
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A251 355

DTIC_
R D-0ELECTE

JUN17 1992 E
A D

THESIS

AN INTRODUCTION TO
X WINDOW

APPLICATION DEVELOPMENT

by

David Michael Rust

March 1992

Thesis Advisor: Kishore Sengupta

Approved for public release; distribution is unlimited.

92-15606
I 1iiIfIligllll1 l(1 5lllllll92 6 15 1:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSFIED Ib. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTONIAVAILABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
-Administrative Sciences Department (if applicable) Naval Postgraduate School
Naval Postgraduate School AS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)

AN INTRODUCTION TO X WINDOW APPLICATION DEVELOPMENT (U)

12. PERSONAL AUTHOR(S)
Rust, David M.
13a. TYPE OF REPORT 13b. TIME COVERED - 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Master's Thesis FROM 10/90 TO 03/92 1992, March, 23 70
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECTTERMS (Continue on reverse if necessary and identify by blocknumber)
FIELD GROUP SUB-GROUP Computer Programming, Graphical User Interface, portable systems,toolkits, widget, window, windowing system, Xlib, X Window

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The challenge to developing applications for computer-based windowing systems is generating code for the graph-

ical interface elements. Each windowing system offers its own set of protocols for building the graphical units, but
these protocols are rarely portable across different hardware platforms. The X Window System transcends many of
these incompatibilities and offers a standard for creating graphics. It is operating system and network independent.
However, the basic programming library for X Window offers little sophistication for an application's graphical in-
terface development. Higher level tools make up for the shortcomings of the generic X Window System.
This thesis converts an Expert System Knowledge Acquisition and Policy Evaluation program using Cognitive Feed-
back (ESKAPE/CF) from the SunView windowing system to X Window. The new application, called XESKAPE/CF,
contains the same functionality as the original program even though the migration from SunView to X Window re-
,quired an extensive reworking of the program's interface code. The thesis also extends the basic X Window library
of functions with more advanced objects. These objects offer additional functionality to the XESKAPE/CF applica-
tion's interface.
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

Mx UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Ilude Area Code) 22c. OFICE SYMBOL
Kishore Senupta (0)AS/Se

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

AJl other edtons are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

An Introduction to X Window Application Development

by

David Michael Rust
Lieutenant, United States Navy

B.S., Rice University, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: ,__ __ __ ___ __ __
David Michael Rust

Approved By: y,- -
Kishore Sengu hWsAd4isor

Tung Bui, Second Reader

David R. Whipie, Ch ,
Department of Administrat.eScience

ii

ABSTRACT

The challenge to developing applications for computer-based windowing systems is

generating code for the graphical interface elements. Each windowing system offers its

own set of protocols for building the graphical units, but these protocols are rarely portable

across different hardware platforms. The X Window System transcends many of these

incompatibilities and offers a standard for creating graphics. It is operating system and

network independent. However, the basic programming library for X Window offers little

sophistication for an application's graphical interface development. Higher level tools

make up for the shortcomings of the generic X Window System.

This thesis converts an Expert System Knowledge Acquisition and Policy Evaluation

program using Cognitive Feedback (ESKAPE/CF) from the SunView windowing system

to X Window. The new application, called XESKAPE/CF, contains the same functionality

as the original program even though the migration from SunView to X Window required

an extensive reworking of the program's interface code. The thesis also extends the basic

X Window library of functions with more advanced objects. These objects offer additional

functionality to the XESKAPE/CF application's interface.

Accesion For

NTIS CRA&I -.

DTIC TAC .-}

U as :oucaethou
Jys.ication

B y
Distr ibutlion I

Availability 0 !des

Avait ~.of
Dist

iii

TABLE OF CONTENTS

INTRODUCTION .. 1

A. THESIS OBJECTIVES AND SCOPE .. 1

B. BACKGROUND ... 2

C. ORGANIZATION OF THE STUDY ... 2

D. DISCLAIM ER .. 3

II. X W INDOW PROGRAM M ING LAYERS ... 4

A. PROGRAM M ING IN X W INDOW ... 4

1. W idgets .. 4

2. Toolkit Hierarchy .. 4

B. XLIB: THE X W INDOW LIBRARY ... 5

C. M IDDLE LEVEL TOOKITS .. 5

1. Intrinsics .. 6

a. Xt: The X Toolkit ... 6

b. Xaw: The Athena W idget Set .. 6

2. XView .. 6

D. HIGH LEVEL TOOLKITS ... 7

1. Open Look Intrinsics Toolkit (OLIT) .. 7

2. M otif .. 7

III. AN INTRODUCTION TO XLIB PROGRAMMING TECHNIQUES 8

A. GETTING STARTED .. 9

1. Connecting the Client to the Server .. 9

2. Linking to a Screen ... 9

iv

3. Loading Fonts ... 10

B. USING WINDOWS ... 10

1. Creating W indow s .. 10

2. The Graphics Context ... 12

3. Mapping Windows .. 12

4. Drawing Inside the Window ... 13

C. EVENT LOOP PROCESSING .. 13

1. Handling User Input .. 14

2. Refreshing the Screen ... 15

IV. XESKAPE/CF: THE X WINDOW VERSION OF ESKAPE/CF 16

A. FUNCTIONAL COMPARISON TO ESKAPE/CF 16

B. MOTIVATION FOR THE PROGRAM CONVERSION 19

C. INITIAL APPROACH TO THE PROGRAM CONVERSION 19

D. MAIN PROGRAM CONTROL: THE EVENT LOOP 20

E. BUILDING WIDGETS ... 23

1. Interactive Text .. 23

a. Creating the Widget .. 25

b. Tying the Widget to the Event Loop ... 26

c. Using the Widget In the XESKAPE/CF Program 32

2. Static Text ... 35

3. B uttons .. 37

V. CONCLUSIONS AND RECOMMENDATIONS ... 39

A. ENVIRONMENTAL CONSIDERATIONS ... 39

1. Portability .. 39

V

2. Interface Consistency ... 39

B. APPLICATION CONSIDERATIONS ... 40

1. Application Size .. 40

2. Programming Experience ... 40

APPENDIX A: THE HISTORY OF X WINDOW ... 41

APPENDIX B: THE STRUCTURE OF X WINDOW .. 43

APPENDIX C: THE GETTEXT WIDGET ... 47

APPENDIX D: GLOSSARY OF TERMS ... 57

LIST OF REFERENCES .. 60

BIBLIOGRAPHY ... 62

INITIAL DISTRIBUTION LIST ... 63

vi

I. INTRODUCTION

A. THESIS OBJECTIVES AND SCOPE

The emergence of windowing systems on computer workstation environments

introduces entirely new aspects to application development. These graphic-intensive

systems burden developers because of the complexities of programming onto bit-mapped

screens (Brown 1989). Graphical applications are usually linked heavily to a particular

hardware platform and operating system. Therefore, porting such applications to multiple

platforms becomes costly in both time and programming effort.

The main purpose of this thesis is to transplant James Conner's Expert System

Knowledge Acquisition and Policy Evaluation tool using Cognitive Feedback,

ESKAPE/CF (1991) program from the SunView windowing system to X Window. The

rationale of this conversion is to promote a more portable operational environment for the

application. The new program, named XESKAPE/CF for X Window version of

ESKAPE/CF, contains the same functionality as the original program, however the

migration from SunView to X Window required an extensive reworking of the program's

interface code. The goal of achieving maximum portability within X Window itself

required the use of only low-level X routines. This restriction forced the construction of

several interface objects to mimic those used in the original ESKAPE/CF application.

The scope of this thesis is limited to an evaluation of the low-level X Window

programming required for construction of the XESKAPE/CF program interface.

Additionally the thesis describes the locally generated extensions to the basic X Window

library.

B. BACKGROUND

Bitmapped graphical displays have displaced the character display terminal as the

mainstream interface tool for computer workstations (Lainhart 1991). This movement

toward the graphical interface attempts to transcend the barriers of incompatible hardware

platforms and operating systems. In addition, the desire for application consistency and

portability has driven systems toward graphical displays (Clanton 1991).

In spite of much variance in operating systems and network topologies, the X Window

system overcomes many traditional compatibility issues and offers a truly standardized

windowing system. It gains strength from its network and operating system independence.

X Window is portable across hardware, software and network systems (Brown 1989). In

recent years it has become a standard for workstation windowing systems (Thareja and

Ramachandran 1991). As a programming environment, generic X Window offers little

except low-level graphics routines. Nevertheless, numerous higher level development tools

have been built to extend the windowing environment.

C. ORGANIZATION OF THE STUDY

Beyond the introduction and conclusion, this thesis consists of three sections. Chapter

II describes the different programming levels associated with X Window and some of the

development tools available for the system. Chapter III introduces the more critical aspects

of low-level programming within X Window. It serves as a brief tutorial on building a basic

X Window program.

Chapter IV describes the motivation and methodology used to convert the

ESKAPE/CF program into the XESKAPE/CF application. The extensions to the basic X

Window library are explained and examples of their incorporation within XESKAPE/CF

are provided.

Appendix A contains a brief history of the X Window system. Such knowledge

provides the reader with the background and motivation behind the windowing system.

