-0. If h * 0, we apply the invariance
properity (ii) by rotating the coordinate axes a, r such that the term di2 disappears. Hence we
consider

W & + e2 + b
6 2 6

The special case e = 0 decouples the 2 x 2 system into two 1 X 1 systems [201. We therefore
assume e * 0. Using the invariance property (i) to divide W by e, we have

m , I I, -k 3 ,

W= 0- + 1 + 1-___(6.2)
6 2 6

M = ,  k= - b
e e

This is identical to (5.6).
Equation (4.3) is a special case of (6.2) when m = 0 and the role of Z and i are interchanged.

7. CLASSIFICATION OF GENERAL 2 x 2 SYSTEMS NEAR AN UMBILIC
POINT

We now study the classification of general 2 x 2 systems in which the potential function W
near an umbilic point is given by (6.2). For simplicity, we omit the overbars and write

W(a. T)= 0" +Ioar+---I .k (7.1)
3 2 6

The umbilic point is now at the origin. If we change the sign of m and a. W remains the same.
It suffices therefore to consider

m >0,
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because the wave curves for m < 0 can be obtained from that for m > 0 by reversing the
direction of the a-axis. The wave speeds c1, c3 given by (3.2) are

1
;7 {2too + (2 - k)r - Y} = (pc2) -1

713 = {2mt + (2- k)r + y)= (p 1  (7.2)

Y= {(2mo + kr)3 + 4} 2 .

There is a constant missing in (7.2) due to the omission of the term (U + r2) in (7.1). Also,
(7.2) do not provide the actual wave speeds since W of (7.1) has been divided by a constant.
These do not affect the analyses which follow because we will be concerned with the relative
wave speeds, not the absolute wave speeds. The eigenvector r = (r,, r2) which satisfies the
eigenrelation

(G - Y7I)r = o (7.3)

is tangential to the wave curve and hence, by (3.3),

r2 = =dr 2a =- (2ma + kr):F Y (7.4)

r, da (2ma+kr) T Y 2a

The upper sign is for the cl wave curves and the lower sign for the c 3 wave curves. The right
hand sides of the equation are homogeneous in a and r which implies that wave curves are
similar. As stated earlier, the wave curves for cl and c 3 are orthogonal to each other. Unless
stated otherwise, all discussions in the sequel are for the cl wave curves. The results of course
apply to the c3 wave curves with minor modifications if necessary.

Equations (7.4) can be integrated in a closed form [211. It gives a family of wave curves in
the (a, r) space. There are straight lines passing through the origin which are themselves wave
curves. We call the straight lines wave curves the "wave line". They are determined by seeking
the solution of

r dr
o do"

The wave lines are then given by

- =0,
r

and

-- m m2 +1 +k. (7.5)
T

We see that depending on whether k is less than, equal or larger than - (M 2 + 1) there will be
one, two or three wave lines (Fig. 1). There is an exception for k = - I at which we have only
two wave lines.

Along the wave curve, i.e., along the direction of the eigenvector r, the wave speed c may be
increasing or decreasing. If / denotes the differentiation of r in the direction of r, we have

From (7.2) we see that
7> 0, if c decreases,

S< 0, if c increases.

Differentiation of the eigenrelation (7.3) gives us

(G,, - i6,,)r, + (G,, - rq6,,)i = 0,
and hence

rr 1 = Gr, ,. (7.6)
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M

Case 2 Cas,.
I3WL,1IL) (3WL, IL) I

Case 5

(3WL,1 IL)

I+-(1M
2 )

Case I
11 WL, iL Case 4

(3WL,31L)

k

-10

Fig. 1. Classification according to the number of wave lines (WL) and inflection fines (IL).

If we let
a0=1, T ---G 2,

in (7.1), the potential function W is homogeneous in o, 02 of degree three and has the
property

a3 w(o 1 , 0) = 6W(r,, r2). (7.7)
alJ, ajk

Noticing that

= W(Uo, 02)

'W(U, a2)* , = aw(o,, o'2)

rk, (7.8)

we obtain from (7.6), (7.8) and (7.7) that

6W(r, r2 )//= (7.9)
rk rk

Thus the sign of q is determined by the sign of W(r, r2) [11]. In particular, the "inflection"

point on the wave curve at which / = 0 is determined by

W(r,, r) = 0. (7.10)

Since the wave curves are similar, the inflection points on the wave curves form a straight line
passing through the origin which is called the "inflection line". Equation (7.10) is a third order
polynomial in r2/rf which means that there exists at least one inflection line.

