New Photocrosslinkable Polymers for Second Order Nonlinear Optical Processes

B.K. Mandal, R.J. Jeng, J. Kumar and S. Tripathy

University of Massachusetts Lowell
Department of Chemistry
1 University Avenue
Lowell, MA 01854

Office of Naval Research-Chemistry Division
Department of the Navy
Arlington, Virginia 22217-5000

Polymeric systems have been established as useful materials for second order nonlinear optical (NLO) processes, viz. frequency doubling, linear electro-optic effect, frequency mixing and parametric oscillation. Crosslinked systems are reported to exhibit stable second order properties. The system can be poled and photocrosslinked in the poled state to yield a material with stable optical nonlinearity. This approach is based on the inter- and intra- molecular photocrosslinking reactions of a photoreactive functionalized polymer. Since the second order susceptibility is directly proportional to the concentration of the nonlinear species and the temporal stability is dependent on the mobility of the nonlinear species in the polymer matrix, large and stable second order NLO properties are expected from these photocrosslinked polymers. In this communication, we report the synthesis and detailed characterization of this class of polymer.
Best Available Copy
New Photocrosslinkable Polymers for Second Order Nonlinear Optical Processes

by

B.K. Mandal, R.J. Jeng, J. Kumar and S. Tripathy

12 (1991)

University of Massachusetts Lowell
Department of Chemistry
Lowell, Massachusetts

May 14, 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale: its distribution is unlimited.
New photocrosslinkable polymers for second-order nonlinear optical processes

Braja K. Mandal, Ru J. Jeng, Jayant Kumar*, Sukant K. Tripathy*

Department of Chemistry, University of Lowell, Lowell 01854, Massachusetts, USA

(Date of receipt: March 21, 1991)

Introduction

Polymeric systems have been established as useful materials for second-order nonlinear optical (NLO) processes, viz. frequency doubling, linear electro-optic effect, frequency mixing and parametric oscillation. These polymers are prepared either by incorporating nonlinear species into a polymer matrix (guest-host systems) or by covalent attachment of the nonlinear species to a polymer backbone or side chains (functionalized systems). The functionalized systems permit higher amount concentration of nonlinear species into the polymer (for larger nonlinear susceptibility), and possess restricted molecular mobility (for increased stability). Problems of phase segregation are also avoided leading to excellent film homogeneity and optical clarity (for lower scattering loss). Typical organic second-order nonlinear species consist of at least one of each donor and acceptor groups attached to a π-moiety, e.g., 4-nitroaniline. Second-order NLO effect in polymers is observed only when the nonlinear species assemble in a noncentric organization. This can be achieved by aligning the nonlinear species in the polymer matrix using an external electric field, a process commonly known as poling. Poled functionalized polymers, in general, exhibit excellent NLO properties such as high electro-optic coefficient and low optical loss, but show poor temporal stability due to the deorientation of the nonlinear species after the electric field is withdrawn.

Crosslinked polymer systems have been reported to exhibit stable second-order properties. Recently, we reported, for the first time, a new class of crosslinked system by processing nonlinear species with a polymer like a guest-host system. The guest NLO molecule and the host polymer contained functionalized groups through which crosslinking may be introduced. The system can be poled and photocrosslinked in the poled state to yield a material with stable optical nonlinearity. More recently, we reported a different approach for obtaining a crosslinked polymeric system with high amount concentration of nonlinear species by photochemical reaction. This approach is based on the inter- and intramolecular photocrosslinking reactions of a photoreactive functionalized polymer (Fig. 1). The photocrosslinking reaction can be performed at a wavelength depending on the absorption profile of the photoreactive groups which are pendant to the polymer chains. Since the second-order susceptibility is directly proportional to the concentration of the nonlinear species and the temporal stability is dependent on the mobility of the nonlinear species in the polymer matrix,

a1 Department of Physics, University of Lowell, Lowell 01854, Massachusetts, USA.
large and stable second-order NLO properties are expected from these photocrosslinked polymers. In this communication, we report the synthesis and detailed characterization of this class of polymer.