Appendix B describes the structure of X Window and how it relates to the hardware

platforms on which it operates. Source code providing a sample extension to the basic X

Window library is listed in Appendix C. Appendix D presents a glossary of terms related

to windowing systems and X Window in particular.

D. DISCLAIMER

While much effort has been spent testing the XESKAPE/CF program and its

associated code, no guarantees are implied or made. Operating or modifying the application

will be done at the user's own risk. The author hopes that the XESKAPE/CF program

serves as an effective and productive tool. Any comments or inquiries concerning the

program's source code should be directed to the author or the thesis advisor.

U. X WINDOW PROGRAMMING LAYERS

A. PROGRAMMING IN X WINDOW

The X Window System contains several levels of tools to aid in program development.

Near the bottom, these tools retain the advantage of X Window's standardization and

portability. As a programmer moves higher in tool sophistication, the more proprietary

their work becomes.

1. Widgets

The graphical user interface concept opens the user to a number of graphical

objects that can be displayed and manipulated on the screen. These objects can be windows,

buttons, scroll panels and sliders. The common name for these data structures is widget.

Any object that can be created and manipulated fits the definition (Johnson and Reichard

1991). Widgets are reusable and can be uniquely altered for the individual implementation

(Lainhart 1991).

2. Toolkit Hierarchy

There are three distinct levels to the X Window hierarchy of toolkits. Figure 1

shows the relationship of these levels within the X Window environment. In its most

Xaw Motif OLIT High Level Toolkits

Xt XView Middle Level Toolkits

Xlib

Figure 1. The X Window Toolkit Hierarchy

generic form X Window contains only a low-level set of library routines called Xlib. These

functions allow access to the system's graphics and interface functions (Reichard and

Johnson 1991). Sitting on top of the Xlib library are the X Toolkit Intrinsics. This layer

4

provides support for generic widgets as well as the ability to create more customized ones.

Toolkits residing at this intermediate level are middle level toolkits. The top-level toolkits

are known as widget sets. They are robust widget sets, providing powerful, sophisticated

objects to the programmer.

B. XLIB: THE X WINDOW LIBRARY

Xlib is a set of C programming language routines that link directly to the X server. It

represents the closest thing to assembly language in the X Window System (Yee 1991).

Xlib protects the programmer from having to worry about the details of connecting to an X

server and maintaining a network link (Reichard and Johnson 1991). Containing over 300

routines, Xlib offers functions that create, move, resize and destroy windows; select fonts;

draw text and graphics in color, gray scale and monochrome; and recognize user input from

the keyboard and mouse.

However, no sophisticated objects exist in Xlib. The library offers no widgets and the

programmer must handle details associated only with the graphical interface. All graphical

objects must be created from the basic building block of Xlib, the window. This lack of

sophistication does not imply that Xlib fails as a useful programming tool. On the contrary,

it serves as the basis for all higher level intrinsics and widgets sets. The portability of X

Window applications comes directly from the standardization of these Xlib routines.

C. MIDDLE LEVEL TOOKITS

In order to remove some of the abstraction from the programmer, middle-level toolkits

have been built above the Xlib level. While numerous toolkits at this level exist, significant

examples include the X Consortium's Intrinsics and Sun's XView.

1. Intrinsics

The most widely known and utilized toolkit is the Intrinsics. The X Consortium

sets the standard for the Intrinsics and imposes its inclusion in X Window implementations.

(Lainhart 1991)

a. Xt: The X Toolkit

The Intrinsics consists of two parts. The first, Xt, is a set of routines built on

top of Xlib to facilitate program design (Lainhart 1991). Xt does not contain widgets. It

helps the programmer create them. Many higher level toolkits use the Xt intrinsic as their

interface to the Xlib library.

b. Xaw: The Athena Widget Set

While part of the Intrinsics, the Xaw toolkit or Athena Widget Set is actually

a high level toolkit. It uses Xt as its foundation to establish widgets and contains the major

objects desired in a widget set. Additionally, the Athena Widget set is the X Consortium

standard toolkit.

2. XView

Sun Microsystems offers three toolkits for use in the X Window environment: the

OPEN LOOK Intrinsics Toolkit (OLIT), XView and the NeWS Toolkit (TNT). Only

XView uses Xlib as its sole basis and therefore qualifies as a middle-level toolkit. TNT is

fairly new and uses the PostScript language for client/server communications. It will not be

discussed in this thesis. (Millikin 1990)

The XView Toolkit was designed to aid in the porting of existing SunView

applications to the X Window environment. Sun attempted to retain as much of the

graphical interface as possible but still had to abandon the SunView Pixrect library in favor

of the X Window Xlib graphics routines. Unfortunately the task of converting an

application from Sun Windows (using SunView) to X Window (using XView) is not as

6

simple as the process might appear. Differences in object modeling and imaging account

for some of the difficulties. (Millikin 1990)

D. HIGH LEVEL TOOLKITS

The high-level toolkits provide the programmer with the most sophistication in

widgets while adhering to a particular graphical interface appearance. The two most widely

used toolkits are Unix Software Laboratories' Open Look Intrinsics Toolkit (OLIT) and

Open System Foundation's Motif.

1. Open Look Intrinsics Toolkit (OLIT)

OLIT is the toolkit for the Open Look environment. It utilizes the Xt intrinsics to

define its interface components included in the Open Look widget set. The resultant

functionality of applications built on the OLIT is tied heavily to Open Look's graphical

interpretation of the X Window environment. While portability to other window managers

is possible, OLIT's reliance on the Open Look widget set locks an application within the

entire Open Look/ Open Windows concept.

2. Motif

Motif can be described as a window manager, but that portion is simply an

addition. It is really a full-fledged toolkit. Rapidly becoming a strong contender for the X

Window standard, Motif offers a very attractive three-dimensional, sculptured style to its

windows and widgets. However, functionally Motif does not differ much from OLIT.

(Padovano 1991)

a m u u mlm n n nn u

11. AN INTRODUCTION TO XLIB PROGRAMMING TECHNIQUES

Unlike more traditional programming using a third generation language, programming

using the X Window library (Xlib) presents some unanticipated challenges. The existence

of only windows within the Xlib toolkit forces a programmer to become more creative if

sophisticated structures are desired. A window need not be limited to just a viewing area.

It can be designed into a push button. In turn the push button can become part of a scroll

panel. Windows can serve as the foundation as well as the building blocks of many objects

in an Xlib program.

The X Window library offers the necessary functions to create almost any application.

Most of the approximately 300 commands are simple function calls for use within the C

programming language. The programmer need only initialize the proper variables and then

include them as parameters of the Xlib calls. However, the Xlib functions present the

programmer with only basic building blocks. Windows can be created, moved, resized and

destroyed. Graphics and text can be drawn inside the windows. Fonts can be loaded and

icons created.

The comparison by Yee (1991) of Xlib to assembly language demonstrates the scope

within which a programmer must work. In order to create an Xlib program that prints a

simple message onto the screen the following steps must occur:

a. Establish a connection with the X server and one of its screens
b. Load a font for the text
c. Create the window in which to place the text
d. Create a graphics context with which to draw the text
e. Map the window onto the screen
f. Make the window visible on the screen
g. Draw the text in the window
h. Continually handle events pertaining to this program

While much of this process appears intimidating, a programmer can still produce

powerful and very streamlined applications using only the Xlib commands.

A. GETTING STARTED

Xlib first requires the initialization of several link and structures before the first

window can be created. Most of these procedures exist because of the network-oriented

nature of X Window.

1. Connecting the Client to the Server

The client/server relation within X Window necessitates establishing a

connection between the application program and the X server. The Xlib command

XOpenDisplay links the client to the server.

Display*display;
char*display-name = NULL;

display = XOpenDisplay (displayname);

While not a particularly difficult task, the programmer should be aware that Xlib

does not handle errors in setting up this connection. Placing the XOpenDisplay command

inside an if statement along with an appropriate message will notify the user of potential

problems with establishing this critical connection. (Nye 1990)

2. Linking to a Screen

A server can be further subdivided into screens. The screen refers to the physical

display device, usually a CRT. The client must know how to identify the screen onto which

it will ultimately display windows and data. A path to the desired screen is obtained with

the DefaultScreen command.

Display *display;
int screen;

screen = DefaultScreen(display);

Most servers will only control a single screen, but some will connected to two or

more. Screen identification is necessary when creating a window hierarchy.

3. Loading Fonts

A font in X Window is a series of bitmaps representing the shapes of a character

set (Nye 1990). These shapes may be text, symbols or shapes. Two methods exist to

identify fonts in Xlib. One method uses a font ID number while the other method uses a

pointer to a font structure. The XLoadFont command returns a font ID number.

Display *display;
char *font name;
Font fontid;

font id = XLoadFont(display, fontname);

The XLoadQueryFont command returns a pointer to a font's XFontStruct. This

structure contains sizing information for the font.

XFontStruct *font-structure;

fontstructure = XLoadQueryFont(display, font-name);

Before any font resource can be accessed by an application it must be loaded. Font

libraries containing a multitude of different font styles and sizes exist for X Window

systems. The standard, default fonts named "fixed" and "variable" are available in nearly

every system.

