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Abstract

A new method for the analysis of rotationally resolved spectra is presented.

The method employs a simulated annealing algorithm with two modi-

fications. First, the standard simulated annealing process is extended to

take advantage of parallel computing. Second, rather than using a

continuous random search of the parameter space, at distinct intervals

new optimization processes are started at points in parameter space that

have promising X2 values. Together these modifications make more

efficient use of computer time than a standard simulated annealing

approach. The technique is applied to the analysis of simulated data as

well as real high resolution experimental spectra to demonstrate the

effectiveness of the parallel simulated annealing algorithm.
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Introduction

From an examination of the available literature on high resolution

spectroscopy, one can conclude that the field is limited to small to mid-sized

molecules of moderate complexity. The family of accessible molecules is

limited as much by the complexity of the data analysis as by the difficulty of

the data acquisition. The most common approach to data analysis is to

calculate a spectrum and compare it with the experimentally measured

spectrum. The best simulation of the experimental spectrum is generated

by the molecular parameters that best approximate the molecule under

study. The problem is then reduced to an optimization problem in multi-

dimensions. This optimization, however, is fraught with many difficulties.

The parameter space that must be searched is populated with multiple

local minima. As the spectrum becomes more complex, the computation

time required for the optimization procedure for a thorough search of the

parameter space becomes excessive. Alternatively, one can employ large

amounts of user input, and prior knowledge of the molecule. The goal of

the current work is to design an optimization procedure that requires little

user input and efficiently uses computer time to find the global minimum

in this optimization problem.

The solution to the problem is found in a modification of a simulated

annealing algorithm. Simulated annealing has been used in a variety of

applications where local minima cause difficulties in optimizations, most

notably, for large scale combinatorial problems, such as the traveling

salesman problem and matrix reduction.(1.2) TFhe disadvantage of



simulated annealing is that in such an exhaustive search of the parameter

space, large amounts of computer time are consumed. Our modifications

to the standard simulated annealing (SSA) approach, enhance the

efficiency of the optimization process and employ parallel computing to

decrease the requirements for computer time. The parallel simulated

annealing (PSA) approach is applied to simulated data to characterize the

accuracy and the efficiency of the procedure. In addition, we apply the

algorithm to experimental data to demonstrate the effectiveness of the

approach to the analysis of real laboratory spectra.

Simulated Annealing Procedure

Before discussing our modifications of simulated annealing, it is

appropriate to briefly describe some of the salient features of the simulated

annealing algorithm. Simulated annealing requires several different

procedures which, for convenience will be defined here. These procedures

include: 1) the cost function; 2) the move function; 3) the temperature; 4)

the cooling schedule; and 5) the stop criteria.

The Cost Function: In any optimization process, one attempts to find an

optimal set of parameters. The cost function is a measure of the accuracy

of a given set of test parameters. A high cost is associated with a bad

approximation, while a good approximation has a low cost. If we attempt to

optimize a set of n parameters, then any given vector of the n parameters

represents a parameter state. The set of all vectors constitutes the

parameter space. For any given parameter state there is an associated

cost, and the optimal parameter state will be that with the lowest cost. The

cost function, then, is an n to I mapping from parameter vecl,, L.o cost.
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The Move Function: The simulated annealing routine operates by moving

from one state to a randomly determined next state which is close to the

first. Given a state S, the move function generates a randomly selected

state, S', such that the parameters characterizing S' differ slightly from

those characterizing S.

Temperature: Once a state S is determined, the annealing algorithm does

not necessarily move to this new state. At each transition from a state S to

a consecutive state S' the algorithm must decide whether or not to accept

the move to the new state. In order to make this decision, COST(S') is

compared to COST(S). If the cost of the new state is lower than the cost of

the old, it will always make the transition. If the cost of the new state is

higher, the algorithm uses a probability function to determine whether or

not to move to the new state. The probability function is given by:

P = e-(COST(S')-COST(S))/kT (1)

where P is the probability of making the move, k is a constant, and T is the

temperature, or control parameter. Note that as the temperature

decreases, the algorithm is less and less likely to accept moves to states

with higher costs. In the limit as T approaches 0, the probability that the

routine will move to any state with a worse cost also approaches 0. If we

were to start the annealing routine with a temperature of 0, then, the

routine would act as a strict iterative improvement routine, only accepting

moves to states with lower costs, and rapidly converging to a local

minimum. The manner in which the temperature is set over the course of

the optimization is critical to the effectiveness of the routine. Hence, the
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simulated annealing routine must employ a temperature schedule by

which it controls the cooling process.

