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1. INTRODUCTION

Various laser spectroscopic techniques have been developed
that work in the flame environment as diagnostics in determining
the components and reaction mechanisms in propellant flames.
Laser-induced fluorescence (LIF) and multiphoton techniques such as
resonance-enhanced multiphoton ionization (REMPI) have yielded
measurements with a good degree of selectivity and spatial
resolution (Lucht et al. 1983, Alden et al. 1982, Goldsmith 1983).
More intrusive techniques for gas sampling that use gas-liquid
chromatography (GC) or mass spectrometry (MS) as detectors have
also been used (Eltenton 1947, Serry and Zabielski 1989, Biordi et al.
1974, Greene and Pust 1958, Fristrom and Westenberg 1965, Banna
1979). As with the laser-based techniques, these techniques have
advantages for some flame species and flame conditions and
disadvantages for others. While study of ions produced in a flame is
a long-investigated problem (Knewstubb and Sugden 1958) and mass
spectrometry of flame neutrals had early beginnings (Eltenton 1947),
the bulk of the subsequent research is more recent (Serry and
Zabielski 1989, Biordi et al. 1974, Revet et al. 1978, Smith 1981,
Smith and Chaudler 1986). As a result, the recent studies reflect the
new technologies and methods that have been developed over the
years that facilitate the identification and quantification of flame
species.

Gas sampling by quartz microprobe (Greene and Pust 1958,
Fristrom and Westenberg 1965, Banna 1979, Colket, III et al. 1982)
has been shown to be adequate for stable species and therefore well-
suited for GC studies. However, large residence times at significient
pressures in the probe preclude this technique for reactive species.
Most mass spectrometry studies of radical intermediates have been
done by molecular-beam sampling techniques; indeed, the supersonic
jet that forms the molecular beam is essential in preserving the

I



radicals until they can be ionized. Comparison of OH radical
concentration profiles determined by optical methods with those
determined by molecular-beam mass spectrometry (MB/MS) has
shown that minor perturbations of the preheat zone occur but that
flame front zone and post-flame regions are relatively undisturbed
(Seery and Zabielski 1989, Revet et al. 1978, Howard et al. 1992a).
In order to more fully characterize the possible operating range of
each technique and to quantitatively compare results between
techniques, a hybrid instrument for analysis of flames under the
same operating conditions was developed. Previous work (Howard et
al. 1992b) with C2H 4 /0 2/Ar flames at 20 Torr with the present

instrument showed that laser-based diagnostics for this simple flame
were most appropriate for analysis close to the burner surface (0-2
mm), but that MB/MS possessed better qualities in the other regions
of the flame. For example, molecular-beam mass spectrometry was
able to investigate many more species concurrently (resulting in
shorter scan times that permitted more scans to be performed) and
also able to provide greater detail for some species higher in the
reaction zone. Both methods appeared to be equivalent, for all cases
where comparison could be made, in the burnt gas region far
removed from the burner surface. It was concluded that in the

current instrument, MB/MS, while not immune to quartz sampler
perturbation, adequately describes nascent chemistry in the flame

environment.

The current study (C2 H4/N 2 0/Ar), while relatively simple in

terms of reactants and major products, includes unsaturated
hydrocarbon oxidation and the more complex nitrogen flame

chemistry present in many propellant (where oxides of nitrogen are
primary oxidizers) and air-breathing flames. Inclusion of

temperature measurements permits correlation with the
concentration profiles in assisting to optimize thermal versus

environmental concerns as well as to provide thermodynamic/kinetic

data necessary for theoretical model evaluation.
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2. EXPERIMENTAL

2.1 Sampling System.* All of the flames in this study were
operated at 20.0 Torr absolute pressure. The instrument has been
described earlier (Howard et al. 1992a) and only its salient
components are mentioned here. The low-pressure burner chamber
was a stainless steel cylinder with an inside nominal diameter of 25
cm and a height of 40 cm. Provision for temperature measurement
by thermocouple [125-micron diameter platinum/platinum-10%
rhodium wire coated with a noncatalytic beryllium/yttrium oxide
mixture (Kent 1970)] was provided as shown in Figure 1.