B. USING WINDOWS

Xlib provides full control over windows created in the X Window environment. While

toolkits may offer more robust objects than just windows, Xlib offers control over minute

details associated with windows. Basic Xlib window operations involve window creation,

mapping and utilization.

1. Creating Windows

X windows exist in a hierarchy. Each window has a parent window and may have

one or more windows as either siblings or offspring. All windows attached to a screen are

10

the ultimate descendants of a special window called the root window. Covering a screen's

entire background, the root window provides a common parent for an application's main

windows (Johnson and Reichard 1990).

In order to define the root window structure the programmer must utilize the

server link and screen identifier. The RootWindow command returns the value representing

* the top level window.

Display *display;
int screen;
Window parentwindow;

parentwindow = RootWindow(display, screen);

The Xlib commands XCreateSimpleWindow and XCreateWindow both initialize

windows below the root window level. The level of detail regarding window parameters is

the main difference between the commands. XCreateSimpleWindow inherits many window

attributes from the parent window while XCreateWindow forces the programmer to

explicitly define them.

Display *display;
Window parent-window,

window;
int x, y;
unsigned int width, height, borderwidth;
unsigned long border.pixeltype, backgroundfiixel type;

window = XCreateSimpleWindow(display, parent window,
x, y, width, height, border_width,
border.pixeltype, background_pixel type)

Through these Xlib calls the programmer establishes such attributes as window

location, size and parent. Additionally, each window has a multitude of other attributes that

determine unique aspects of the window's appearance and function. The X Window

programmer maintains full control over windows via Xlib functions accessing these

attributes.

11

2. The Graphics Context

If a window is to contain any data at all it will most likely require the use of one

or more Xlib graphics primitives to draw the data. The graphics context (GC) is a resource

that determines the appearance of all graphics inside a window except the border and

background (Nye 1990). A graphics context is established by the Xlib XCreareGC

command and can be modified by several commands that affect individual GC attributes.

Display *display;
Window window;
unsigned long gcattributemask;
XGCValues gc_attributevalues;
GC graphics context;

graphics-context = XCreateGC(display, window,
gc~atribute_mask,
&gc attribute values);

Graphic contexts serve to minimize the communications between client and

server. The GC resource's information resides in the server after being initially sent from

the client. The server will display all graphics according to the graphic context's style.

Traffic between the client and server is reduced since the client need not transmit graphical

style information for each call to a graphics primitive.

3. Mapping Windows

After the program has created a window, it must make an Xlib call to map the

window onto the screen. Mapping a window tells the server that the window is ready to be

drawn onto the screen. The Xlib command XMapWindow notifies the server of the

program's intention.

Display *display;
Window window;

XMapWindow(display, window);

12

Windows that have been mapped will not become visible until after the server's

event queue has been emptied. Whether or not the window is obscured by another

application's window is a concern for the window manager. However, the programmer

must control the stacking order of overlapping windows within an application.

4. Drawing Inside the Window

With the window visible and a GC assigned to it, all graphics primitives in Xlib

are ready for use. Being primitives, the tools do not offer much beyond drawing text, points,

lines, arcs, circles, ellipses and rectangles (Nye 1990). Nevertheless, a programmer can

create more sophisticated graphics from any or all of these basic tools.

Most of the graphics primitives require only the destination window, location and

sizing values for the item to be drawn. For example, the XDrawRectangle command draws

a rectangle in the designated window. Other Xlib commands follow a similar pattern.

Display *display;
Window window;
GC gc;
int x, y;
unsigned int width, height;

XDrawRectangle(display, window, gc, x, y, width, height);

C. EVENT LOOP PROCESSING

X Window programs are event-driven. An event is an asynchronous notification from

the server to the client of particular actions such as input from the keyboard or exposure of

a window. Events are only sent to a client if the client specifically requested notification of

the event's occurrence (Nye 1990). Unlike other types of programming, event-driven

programs are not sequential. They do not wait for input at a particular point in the program

code. Instead, an X Window application cycles continually through an event loop waiting

13

for messages from the server that certain actions have occurred. The client will then

respond to these events if the program includes code to handle them.

A common structure for an event loop is a while loop with no terminating condition.

Within this loop a switch structure based on event type will direct program flow to the

appropriate action. (Nye 1990)

Display *display;
XEvent event;

while (1==1)
(

XNextEvent(display, event);
switch(event.type)
(

case Expose:
/* Perform action for Expose event *1
break;

case ButtonPress:
/* Perform action for ButtonPress event *
break;

default:
/* Perform default action *1
break;

}

Since every program should have a graceful means of terminating, one of the actions

should lead to an exit routine.

1. Handling User Input

Events resulting from direct user action include ButtonPress, ButtonRelease and

KeyPress events. After one of these events is recognized, the event loop directs the program

flow to routines tailored to respond to the input. First, the program must determine from

which window an event originated. Knowing the window localizes where the input

occurred. A ButtonPress event from a window representing a push button will initiate the

button's notify procedure. Likewise, KeyPress events, which indicate keyboard input, must

14

be queried to extract the character value entered. Appropriate action will then result based

upon the character entered.

2. Refreshing the Screen

The Expose event for a window results from either the initial mapping of a

window or the revealing of all or part of it by another window. Such an event should

command that the window's contents be redrawn. Most window managers will redraw the

window's border but will do nothing to restore any graphics previously drawn inside that

border. Therefore the event loop determines the window associated with the event and then

calls a procedure that redraws its contents.

15

IV. XESKAPE/CF: THE X WINDOW VERSION OF ESKAPE/CF

The X Window version of the Expert System Knowledge Acquisition and Policy

Evaluation tool using Cognitive Feedback (XESKAPE/CF) serves to extract policy

knowledge from an expert. As with the original application called ESKAPE/CF, it reduces

the time required for a knowledge engineer to capture expertise for an expert system

(Conner 1991).

A. FUNCTIONAL COMPARISON TO ESKAPE/CF

The ESKAPE/CF program operates on the SunView interface. XESKAPE/CF is

designed for X Window. As knowledge acquisition programs, the XESKAPE/CF and

ESKAPE/CF applications are identical. They use the same data structure for storing the

expert knowledge, and files generated by one program are fully compatible with those of

the other. The majority of the code affecting knowledge representation, storage and

manipulation remains unaltered following the conversion to X Window.

The XESKAPE/CF program also does little to modify the interface of the original

ESKAPE/CF program. Figure 2 shows the main screen for the ESKAPE/CF program. In

Figure 3 the X Window version, XESKAPE/CF, demonstrates the functional similarity

between the two applications. The subtle differences in object appearance results from the

manner in which these objects are drawn by each windowing system. A button in one

program may look different than a button in the other application; however, functionally

the buttons initiate the same action. This characteristic holds true for many of the other

interface objects.

16

In

- Figure 2. Main ESKAPE/CF Screen

17

IHI

Figure 3. Main XESKAPE/CF Screen

18

B. MOTIVATION FOR THE PROGRAM CONVERSION

The desire to extend the portability of the ESKAPE/CF program motivated the

conversion from SunView to X Window. SunView is a proprietary windowing system and

does not have the widespread base of the X Window system. Porting the application to X

Window provides a larger spectrum of users to verify the application's validity.

Two main goals drove the methodology of converting ESKAPE/CF to XESKAPE/CF.

The first goal required XESKAPE/CF to remain compatible with the SunView version. The

program data files had to be fully portable as a minimum standard. Ideally, the program's

data structures and numerical methods would be left unchanged in XESKAPE/CF. This

functional level of compatibility would further enhance the portability of the ESKAPE/CF

concept.

The second conversion goal mandated that XESKAPE/CF operate independently of

any vendor's toolkit. This restriction limited the scope of application conversion to Xlib

since Xlib programs operate on any standard X Window system. By programming

XESKAPE/CF at the Xlib level, full X Window portability could be realized without the

need for building multiple versions for the different toolkits.

C. INITIAL APPROACH TO THE PROGRAM CONVERSION

The initial approach to the program conversion intended to replace the SunView

interface code with comparable Xlib syntax. Automating the conversion process was even

considered. However, major differences between the SunView program structure and that

required for X Window forced all but a total adandonment of the main program routine and

organization.

SunView is a kernel-based system and does not correspond well to X Window's event-

driven structure. The conversion of ESKAPE/CF to XESKAPE/CF would require a

complete reprogramming of the application's interface code. The SunView library of

19

functions contains much similarity with high-level X Window toolkits. It is a complete

widget set. The ESKAPE/CF application's extensive use of widgets forced development of

a simple collection of X Window interface objects.

D. MAIN PROGRAM CONTROL: THE EVENT LOOP

The main control for the ESKAPE/CF program arises from the SunView command

window mainloop(). The application invokes this command for the base window 3f the

program while the details behind it are hidden within the SunView library and need not be

of concern for the programmer. All SunView objects are pre-linked to this main loop

command.

The XESKAPE/CF application also uses a main loop to drive program control. While

more advanced toolkit libraries may offe- this function as a single-line procedure, Xlib

forces the programmer to develop a complete event loop. The following listing shows the

basic structure to XESKAf-E/CF's main program ,ontrol structure and the event loop

procedure. The function called EventLoopO responds to all requested events individually

and manages all locally defined widgets.