We now investigate the number of inflection lines. Using (7.1) and (7.4), we write (7.10) as

(1 - k)A 3 + 3A + 2m = 0. (7.11)

dr

do

If k = 1, we have A = - 2m/3 and A = a, the latter is a double root. If k * 1, we let

- k= + (7.12)

We then have one, two or three inflection lines if A is positive, zero or negative, respectively.
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To have three inflection lines we must have
1

m2 + - < 0.
-k

or
1<k< +m - .

From the above discussion we classify the geometry of wave curves into five cases according
to the number of wave lines (WL) and inflection lines (IL) (Fig. 1).

Case 1: k< -(1 +m 2 ).
Case 2: - (1 + m2) :- k s 0.
Case 3:0 < k - 1.
Case 4:1 < k < 1 + m-2.
Case 5:1 +m 2 -_k.

Case 2 and Case 3 have the same number of wave lines and inflection lines but they have quite
different wave curve geometry. The special situation in which m = 0 has been studied in [8,91
where Case 5 does not exist. The classification given by Schaeffer and Shearer [111 is based on
the potential function

W(o, r) = a a3 + ba~r + ar2 ,
3

in which a and b are the parameters. This is different from the W in (7.1) but can be shown to
be equivalent if we apply the invariance property (ii). In the (a,b) plane, Schaeffer and
Schearer classify the wave curves into four regions. It can be shown that Case 1, 2, 3, 4 here
corresponds, respectively, to Region 4, 3, 2, 1, in [11]. Case 5 here also belongs to Region 2.
The boundaries which separate the five cases presented here appear to have a simpler algebraic
expression.

Before we investigate in detail each case, we list below some general properties of the wave
curves which apply to at least two or more of the five cases. At the point where the wave curve
intersects the o-axis, the slope of the wave curve is obtained from (7.4) as (Fig. 2)

dr= -(VT:- 7+m), at a>0, r=0,dom

(VITm-m), at a<O, r=O.

This is independent of k and therefore applies to all five cases. We remind the readers that all

r

Fe

Fig. 2. The wave curves, wave line and inflection line for Case 1.
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discussions are for the c, wave curves which are represented by bold curves in the figures. We
see that the absolute value of the slope at a > 0 is larger than that at a < 0. Moreover, the
product of the two slopes is - 1. which means that the two slopes are orthogonal to each other.
Next, the wave lines given by (7.5) apply to k -> - (1 + m2), i.e. to all cases except Case 1. Let
0 and 0, be the angles the wave lines make with the r-axis. We have

tan,=V'Tm 2 + I +k+m >0, for all k, / (7.13)
tan 0=V;m+1+k-m-0, fork<- .I

It is readily shown that 0, + 0 < Tr/2 or >;r/2 if k < 0 or >0. Also, 01 > .7r/4 except when
- k > 2m < 2 and 0 > sr/4 or <;r/4 when k > 2m or <2m. Finally, for all cases except Case 4.

there is only one inflection line. The slope A of the wave curve at the point where the wave
curve intersects the inflection line is the only real root of (7.11) and is given by

-- / I - k (7.14)

A-Z0, if k Z1,

in which A is defined in (7.12). If we solve (7.4) for r/a in terms of dr/da (which is A), we
obtain r 1-A 2 - 2mA 1+ 2A 2+( 1 -k)A 4 (

a kA kA

in which the second equality follows from (7.11). With A provided in (7.14). (7.15) furnishes
the slope of the only inflection line for Case 1, 2, 3, and 5. We now discuss each case
separately.

Case 1:k<-( +m 2)

In Fig. 2, the bold (or thin) lines are the c, (or c3) wave curves and the bold (or thin) dotted
line is the inflection line for cl (or C3). We show in the figure only typical wave curves. Since
wave curves are similar, other wave curves can be obtained by enlarging or diminishing the
wave curves shown in the figure. The r-axis is a wave line. If r is the angle the inflection line
makes with the positive r-axis, we have from (7.15),

kA
tan a= 1 + 2A 2 + (1 - k)A 4  (7.16)

where A is given in (7.14). A is the slope of the wave curve at the intersection of the inflection
line. It is also the slope of the line AB on which W(o, r) = 0.

The arrows on the wave curves and the wave line represent the direction along which the
wave speed c decreases, i.e. i1 >0. This is determined by applying (7.9). For instance, to
determine the direction of 0 > 0 at point P, we draw from the origin towards the region W > 0
a line parallel to the tangent to the wave curve at P. This determines the direction of the arrow.