The Cooling Schedule: The annealing algorithm operates by exploring the

parameter space at a series of successively lower temperatures. Each period

between temperature decreases is termed an annealing epoch. An epoch

consists of a series of potential moves at a given temperature, such as those

described above. The epoch ends when the routine has made enough

successful moves such that the probability density of the parameter space has

been approximated for that temperature.(3) At the end of each epoch the

temperature is multiplied by some factor slightly less than 1. The smaller this

factor is, the faster the routine will cool. Particular values for the length of

the epoch and the factor by which the temperature is multiplied will vary

from one application to the next.

The Stop Criteria: At the end of each epoch, the routine must decide

whether or not to stop. Stop criteria usually hinge on whether or not the

routine is "frozen". If the routine has descended to a minimum, and the

temperature is low enough that it will not be able to climb back out of the

minimum, then either the optimization was successful in locating the

global minimum, or it is trapped in a local minimum. In either event,

there is no reason to continue. To determine whether or not to stop, the

number of successful moves in the previous epoch is determined. If the

number of successful moves is sufficiently small, we can assume that the

routine is frozen.

With the important terms defined, it is now possible to summarize

the simulated annealing algorithm. A flow chart describing the operation

of a standard simulated algorithm is shown in Figure 1. The algorithm
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takes as input: a starting parameter state, a set of constraints, and a

starting temperature. The starting parameter state is often defined by the

problem. If information is already known about the parameters, then the

starting point can be a good approximation of the optimal parameters.

Alternatively, the parameters can be randomly generated, or a rough

guess. The set of constraints can be used to limit the parameter space

thereby simplifying the problem. For example, many parameters may have

a limited range of probable values. In these cases, the user may opt to set

bounds on the parameter space. The nature of these constraints will vary

substantially from one application to the next. We choose a starting

temperature at which virtually all moves are accepted.

The algorithm operates as follows. The current state S is set to the

state defined by the input parameters and the temperature is set to the

starting temperature. The move function is then used to determine a new

state S' from S. If COST(S') is less than COST(S), S is set equal to S'.

Otherwise a random number is used to determine whether or not to set S

equal to S' with a probability of e-ACOST/kT. If we have made enough

successful moves, then an annealing epoch has ended, and we must

multiply the control parameter by a set cooling factor and check the stop

criteria. If the stop criteria are met, then the optimization is complete.

Otherwise a new epoch is started. On completion of the optimization, the

state that the routine has passed through with the lowest cost is returned as

output.

Analyzing Rotationally Resolved Spectra

Our application of simulated annealing is to analyze. ro tationally

resolved spectra. The approach is to calculate a simulation of the spectrum



to compare to the experimentally determined spectrum. The parameters

required to calculate a spectrum are the ground and excited state rotational

constants, the angular components of the transition moment, the rotational

temperature and the 0-0 frequency. Given a set of these parameters, we can

calculate the spectrum that would be produced by a molecule with those

parameters. The accuracy of the optimized calculated spectrum is

fundamentally limited by two factors, the experimental uncertainty and the

accuracy of the model used in the calculation. The model used here is a

rigid asymmetric rotor. We use, as a subroutine, an algorithm that exactly

diagonalizes the rigid asymmetric rotor Hamiltonian and returns the

position and intensities of the allowed rotational transitions.(4) The object

of the optimization is to find the calculated spectrum, and by inference, an

optimized set of parameters, which best fit the experimental data.

For application to rotational analysis, two major modifications are

made to the approach described above. A standard simulated annealing

(SSA) approach is not ideally suited to the analysis of rotational spectra,

because in order to assure that a global minimum is achieved, the amount

of computer time required becomes prohibitive. The two modifications are:

1) convolution of both the experimental spectrum and the calculated

spectrum with a gaussian function and 2) a novel parallel modified

simulated annealing approach (PSA). The advantages of these

modifications will be describe in detail below.

Convolution of the spectra substantially reduces the complexity of the

parameter space. The parameter space for rotational spectra contains

many deep local minima. By convolving the spectra, the local minima

become less pronounced both in magnitude and frequency. Figure 2 shows

one dimensional cross sections of the potential surface in a fit to an



experimental spectrum of 2-fluoroethanol using spectra convolved with

gaussians of two different widths. As one can see in Figures 2 and 3, when

the broader gaussian convolution is used, the global minimum is both

deepened and broadened, and many of the small local minima disappear.