Display *display; /* the server connection *1
Window base-window; /* the main program window */

/* - ---------------- Loop forever looking for events */

while(1 == 1)

EventLoop(display, base-window);

20

void
EventLoop(display, window)
Display *display; /* the server connection */
Window window;
{

XEvent event;

/* ------------------------ Block on input, awaiting an event from X ------ *
XNextEvent(display, &event);
/* ---------------- Check if the event was handled by the button interface ---*I
if (ButtonEvent(display, &event) == True)

I
returnO;
)

/* ----------------- Check if the event was handled by a GetText structure ---- /

if(GetTextEvent(display, &event) == True)

return(;
I

/* ---------------- Check if event was handled by DisplayText structure ---- /

if(DisplayTextEvent(display, &event) == True)
I
return(;
)

/* --------------- Check if it was an Expose for scroll panel's view window *1
if(RefreshScrollPanel(display, &event) == True)

[
return(;

I
/* ---------------- Check if the event involves the slider for correlation ----
if(slider-event(display, &event) == True)

I
return;

2

21

/* ---------------- Decode event and call a specific routine to handle it ------
switch(event.type)

{
case ButtonPress:

/* ----- Handle cue selection from scroll panel's pixmap -- */
PointerOnCue(display, cue_panel, event,

cue-locations);
break;

case LeaveNotify:
1* ----- Set input focus to root window --*1

if (eventxcrossing.window = = basewindow)
XSednputFocus(display, rootwindow,

RevertToPointerRoot,
CurrentTime);

break;

case ResizeRequest:
/* ----- Do not allow resizing the base window --*/

if (event.xresizerequest.window = = base-window)
XResizeWindow(display, base window,

SCREENWIDTH,
SCREEN_HEIGHT);

break;

default:
break;

}
return(;

/* ----------------- end EventLoop -------------------------------- *

At the core of the main control procedure is the endless while loop, waiting

continuously for events from the server. A quit button within the application will invoke a

termination procedure to stop the program. Nested within the while loop, the EventLoopO

function is invoked. Within this event loop, a series of if statements check if an event refers

to one of the locally defined widgets. The commands linking these widgets to the

EventLoopO are discussed later in this chapter. The switch structure handles any remaining

events. These events are not associated with any of the widgets. They refer to such tasks as

resizing and redirecting the input focus of the program's main window.

22

E. BUILDING WIDGETS

The SunView environment supports objects such as panels, text, menus, scroll bars

and sliders. The Xlib library does not offer this flexibility. Xlib provides no sophisticated

objects beyond the window. However, a GUI-based program such as XESKAPE/CF

requires metaphors such as interactive text, push buttons and scroll panels. These widgets

had to be built from scratch using Xlib.

The XESKAPE/CF program prompted the construction of several widgets. Push

buttons are the most commonly used widgets. Scroll panels, text entry panels and text

display panels were also utilized. All of these widgets had to be fabricated from the Xlib

commands since none of them preexisted. The interactive text entry panel called the

GetText widget will be used as the principal example. The fundamental structure of the

other widgets remains similar.

1. Interactive Text

Even simple text entry from the keyboard becomes a major obstacle in the Xlib

environment. The capability to build such a widget exists but the widget structures

themselves do not. The GetText widget obtains input from the keyboard and echoes the

input onto the screen. Appendix C includes the necessary C code to implement the GetText

widget. This section refers to this Xlib code to explain the construction and use of this

simple widget.

Widgets must be constructed upon some type of data structure. This structure can

be as simple as an array of data elements or a series of elements linked by pointers. The

simplest method involves the use of arrays. Each element of the array contains a list of

elements that describe the individual attributes of the widget. Most widgets are windows

with added functionality so they are identified by their window identifier. Other attributes

include parent window, location, size, font type, graphics context and labels.

23

The Geffext widget includes all of the attributes mentioned in the above

paragraph. The widget's structure is defined as:

typedef struct
I
Display *display; 1* the server connection *1
Window window; /* the id of the widget's window */
Window parent; /* the id of widget's parent window *1
GC gc; 1* graphics context for the widget */
unsigned long fore, back; /* fore & background settings *1
int string_length;
int (*function) (); /* notify procedure for widget *f
char string[SIZE]; * string to display in the widget */

j
GetTextStruct;

The current value of the string being obtained from the keyboard must be stored

so that it can be displayed onto the screen. The string element of the widget's structure hold

this value.

Next, functions to control the widget's creation and operation were designed.

Most of these procedures exists only for the widget and will become extensions to the

library of local functions. The XESKAPE/CF program has only to call them as required.

These functions provide the GetText widget with its consistent look and feel. Functions

associated with the operations of the GetText widget include CreateGetTextO, SetGetTextO,

GetTextEventO, AdvanceGetTextO and RedrawGetText(.

24

a. Creating the Widget

Prior to use, the widget must be created in a similar fashion as creating

windows. The GetText widget uses a separate function called CreateGetTextO to initialize

the new instance of a widget.

Window
CreateGetText(display, parent, x, y, width, height,

fore, back, fontid, string length, function)

Display *display;
Window parent;
int x, y, width, height;
unsigned long fore, back;
Font fontid;
int stringlength;
int (*function)();

Window w;
GC gc;

/* --------------------- Find a slot*/

if (get-text-widgets used < (MAXGETTEXTWIDGETS 1))(
w = CreateWindow(display, parent,

x, y, width, height, 0,
fore, back,
ExposureMask / ButtonPressMask / KeyPressMask /
EnterWindowMask / LeaveWindowMask);

/* --------------- Create a GC and assign font *1

gc = MakeGC(display, w, fore, back);
XSetFont(display, gc, font id);

1* --------------- Store values */

GetTextl get text _widgets-used].display = display;
GetText[gettextwidgetsused J.window = w;
GetText[get _text widgetsused].parent = parent;
GetText[gettextwidgetsused J.gc = gc;

25

GetText[get text widgets used].fore = fore;
GetText[gettext widgets used].back = back;
GetText[get textwidgets used].function = function;
GetText[get text.widgetsused].stringlength = string length;
strcpy(GetText[gettextwidgets used] string, NULLSTRING);

XFlush(display);
/* ------------------ Increment slot pointer *1

get-text widgets used+ +;

return(w);
)

else
return(0);

)
/* --- end CreateGetText ---*/

First a new window is created using the CreateWindowO function. This

function simplifies the Xlib process of window initialization. The code for the function is

included in Appendix C. The new window forms the foundation of the widget. It has no

border and is therefore invisible when mapped to the screen. Next a graphics context is set

up for drawing the text. Again a function to simply the procedure is used. Code for the

MakeGCO function is also in Appendix C. The font desired for the text is linked to the

graphics context and finally the object's parameters are saved into the widget's data

structure for later use.

Among the parameters is the widget's notify function. This function is the

procedure that the widget will call after an Enter, Line Feed or Return key is pressed. The

widget's string value at that point is passed as a parameter to the notify function.

b. Tying the Widget to the Event Loop

The link between widget and event loop is the most critical aspect of widget

construction. A well designed widget will respond to most every event in a logical manner.

The response should anticipate the result. For example, a program receiving an Expose

26

event on a widget's main window should presume that the widget needs to be redrawn and

initiate a redraw function. If all widgets thoroughly manage themselves, a program's main

event loop can consist mainly of calls to the widgets' event handling routines.

The GetText widget uses the function GetTextEventO to handle the arrival of

an event associated with itself. Events of concern are the Expose event, KeyPress event,

EnterNotify event, Leavelotfy event and BunonPress event.

boolean
GetTextEvent(display, event)
Display *display;
XEvent *event;
f

int whichwidget;

switch (event->type)
f
case Expose:

whichwidget = FindGetTextWidget(display,
event- >xexpose.window);

if (which_widget > = 0)
(
RedrawGetText(display, which_widget);
return (True);
)

break;
case KeyPress:

which-widget = FindGetTextWidget(display,
event- >xkey. window);

if (which_widget > = 0)

I
GetChar(display, event, whichwidget);
return (True);
)

break;

27

case EnterNotify:
whichwidget = FindGetTextWidget(display,

event- >xcrossing.window);

if (which_widget > = 0)
I
AdvanceGetText(display,

event- >xcrossing.window),
return (True);

break;
case LeaveNotify:

which-widget = FindGetTextWidget(display,
event- >xcrossing.window);

if (which-widget > = 0)
(
XClearWindow(display,

event- >xcrossing.window);
RedrawGetText(display, which_widget);
return (True);
)

break;
case ButtonPress:

whichwidget = FindGetTextWidget(display,
event- >xbunon.window);

if (which_widget > = 0)

I
AdvanceGetText(display, event- >xbutton.window);
return (True);
)

break;
default:

break;
}

XFlush(display);

return (False);
I
/*--- end GetTextEvent---*/

28

The Expose event indicates a need to redraw the current state of the widget

onto the screen. This event will arrive after the widget has been mapped to the screen or

after it has been uncovered by another window thereby requiring it be redrawn. If the

Expose event originated from a GetText widget, then the object must be redrawn and the

RedrawGetTextO function is called.