Case 2: -(I+m-m)<-k50

There is one inflection line and (7.16) which gives the angle o applies here also, Fig. 3. There
are three wave lines, one of which is the n-axis while the other two make an angle 6, and 02
with the negative r-axis. Case 2 can be divided into Case 2A and Case 2B depending on
whether 0, <0 or >0 which is equivalent to k < -1 or > - 1. Each case can be further
subdivided according to the relative magnitudes of a, 0, and 0. We have (Fig. 4)

Case 2A,: 0<or< -02=01, (k= -(+ m 2 )).

Case 2A 2: 0<a< -k92<0.
Case 2A-: 0< - 02 < < 0,.
Case2B: 0=0 2 < a<0, (k=-1).
Case 2B 2: 0<0,<v'<0 6.
Case 2B,: 0 < cr < 0, < 6,.
Case 2B,: 0 = a < 62 z < 6, (k = 0).
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r r

Case~as 2A,____Case 2A, a. Case 2A?

-9, - tan
- ,i) -m2

rr a

Case 282, 283 /

Or. 
a,

a, 2 ton- , (2m) 8282 = O Umi t Line

Case 284 '

Fig. 3. The wave curves, wave lines and inflection line for Case 2.

In all cases, we have 01 <j r/2, 02 < ,r/4. The geometry of wave curves, wave lines and the

inflection line are shown in Fig. 3. Case 2A 3 is not shown but its geometry is similar to that of

Case 2A 2. Case 2B4 is a degenerate case in which the r-axis is an umbilic line. It is also a wave

line for c, as well as for c3.
The boundary between Case 2B2 and Case 2B3 in Fig. 4 is characterised by the relation

a= 02.

With a given by (7.16) and (7.14) and 02 by (7.13)2, this boundary can be plotted numerically.
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a2 =-8 2  
2

-29,
2A 3  (k = -1)

22

2A,//

I k
-1 0

Fig. 4. Further classification of Case 2.

It can be shown that k-, - 1/2 as m-. An alternate way in finding the equation for ct = 62
will be given later. [See equation (7.26).] The boundary between Case 2A2 and 2A 3 is
determined by the condition

Ct= -62.

Referring to Case 2A 2 in Fig. 3, this implies that the wave curve and the inflection line are
orthogonal to each other at the point of intersection P. With 02 given in (7.13)2, the slope A of
the wave curve at P is

A= tan 62= %/m2 +1+k-m.

Substitution of A into (7.11) leads to a fourth order polynomial in k and m which can be
factorised as

[(2 + k) 2 + 4m 2][(2 - k)2(k + 1) - 4m 2(k - 1)] = 0.

The first factor is positive and non-zero. We therefore have

4 2 k+1
4M2 ---- k+- (2 - k)2.  (7.17)

This is the curve denoted by a = - 02 in Fig. 4.

Case 3: O<k: <1
Figure 5 shows the geometry of wave curves, wave lines and the only inflection line which

makes an angle oto with the negative r-axis. The angle ro is, from (7.15),

- kAtan ao = 1 + 2A 2 +(1 - k)A 4 '

and A is given in (7.14). It can be shown that

0< t 0o< 02< 1 < ;r/2.
As k --* 0, ato--- 0 and the r-axis becomes an umbilic line. At k = 1,

6m
tan &0 = 6m (7.18)

9+ 8M2 1

and cl on the positive r-axis and c, on the negative r-axis assume the same constant value. The
r-axis is therefore a shock wave curve.
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r

8. A ac

Fig. 5. The wave curves, wave lines and inflection line for Case 3.

Case 4:1 <k <1 +m -2

This is the most complicated of all five cases. It has three wave lines as well as three
inflection lines (Fig. 6). The location of three inflection lines are obtained by the slope A of the
wave curve at the point of intersection with the inflection line. The slope A is a root of (7.11).
For Case 4, A of (7.12) is negative and (7.11) has three real roots. Denoting the three roots by
A0, A,, A2, we have

Ao=2(k - "cos( p 3 2

A,=2(k-1) cos( V 2)

A2 = 2(k -1)-"cs2

V= cos kmV 1) < 2

The roots are related by the inequalities

-Ao< -A 1 <A,.