As a result, larger moves can be made and the parameter space can be

searched more efficiently. The accuracy of the fit as a function of the

convolution width will be discussed in detail in the discussion section.

In any optimization routine there is a tradeoff between thoroughness

of search and speed of convergence. The PSA algorithm is a compromise

between the rapid convergence properties of steepest descent and iterative

improvement algorithms and the slow, thorough search of an SSA

algorithm. The differences between PSA and SSA are described below.

Throughout the optimization, PSA stores the three lowest-cost states

it has encountered. At the end of each epoch four processes are initiated in

parallel. Process #1 is started at the resulting state from the same process

in the previous epoch--the same way that SSA would operate. Processes #2-

4 start the epoch at the three lowest cost states. These processes act as a

hybrid between simulated annealing and iterative improvement, moving

around the parameter space enough that they will not get stuck in local

minima, but exploring the regions around the best points found. Process

#1 serves two purposes: 1) Information about the number of accepted states

in process #1 is used to set the temperature and 2) Since process #1

performs a continuous random walk instead of returning to a better state at

the end of each epoch, it will be able to climb larger hills. If the global

minimum is on the far side of a large barrier, processes #2-4 may not be

able to reach it without process #1.
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Because the PSA algorithm runs four traces in parallel, these four

traces must be of the same length if the algorithm is to run efficiently.

Thus, the length of the epoches for each process must be fixed at the

beginning of each epoch. PSA must therefore emulate the temperature

behavior of SSA while using fixed rather than variable length epoches. An

SSA epoch ends after it has completed enough successful moves (m) to

approximate equilibrium density. After every m successful moves it

multiplies the temperature by a cooling factor c. The PSA algorithm runs

fixed length epoches, and keeps track of the number of successful moves (n)

which occurred during each epoch. At the end of the epoch, it sets

temp = temp * cn/m (2)

In our application, m is defined as 1/5 of the fixed epoch length. At high

temperatures in the beginning of the optimization, n will be close to or equal

to the total number of moves attempted, and hence the ratio n/m will be

close to 5. As the temperature decreases, this ratio will drop to well below .

In SSA, however if the routine is near convergence, and very few moves are

accepted, the epoch will end after an arbitrary fixed number of attempted

moves. PSA mimics this temperature behavior by setting temp =temp * c in

cases where n/m is less than 1.

In order to implement any simulated annealing algorithm we must

define a quantitative process by which we can evaluate the cost function, the

move function and the stop criterion. The simulated annealing algorithm

is designed to fit spectra about which we know relatively little. Therefore,

we assume that we do not have information about the quantum numbers of

the peaks in the experimental spectrum. In this scenario, the problenm is to
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take a series of frequencies and intensities from the experimental

spectrum, and determine how well they match another series of

frequencies and intensities from a calculated spectrum. Note that we do

not know which frequency in the experimental spectrum corresponds to a

particular frequency in the calculated spectrum.

We define our cost function as follows. In the beginning of the

optimization, the sum of the intensities of the peaks in the experimental

spectrum are normalized to one. The frequencies and normalized

intensities are then convolved with a gaussian (half width = .1 cm-1) and

stored as an array. Each time a new state is generated by the move

function, a calculated spectrum is generated from the parameters, and that

spectrum is normalized and convolved in the same manner as the

experimental spectrum. The convolved calculated spectrum is then

compared to the convolved experimental spectrum by taking the sum of the

squares of the differences between each point in the two spectra. An

example of the two convolved spectra and the difference between them is

shown in Figure 4. The difference between the calculated and

experimental spectra is determined repeatedly, shifting the calculated

spectrum over a range of frequencies with respect to the experimental

spectrum. We keep the lowest value of the sum of the squares of the

differences. In this way, we can vary the 0-0 frequency without having to

recalculate the spectrum each time. Next, the sum of differences squared

is normalized to approximate a X2 function. To normalize the sum of the

differences squared we need to determine the expected sum of differences

squared. In order to make this determination we have generated a

spectrum with random error. Random enor has been added to he

calculated spectirn by randomly shifting peak frequencies an ,,oltensitles
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using a normally distributed random number generator with the standard

devirtion, y, set to the experimental error of our data acquisition process.