41 void
RedrawGetText(display, whichget-text)
Display *display;
int whichgettext;
(

int fontheight;

font-height = fontstruct->ascent + font struct- >descent;

XDrawString(display, GetText[whichget text].window,
GetText[which get.text].gc, 2, font height,
GetText[whichget text].string,
strlen(GetText! whichget text].string));

return;
)
/*--- end RedrawGetText --- */

The KeyPress event arises after any keystroke. As with the Expose event, the

GetTextEventO function includes code to verify each KeyPress event with the GetText

29

widgets to determine if action is required. The GetChar0 routine from Nye (1990)

determines the appropriate action based on the character entered.

void
GetChar(display, event, whichget-text)
Display *display;
XEvent *event;
int whichget text; 1* the GetText struct to operate on *1

int count;
char *buffer[]];
int bufsize = BUFSIZE;
KeySym keysym;
XComposeStatus compose;
int length;

count = XLookupString(event, buffer, bufsize, &keysym, & compose);

/* -------------------- if Enter, Return or LineFeed call the GetTextfunction *1

if((keysv'r == XKReturn)/ (keysym == XKKPEnter)//
(keysym == XKLinefeed))

(
XClearWindow(display, GetText[whichgettext].window),

RedrawGetText(display, which.get text),

GetTextExec(display, which.gettext);

return;
)

30

1*------------ if a regular key, add it to the string unless > string length *

else if (((key3ym >= XK_-KP S$pace) && (keysym <= XKKP_9))!
((keysym >= XK~space) && (keysym <= XK-asciitilde)))
I
if ((strlen(GetText[whichget-text].string) + srlen(buffer) >=

GetText! whichget text J.string length)
XBeII(display, 100);

else
strcat(GetText! whichget text].string, buffer);

1* --------------------- skip if key is a modifier key *

else if(keysym > =XKShiftL) & & (keysym < =XK _Hye-

1* --------------------- if Backspace or Delete, remove one char *

else if(keysym ==XKBackSpace H I (keysym ==XK_ Delete)

if (strlen(GetText! whichget-text].string) > 0)
I
length = strlen(GetText! which~get -text].string)
GetText! whichget-text].string[length - 1] = NULL;
XClearWindow(GetText~whichgerte-xtJ.display,

GetText~whichget-textJ.window)

else
XBell(display, 100);

1* --------------------- if any other key, skip it and beep *

else
XBell(display, 100)

UpdateActiveGetText(display, whichget text)

return;

/*- end GetChar --

31

The EnterNotify and ButtonPress events are indicators that the widget has

been selected to accept character input. The program directs the focus of the keyboard to

the widget's window following one of these events. Changing the keyboard focus will

direct all subsequent KeyPress events into the indicated window. The function

AdvanceGetTextO changes the keyboard focus.

void
AdvanceGetText(display, get_textwidget)
Display *display;
Window get textwidget;

int whichget text;

whichget text = FindGetTextWidget(display, get text widget);

UpdateActiveGetText(display, which.get text);

XSetlnputFocus(display, GetText[whichget text].window,
RevertToParent, CurrentTime);

return;
}
/*--- end AdvanceGetText ---*/

The GetText widget holding the keyboard focus contains a caret or cursor at

the text input location. The function UpdateActiveGetTextO draws the caret inside the

widget's window.

The LeaveNotify event indicates that the widget is no longer selected for

keyboard input. The caret is removed from the widget's window and the function

RedrawGetTextO redraws the string without the caret.

c. Using the Widget In the XESKAPEICF Program

Once the GetText widget has been created, it can be mapped to the screen and

used to extract a string from the user. The Xlib command XMapWindowO will ultimately

32

make the widget visible. As mentioned previously, the programmer supplies a notify

procedure for use following a Return, Enter or Line Feed entry. Usually this procedure will

perform error checking on the string. If the string agrees with the formatting requirements,

program flow continues. If an incorrect format for the string is detected, the keyboard focus

should be returned to the widget and an error message displayed for the user.

Most of the functionality of this and other widgets comes from their initial

structure and background functions. Use of the widget involves creating an instance of the

widget, mapping it to the screen and providing a notify function for the widget to direct

program control.

Now the GetText widget offers a similar level of functionality as SunView's

PANELTEXT object gives to the ESKAPE/CF program. SunView's panelcreate-itemO

command generates a text input object such as that to obtain the cue name in Figure 4.

Unlike the GetText widget, a prompting label can be designated as shown below in the

command from the ESKAPE/CF edit cue panel.

nameitem = panel createitem(datapanel, PANELTEXT,
PANELLABELX, A7TR_COL(GET DATA ITEMX),
PANELLABELY, ATTR_ROW(GETDATAITEM Y),
PANELLABELFONT, bold,
PANELVALUE, newdata.name,
PANELLABELSTRING, "Cue name: ",

PANELVALUESTOREDLENGTH, MAXCUENAME- 1,
PANELVALUEDISPLAYLENGTH, MAXCUENAME - 1,
PANELNOTIFYPROC, validatecuename,
0);

33

- -

t co

344

The following command creates a widget to capture a cue's name in the

XESKAPE/CF version shown in Figure 5.

getcuename = CreateGetText(display, cuedatapanel,
GETCUE NAMEX,
GETCUENAMEY,
GETCUENAME_WIDTH,
SINGLELINEHIGH,
black, white,
font struct->fid,
MAXCUENAME,
validatecuename);

2. Static Text

XESKAPE/CF uses two methods to draw static text in a window. The Xlib

cornmandXDrawString() will draw a string inside the designated window according to that

window's graphic context settings. However, if the window is temporarily obscured, any

string displayed using this command must be redr, own. The other method uses the

DisplayText widget. The DisplayText widget is actually a subset of the GetText widget. It

uses a similar data structure but only requires functions to create the widget and set its string

value. Details of the widget's operation follow those of the GetText object.

As an example of XESKAPE/CF's use of the DisplayText widget, the command

creating the first line of text in the edit panel of Figure 5 is shown below.

edit cue_.promptmsg = CreateDisplayText(display, cuedata panel,
GETDATATITLEX,
GETDATA_TITLEY,
400,20,
black, white,
plain jontstruct- >fid,
"Please enter required cue data...");

35

AI

ii i i

Figure 5. The XESKAPE/CF Edit Cue Screen

36

Similarly, in order for the same message to be displayed in ESKAPE/CF's edit

panel of Figure 4, the SunView command requires only the panel name, text position, font

style, item variable label and the string itself.

panel_create_item(data_panel, PANELMESSAGE,
PANELLABELX, ATTR_COL(GET DATATITLE_X),
PANELLABELY, ATTR_ROW(GET DATATITLE_Y),
PANELLABELFONT, bold,
PANELVALUE, newdata.name,
PANELLABEL_STRING, "Please enter required data...",
o);

3. Buttons

Users of the ESKAPE/CF or XESKAPE/CF control the applications via push

buttons. For the XESKAPE/CF program, a push button is a window that responds to

ButtonPress events originating within its border.

Push buttons provide another example of the of a locally defined Xlib widget. As

with the GetText widget, the buttons exist in an array of button-type structures. The

structure follows Johnson and Reichard's original design for AppButton or application

buttons (Johnson and Reichard 1990). Their design provided the backbone to all widgets

for the XESKAPE/CF program. XESKAPE/CF incorporates AppButton into the local

widget set in much the same way as the GetText and DisplayText widgets. The following

lists the command to create the Save Cue Data button in Figure 5.

savecuedatabutton = CreateButton(display, cuedata..panel, CNTL,
CUE_CCNTL_BTN_X3,
CUECNTLBTNY,
black, white,
font struct->fid,
"SAVE CUE DATA",

finalcuedatacheck);

37

The command to initialize ESKAPE/CF's SAVE CUE DATA button in Figure 4

is similar to that of previously mentioned SunView items.

panelcreate_item(data.panel, PANELBUTTON,
PANELLABEL_X, ATTR_COL(78),
PANELLABELY, ATTR_ROW(BUTTONROW),
PANELLABELIMAGE, panel-button image(data_panel,

"SAVE CUE DATA",
STD_B UTTON_WIDTH,
0),

PANEL_NOTIFY_PROC, finalcuedatacheck,
0);

The panel butonimageO command is necessary to set up the button's label.

38

V. CONCLUSIONS AND RECOMMENDATIONS

Software developers have a variety of tools to construct X Window applications. The

use of the low level Xlib library is only one means of building a full-fledged X Window

pro -n.m However, the ESKAPE/CF to XESKAPE/CF program conversion demonstrated

the extra Irogramming necessary to achieve the versatility of higher level toolkits. Several

factors should be considered prior to committing to the Xlib approach.

A. ENVIRONMENTAL CONSIDERATIONS

The environment under which an application will operate influences the choice of

toolkit. Since the higher level tools are usually linked to a particular vendor's

implementation of the X Window system, developers limit their application's portability to

that vendor's version of the X Window environment.

1. Portability

An application written solely with the Xlib will have the advantage of being

portable to any standard X Window implementation. If the program must work across

different window management systems, then Xlib becomes a viable alternative. While

applications written under either Open Look or Motif will run on the other's respective

platforms, the look and feel of the program will be different (Padovano 1991).