The mass spectrometer consisted of an Extrel C50 TQMS inline
triple quadrupole mass filter with a concentric-axis ionizer as shown
schematically in Figure 1. Sampling of the flame gases occurred
through a conical quartz skimmer with a 250-micron diameter
orifice. The gases expanded supersonically into the first differential
vacuum chamber with a measured average chamber pressure of 5 x
10- 5 Torr. The expanding gases were then formed into a supersonic
beam by collimation through a second skimmer (Beam Dynamics
Model 2, orifice diameter 2 mm) and introduced into the ionization
region of the first quadrupole (the first set of quadrupoles were used
for mass analysis except vhere noted). This region was maintained
at 1 x 10-6 Torr. The beam was then modulated at 200 Hz with a
tuning fork chopper and ionized prior to entering the first
quadrupole. The electron emission current was maintained at 0.10
±0.01 mA and the nominal energy at 17.0 ±0.1 eV (0.5 eV FWHM)
unless otherwise noted. The drawout voltage from the ionizer was
set to between 0 and 1 Volt. These ionizing conditions optimized and
stabilized the modulated beam. A beamstop was included to
determine if the modulated beam was a molecular beam (modulation

* Useage of manufacturer name or model does not constitute endorsment of the

product by the US Government or its affiliates.



would cease with beamstop activated) or an effusive beam (no
change in modulation noted with beamstop activated). After
traversing the quadrupoles the ion current was detected with a
continuous-dynode electron multiplier. Amplified current from the
detector then was processed with a Stanford Research System Model
SR530 lock-in amplifier to discriminate signal from background gases
and to signal average in order to increase sensitivity.

The flame was produced upon and supported by a 6-cm

diameter flat burner (McKenna Products). Under proper gas flow
conditions the flame was produced in a laminar flow field with the

Q2, ¢ottisicA quistiooj/

Q2, Collision Cell Turbomolecular

Beam Stop Ionizer and Ion Gun

Quartz Skimmer T g Fork Chopper

Thermocouple
Burner -

O,z Motion Feedthrough

IGas Inlets
Experimental
Platform

Figure 1. Schematic of Triple Ouadrupole Mass Spectrometer and

Molecular Beam System of the Experimental Apparatus.
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flame front parallel to the burner surface and therefore one-
dimensional with respect to the burner surface. Subsequently, the
distance from the burner surface to a sampling point in the flame can

be used as the reaction coordinate to describe the progress of

reaction in terms of species concentration profiles as well as
temperature profiles. In order to increase the spatial resolution the
flame was operated at reduced pressure. Low-pressure (or

subatmosphere) flames have shown that the reaction zones expand
with minimal distortion as pressure is reduced (Gaydon and
Wolfhard 1949, Salmon and Laurendeau 1987).

The reactant gases were of commercial high-purity grade and
were metered by mass flow controllers (MKS Instruments, Inc) and
premixed in the burner prior to passing through the flat 6-cm
diameter sintered stainless steel plug in the center of the burner
surface. Gas flows of C2 H4 , N20 and Ar of 0.53, 3.2, and 1.0 liter

(STP)/min, respectively, were used which resulted in linear flow
rates on the order of 110 cm/sec with a Reynolds number on the
order of 150 indicating operation well within the laminar regime.
These flow rates corresponded to a stoichiometric, (D = 1.0 (4 defined

as the ratio of initial moles of fuel to oxidizer divided by the ratio of
the respective stoichiometric coefficients), flame. The sintered
stainless steel frit was water cooled to maintain a constant
temperature as measured by imbedded Alumel-Chromel
thermocouples. This central frit was encircled by another sintered
metal frit through which argon was flowed, thus forming a protective

shroud that minimized mixing of any recirculating burnt gases in the
low-pressure chamber. The burner was mounted normal to the

center of the burner chamber on a high-vacuum feedthrough flange
that was coupled to a Oz-translation stage. This stage allowed
independent horizontal scanning (precision in 0 of less than one

degree) of the burner and vertical motion (precision on the order of
50 micron) allowed the diagnostics to remain stationary while
"scanning" the flame (scanning the distance between the diagnostics

and the burner surface).
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2.2 Calibration Procedure. Several problems exist with using
a moderately low resolution mass spectrometer with electron-impact
ionization as the detector of flame species. For example, the
ionization technique is not "soft" (i. e., fragmentation patterns occur
for virtually every polyatomic species) and final ion currents depend
heavily on ionization potentials and cross sections. For stable species
this problem was addressed by preparing calibration gas mixtures
that were introduced into the burner chamber at flame conditions.
The nominal ionization energy of the electron beam during
calibration was maintained at 17.0 eV (this value was chosen since it
is below the ionization energy at which OH is produced from H2 0, yet

above that required to ionize Ar). At this energy fragmentation of
the primary ion beam was small.