The sum of differences squared value obtained when fitting to this

generated spectrum is set to a X2 value of 1, thereby determining the

normalization factor. In order to convert our sums of differences squared

to X2 values, we divide by this factor at the end of each call to the cost

function. The resulting X2 value is returned by the cost function.

The move function in the PSA generates random neighbors of a state

by varying each parameter randomly within a fixed window. We set

bounds on the amount each parameter can vary so that on average, the

change in each parameter will change the cost function by the same

amount. At the beginning of the optimization, we take partial derivatives of

the cost function with respect to each parameter, DC/Dp, at 32 randomly

determined states in the parameter space. For each parameter p, given

ACave (the average change in the cost function with the maximum change

in a parameter), we can define the maximum step size Apmax as follows:

APmax = ACave / < I aC/-p I >. (3)

To generate a neighbor of a state, we add to each parameter p the product of

APmax and a uniformly distributed random number between -1 and 1.

In order to determine whether or not the routine has converged, we

examine the number of successful moves made by process #1 in the last

epoch. If this number is sufficiently small, we can conclude that PSA has

converged, and terminate the annealing stage of the algorithm. After

annealing has converged, we apply a Polak-Ribierre optimization routine to
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the best fit it has located. With the exception of minor modifications, this

routine is taken directly from Numerical Recipes.(5)

All of the computation was performed at the Cornell National

Supercomputer Facility on an IBM 3090 computer. The code was fully

vectorized. For the PSA. algorithm, four processors were used in parallel.

A flow chart for the entire PSA program is shown in Figure 5.

Results

Calculated Data

We ran the PSA routine on 10 calculated spectra with various

configurations of randomly generated rotational constants as shown in

Tables I. After calculating each spectrum, we randomly altered the

frequencies and intensities of its peaks by our estimated experimental error

in order to make it resemble experimental data as closely as possible. We

added gaussian distributed random error to the frequencies with 0=0.0004

cm-1 . Error was added to the intensities of each peak such that 0=0.10

times the original intensity. We then simulated baseline noise by adding

gaussian error to each intensity with o=0.010 times the intensity of the

tallest peak (the approximate signal-to-noise from our experimental

spectrum of diflouroethane).

The initial guesses for ground state rotational constants were

generated using a uniformly distributed random number in the window of

+/-10% of the actual ground state values. The starting values for dipole

moment angles were selected from a window of ± 20% of the actual values,

and starting temperatures were taken from a window ranging from half to

two times the actual temperature. Excited states rotational constants were

started with values equal to the ground state rotational constants.
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Si.

We allowed each of the ground state rotational constants to vary in a

window of± 10% of the initial guess. Each of the excited state rotational

constants were allowed to vary from the ground state value in a window of

+5% of the initial guess for the ground state. Transition moment angles

and temperature were allowed to vary within the same windows from

which we took the starting values.

The starting parameters and results for these runs are represented

in Tables I, II and III. Shown in Figure 6 is an example of the simulated

spectrum from run #5, including the spectrum calculated from the

starting parameters, and the final output spectrum from PSA. All of the

above calculations used a 0.10 cm-1 convolution width. We repeated run #10

with identical input with the exception that the convolution width was

reduced to 0.030 cm-1 . The results of this optimization are shown in Table

IV.

In many real experimental situations, the starting guesses may be

even farther from the optimized parameters than in the above calculations.

To further test PSA under more strenuous conditions, we did a fit to a

spectrum allowing the parameters to vary in much larger windows. The

starting values for the ground state rotational constants were selected from

a window of ± 25% of the actual values. Excited state rotational constants

were allowed to deviate from ground states by ± 10% of the ground state

values. Dipole moment angles were allowed to vary within ± 50% of the

actual values, and the rotational temperature was allowed to vary from 50%

to 200% of the actual value. The parameters for the initial guess were

picked randomly from within these windows, with the exception of the

excited state rotational constants, which were set equal to the starting

ground state values. Optimizations using PSA were performed with these
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parameter constraints at three convolution widths: 0.040 cm-1 , 0.10 cm-1 ,

and 0.20 cm-1. The optimizations using the two narrower convolution

widths did not converge to the global minimum, but the broad convolution

width was successful in locating the global minimum. The results of these

three optimizations are given in Table V.

Expe rimental Data

PSA was used to analyze high resolution infrared spectra of 2-

fluoroethanol (2FE) and difluoroethane (DFE). Although the ground and

excited state rotational constants for these molecules are available from

previous studies(6.7.8.9), we ran the optimizations under conditions of

simulated ignorance, allowing parameters to vary in windows which

would be reasonable if we knew relatively little about the molecules.