2. Interface Consistency

Since X Window does not support a GUI standard, the window manager and other

clients must bear the burden of maintaining graphical interface consistency. An application

written in Xlib will provide the best chance at standardization across platforms. All

graphical calls will be made to the standard X Window graphic primitives and therefore

will appear identical on different systems. Writing different versions of the same

application under each of the high-level toolkits will produce different interfaces in each

39

case. The high-level toolkits' widget sets define the appearance of the application's

graphical objects.

B. APPLICATION CONSIDERATIONS

Other factors to consider before planning an X Window application include

determining any memory constraints of hardware platforms and evaluating the level of

programmer experience.

1. Application Size

Regardless of tool used to develop a program, as much as 50% of the code may

consist of graphical interface routines (Yee 1991). Applications using high-level toolkits

can grow even larger due to the inclusion of widget set libraries within the executable code.

While many of a toolkit's library routines may be required, many only contribute to

unnecessary overhead.

The XESKAPE/CF program requires more user-generated interface code than

ESKAPE/CF but it is inherently more efficient and compact in the compiled form. The lack

of sophistication within Xlib forced the creation of additional interface code since most

widgets had to be built from scratch. However, the compiled program becomes streamlined

and efficient due to the absence of unused toolkit library routines.

2. Programming Experience

The difficulty in using either high-level toolkits or the Xlib library is roughly

equivalent. While the high-level toolkits offer a number of predefined graphical objects, the

initial learning curve for their use is no less significant than with Xlib. To add to their

complexity, the toolkits do not remove the programmer from the Xlib level entirely. Since

most higher level toolkits are built upon a Xlib foundation, a programmer must have the

ability to interface with the low-level routines.

40

APPENDIX A

THE HISTORY OF X WINDOW

A. INCEPTION OF X WINDOW

The X Window concept emerged from Stanford University's W windowing system

developed by Paul Asente (Nye 1990). In 1984 researchers at the Massachusetts Institute

of Technology (MIT) required a software tool to aid in debugging applications across a

network (Vereen 1991). Later that year, Bob Scheiffler and Jim Gettys developed what

would become X Window (Clanton 1991). Their system provided a graphical interface

facility independent of the platform on which it ran. In this way more than just characters

could be exchanged across a network. The X Window project became known as Project

Athena and was spearheaded by both MIT and Digital Equipment Corporation (Nye 1990).

By 1985, with additional outside contributions, MIT began distributing the new windowing

system known as X Window System Version 11. Many users already recognized Unix as

a standard, particularly for character-based operations, but each platform had its own

protocol for displaying graphics (Clanton 1991). The X Window system became one of the

first interfaces to allow graphical data interchange regardless of hardware platform.

The most significant misunderstanding about X Window is the notion that it must run

under the Unix operating system. X Window was designed to be and remains operating

system-independent (Vereen 1991 and Vizachero 1991). Most implementations of X

Window will be found on top of Unix environments but others can be found on AmigaDOS,

MacOS and VMS (Reichard and Johnson 1991).

B. THE X CONSORTIUM

After X Window's initial conception, MIT controlled the system's evolution and

freely distributed the software. In 1987 nine major computer companies jointly funded the

41

new X Consortium to maintain consistency of the windowing system. MIT retains control

over X Window evolution while the sponsors and other industry participants contribute to

an on-going research process. Additionally, the X Consortium distributes information

about X Window and encourages extensions to the system (Christian 1991). Today, the X

Consortium consists of hundreds of members, nearly all of them representing companies

with an interest in graphical user interface environments.

C. THEICCCM

One of the main goals, the X Window system is to provide the mechanisms for

developing graphical elements. In no way does the X Consortium intend to dictate policy

over how to use X Window. One drawback from this approach arises from the endless

number of user interface designs possible. Programs must be able to communicate on some

common level if they are to be as interchangeable as the windowing system on which they

run. The programs must provide inter-operability (Johnson and Reichard 1990). The Inter-

Client Communications Conventions Manual (ICCCM) defines the conventions

recommended for all X Window applications in order to achieve a minimum level of

synergy with each other. The ICCCM attempts to set standards for application-to-

application communications and prevent contention over shared resources and window

managers.

42

APPENDIX B

THE STRUCTURE OF X WINDOW

A. GRAPHICAL USER INTERFACES

X Window supports the graphical user interface (GUI), a concept that significantly

altered many users' perceptions of computer interaction. The idea for the GUI began with

the Xerox Star and gained widespread attention after the introduction of the Macintosh

Operating System in 1984 (Clanton 1991). A GUI attempts to imitate real world structures

on the computer display by using a collection of visual metaphors. The most common

metaphor is the window which represents a "view" of a document, file or control structure.

Other metaphors include icons, buttons, slide bars and scroll panels.

The use of a GUI can enhance the user's environment significantly. By allowing

multiple windows on a screen at once, the computer user is no longer limited to just the

display of several dozen lines of text. Now several processes can be viewed simultaneously

and even stacked on top of each other. Each window can be compared to a separate

terminal, each with its own process running inside of the window.

X Window is not a GUI by itself. It provides a foundation on which graphical user

interfaces are built (Christian 1991). A basic X Window package does not define all of the

most commonly known structures associated with a full-fledged GUI. One of Gettys and

Scheiffler's original goals in designing X Window was not to make it do everything

(Scheiffler, Gettys and Newman 1988 and Johnson and Reichard 1990). By just giving X

Window some basic building blocks, users could then extend the system on their own and

create the structures they needed. Again, the object of the designers was to "provide

mechanism rather than policy" (Johnson and Reichard 1990) to the X Window

environment.

43

B. THE CLIENT-SERVER RELATIONSHIP

The X Window System contains a unique structure for porting of applications across

networks. It uses a client-server relationship that is the reverse of the traditional notion of

server and client. A server is usually recognized as the centerpiece of a network with

several clients accessing it to share resources and processing power. Figure B-1 shows that

the X Window arrangement is quite different. The X server is a program running on the

user's workstation while the X client is the user's process which may be running on a

separate machine.

Client
Client Client Applcsltio.

Applicaion (Window Manaer) Toolkit

XUb Xb XUb

X ServerL~ZL~u

Device Drivers

Figure B-I. The Client/Server Relationship (Nye 1990)

1. Server

The X server resides on the local workstation and controls the front-end graphics

tasks of the display (Vereen 1991). A display in the X Window environment consists of a

keyboard, pointing device and one or more screens (Reichard and Johnson 1991). The

server controls input and output from local and remote systems, routing input to the

appropriate application while displaying output in the proper windows on the screen. The

X server responds to the graphical requests of applications or clients (Christian 1991).

44

2. Client

The X client is the end-user application program (Vereen 1991). It makes

graphical requests of the X server (Christian 1991). The program can run on a separate

hardware platform and only has to communicate with the X server via X Window

protocols. These protocols enable the client to communicate to the server how it desires its

output to be arranged on the screen without having to send detailed code that actually draws

it. A client can also access multiple servers simultaneously and therefore appear to run on

more than one workstation.

The X server and client can reside on the same machine just as easily as on

separate platforms. The important distinction between the client and server is that the server

program is built for an individual hardware platform to generate graphics according to its

standards. The client uses the same set of standard X Window protocols to express its

requests to a server. As a result, X clients have access to a multitude of hardware platforms

without the need for code modifications.

C. THE WINDOW MANAGER

The user-interface for a X Window system is provided by the window manager

(Padovano 1991). The window manager presents an X server with consistent features such

as moving, resizing and stacking of windows, the look of title bars and the appearance of

borders and icons (Clanton 1991). The window manager will always be a special client of

an X Window system. It handles many generic functions for the clients that would

otherwise be bogged down with the extra overhead.

The twm window manager comes bundled with the basic X Window Revision 11

£ package from MIT. It is intended to be a sample window manager and is therefore very

simple in its appearance and function (Nye 1990). Even with its simplicity, twin and its

variants are widely used.

45

The two most commonly used window managers are AT&T's Open Look Window

Manager and Open Software Foundation's (OSF) Motif Window Manager (Padovano

1991). Each system has its own unique look and feel but both provide similar functions.

Open Look windows are rounded and have a bulletin-board look (complete with push-pins)

while Motif windows appear three dimensional and sculptured (Padovano 1991).

D. THE DESKTOP MANAGER

While the window manager provides the graphical user interface for X Window, the

tools for basic file and system management tasks are lacking (Eberle 1991). In order to

perform standard file operations as part of the GUI concept, a window system requires

another piece of specialized software known as a desktop manager. It simply completes the

graphical user interface experience by incorporating point-and-click mouse operations to

accomplish tasks such as creation, copying and deletion.

Some desktop managers come bundled with a machine's system software (i.e.

Macintosh). With the Unix environment and X Window, a third-party alternative is

required to escape the Unix command line (Parrott 1991). Sun Microsystems offers their

Open Windows desktop manager to work with the Open Look window manager. Motif

does not have an associated desktop manager but it can run in conjunction with other

products such as IxI's X.Desktop, Visix Software's Looking Glass or Hewlett Packard's

VUE desktop manager.

46

APPENDIX C

THE GETTEXT WIDGET

/************************************ GetText **************************************

* The GetText widget is an object to obtain input from the keyboard.