T

a22

Fig. 6. The wave curves. wave lines and inflection lines for Case 4.
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If ao, a,, a2 are the associated angles the inflection lines make with the r-axis, Fig. 6, we
obtain from (7.15),

tan V,= - kA, 0,2
ta + =12AI+(- k)A?' (7.19)

tan v, = kA,
ta +~ =12A21+ (1 -k)AI

It can be shown that
0 < a0 < 0, < e1 <n;r2,

0 < a,< <a'1 ' (7.20)

Thus, while a0, 1, t82 are less than ;r/2, a,1 and a2 carn be larger than ;r/2.
Depending on the relative magnitudes of a0o, a1i, at2, 0 and 02, Case 4 can be subdivided as

shown in Fig. 7. The subdivisions are obtained by the curves in the (k, m) plane which
represent a1, = ao, a'1 = 62,... -, etc. Each subregion is identified by one capital letter and one
lower case letter. The capital letters represent the following conditions:

A: 0 < a 2 < VO-
B: a'0 < '2 < 12.-
C: 02 <a 2 < 1.

a, = ao

1.0 Aa,2 /

Ab- SC 02:5

Af
Ac-

Ad- A. a2 :0 50

hiCf. f

Be 00- 82=. 7-a,
0.5 tZ (=1+ n2

Ce

Bd

SC
Cd

Dd

0 1 2 3 4 5 6 7 a 9 10

Fig. 7. Further classification of Case 4 and Case 5.
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The lower case letters represent the following conditions:

a: 0<or,< ao.
b: aro<al1<0 2.
C: 0 2 < al < O0 .
d: 0, < a, < h i2'.

e: ;r/2 < a, < ;r - 6,.
f: ;r- 01 < a, < ;r- 8 2 .

Therefore, for instance, Case 4Be is governed by the conditions

co<,r2 < and ;r/2<c 1< :r -6 1 .

These conditions are in addition to (7.20) which govern Case 4. Case 4Cf and Case 4De have
two more subdivisions. We have

Cf2 < ;r - Ct for Case 4CfI and 4De1,

a2> ;r - ar, for Case 4Cf2 and 4De 2.

The equations governing the boundaries between the subclassifications denoted by at = 0,
2 = ao ...... in Fig. 7 have the following expressions. They are

k+1
4m 2 =k-1(2-k)2, for a, =0 1  or a, =1,, (7.21)

M=(k- -2)
4 /k-21 , for cr 1=.7r/2 or a'2 =r/2, (7.22)

4m 2 =(4-k)(k-1), for La2 =ao or a',=2r-ctj, (7.23)

4m 2 = (37 - 30k) T (9 - 2k)V9 -8k
16(k- 1) , for a'=a'0 . (7.24)

The derivation of (7.21) is similar to that for a = - 6z in Case 2. It is therefore not surprising
that (7.21), is identical to (7.17). Equations (7.22)-(7.24) are derived as follows. We substitute
dr/da of (7.4) into (7.11) wh-ch results in the following cubic equation for T/O, the slope of the
inflection line.

aly 3 +a 2 Y 2 - a3 y - a4 =0, (7.25)

where
y = T/o,

aI = 2mka(k - 1),

a2 = 3k2(k - 1)(4m2 + 1),

a 3 = 6mk[(4 - 3k) - 4m 2(k - 1)],

a4 = (k - 4)2 + 8m2(4 - 3k) - 16m 4(k - 1)

= [(Vi - 2)2 - 4m 2(Vk - 1)J[(Vk + 2)2 + 4m
2
(V'k + 1)].

If a = 7r/2 or a 2 = ;r/2, y =0 is a root of (7.25). This means that a4 = 0 which leads to (7.22).
If a2 = aro' ' 2 =.7r - o,, (7.25) must have a double root for v. The condition for the cubic
equation ('.zj to have a double root can be shown to be given by the equation

(k - 1)(m 2(k - 1)- l](4m2 - (k - 1)(4 - k)12 = 0.

The vanishing of the first factor, i.e.. k = 1, is a degenerate case of Case 4Aa in which
&I = a 2 = 0. k = 1 is also the boundary between Case 3 and Case 4. The vanishing of the
second factor gives the boundary between Case 4 and Case 5 at which a, =r - a,. The
vanishing of the third factor leads to (7.23).
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When a' = ao, y - ±t cot a'o are roots of (7.25). This means that (7.25) can be factorized as

aly 3 + a 2 y 2 - a 3 Y -a 4

= (y2 - cot2ao)(aI y + a4 tan2 oto),

from which we obtain

tan oa'-- a, = a,

a3 a4

By a direct substitution, it can be shown that the second equality gives (7.24).