All of the calibration mixtures contained argon (used in all the
flames to dilute the flame and to increase spatial resolution). Since it
is not produced or consumed in the flame and its ionization cross
section is little affected at flame temperatures, it was considered as
an ideal internal standard. As the observed mass spectrum signal
can be described as:

Ii = SiXi (1)

where Ii is the observed ion current, Si is a sensitivity factor (with
appropriate units) containing instrument and ionization dependent
information and X i the mole fraction, partial pressure or other
relevant concentration unit for the i-th component, the ratio of Si to
the sensitivity factor of an internal standard (such as argon),

K i = Si/SAr , (2)

may be used in the following manner to quantify the amount of the
i-th component present:
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Xi = XAr (3--))
A r) Ki 3

The validity of Equations 2 and 3 was verified in the flame by
first measuring SHe/S Ar at ambient temperature and 20 Torr

pressure with a known mixture of helium and argon. This ratio was

then measured under flame conditions by introducing a known
concentration of He in the argon flow. Measurements were taken at
various points from the burner surface through the flame front and
into the burnt gas region. The assumption of one-dimensionality was
also tested by horizontally scanning across the flame at each point.
The radially measured ratios were the same within experimental
error in all cases thereby verifying the the above assumptions.

Another problem arose with use of only moderate mass
resolution. Several molecules may exhibit the same nominal mass-
to-charge-ratio. CO2 and N2 0 were a case in point. Differentiation of
such species pairs was possible with the triple quadrupole mass
spectrometer through the use of collision-induced dissociation (CID)
of the ions in the primary ion beam to produce fragmentation
patterns unique to each molecule studied. The first quadrupole
selected ions of interest in the ionized beam. These ions then passed
through the rf-only quadrupole where collision with argon
maintained at a pressure near 10-3 Torr occurred. Upon collision the
selected ions fragmented and the daughter fragments were analyzed
in the third quadrupole. Calibration gas mixtures of each gas with
argon and also with each species possible at a given m/z of interest
were prepared and the fragmentation patterns and branching ratios
obtained.

Such calibration procedures were performed only for stable
gases. Radicals and reactive intermediates require other techniques
(where possible) for quantification. Therefore only relative profiles
were obtained in this study for these species. However, at a
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particular m/z value when more than one species was possible, CID
was used to determine the respective contributions.

3. RESULTS AND DISCUSSION

3.1 The C2H4N20/Ar Flame. In this report we show

temperature (Figure 2) and mass spectrometric measurements of
many of the reactive and stable flame species in a stoichiometric,

C 2 H 4 /N 2 /Ar Flame at 20 Torr
(D= 1.0

2400-

2200- • .

2000-

1800-

4 1600-

1400-

4 1200-

. 1000-

800

600-

400-

200-

0- I I I I I I I I I I I

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Distance Above Burner (mm)

Figure 2. Temperature Profile of C2k4LO/Ar Flame.
= 1. at 20 Toff.
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premixed C2 H4 /N 20/Ar flame at 20.0 Torr. The temperature profile
of the flame in Figure 2 was obtained with a 125-micron diameter
Pt/Pt(10%Rh) thermocouple. The thermocouple wire in the flame
was coated with a noncatalytic coating as described in the
Experimental Section in order to avoid catalytic heating on the
thermocouple that would otherwise lead to erronous temperatures
and/or break the thermocouple due to localized heating. After
coating, the temperatures obtained were corrected for radiative heat
losses.