Scheme 1:

\[
\begin{align*}
1a & : \quad \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{O} - \text{C} = \text{C} \quad \text{O} - \text{CH}_2 - \text{CH} - \text{CH}_2 \\
1b & : \quad \text{CH} - \text{CH}_2 - \text{O} - \text{C} = \text{C} \quad \text{O} - \text{CH}_2 - \text{CH} - \text{CH}_2 - \text{N} - \text{CH}_2 \\
1c, d & : \quad \text{CH} - \text{CH}_2 - \text{O} - \text{C} = \text{C} \quad \text{O} - \text{CH}_2 - \text{CH} - \text{N} - \text{CH}_2 \\
1c & : \quad \text{C}_6\text{H}_5 - \text{CH} = \text{CH} - \\
1d & : \quad \text{C}_9\text{H}_8 - \text{CH} - \text{CH} = \text{CH} -
\end{align*}
\]
Results and discussion

The synthesis of the photocrosslinkable polymers involves two steps: the synthesis of functionalized NLO prepolymer and the chemical attachment of photoreactive groups. The prepolymers were prepared by reacting an epoxy and an amino compound consisting of the nonlinear species. Epoxy compounds with and without the nonlinear species 1a and 2a, respectively, have been used to investigate the effect of concentration of the nonlinear species on the second-order susceptibility. Appropriate photoreactive groups were then attached to the prepolymers 1b and 2b by esterification of hydroxyl groups using the acid chloride of the photoreactive chromophores. Two photoreactive groups, cinnamoyl and cinnamylideneacetyl differing in reactivities have been used to investigate the photocrosslinkable behavior. The synthetic route for obtaining the photocrosslinkable polymers 1c, 1d, 2c and 2d is schematically shown below (the nonlinear species is indicated by the dotted line).

The epoxy compound 1a contains no nonlinear species. Hence polymers 1c and 1d have a low concentration (~21 wt-%) of nonlinear species (Scheme 1). On the other hand, polymers 2c and 2d are loaded with relatively higher concentration of nonlinear species (52 wt-% and 48 wt-%, respectively) due to the presence of the nonlinear species in the epoxy compound 2a, as well (Scheme 2).

Scheme 2:

All polymers are soluble in common organic solvents and form excellent optical quality films from solution in an organic solvent or mixture of organic solvents. Electric field poling is effective at a temperature close to the glass transition temperature (T_g) of the polymer. The nonlinear species can be frozen-in into the preferred orientation
by photocrosslinking. Efficient photocrosslinking reaction occurs at a wavelength close
to the absorption maximum of the photoreactive groups. For example, polymers
containing cinnamoyl and cinnamylideneacetyl groups, with absorption maxima at
280 nm and 320 nm, respectively, can be crosslinked within a short exposure time at
254 nm and 366 nm, respectively. Typical $2 + 2$ photodimerization of carbonyl group
activated double bond is shown in Scheme 3$^b)$. In the present work the concept has
been established with a simple nonlinear species, 4-nitroaniline. Further investigation on
photocrosslinking behavior and NLO properties of this and other systems, where the
nonlinear species has considerably larger molecular hyperpolarizability (e.g., donor,
acceptor derivatized azo, stilbene and azomethine dyes), will be published elsewhere.

Scheme 3:

Experimental part

Instrumentation

1H NMR spectral data were obtained on a Bruker WP-270 NMR spectrometer. IR spectra were
taken on a Bruker-IFS-113V FT-IR spectrophotometer. Ultraviolet-visible (UV-VIS) spectra were
recorded on a Perkin-Elmer-559 spectrophotometer. The heats of phase transitions were
determined with the aid of a DuPont 2910 differential scanning calorimeter under a flow of
nitrogen, with a heating rate of 10 K/min. Number- and weight-average molecular weights (M_n
and M_w) of the polymers were determined with a Waters 510 HPLC unit combined with a Waters
410 differential refractometer using chloroform as an eluent. The gel-permeation chromatography
(GPC) calibration is based on polystyrene standards. The used column set consisted of Waters
styrage$^{100}, 500, 1000$ and 10000 Å.