Parameters for these runs are given in Tables VI and VII. Starting

spectra, experimental data, and final fits are shown in Figures 7 and 8.

Discussion

The power of PSA has been demonstrated in the analysis of

rotationally resolved spectra. The analysis of simulated spectra provides

criteria for the evaluation of the accuracy of the analysis. Analysis of

experimental data demonstrates the feasibility of PSA under real laboratory

conditions. From the analysis of simulated spectra it is apparent that both

the X2 value and the convolution width have subtle yet important effects in

the optimization procedure. The implications of how we use the X2 value

and convolution width in PSA will be addressed below. Since, PSA was

developed as a compromise between thorough searching of the entire

parameter space and efficient use of computer time, we will discuss the
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time required to optimize a fit to data as a function of the variables used in

the analysis. A comparison of the simulated data and the experimental

data yields an obvious discrepancy in the accuracy of the fits. To conclude,

we present some possible explanations for these discrepancies, and an

evaluation of the PSA approach.

X2 Values

There are two variables inherent in the optimization process which

affect the calculation of X2 values: the size of the convolution array, and the

convolution width. The choice of values for these parameters depends on

the accuracy with which one makes an initial guess, as well as

experimental parameters such as experimental error, resolution and the

natural linewidth of the transition. Since the experimental error,

resolution and natural linewidth will vary from one experiment to the next,

the size of the convolution array, and the convolution width are user defined

variables. Both of these factors, however, affect the cost function, and

therefore will vary the normalization factor used to calculate the value of X2.

To evaluate the effect of the convolution parameters on the

optimization procedure, we determined cost function values for the same fit

varying the size of the array into which the spectrum was convolved, and

the convolution width. We found that both factors were inversely

proportional to the cost function (see Figure 9). Hence, in order to

normalize for these factors, we define the X2 value as follows. Given that

COST(Y) is the cost function of a fit Y which is within experimental error,

for any state S:
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2 (S) = [COST(S)*W1DTH(S)*ARRAY(S)] (4)
[COST(Y)*WIDTH(Y)*ARRAY(Y)]

where, WIDTH is the width of the convolution and ARRAY is the size of the

convolution array. This renormalization of X2 , effectively removes any

dependence of X2 on the convolution width or the size of the convolution

array.

Since the X2 function is constructed using experimental errors from

a particular experiment, if the experimental error changes, it will

obviously affect the X2 function. The X2 function is also affected by the

number of peaks in the experimental spectrum.

As we can see from Table 8, X2 values are not well correlated with

RMS deviation in peak frequencies. However, the ratio of RMS deviation to

X2 error is partially correlated to rotational temperature. (see Table IX)

Since spectra with higher temperatures tend to have more peaks, small

frequency deviations in individual peaks in such spectra will have less

effect on the the X2 value than in low temperature spectra.

We have no effective technique for consistently normalizing for

changes in experimental error, temperature and peak density, and hence

the X2 values we produce for fits to experimental data are limited by this

inherent inaccuracy. Thus, the actual numerical value calculated for X2

from the PSA routine should be used with caution. We should note,

however, that none of these errors will change during the course of an

optimization, so while our cost function is not technically an accurate X2

value, its effectiveness as a cost function for PSA is unaffected.
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Convolution Width

It may be argued that the broad convolution used in PSA represents a

substantial loss of information, and to be sure, this is true. The resolution

of the data acquisition process is 0.004 cm-1 (7 MHz), while we convolve the

spectrum to 0.1 cm-1 . The information lost , however, is not necessarily

information that might be useful to the fitting routine. Not only does the

use of wide convolution greatly simplify the potential surface, it also hides

many phenomena which may appear in the experimental spectrum but

which are not included in the model, such as centrifugal distortion and

rotational fine structure resulting from vibrational mode coupling. While

wide convolution of spectra creates a broad, shallow bottomed g!obal

minimum and thus increases the uncertainty associated with resulting

parameters, it allows us to get a good approximate fit which can then be

used to assign quantum numbers to individual peaks. Once quantum

numbers are assigned, there are a number of other fitting routines which

are more efficient to determine the most accurate fit to the data.