This correction was approximated by equating the heat
transferred to the thermocouple from the gases to that lost by
radiation. The corrective term is given by (Hayhurst and Kittelson
1977, Peterson 1981)

AT = TcaI - Tobs = ead(Tobs4 - T 0
4 )/2k (4)

where e is the emissivity of the coated thermocouple [taken to be 0.6
(Peterson 1981)], a is the Stefan-Boltzmann constant, d is the
diameter of the junction, k is the thermal conductivity of the gases
present at the sampling region (usually approximated with values for
air) and To is approximately 300 K. The actual thermal conductivity
at each point in the flame was obtained as a function of temperature
using empirical expressions (Liley and Gambill 1973) and corrected
for gas composition as measured in this study. The value of k for
the gas mixture varied from 8.41 x 10-5 to 4.09 x 10-4 cal sec "1 cm - 1

K- 1. The diameter of the coated thermocouples was measured at 190
microns. The uncertainty in temperature measurements was
estimated to be 50 K in the region of peak temperature and 10 K in
the preheat region.



The temperature profile in Figure 2 clearly demonstrates flame

gas temperatures near the burner surface (about 510 K) that are in
excess of that measured by the imbedded thermocouples (about 310
K). Currently, this condition is not included in present theoretical
flame models. The region between 0 and approximately 6 mm above
the surface is typical of the "dark" or preheat zone of the flame.
From 6 to 12 mm the major flame chemistry occurs. This region of
steep temperature gradient also contains the visible luminous zone (a
light purple or violet color). Above 15 mm is the burnt gas region.
This region is on average the hottest region of the flame and is in
partial equilibrum with product concentrations near stabilization.
Major flame intermediates such as H-atom, O-atom and OH are still in
abundance (Howard et al. 1992b). Measurements were not
continued until their disappearance since one-dimensionality of the
flame at extended distances above the burner surface is not
expected.

Further evidence of the major reactivity zone from 6 to 12 mm
is the concentration profiles of major radical species. Figures 3 and 4
exhibit several such profiles. Figure 3 shows profiles for H, 0 and OH.
These species form a cadre of important flame radicals that are
present in virtually all flames and have been studied in many
different flames. They are formed early in the combustion and
persist well into the burnt gas region. The peak near 5 mm in the OH
profile has been noted for other flames (Howard et al. 1992b) and is
found in approximately the lower half of the luminous zone of the
flame. This feature may be attributed to competition between the
high temperature formation of OH via the following chain-branching
reactions,

H+0 2 - O+OH (5)

and

O+H 2 -*H+OH (6)

with the three body reactions of
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C2 H4/N 2 0/Ar Flame at 20 Torr
(D 1.0

SH-atom
0 0-atom

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Distance Above Burner (mm)

Figure 3. Profiles of H-atom (0). O-atom (0) and OH W*
Intermediates of Stoichiometric C2 Ii 4 ar2 O/Ar Flame at 20
Torr. Individual Profiles Normalized to Unity..

H+0 2 +M-*H0 2 +M (7)

and

H0 2 + H +M - 20H +M (8)

which are favored at lower temperature (Warnatz 1978). Modelling
has yet to be done to confirm the mechanism for this particular
flame.



Radicals produced solely by fuel gases appear near the preheat
zone, reach their maximum value and disappear within the luminous
zone. In Figure 4, the intermediates most closely related to the
primary fuel occur first. Their concentrations increase rapidly in the
preheat zone,

C 2 H 4 /N 20/Ar Flame at 20 Torr
(= 1.0

2 H
A CH 3
A C2 H2

V C2 H3

0 3 6 9 121518212427303336394245

Distance Above Burner (mm)

Figure 4. Profiles of Major Hydrocarbon Intermediates of
Stoichiometric C,?.HLUN20/Ar Flame at 20 Torn Individual
Profiles Normalized to Unity.

begin to diminish as the primary fuel is exhausted and disappear
near the top of the luminous zone. As concentrations of C2 H2 and
C2H3 increase, one of their fragments, CH3 , is formed. This profile is
in turn closely followed by CH 2 . These two radicals exist primarily in

or just above the luminous zone.
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Profiles of stable species where mass assignment is not

ambiguous are reported in Figure 5. These species are all flame
products. NO and 02 appear to be produced by predominately high

temperature reactions in the upper regions of the luminous zone.