Materials

4-Nitroaniline (Aldrich), 4-nitropyrocatechol (Aldrich), and cinnamoyl chloride (Aldrich) were
used without further purification. Bisphenol-A diglycidyl ether$^a)$ (1a) was obtained from a
commercial source (Shell, Epon-828) and used as received. 4-Nitropyrocatechol diglycidylether$^b)$
(2a) was prepared following the procedure described for 1a$^b)$. Cinnamylideneacetyl chloride was
synthesized according to the method described in the literature$^{10)}$. Tetrahydrofuran (THF)
(Aldrich) and triethylamine (Aldrich) were distilled under nitrogen before use.

Polymers 1e and 1d: 7.5 g of 1a and 3 g of 4-nitroaniline were heated at 140 °C for 4 h and
160 °C for 3 h in a sealed tube. The prepolymer 1b was powdered and unreacted 4-nitroaniline
was removed from the crude mixture by vacuum sublimation at 140 °C for 1 h. Yield: 10 g (95%);
glass transition temperature $T_g = 54$ °C.

$^a)$ Systematic IUPAC name: 2,2-bis[4-(2,3-epoxypropoxy)phenyl]propane.
$^b)$ Systematic IUPAC name: 3,4-bis[2,3-epoxypropoxy]nitrobenzene.
New photocrosslinkable polymers for second-order nonlinear optical processes

In one reaction, 3.5 g of cinnamoyl chloride in 15 mL of tetrahydrofuran (THF) was added dropwise to a solution of 3.5 g of 1b and 10 mL of triethylamine in 15 mL of THF, and stirred for 24 h at room temperature. The dark brown solution was precipitated into 800 mL of methanol. The polymer 1e was filtered, washed with methanol and dried under reduced pressure at room temperature. Yield: 4.2 g (78%); Tg = 78 °C; Mw = 2500; Mn = 8500.

IR (KBr): 1242 (s; C—O—C), 1510, 1327 (s; NO2), 1713 cm⁻¹ (s; CO).
UV-VIS (film): 279 nm (wavelength of maximum absorption λmax (cinnamoyl)); 375 nm (λmax (NLO)).

1H NMR (CDCl₃): δ = 1.61 (s, 6 H, CH₃); 3.57 – 4.20 (m, 4 H, OCH₂; 4 H, NCH₂; 2 H, CH); 6.55 – 7.95 (m, 22 H, ArH; 4 H, CH = CH).

C_{41}H_{42}O_{8}N₂ (738)

Calc. C 73.17 H 5.69 N 3.79
Found C 73.14 H 5.11 N 3.05

In a second reaction, 4 g of cinnamylideneacetyl chloride in 15 mL of THF was added dropwise to a solution of 4 g of 1b and 10 mL of triethylamine in 15 mL of THF and stirred for 24 h at room temperature. The dark brown solution was precipitated into 900 mL of methanol. The polymer 1d was filtered, washed with methanol and dried under reduced pressure at room temperature. Yield: 5 g (76%); Tg = 94 °C.

IR (KBr): 1235 (s; C—O—C), 1510, 1321 (s; NO2), 1708 cm⁻¹ (s; CO).
UV-VIS (film): 315 nm (λmax (C₆H₅CH = CHCH = CHCOC)); 375 nm (λmax (NLO)); 460 nm (λcut off).

1H NMR (CDCl₃): δ = 1.65 (s, 6 H, CH₃); 3.62 – 4.30 (m, 4 H, OCH₂; 4 H, NCH₂; 2 H, CH); 6.51 – 8.05 (m, 22 H, ArH; 8 H, CH = CH).