* The structure of some these routines are reproduced from Johnson and Reichdrd's
* AdvacedX Window Applications Programming, MIS Press, 1990 and Nye's Xlib Programming
* Manual, O'Reilly and Associates, 1990. Although some of the routines have been modified,
* their basic structure is a reproduction.

* Modifications by: David M. Rust
*/
********************************* DEFINITIONS **********************************/

#define BUFSTZE 50
#define NULL
#define NULLSTRING
#define MAXGETTEXTWIDGETS 100
#defime False 0
#define True I

typedef int boolean;

typedef struct

Display *display; /* the server connection "1
Window window; /* the id of the widget's window */
Window parent; f* the id of the widget's parent window */
GC gc; /* graphics context for the widget */
unsigned long fore, back; /* foreground & background settings */
int sting.length;
int (*function) 0; /* notify procedure for widget */
char string[BUFSIZE + 1 ; /* the string to be displayed in widget */

GetTextStruct;

****************************** LOCAL FUNCTIONS *

void QuitX0;
Window CreateWindowo;
GC MakeGCO;
Window CreateGetTexto;
void GetTexExeco;
void SetGetTexto;
boolean GetTextEvento;
void AdvanceGetTexto;
void GetCharO;

static void RedrawGetText0;
static void UpdaeActiveGetText0;

I*********************** GLOBAL VARIABLES ********************************

GetTextStruct GetText[MAX_GETTEXTWIDGETS];
int get.text-widgetsused = 0;

47

1* *************************QuitX *******************/

/* Gracefully exits from the application by disconnecting from the server.*1

void
QuitX(display, errorjmessage, errorlfile)

Display *display;
char errormessagef, errorjile0;

(void) fprintf(stderr, "ERROR: %s%sn", error message, errorjfile);

XCloseDisplay(display); /* disconnect from the server */

exit(1); /* leave the program */

/*--- end QuitX ---

******************************** CreateWindow *************************************

/* A simpler procedure to create windows
*/

Window
CreateWindow(display, parent, x, y, width, height, border, fore, back, events)

Display *display;
Window parent; /* the window's parent window */
int x, y, width, height, border; /* the window's location and dimensions */
unsigned long fore, back; /* foreground & background colors */
long events; /* types of events to be recognized by window */

Window window;
XSetWindowAttributes attributes;
unsigned long attributemask;
Visual *visual = CopyFromParent;

/* -------- Set up window attributes */

attributes.background..pixel= back;
attributes.borderpixel = fore;
attributes.eventmask = events;

attribute_mask = CWBackPixel I CWBorderPixel I CWEventMask;

/* ----------- -Create the window */

window = XCreateWindow(display,
parent,
x, y, width, height, /W location, size */
border,
CopyFromParent, /* Depth */
InputOutput, /* window class */
visual,
attribute-mask,
&attributes);

48

if (window = (Window) None)

QuitX(display, "Error Could not open window).

return(window);

P---. end CreateWindow -/

* 1* *************************** akeGC ******************/

P* A simpler procedure to create gc's.

GC
MakeGC(display, drawable, fore, back)

Display *display;
Drawable drawable; P" the window or pixmap for which to make a gc *
unsigned long fore, back;

GC gc;
XGCValues gcvalues;

gcvalues.foreground = fore;
gcvalues.background = back;

P1-----* ----- create the gc*

gc = XCreateGC(display, drawable,
(GCForeground I GCBackground)
&gcvalues)

if (gc ==0)

QuitX(display, "Error in creating a Graphics Context".."...

retun(gc)

P'--- end MakeOC

44

1* **************************CreateGetText *****************

P* Create a GetText widget to obtain keyboard input from the user. Each widget is actually a Window
*that accepts events from the keyboard and echoes the input back onto the window.

Window
Create~letText(display, parent, x,y, width, height, fre, back, font-d, string-length, function)

Display *display;
Window parent;
mnt x, y, width, height;
unsigned long fore, back;
Font fontjd;
int string-length;
int (*function)O;

Window w;
GC gc;

/* ------------ ---Find aslot/

if (geLtext-widgets..used < (MAX_GETTEXTWIDGETS - I)

w = CreateWindow(display, parent,
x, y, width, height, 0,
fore, back,
ExposureMask I ButtonPressMask I KeyPressMask I EnterWindowMask I
LeaveWindowMask);

/* ------------ Create a GC and assign font *

gc = MakeGC(display, w, fore, back);
XSetFont(display, gc, fonud)

/----------Store values */

GetText[geLtext..widgets.used].display= display;
GetText[getexL-widgets _used].window= w;
GetText[get -text -widgetsjased].parent= parent;
GetText[get-ext-widgets.used].gc= gc;
Getext[getjext.widgets~used].fore= fore;
GetText[geLtexLwidgets-.used].back= back;
GetText[geLtext-widgetsused].function= function;
GetText[get...text....widgets-..Used].string-length= string~jength;
strcpy(GetTextf getctext..widgets..used].string, NULL-..STRING)

XFlush(display);

/*----------- Increment slot pointer *

geLtext.widgets.used++;

return(w)

else
return(O)0

/*--- end CreateGetTet --- /

50

1* ************************************ FindGetTextWidget *

/* Given the window identifier for a GetText structure, this routines finds the array element containing it.*/

int
FindGetTextWidget(display, window)

Display *display;
Window window;{

I int which-widget;

for (which.widget = 0; which-widget < get_textwidgetsused; which-widget++){
if ((window == GetText[which widget].window) &&
(display = GetText[which__widget].display))

return(which-widget);]
return(-1);