Finally, if we denote the left hand side of (7.25) by f(y), we have

f(cot 02) = 0, for a, = 0,, (7.26)

f(-cot01 )=0, for a'1= r-8 1 or cr2 =0 1, (7.27)

in which 01 and 02 are given in (7.13). It should be pointed out that (7.26) also applies to the
curve denoted by a = 02 in Fig. 4 for Case 2.

Two limiting cases of Case 4 are worth mentioned. In the limit k = 1, we have a, = c, = 0
and ao is given in (7.18). This is a special case of Case 3. At the other limit k = 1 +m 2 , we
obtain

ao = 6,= 2r - a, = tan -(m- 1 ),
S=2(1 +m2) ~n 1 2~ 1

tan a 2 = - (1S+ 2 M2 )' tan 0, = 2m + m - 1

m(8m - 1)'

This belongs to Case 5 which is discussed next.

Case5: 1 +m-2-k
As shown in Fig. 8, there is only one inflection line which makes an angle a 2 with the

positive r-axis. From (7.15), we have

-kAtan a2 = 1 +2A 2 + (1 - k)A4 '

and A is given in (7.14). CAse 5 can be subdivided into 5A, 5C, 5D and 5E as shown in Fig. 7.

a2

Fig. 8. The wave curves, wave lines and inflection line for Case 5.

E$ 2L1~l.
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The conditions governing the subdivisions are as follows.

Case 5A: 0 < a, < 0,.
Case 5C: 02 <a,< .
Case 5D: 01 < a 2 < .Tr/2.
Case 5E: r/2 < a, < r - 01 .

Thus a, is less than jr/2 except for Case 5E. The boundaries a2 = 02, a 2 = 61, and a, = -r/2
between the subdivisions are provided in (7.21), (7.27) and (7.22), respectively.

8. CONCLUSIONS

We have presented here a refined classification of 2 x 2 non-strictly hyperbolic systems near
an isolated umbilic point for a general potential function. The classification is important in
solving the Riemann problem for arbitrarily prescribed constant initial conditions at t = 0, x > 0
and constant boundary conditions at x = 0, t > 0.

Acknowledgement-The work presented here is supported by the U.S. Air force Office of Scientific Research under
Contract AFOSR-89-0013.
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CHAPTER 15

Growth or Decay of Shock Waves in the Generalized

Goursat-Riemann Problem*

T. C. T. Tingt
Tankin Wangt

Abstract. For plane waves propagating in an elastic half-space z > 0 due to

an impact at the plane z = 0, the problem is that of a generalized Goursat-Riemann

problem in which the initial conditions at t = 0 are constant but the boundary

conditions at z = 0 are not. If a(z, t) is the traction vector at any plane x = constant.

&(0,t) depends on t. Assuming that a(0,t) is linear in t. i.e., s(0,t) = e - et t where

*a and .t are constant, the Goursat-Riemann problem corresponds to the special

case in which at vanishes. We study the generalized Goursat-Riemann problem

with non-zero as. We investigate how the solution to the Goursat-Riemann problem

is affected by the non-zero as*. In particular, we examine whether the shock waves

generated in the Goursat-Riemann problem grow or decay due to the non-zero J".

1. Introduction. The equations governing the plane waves in an isotropic

elastic solid, with certain restrictions, can be written as a system of 4 x 4 conservation

laws [1,2),

U, - f(U)t =0, (1)

U =

f(u) = (pu, pv, ).

'The work presented here is supported by the U. S. Air Force Office of Scientific Research under Contract AFSOR-
89-0013

tDepartment of Civil Engineering, Mechanics and Metallurgy, University of Illinois at Chicago,
Box 4348. Chicago. IL 60680.
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In the above, o.,r are the normal and shear stresses, c, -y are the normal and shear

strains, u, v are 6'he normal and transverse velocities and p is the mass density. For

hyperelastic solids there exists a potential function, or the complementary strain

energy W(a,r) such that f3]

= w="w, (2)

in which the subscript denotes differentiation. Introducing the 2-vectors

S = ( Ur), u = (u,v), p = (,'Y), (3)

equation (1) can be written for continuous solutions as

U - AUt = 0, U, (4)

where I is a unit matrix and

rWaa War.I =I , , ( 5 )
[W, 11T7 j

The characteristic wave speed c is obtained from 14)

r
(cA 1) 0, -r/= , (6)

which can be reduced to

{G- (pc2 )-I} r =0. (7)

Assuming that G is positive definite, there are two pairs of characteristic wave

speeds =C1, =C3 and we let

C- C3 > 0.
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Had we considered fully general plane waves, (1) would be a system of 6 x 6 conser-

vation laws and there would be an additional pair of characteristic wave speed -C2

which can be shown to be hnearly degenerte [2].