C 2H 4/N 2 0/Ar Flame at 20 Torr
(D 1.0

6.2-

0.15-

C.) 0H 2 0
I-• NO0.1- v 02

U2

0.05-

0-
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Distance Above Burner (mm)

Figure 5. Profiles of 20. NO and 02 in Stoichiometric C2 H4LN 2 OLAr
Flame at 20 Torr. Concentrations Listed in Mole Fraction.

Essentially none of these two products appears below 2000 K, (see
Figure 2) and both reach maximum concentration near 2300 K. Since

02 appears just after NO and has the same profile shape, it is likely
that it is produced by the following high-temperature reaction

(Coffee 1986):

NO+0--N+0 2  (9)

13



Figure 6 shows total ion currents observed at nominal m/z =

28.0 and 44.0 (each profile normalized to unity). These profiles show
the sum ot the concentrations of all species at these masses. As
shown, little information is available prior to utilizing CID to
differentiate between species. However, it is informative to note

C 2 H 4 /N 2 0/Ar Flame at 20 Torr
cD 1.0

C%

* m/z = 28
X m/z =44

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

Distance Above Burner (mm)

Figure 6. Total Observed Ion Signals at m/z = 28 and 44 for
Stoichiom&tric C21I4LI/j20/Ar Flame at 20 Torr.

that both profiles increase during the preheat region (with some
initial lag of m/z = 28.0), maximize in the luminous zone, diminish
and rapidly achieve a steady state. It should be noted that each
profile is the sum of at least two species of differing sensitivity

factors (differences of up to a factor of 5 are possible) and
corresponding concentrations. The experiment was therefore

14



repeated at m/z = 28 and 44, this time utilizing the entire triple
quadrupole mass filter with collision gas present in the second

C 2 H 4 /N 20/Ar Flame at 20 Torr
0 1.0

0.7-

0.6-

o 0.5-
0.4-

C0.C

V N 20.3- .
o 2H 4oe co2

0.2- N 2 0

0.1-

0-

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45
Distance Above Burner (mm)

Figure 7. Concentration Profiles (in Mole Fraction) of Species Found
by CID at m/z = 28 and 44 in Stoichiometric C2_H.L4N20/Ar
Flame at 20 Torr. Compare to Total Ion Signals Prior to
CID in Figure 6.

quadrupole. The mole fraction of each gas was then obtained from
Equation 3 using sensitivity factors obtained during calibration.

Comparison of Figure 6 with Figure 7 demonstrates the utility
of using CID to obtain the identity of flame species at the same
nominal
mass. The progress of the reaction is now easily traced by looking at
the consumption of reactants and the evolution of major products
(for profile of other products see Figure 4).
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3.2 Comparison with the C2IH4L/ 2/Ar Flame. The C2 H 4 /O 2/Ar

flame has been discussed in another report (Howard et al., 1992b)
and only its salient features are discussed here. As a primary
comparison of the flames, the temperature profiles are shown in
Figure. 8. These temperature profiles clearly demonstrates flame gas

2500-

000000 0 0

1500
1500-

0 C H/ /Ar

1000. U C2 H 4 /N 2 0/Ar

500.

0 - .... I .... I 1 . ..... I..... I

0 5 10 15 20 25 30 35 40 45
Distance Above Burner (mm)

Figure 8. Temperature Profile of CujH_4LN20/Ar and C2H4/L 2 /Ar

Flames. 0 = 1 at 20 Torr.

temperatures near the burner surface (about 500 K) that are in
excess of that measured by the imbedded thermocouples (about 310
K) for both flames.

Even though the luminous zones of both flames are comparable,
differer.ce are noted in the temperature profiles that indicate
dramatically different flame structure. The C2 H4 /0 2/Ar flame has a
very short period (less than 2 mm) before the temperature increases
rapidly. The comparable period for C2H 4/N 20/Ar is more than

16



double. It was noted in other flames that long induction periods
indicate that the flame is near blow-off and the burner does little to

stabilize the flame. The fact that the flame does stabilize above the

burner and that the luminous zone was flat and comparable in
thickness to that of the other flame indicates that the flam-, speed for
C2 H4/N 2 0/Ar is greater than that for C2 H4 /0 2/Ar.