/*--- end FindGetTextWidget ---*/

~~~~~~ ~~GetextExec ****************/
1** ****** ******* *** *** ********* ********** ~x~e **** **** ****** **** ****************

/* Executes the notify function for the GetText widget. Called from GetCharO.*/

void
GetTextExec( display, which get_text)
Display *display;
int which-gettext;{

(GetText[ whichgettext ].function )( display, GetText[ which-get-ext ].string, whichgettext);

return;

/*--- end GetTextExec --- /

51



1* *****************~**********SetGetText******************

f* Allows you to change the value of the string in a GetText structure.*/

void
SetGetText( display, gettext.widget, string)
Display display;
Window geLtexLwidget;
char string[ BUFSIZE - 1);

int which_getjtext;

/* .................---- Find the right window */

which..getext = FindGetTextWidget( display, gectext-widget);

if ( whichget_text >=O)
f
/* -------------...--- -. Clear the old value*/

XClearWindow( display, GetText[ which-get-text ].window);

/* ---....----..--.----- Set the string */

strcpy( GetText( which.get-ext ].string, string);

RedrawGetText( display, which-get-text);)
return;I

I*--- end SetGeText ---

******************************** GetTextEvent *************************I

/* GetTetxEvent is used by the EventLoop to update a GetText structure based on the event.
*/

boolean
GetTextEvent( display, event)
Display *display;
XEvent *event;(

int whichwidget;

switch (event->type)
I
case Expose:

whichwidget - FindGetTextWidget( display, event->xexpose.window);

if ( which-widget >= 0){
RedrawGetText( display, whichwidget);
return ( True),

break;

52



case KeyPres:
which~widget = FindGetTextWidget( display, event->xkey.window)

if ( which-widget >= 0)

GetChar( display, event which-.widget)
return (True)

break;
case Entroiy

which. wivdget = FindGetTextWidget( display, event->xcrossing.window)

if ( which~yidget >= 0)

AdvanceGetText( display, event->xcrossing.window)
return (True)

break;
case Leave~otify:

whch widget = FindGetTextWidget( display, event->xcrossing.wmndow)

if ( which-..widget >= 0)
I
XClearWindow( display, event->xcrossing.window)
RedrawGetText( display, which-widget )
return (True)

break;
case ButtonPress:

which-.widget = FindGetTextWidget( display, event->xbutton.window)

if ( whichwidget >= 0)

AdvanceGetText( display. event->xbutton.window)
return (True)

break;
default:

break;

XFlush( display)

return(False);

/*--- end GetextEvent -~

53



I********************************** AdvanceGetText

P Sets the keyboard focus to the selected window for a GetText structure.*/

void
AdvanceGetText( display, geLtexLwidget)
Display *display;
Window geLtexLwidget;
{

int whichget_text;

which-get-text = FindGetTextWidget( display, get_textwidget)

UpdateActiveGetText( display, which.get text );

XSetlnputFocus( display, GetText[ which_gettext ].window, RevertToParent, CurrentTime);

return;

/--- end AdvanceGetText ---*/

************.****************GetChar1* *"*******************"*********** G*t*h*r***************************************

P* GetChar is used by GetTextEvent to handle a keypress inside a GetText widget. It gets the keystroke
/* and determines what to do with it: add it to the string, ignore it, delete a char or call the GetText function.*/

void
GetChar( display, event, whichgetjext)
Display display;
XEvent *event;
int whichgettext: /P the GetText struct to operate on */

int count;
char *buffer[l];
int bufsize = BUFSIZE;
KeySym keysym;
XComposeSwus compose;
int length;

count = XLookupString( event, buffer, bufsize, &keysym, &compose);

P ---.-.-----.-.- .- - - -.- if Enter, Return or LineFeed call the GetText function */

if (( keysym = XKReturn ) 1t ( keysym == XK_KPEnter ) I1 ( keysym - XKLinefeed))I
XClearWindow( display, GetText[ whichgeLtext ].window);

RedrawGetText( display, which.gettext);

GetTextExec( display, whichget.text);

return;

5



/* ----.-.-----------.--. if a regular key, add it to the suing unless > sring_length */

else if ((( keysym >= XK._KPSpace ) && ( keysym <= XKKP9 )) II
(( keysym >- XK.space ) && ( keysym <= XK asciitilde )))(

if (( slen( GetText[ which_.gettext ].string ) + strlen( buffer )) >=
GetText[ which geztext ].string_length)

ele Xlkl( display, 100 );" else

strcat( GetText[ which_.get text ].string, buffer);}

/* ---------... skip if key is a modifier key*/

else if (( keysym >- XKShiftL ) && ( keysym <= XK_Hyper_R))

/* ---....----...------- if Backspace or Delete, remove one char */

else if (( keysym =-- XKBackSpace ) II ( keysym -- XKDelete))I
if ( strlen( GetText[ which-ge~text ].string ) > 0)

I
length = strlen( GetText[ which gettext ].string);
GetText[ which.et_text ].string[ length - 1] = NULL;
XClearWindow( GetTextlwhichgeLtext].display,

GetText[which.geLtext].window);

else
XBell( display, 100);}

/* ---....---.---------------- if any other key, skip it and beep*I

else
XBell( display, 100);

UpdateActiveGetText( display, which-get text);
return;}

/*--- end GetChar

55



1* ***************************RedrawGetText ****************

/* Redraws the string in the GetText window. Used by Getharo and the Event'oop when a Refresh
f* is required.

static
void
RedrawGetText( display, which-get ext)
Display *display;
int which~gettext;

int fontheight;

font_height m fbntstmct->ascent + font~struct->descent;

XDrawString( display, GetText[ which~getext ].window, GetText[ whichgettext ].gc,
2, font-height,
GetText[ which-getext ].string, strlen( GetTextf which...gettext ].string))

return;

/*--- end RedrawGetText --- /

**************************UpdateActiveGetText **************,

I* Redraws the string in the GetText window but with a caret afterwards to indicate
*that this item is the active widget. Used by Getharo.

static
void
UpdateActiveGetText( display, whichgeL text)
Display *display;
int which~getext;

mnt fontheight,
string-length,

font~height = fonLstruct->ascent + font~struct->descent;
string-length = XTextWidth( fontstruct, GetText[ which~geLtext ].string,

strlen( GetText[ which..getjtext ].string))

XClearWindow( display, Getzexti which.get-text ).window);

XDrawString( display, Getexti which~get text ].window, Getexti whichgetjtext I.gc,
2, font..height,
GetText[ which...gettext ].string, strlen( GetText[ which...getext ].suring))

/* ------------------- - --------------- Draw the caret, a small. fdlledtriangle*/

for (i=8; i>4; i--)

XDrawLine( display, GetText[ which~get-text ].window, GetText[ which..geLtext J.gc,
string-length + (9-i) + 2, fonLheight - (94i) + 4,
string..length + (i-i1) + 2. font..height - (9-i) + 4)

return;

/0--- end UpdateActiveGetText --- /

56



APPENDIX D

GLOSSARY OF TERMS

Bitmap A two dimensional array of bits in which each array element

corresponds to a single pixel on a display screen. A monochrome

monitor requires only a single bit per pixel. Gray scale and color

monitors have multiple bits associated with each pixel in order to

define the multiple shades and colors.

Client An application program of a window system server. The client

makes graphic requests of the server and responds to a server's

event messages.

Desktop Manager A client that provides a virtual desktop with a more intuitive file

management interface. It serves to replace much of an operating

system's command line structure with graphical metaphors such as

icons and buttons.

Display A collection of one or more screens, a keyboard and a pointing

device all driven by a single server.

Event The means by which clients are notified of display input or the side

effects of earlier requests made of the server. Events are linked to a

window and are only sent if the client specifically asked for that

type of event.

Event Mask A structure used to define which events are requested for a window.

57



Expose Event A signal sent to a client notifying it that a window has been initially

mapped or is no longer obscured by another window. The event

serves as an indication that all or part of a window needs to be

redrawn.

Graphics Context A resource containing information for graphics output. A graphics

context defines characteristics such as foreground and background

pixel color and line widths.

Keyboard Focus The window receiving input from the keyboard. It is possible for

keyboard events to go to a window which does not have the pointer

in it. The root window holds the keyboard focus by default.

Mapping Mapping a window makes it capable of being displayed. The server

will not immediately draw the window onto the screen. The

window is only made eligible for display provided that its parent is

already mapped and that the window is not obscured by another

window.

Root Window The background of a screen. The root window is always present and

has no parent.

Screen A virtual, independent display device. Screens can refer to the same

or different physical monitors. Several screens can be associated

with a single display.

Server A server controls one keyboard and pointing device and one or

more screens of a display. It translates graphics requests from a

client into screen commands for the hardware platform. The server

also accepts input from the display and translates it into events for a

client.

58



Toolkit Library of data structures and functions that is built on top of lower

level libraries. In X Window, a toolkit usually refers to a widget set

and is built on top of Xlib to extend the basic library of functions.

Widget An abstraction for an interface object. Widgets are software

structures that can be created and manipulated. Push buttons and

scroll panels are examples of widgets.

Window A subdivision of a bitmapped screen. A window is usually

rectangular serves as a virtual screen. Windows make viewing and

controlling different tasks on the same screen at the same time less

confusing.

Window Manager A special client that maintains authority over the manipulation of

windows on the screen.

Windowing System A collection of programming tools and routines for creating,

manipulating and interacting with windows on a computer

platform.

59



LIST OF REFERENCES

Brown, Laure, "Graphical User Interfaces: A Developer's Quandary," Patricia Seybold's
Unix in the Office, v.4, pp. 1-11, August 1989.

Christian, Kaare, "The X Window System: A Universal Graphical Interface," PC
Magazine, v.10, pp. 323, May 1991.

Clanton, Chuck, "An Introduction to the X-Window System: X-Window server provides
standard interface to graphics hardware," Microprocessor Report, v.5, pp. 7-9, 20 March
1991.

Conner, James, Knowledge Acquisition Tool for Expert Systems Using Cognitive
Feedback Techniques, Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1991.

Eberle, Andrew E. and Jenkins, Avery L., "Desktop Managers Take GUIs to their Golden
Age," Digital Review, v.8, pp. 25-27, March 1991.

Johnson, E. F. and Reichard, K., Advanced X Window Applications Programming: The
Basics and Beyond, pp. 1-338, Management Information Source, Inc., 1990.

Johnson, Eric F. and Reichard, Kevin, "X Window Programming, Part 5: X Toolkit
Programming," C Users Journal, v.9, pp. 59-65, November 1991.

Lainhart, Todd, "Intrinsics of the X Toolkit: A Toolkit for Configurig Your User Interface,"
Dr. Dobb's Journal, v.16, pp. 94-105, February 1991.

Millikin, Michael D., "Sun's OpenWindows: The Workgroup Macintosh?," Patricia
Seybold's Unix in the Office, v.5, pp. 1-12, October 1990.

Nye, Adrian, Xlib Programming Manual, 2nd ed., pp. 1-298, O'Reilly & Associates, Inc.,
1990.

Padovano, Michael, "Motif and Open Look: Two Views on Managing Windows," Systems
Integration, v.24, pp. 25, June 1991.

Parrot, Michael, "UNIX Desktop Managers," MIDRANGE Systems, v.4, pp.44-46, 15
October 1991.

Reichard, Kevin and Johnson, Eric F., "The Joy of X," UNIX Review, v.9, pp. 95-97,
January 1991.

Sheifler, Robert W, Gettys, James, and Newman, Ron, X Window System: C Library and
Protocol, Digital Press, 1988.

60



Simpson, David, "Make Unix Easier to Use," Systems Integration, v.24, pp. 48-50, August
1991.

Thareja, Ashok K. and Ramachandran, Sridhar, "Migration from ASCII to X," UNIX
Review, v.9, pp. 35-38, November 1991.

Vereen, Lindsey, "Window of Opportunity: The X Window system may give users of PC
networks the best of all possible worlds," LAN Magazine, v.6, pp. 123-128, November
1991.

Vizachero, Rick, "X Marks the Spot, But It's Not On the Mark," Government Computer
News, v.10, pp. 98, 14 October 1991.

Yee, Diana A., "GUI Programming Grows Easier," UNIX Review, v.9, pp. 121-125,
October 1991.

61



BIBLIOGRAPHY

Gehani, Narain, C: An Advanced Introduction (ANSI C Edition), Computer Science Press,
Inc., 1988.

Miller, Lawrence H., Programming in C, John Wiley & Sons, Inc., 1986.

Solbourne Computer, Inc., X Window Programming Guides: Xlib - C Language X Interface
(X Version 11, Release 4), 1990.

62



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor Tung Bui, Code AS/Bd
Department of Administrative Science
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Kishore Sengupta, Code AS/Se
Department of Administrative Science
Naval Postgraduate School
Monterey, CA 93943-5000

5. LT David M. Rust 2
5431 Beechnut Street
Houston, TX 77096-1215

63