It should be pointed out that (7) is. mathematically, the characteristic equation

with characteristic wave speed (pc 2)- ' for the following 2 x 2 conservation laws

at + f(S) = 0, (8)

s = (a,,r), f (s) = (Wo, WI). (8

Equation (8) is a familiar equation in fluid dynamics and hence the results obtained

here can be applied to problems in fluid dynamics. Many studies have been made

on (8) which is in general not strictly hyperbolic [5-9].

In this paper we consider the following initial and boundary conditions for the

generalized Goursat-Riemann problem

A(z,0) =b, X > 0,
(9)

(0, t) =, + ett, t > 0,

where sb,5,a,s are constant. The superscripts "b" and "a" stand for "before" and

"after", respectively. The constants a,,sa,et are 2-vectors defined in (3)1. The

problem reduces to the Goursat-Riemann problem when je = 0.

When ai = 0. U(z, t) depends on x/t only and is best expressed in the form of

wave curves in the U space. The wave curve consists of a sequence of simple wave

curves and/or shock wave curves [10. If the boundary conditions are prescribed in

terms of stress a, it suffices to consider wave curves in the sub-space s 11.2. This is

not possible if the boundary conditions are prescribed in terms of velocity !11.121.

The simple waves are "centered simple waves" because, in the x-t plane, they are

represented by a family of straight lines from the origin x=t=O. Along each straight

line U is a constant. The shock wave in the x-t plane is represented by a double

line which is a straight line because the shock wave speed is a constant. Between

the simple waves and/or the shock waves we have constant state regions. When

s' 0, we no longer have simple waves and constant state regions. Moreover, the

shock wave speed is not a constant and may grow or decay as time increases. We

will investigate the perturbation of the solution to the generalized Goursat-Riemann

problem from the Goursat-Riemann problem in the region near x = 0 and t = 0. In

particular, we examine whether the shock waves grow or decay due to the noi, 7ero
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j?. The perturbation is with respect to small x and t, not with a, so that the value

of k, need not be small.

2. Perturbation in the constant state and simple wave regions.

For the generalized Goursat-Riemann problem with initial and boundary conditions

prescribed in (9) we consider the solution U(z, t) in the form [13-15'

t2

U(X,t) = U°(;,) -t uJ() -2 +.-(0

A = zlt,

where U° . U'. U 2 ,... , are functions of A only. Clearly, U 1 , U 2 ,. - vanish identi-

cally for the Goursat-R.iemann problem. Differentiation of (10) with x and t results

in

ur = 1±uo- d U - 0(t),
t dA A (11)

u= -- Adu0 + (u, -Adu) + o(t).
tA dA

Since A in (4) depends on U, we also expand A as

A(U) = AO(A) + tA'(A) - -A 2 () +.. (12)
2

A0 (A) = A(U 0 )

A'(A) U .VA j (13)

The operator V is the gradient with respect to the components of U. With (11)

and (12), (4)1 leads to

d 0( A ° + 1) u T =U0, (14)

(AA°  I) dU, = AU' - A1 d-U0. (15

eiltdt r order pdA (

We will study the first order perturbation. namely, the solution of U1
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Let c' be a root of the determinant

ic°A°(c° ) + Ili = 0.

The solution of U', U' depends on whether A equals to any of the four roots CO

or not. We call the region "regular" if A # co and "singular" if A = c'. For the

Goursat-Riemann problem the regions A # co and A = co correspond, respectively,

to the constant state region and the simple wave region.

2.1 Regular region. When A # cc, (14) and (15) yield

U 0 = constant,
(16)I

U' = {(A)
- 1 + A I} q,

where q is an arbitrary constant. Equation (11)2 then gives

Ut jt=o = (A) -' q, (17)

and (16) and (17) provide the relation

U 1 = (AA ° +l )Uti=o (18)

which allows us to convert Ut to to U 1 and vice versa. We see that while U °, Utit=o

are constant, U' is linear in A.

2.2 Singular region. When

A = co,  (19)

equations (14) and (6), imply that

d o0

dA

where c is a proportionality factor. In particular.

a 0-= -4r ° . (20)
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The proportionality factor is determined by differentiating (19) with A and using

(20). We have

1 -Cr ° • Vc°  (21)

and (20) is rewritten as

d = {r0  
. Vc°) - r0 . (22)

It is clear that V here is the gradient with respect to the components of a because c

depends on a. not on u. Integration of (20) or (22) furnishes the simple wave curves

in the stress space ;1,21.