We have seen that narrowing convolution width in a fit can, in fact,

produce a better approximation of the correct rotational constants for a

molecule, but it is not always feasible to use narrower convolutions. In

experiments where less is known about the molecule, and as a result the

search space is much larger, PSA is no longer effective in efficiently finding

the global minimum with a narrow convolution width. It would be more

effective to start with a very broad convolution width to find the vicinity of

the global minimum, and then to perform a second optimization with a

reduced search space and a narrower convolution width to find a sohition

from which quantum numbers could be assigned. This approach of

successively decreasing the convolution width in the spectrum has bec.,
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effectively used in the analysis of rotationally resolved spectra in previous

studies.(10)

Computation Time

The average time taken to run the ten optimizations described above

was 1:10:04 running on four processors on an IBM 3090 supercomputer.

During this time the optimizations consumed an average of 3:58:10 CPU

hours. Running in serial, on a machine about 1/10 the speed of the 3090,

such as a workstation or small mainframe, the code would take roughly 40

hours to run. There are a number of ways to make PSA converge more

quickly, and hence shorten the run time, and it is likely that the ten

optimizations described above could have been completed successfully in less

time, but the faster PSA converges, the greater the chance it will get stuck in a

local minimum. By shortening run time excessively, we would compromise

the reliability of the algorithm.

Analysis of Experimental Data

The fits we obtained for our experimental data were noticeably worse

than those obtained for the simulated spectra, both in terms of X2 values

and in terms of errors in rotational constants compared to literature

values. The decreased accuracy of the analysis is most likely due to errors

extant in the experimental spectra which we could not quantify, and which

we therefore could not include in the simulated spectra.

Known properties of the experimental spectrum that are not in the

model used to generated spectra, are rotational fine structure from

vibrational mode coupling, and non-Boltzmann population

d i s tri I) u tio fl.( _l 0jj,1_l)
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Furthermore, since the data for a given spectrum is taken over the course

of two or three days, it is also likely that the rotational temperature in the

molecular beam varied slightly from one day to the next, making it

impossible to match the temperature over the entire spectrum exactly. As

mentioned above, the decrease in resolution caused by the convolution

procedure can effectively hide some of these problems and allow us to fit the

data without dealing with these problems explicitly.

Conclusions

The PSA approach is an effective technique for the analysis of

rotationally resolved spectra. Although some input variables must be set by

the user, the amount of user input required is minimal over the course of

the optimization process. After a few decisions are made, including the

limitations set on the parameter space, the starting temperature, the

convolution width and the starting point, the optimization proceeds

independently. Therefore, PSA can be used on the aralysis of a spectrum

in which relatively little is known about the molecular parameters. As long

as the convolution width is sufficiently large and the cooling is sufficiently

slow, optimization to the global minimum occurs with high probability.

Furthermore, the computer time required for the optimization can be

obtained from a common laboratory workstation. Thus, PSA is an ideal

compromise between efficiency of optimization and dLorough searching of

parameter space for the analysis of rotationally resolved spectra.
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Figuie Captions

1. The SSA algorithm is displayed above in flow-chart form. SSA begins by

setting current state (S) to the starting state, and temperature (T) to the

starting temperature. A new state S' is generated by the MOVE function, and

the cost of this state is determined. If the cost of S' is lower than the cost of S,

then we set S = S', otherwise the move is made if a uniform random number

over [0,11 is less than e-(COST(S') -COST(S))/kT, as described in Eq. (1). After we

have moved from one state to another enough times to approximate the

equilibrium density of the potential surface for that temperature, we multiply

the temperature by some cooling factor (c) slightly less than one. If we

determine that the optimization has frozen, we end the run.

2. One dimensional cross-sections of potential surfaces are shown, which

were created by evaluating the cost function for a range of excited state C

rotational constant values, while leaving all other parameters fixed. The

curve represented by (-) shows the potential surface when the spectra are

convolved with a 0.005 cm-1 half-width. The curve represented by --- - ) is

the surface with half-width set to 0.05 cm-1.

3. Top Left: A) two gaussian functions with Y=0.02. B) two gaussian

functions with 7=0.06. Both pairs are separated by 0.40 cm 1 from center to

center.

Bottom Left: The difference in intensity squared (Al2 ) error functions

measuring the difference between (--) and (- - - ) are normalized for

convolution width. The total normalized error (E A12 x () !,, I he narrow



gaussians is 0.564190, and the total error for the wide gaussians is 0.564181.

Note that for large deviations, total normalized error for wide and narrow

gaussian functions are virtually identical.