C_{40}H_{40}O_{8}N₂ (790)

Calc. C 74.43 H 5.82 N 3.54
Found C 74.27 H 5.75 N 3.19

Polymers 2c and 2d: 8 g of 2a and 4 g of 4-nitroaniline were heated at 140 °C for 1 h and 160 °C for 10 h in a sealed tube. Prepolymer 2b was purified by vacuum sublimation at 140 °C for 1 h. Yield: 11.5 g (96%); Tg = 36 °C.

In one reaction, 4 g of cinnamoyl chloride in 15 mL of THF was added dropwise to a solution of 4 g of 2b and 10 mL of triethylamine in 15 mL of THF and stirred for 24 h at room temperature. The dark brown solution was precipitated into 800 mL of methanol. The polymer 2e was filtered, washed with methanol and dried under reduced pressure at room temperature. Yield: 4.5 g (68%); Tg = 78 °C; Mw = 1500; Mn = 2500.

IR (KBr): 1279 (s; C—O—C), 1518, 1327 (s; NO2), 1719 cm⁻¹ (s; CO).
UV-VIS (film): 284 nm (λmax (cinnamylideneacetyl)); 374 nm (λmax (NLO)); 480 nm (λcut off).

1H NMR (CDCl₃): δ = 3.59 – 4.22 (m, 4 H, OCH₂; 4 H, NCH₂; 2 H, CH); 6.48 – 7.95 (m, 17 H, ArH; 4 H, CH = CH).

C_{46}H_{46}O_{8}N₂ (665)

Calc. C 64.96 H 4.66 N 6.32
Found C 63.22 H 4.59 N 6.03

To produce polymer 2d, 4 g of cinnamylideneacetyl chloride in 15 mL of THF was added dropwise to a solution of 4 g of 2b and 10 mL of triethylamine in 15 mL of THF and stirred for 24 h at room temperature. The dark brown solution was precipitated into methanol (900 mL). The polymer 2d was filtered, washed with methanol and dried under reduced pressure at room temperature. Yield: 4.6 g (65%); Tg = 88 °C.

IR (KBr): 1279 (s; C—O—C), 1518, 1343 (s; NO2), 1711 cm⁻¹ (s; CO).
UV-VIS (film): 318 nm (λmax (C₆H₅CH = CHCH = CHCOC)); 385 nm (λmax (NLO)); 480 nm (λcut off).

1H NMR (CDCl₃): δ = 3.55 – 4.28 (m, 4 H, OCH₂; 4 H, NCH₂; 2 H, CH); 6.55 – 8.11 (m, 17 H, ArH; 8 H, CH = CH).
Partial financial support from the Office of Naval Research is acknowledged. Mr. E. Prakeenavincha’s help in obtaining the NMR spectra is appreciated.

Richard W. Drisko (1)
Naval Civil Engineering Laboratory
Code L52
Port Hueneme, CA 93043

James S. Murday (1)
Naval Research Laboratory
Washington, DC 20375-5000

Robert Green, Dir. (1)
Naval Weapons Center
China Lake, CA 93555-6001

Bernard E. Douda (1)
Naval Surface Warfare Center
Indianapolis, IN 47522-5000

Dr. Harold H. Singerman (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Eugene C. Fischer (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Elek Lindner (1)
Naval Command, Control and Ocean Surveillance Center
RDT&E Division
San Diego, CA 92152-5000

Dr. Richard W. Drisko (2)
Naval Research Laboratory
Code 1113
30 North Quincy Street
Arlington, VA 22217-5000

James S. Murday (1)
Naval Research Laboratory
Washington, DC 20375-5000

Robert Green, Dir. (1)
Naval Weapons Center
China Lake, CA 93555-6001

Bernard E. Douda (1)
Naval Surface Warfare Center
Indianapolis, IN 47522-5000

Dr. Harold H. Singerman (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Eugene C. Fischer (1)
Naval Surface Warfare Center
Carderock Division Detachment
Annapolis, MD 21402-1198

Dr. Elek Lindner (1)
Naval Command, Control and Ocean Surveillance Center
RDT&E Division
San Diego, CA 92152-5000