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Abstract

We report here surface-induced dissociation spectra of three multiply-charged

peptides: doubly-protonated angiotensin I, doubly-protonated renin substrate, and triply-

protonated mellitin. For comparison, the collision-activated dissociation spectra of renin

substrate and melittin are also presented. The spectra show that surface-induced

dissociation provides structural information on multiply-charged peptides at sample

concentrations compatible with electrospray ionization. For angiotensin I, renin substrate,

and mellitin, surface collisions (100-165 eV) favor a limited number of fragmentation

pathways, which are the same as those favored in collision-activated dissociation

experiments.
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In the case of singly protonated peptides produced by liquid secondary-ion mass

spectrometry, gas-phase collisional excitation of large peptides (<3000 Da) produces

sufficient fragmentation for structural analysis [1]. Extension to larger peptides is limited

by losses in desorption and ionization efficiency and by the partitioning of a limited

amount of internal energy to a large number of vibrational modes. Electrospray ionization

has gained considerable attention because it is an efficient means of generating multiply-

charged ions from large biomolecules, including proteins [2-6]. Although the

fragmentation mechanisms for formation of multiply-charged peptides have not been fully

elucidated, low-energy gas-phase collisional activation of mass-selected multiply-

protonated peptides has been shown to provide structural information [7]. Collision-

activated dissociation of peptides between the ESI skimmer cone and capillary can

provide an additional method for obtaining sequence information [8,9]. Surface-induced

dissociation (SID) is an alternative means of dissociating ions; several investigators have

reported SID spectra of singly-charged peptides produced by liquid-secondary ion mass

spectrometry [10-13]. We report here surface-induced dissociation spectra of multiply-

charged peptides and compare the spectra with those obtained by collision-activated

dissociation.

Experimental

The instruments used in this investigation are a simple, inexpensive dual

quadrupole mass spectrometer specifically designed for ion/surface studies [14] and a

triple quadrupole mass spectrometer (Finnigan TSQ70). Experimental details forthe triple

quadrupole mass spectrometer have been reported previously [15]. The SID instrument

consists of two Extrel quadrupoles (m/z range 0-4000 Da) arranged at 900, with a surface



positioned to intersect the ion optical path of each quadrupole. The angle of the incident

beam is 500 with respect to the surface normal. The surface used in this investigation

was stainless steel although alternative surfaces are being investigated [16]. Data were

acquired and processed with a Teknivent/Vector Two data system.

Electrospray ionization on the SID instrument was accomplished by using a

modified version of the recently published electrospray designs of Chowdhury, Katta, and

Chait [17] and Papac, Schey, and Knapp [181. The samples were dissolved in a 45:45:5

(v/v/v) water/methanol/acetic acid solution at final concentrations of 10-50 pmoi/p.L

Samples were sprayed, with a syringe pump, through a syringe needle (4-5 kV) toward

a metal capillary (170-200 V) at a rate of 2 Ipl/min. A heater wire in fiberglass sleeving

is wrapped around the metal capillary to thermally desolvate the ions. The multiply-

protonated peptides were mass-selected by Q1 and allowed to collide with the surface

at a selected laboratory collision energy. The product ions were analyzed by Q2. The

laboratory collision energy is determined by (i) the potential difference between the

skimmer cone and the surface and (ii) the charge state of the ion. For simplicity, the

potential difference between the skimmer cone and surface will be listed as AV; the

kinetic energy of the collision is determined by multiplying AV by the charge state. Good

quality SID spectra can be obtained by averaging data for a total sample spray time

corresponding to < 500 picomoles; this is higher than the low picomole levels (10-50

picomoles) required for FAB/SID [19] and thus may reflect sample loss prior to Q1, rather

than losses in the activation step.

Results

Surface-induced dissociation spectra are shown below for three peptides: doubly-

protonated angiotensin I, doubly-protonated renin substrate, and triply-protonated mellitin.



The peptides vary in average molecular mass from 1298 to 1760 to 2848, respectively.

For comparison, the collision-activated dissociation spectra of renin substrate and melittin

are also presented.