Top Right: The same gaussian functions as displayed on the left are shown

with the exception that the pairs are split by 0.08 cm- 1 from center to center

Bottom Right: The error function for the top right panel are plotted. The

total error for the narrow gaussians is 0.564190, while total error for the wide

gaussians is 0.202442. Note that for smaller deviations in frequency, the error

function of the wide gaussian functions drops substantially, while the total

error for the narrow gaussian function remains almost entirely unchanged.

4. A) An experimental spectrum of 2-Fluoroethanol convolved with 0.05

cm-1 half-width. B) The results of a fit to 2-Fluoroethanol, also convolved

with 0.05 cm-1 half-width. C) The magnitude of intensity difference for A

and B. The cost function is generated using the area under the square of this

function.

5. A) The PSA algorithm is displayed in flow-chart form. PSA begins by

setting current state (S) to the starting state, and temperature (T) to the

starting temperature. The maximum step sizes for the move function are set

inversely proportional to the partial derivatives of each parameter averaged

over the potential surface. Four processes run in parallel. At the beginning

of each epoch, processes #2-4 are started from the best 3 states located so far,

while process #1 is started on the results of process #1 from the previous

epoch. If the routine has frozen, the best state is optimized using a Polak-

Ribere minimization, otherwise the temperature is reduced as described in

I *qn. (2). 1) The algorithin for the PSA ep()ch is di,1 la vyed in flow chart form

24



Unlike SSA, the PSA epoch runs for a fixed # of attempted moves. A new

state S' is generated by the move function, as described in the text. The

parameters in S' are then used to generate a spectrum, which is convolved

and compared to the convolved laboratory spectrum by the cost function. If

COST(S') < COST(S) then S is set to S'. Otherwise the move is made if a

uniform random number over [0,11 is less than e-(COST(S')-COST(S))/kT , as

described in Eq. (1). A running comparison is made to save the best three

states to begin the epoch.

6. The results of run #7 are displayed. A) The simulated spectrum with

errors added. B) The spectrum generated from the starting state input to

PSA. C) The spectrum generated from the results of PSA optimization.

7. PSA optimization of 2-Fluoroethanol. A) The experimental spectrum of

2-Fluoroethanol. B) The spectrum generated from the starting state given to

PSA. C) The spectrum generated from the results of PSA optimization.

Note that the 2-Fluoroethanol spectrum exhibits rotational fine structure (6)

which does not inhere in the model used to calculate spectra, so the match to

the experimental spectrum is not ideal.

8. PSA optimization of Difluoroethane. A) The experimental spectrum of

Difluoroethane. B) The spectrum generated from the starting state given to

PSA. C) The spectrum generated from the results of PSA optimization.

9. A) (x) is the cost of the same fit evaluated using different array ii1e for the

convolution arras'. (-) is COST(S)*ARRAY(S)/ARRI\AY(Y) as dc,kI,, in
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S.

Eq. (4). B) (x) is the cost of the same fit evaluated using different half-widths

for the convolution. (--) is COST(S)*WIDTH(S)/WIDTH(Y) as described in

Eq. (4).

2 0



Table Captions

Table I - Ten sets of parameters used to generate the simulated spectra on

which PSA was run.

Table II -Parameters produced by PSA fits to the spectra represented in Table I.

Table I - Errors in the values given in Table II, expressed as percentages of

the values given in Table I.

Table IV - Results of a repeat of run #10 with narrower (0.03 cm- 1)

convolution. Note that the errors for this run are substantially smaller than

for run #10 with wider convolution, as represented in Tables I, 1H and III.

Table V - Results of a run given a larger parameter space. The parameter

space for run #11 is roughly 2000 times the size of the parameter spaces in

runs #1-10.

Table VI -

aLiterature values taken from reference (k)

Table VII -

aLiterature values averaged from 3 microwave studies of Difluororethane

from references (7,8,9).

Table VIII - X2, RMS deviation, RMS/X 2 , and Temperature from Runs #1-10

are displayed. Note that the ratio of RMS to x2 is partially correlated with

temperature.
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List of Tables

I. Parameters for Simulated Spectra

II. Output from PSA

III. Errors in PSA Output

IV. Run #10: 0.03 cm 1 Convolution

V. Run #11: Larger Parameter Space

VI. PSA Analysis of 2-Fluoroethanol

VII. PSA Analysis of Difluoroethane

VIII. RMS vs. X2
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Parallel Simulated Annealing
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1 PSA Epoch:
" set # of iterations -
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