Shortly after the induction period, the temperature gradient
increases for both flames. C2H 4/N 20/Ar increases most dramatically

and finally achieves a higher temperature- (2300 K versus 1960 K)
than the C2H 4 /0 2 /Ar flame at approximately the same distance

above the burner. After the peak temperature is attained in both

flames, the temperature remains essentially constant and then
decreases slowly (temperaures typically decrease high in the burnt
gas region due to radiative and other heat losses not involving the
flame).

Further evidence of the difference in flame structure is found
in the concentration profiles of major radical species. Figure 9
exhibits a comparison of profiles for H, 0 and OH. These species are
formed early in both flames and persist well into the burnt gas
region for both flames.

The peak near 3 mm (for C2 H4 /0 2/Ar) and 5 mm (for
C2H 4/N20/Ar) in the OH profile is found in approximately the lower
half of the luminous zone of the flame. A similar feature is also
noted for the O-atom profile for C2 H 4/0 2/Ar at the same distance as

the OH profile for the same flame. It is likely that a similar feature
for the O-atom profile for C2 H4 /N 2 0/Ar is not evident because
additional chemistry mechanisms (as explained below) affect
production of this radical at low temperatures and outweigh the
contribution of Equations 5 and 6. In C2 H4/N 2 0/Ar little 02 or H2 is

present at the burner surface although concentrations do increase

later in the flame (Howard, et al. 1992b). The peaks were also tested
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by collision-induced dissociation to determine if they were due to

contribution of other species at the same nominal mass as O-atom or
OH. These results were negative for other species other than that

indicated.

While the H-atom profiles are comparable for both flames,

significant differences are noted for both O-atom and OH. For
C2 H 4/0 2/Ar, the profiles of all three species have the same overall

shape and occur at approximately the same distance above the
burner. C2 H 4/N 2 0/Ar, on the other hand, demonstrates profiles that

are well-separated in distance. As mentioned earlier, the H-atom
profile occurs at essentially the same location as in the sister flame,
C2 H4 /0 2/Ar. The OH profile, however, is shifted to higher distances

above the burner and tracks more closely the temperature profile (as

expected). The O-atom profile, on the other hand, is shifted to lower
distances above the burner. The early appearance and peaking of
the profile can be explained by the presence of N2 0 as the primary
oxidizer. It has been determined in other N2 0 oxidizer flames that
the reaction (Anderson 1992)

N20+M--N 2 +M+O (10)

is instrumental in producing O-atom. As the temperature increases,
this reaction is accelerated, however, N20 concentration is being
depleted rapidly after 6 mm fHoward et al. 1992c) and other
reactions such as Equation 9 that occur to any extent only at high
temperatures (i. e., above 2000 K or above 10 mm) also utilize 0-
atom and diminish the concentration until partial equilibrium is
established well into the burnt gas region.

4. SUMMARY

Molecular-beam mass spectrometry with a triple quadrupole
mass spectrometer was used to determine concentration profiles
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(both relative and absolute, when possible) for all major and most
minor flame species (both stable and radical) in the C2 H4 /N 2 0/Ar
flame at 20 Torr. Collision-induced dissociation of initial ions at m/z
= 28 and 44 enabled resolution of the primary ion signal into the
contributions of the various species present at these nominal masses.
The combustion history of the flame was then clearly evident in the
consumption of reactants and appearance of products. Minor flame
products CO, NO and 02 were also noted. Appearance of products was

also correlated with temperature profile obtained by thermocouple.

This flame was compared to the C2H 4/0 2/Ar flame.
Temperature and species concentration profiles for H-atom, O-atom
and OH were compared. Collision-induced dissociation of initial ions
at m/z = 16 and 17 verified the identity of O-atom and OH,
respectively. H-atom profiles were essentially the same in both
flames, with O-atom and OH profiles for C2H 4 /0 2/Ar nearly
coincident with H-atom. For C2H 4/N 20/Ar, O-atom production was
accelerated early in the flame and diminished until a nearly constant
level was established. In the same flame, OH appeared much later
than H-atom and more nearly coincided with the temperature profile
as obtained by thermocouple measurements.
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