Inserting (13)2 in (15) we obtain the differential equation for U' for the singular

region as

- I) d U' = AoUl - A U1 • (VAO)d UO (23)

which is linear in U'. Hence if U' is a solution, so is kU' where k is an arbitrary

constant. Despite the fact that the coefficient of dtP/dA in (23) is singular, it is

shown in [131 that (23) can be solved for d'Ul/dA and that the solution for U I is

unique.

3. Discontinuity of U1 between the singular and regular regions.

We consider U(x.t) on a curve r in the x-t plane which is given by

1 t2
xr = Art- 2r t.

where Ar and K, are constant. The curvature of z. at t = 0 is xr' Hence

1
A=Zr/t = Ar t Ir t

and. from (10). U(z.t) on r is

2 dA0 -Ot)

If r is a boundary between a regular region and a singular region and if F is not a

shock wave. U(x.ti and U0 (Ar are continuous across r. We then have
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L{ 1 )regular region = - 'r -Uo}singular region (24)1 d 0

This shows that Ul is in general discontinuous across the boundary between a

regular region and a singular region even when U(z, t) is continuous.

4. Perturbation of the shock wave solution. The Rankine- Hugoniont

equation for (1) is

[u I * If(U)i = 0 (25)

in which V" is the shock wave speed and the square brackets denote the jump across

the shock wave. Employing the 2-vectors (3), (25) can be written as

ovr- [U'. = 0
(26)

[U.- V'[p. 0

Let z,(t) be the locus of the shock wave in the x-t plane and be given by

X" = Vt 1X, ...

= '2

where V, x,. are , respectively, the initial velocity and the initial acceleration of the

shock wave at t = 0. The shock wave speed V" at anytime t is

V" = V - r,t - (27)

Equation (10 written for u and & are

u (X , t) = u ° 0 -- t u I - t -u - ..
t2 (28)

t2a(z,t)=s ° +ta 1 '

With the notations (3)3, (2) can be written as

P2 Osi
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and the expression of p in the form (10) leads to

t2
p(a) = pO t p, - p (29)

p0 = p(O). p' = GOa,

p 2 = G 1 1

In the above, G o = G(so). Substituting (27) -(29) into (26), we have

s0° - p11u1 = 0
(30)

uO _ I =0

for the zero order akd

i- pViu! - p ,Iu ° =o"

(31)
[u1 ' V[G° 's[ + xq,[po: 0

for the first order.

From (30) we obtain

1'U =-p -[ rp--[,], (32)

and the use of these results in (31) leads to

pV'u1 = -V- /v)I ,

(33)

iu"= -VrGo' - (K/pV 2 )[°].}

Elimination of [u1 between the two equations in (33) yields

pl,2 G0os - = -2(,,/V)[1so. (34)

Let a-- be . respectively, the value of s in front of and behind the shock

wave. When s- is given, (3212 provides a solution for s- with V as the parameter.
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As V varies, s- traces out a curve in the stress space which is the shock wave curve.

Fig. 1. Equation (32), then Li .z t at jiam; ia u° while (34) and (33)1 or (33)2 give

the jump in sI and u1 in terms of r,.

5. Growth or decay of the shock wave. When the initial acceleration x,

of the shock wave is non-zero, the shock wave grows or decays as it propagates. If the

state ahead of the shock wave is at rest or at a uniform state, the stress amplitude

and velocity amplitude in general increase or decrease according to whether the

acceleration t,, is positive or negative. If the state ahead of the shock wave is not

a uniform state, the positivity of r. may not be accompanied by the growth of the

stress amplitude and/or the velociy amplitude. This was pointed out in [161 for one-

dimensional shock waves and in [17-19] for three-dimensional shock waves. Thus the

definition of growth or decay of a shock wave depends on whether one is looking P.t

the stress amplitude, the velocity amplitude or the acceleration r-.

In this paper we define the growth or decay of shock waves according to whether

n, is positive or negative.

6. The solution to the generalized Goursat-Riemann problem. The

perturbation U 1 presented in Sections 2, 4 and the discontinuity condition of U' be-

tween the singular and regular regions derived in Section 3 are the basis for the con-

structing the solution U 1 to the generalized Goursat-Riemann problem prescribed

in (9). As an illustration, consider the special case in which S",& in (9) are located

on a shock wave curve associated with c1 which is denoted by V, in Fig. 1. If s" = 0.

the solution in the x-t plane consists of a single shock wave of wave speed 1",, Fig.