The surface-induced dissociation spectrum obtained for doubly-protonated

angiotensin I is shown in Figure 1 (m/z 649=(M+2H) ; AV=50). Extensive fragmentation

occurs upon SID and results in mainly singly-charged product ions. The series of b-type

ions detected allows the assignment of residues 3 to 6. Dominant immonium ions from

the tyrosine, histidine, and proline residues are also detected and are indicative of the

high energy deposition associated with SID. A systematic investigation of the influence

of molecular size and collision energy on the SID fragmentation of singly-charged

peptides has shown that, at a given collision energy, the ratio of abundances of high-

mass ions to low-mass ions increases with an increase in the size of the peptide [19].

The surface-induced dissociation spectrum obtained for a larger doubly-protonated

ion, renin substrate, is shown in Figure 2a (m/z 881=(M+2H) ; AV=50). An increase in

the abundance of high mass ions with an increase in molecular weight is noted (c.f.,

Figure 1 and Figure 2a). The series of b-type ions allow the assignment of residues 3-6

and 9 and the series of doubly-charged b-type ions allow the assignment of residues 7-

12. Several immonium ions are also detected. No y-type ions are present in the

spectrum, which is reasonable because the most basic amino acid is located near the N-

terminus of the peptide. For comparison, the CAD spectrum obtained at AV=30 for the

(M+2H) ion, m/z 881, generated from renin substrate is shown in Figure 2b. The CAD

spectrum is remarkably similar to the SID spectrum. It exhibits a series of b-type ions,

which allows the assignment of residues 3-6 and 9-10, and a series of doubly-charged



b-type ions, which allows the assignment of residues 7-13.

The surface-induced dissociation spectrum for a triply-protonated, 27-residue

peptide, melittin, is shown in Figure 3a (m/z 950=(M+3H)+ ; AV=55). A series of b-type

ions allows the assignment of residues 3-5 and a series of doubly-charged y-type ions

allows the assignment of residues 5-9, 12 and 13. Again, low mass ions are of greater

abundance than high mass ions. For comparison, the CAD spectrum obtained at AV=30

forthe (M+3H) ion, m/z 950, generated from melittin, is shown in Figure 3b. Essentially

the same ions are present as those detected in the SID spectrum. Interestingly, the two

spectra of Figure 3 (165 eV SID and 90 eV CAD) are very similar to the 565 eV CAD

spectrum reported by Barinaga and coworkers [20].

Experiments are in progress to determine the influence of molecular size, collision

energy, charge state, and type of surface on the information content of the spectra.

Conditions required to produce side-chain cleavage ions of type d and w [21] will also be

determined. Peaks corresponding to these ions are present in the SID spectra of singly-

charged ions produced by FAB [191, but are not present in the ESI/SID spectra of Figures

1-3.

Conclusions

The spectra reported here show that surface-induced dissociation provides

structural information on multiply-charged peptides at sample concentrations compatible

with electrospray ionization. The strong similarity between SID and CAD spectra may be

the result of partitioning the internal energy to a large number of vibrational modes, such

that the effects of different collision energies are not pronounced. Alternatively, multiple

sites of protonation within the peptide ion may serve to promote specific fragmentation



pathways. Overall, the results show that surface-induced dissociation is at least as

effective as collision-activated dissociation for the structural characterization of multiply-

protonated peptides.
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Figure Legends

Figure 1. Surface-induced dissociation spectrum for the (M+2H) +  ion (m/z 649) of
angiotensin I at a collision energy of 100 eV (AV=50).

Figure 2. (a) Surface-induced dissociation spectrum for the (M+2H) ion (m/z 881) of
renin substrate at a collision energy of 100 eV (AV=50). (b) Collision-activated
dissociation spectrum for the (M+2H) ion (m/z 881) of renin substrate at a collision
energy of 60 eV (AV=30).

Figure 3. (a) Surface-induced dissociation spectrum for the (M+3H) ion (m/z 950) of
mellitin at a collision energy of 165 eV (A=55). (b) Collision-activated dissociation
spectrum for the (M+3H) ion (m/z 950) of mellitin at a collision energy of 90 eV
(AV=30).
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