2. Since s' - 0. we would have the wave pattern shown in Fig. 3 in which there is a

non-constant shock wave 17 followed by an acceleration wave c3. The acceleration

wave c] does not appear because, by Lax stability conditions 20'. the cl wave speed

behind the shock wave is larger than the shock wave speed 1". The region between

the 1'1 shock wave and the c3 acceleration wave denoted by M is a regular region

which is not a constant state. We will determinate the initial acceleration , of the

I" shock and s7 which is the value of st in the region M as t - 0. In the sequel, the

superscripts a. b. m,-., denote the value of the quantity concerned in the regions

A. B. M.... respectively, as t - 0.

The first step is to find U' - from U1" across the ohock wave 1'. Applying

(34) to the shock wave 17" at t = 0 and noticing that tiue rezion B is a constant

state which means that U - = 0, we have

pi:s, ! 1 - I t - . (351
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The regions M and A are both regular regions and hence s - ' which leads to

Ga = Gn. Let

- 71-ra + 'yr, (36)

_ -(y r' + I" r'), (37)

o 0a

in which I7 ,) , are constant and r', r are the right eigenvectors of (7) as-
sociated with c = c, ca ,

{p(ca) 2 G* - I} ra =0,8

(38)

3)G* - I} r3 = 0.

In the above it is understood that cj- = ca and c- = ca. The direction of r" and

r' are taken to be in the direction of decreasing cl and c3, respectively. With [.o]

given in (9), -)o and 1 0 are determined from (37). For the V shock wave and the

ra, r shown in Fig. 1, we have

0° > O. (39)

Using (36) -(38), (35) can be written as

{(r-/c)2 - }7'r 1} {(-'c) -

= 2(r.,,!Vj)(-0 ra 10 r a).

Hence -" and - are given by

(VI/c*) 2 - 1}-Y = 2(K,,/V1)- (

(40)

{(v-/ca)' - 2(,.,/V3)-)o

with K.. as an unknown parameter. We have thus obtained a of (36). As to u

using (36) and (37). we write (33), as

u = - a- - ) r - yora).
pV)u1 - -(3-r?- 7yr3) 3 3v/V o 3
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We are interested in pV1iu - -s 1 - . not in pV1iu 1 - . Therefore we employ (36) and

(40) to obtain

pVu- (',3c3)23 ( r V (41)

The next step is to convert U1- to U' using (18) which is written in full as

I- = Ga - a+u

uI-  a. +l C= .U,

Eliminating u7 leads to

pVu' - -a'- = (pV,2 Ga _ I)*. (42)

To determine s' explicitly, we let

at Ir+ymr, a 0 + It = r r, (43)1 3h r 3 + " n r, t 1 1 3 3 r

where 7 ,y ,-y' are constant. With .sa prescribed in (9), -y' and -ya are de-

termined from (43)2. The boundary between the region A and region M is a C3

characteristic. This means that the discontinuity in tat and a must be proportional

to r3. Hence

1 =(44)

Equation (42) with the aids of (38) and (43)1 has the expression

pV1u' - _ -a {(V/c-)2 l}-ra + {(V /c) 2 - 1}-rr

and from (41) we obtain

a - ( 1,' ) 2 4- 3  1,,
(= I

(45)

I I\ca3) 2 -3

{(V 3)2 W "} I
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Equation (45)1 provides the initial acceleration x!, of the shock wave 1*. Since 10

is positive by (39), Kr and 1, hax, the opposite signs. In other words, the shock

wave K7 grows when -y' < 0 and decays when -y" > 0. For the s' shown in Fig. 1.

-, < 0 and the shock wave lT* grows as indicated by the positive curvature of V1

in Fig. 3. The value of -" has no effects on the growth or decay of shock wave V.

If -y" = 0, n, = 0 and s' = 0. The wave pattern in the x-t plane is then

given in Fig. 4 in which the region M is a constant state and the region A has a

non-centered simple wave solution.

7. Concluding remarks. The example given in the last section illustrates

how one can determine the growth or decay of a shock wave in the generalized

Goursat-Riemann problem. The example was one of the simplest cases in which the

two stress states a and sb are on a shock wave curve V. Other simple cases have the

two stress states on a shock wave curve V* or on a simple wave curve cl or c3. For

the latter, the discontinuity condition (24) for U 1 will be needed. More complicated

cases would have the two stress states at arbitrary locations in the stress space in

which Sa can be reached from &b through a series of simple wave curves and/or shock

wave curves. More studies on the subject is being undertaken and results will be

reported in the future.
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