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Abstract

We repont here surface-induced dissociation spectra of three multiply-charged
peptides: doubly-protonated angiotensin I, doubly-protonated renin substrate, and triply-
protonated mellitin. For comparison, the collision-activated dissociation spectra of renin
substrate and melittin are also presented. The spectra show that surface-induced
dissociation provides structural information on multiply-charged peptides at sample
concentrations compatible with electrospray ionization. For angiotensin |, renin substrate,
and mellitin, surface collisions (100-165 eV) favor a limited number of fragmentation
pathways, which are the same as those favored in collision-activated dissociation

experiments.




In the case of singly protonated peptides produced by liquid secondary-ion mass
spectrometry, gas-phase collisional excitation of large peptides (<3000 Da) produces
sufficient fragmentation for structural analysis [1]. Extension to larger peptides is limited
by losses in desorption and ionization efficiency and by the partitioning of a limited
amount of internal energy to a large number of vibrational modes. Electrospray ionization
has gained considerable attention because it is an efficient means of generating mulitiply-
charged ions from large biomolecules, including proteins [2-6]. Although the
fragmentation mechanisms for formation of multiply-charged peptides have not been fully
elucidated, low-energy gas-phase collisional activation of mass-selected multiply-
protonated peptides has been shown to provide structural information [7]. Collision-
activated dissociation of peptides between the ESI skimmer cone and capiliary can
provide an additional method for obtaining sequence information [8,9]. Surface-induced
dissociation (SID) is an alternative means of dissociating ions; several investigators have
reported SID spectra of singly-charged peptides produced by liquid-secondary ion mass
spectrometry {10-13]. We report here surface-induced dissociation spectra of mulitiply-
charged peptides and compare the spectra with those obtained by collision-activated
dissociation.

Experimental

The instruments used in this investigation are a simple, inexpensive dual
quadrupole mass spectrometer specifically designed for ion/surface studies [14] and a
triple quadrupole mass spectrometer (Finnigan TSQ70). Experimental details for the triple
quadrupole mass spectrometer have been reported previously [15]. The SID instrument

consists of two Extrel quadrupoles (m/z range 0-4000 Da) arranged at 90°, with a surface




positioned to intersect the ion optical path of each quadrupole. The angle of the incident
beam is 50° with respect to the surface normal. The surface used in this investigation
was stainless steel although alternative surfaces are being investigated [{16]. Data were
acquired and processed with a Teknivent/Vector Two data system.

Electrospray ionization on the SID instrument was accomplished by using a
modified version of the recently published electrospray designs of Chowdhury, Katta, and
Chait [17] and Papac, Schey, and Knapp [18]. The samples were dissolved in a 45:45:5

(viviv) water/methanol/acetic acid soiution at final concentrations of 10-50 pmoi/ulL.

Samples were sprayed, with a syringe pump, through a syringe needle (4-5 kV) toward

a metal capillary (170-200 V) at a rate of 2 pl/min. A heater wire in fiberglass sleeving

is wrapped around the metal capillary to thermally desolvate the ions. The multiply-
protonated peptides were mass-selected by Q1 and aliowed to collide with the surface
at a selected laboratory collision energy. The product ions were analyzed by Q2. The
laboratory collision energy is determined by (i) the potential difference between the
skimmer cone and the surface and (it) the charge state of the ion. For simplicity, the

potential difference between the skimmer cone and surface will be listed as AV; the
kinetic energy of the collision is determined by muitiplying AV by the charge state. Good

quality SID spectra can be obtained by averaging data for a total sample spray time
corresponding to < 500 picomoles; this is higher than the low picomole levels (10-50
picomoles) required for FAB/SID [19] and thus may reflect sample loss prior to Q1, rather
than losses in the activation step.
Resuits

Surface-induced dissociation spectra are shown below for three peptides: doubly-

protonated angiotensin I, doubly-protonated renin substrate, and triply-protonated mellitin.




The peptides vary in average molecular mass from 1298 to 1760 to 2848, respectively.
For comparison, the collision-activated dissociation spectra of renin substrate and melittin
are also presented.

The surface-induced dissociation spectrum obtained for doubly-protonated

angiotensin | is shown in Figure 1 (m/z 649=(M+2H)"**; AV=50). Extensive fragmentation
occurs upon SID and results in mainly singly-charged product ions. The series of b-type
ions detected allows the assignment of residues 3 to 6. Dominant immonium ions from
the tyrosine, histidine, and proline residues are also detected and are indicative of the
high energy deposition associated with SID. A systematic investigation of the influence
of molecular size and collision energy on the SID fragmentation of singly-charged
peptides has shown that, at a given collision energy, the ratio of abundances of high-
mass ions to low-mass ions increases with an increase in the size of the peptide [19].
The surface-induced dissociation spectrum obtained for a larger doubly-protonated
ion, renin substrate, is shown in Figure 2a (m/z 881=(M+2H)**; AV=50). An increase in
the abundance of high mass ions with an increase in molecular weight is noted (c.f.,
Figure 1 and Figure 2a). The series of b-type ions allow the assignment of residues 3-6
and 9 and the series of doubly-charged b-type ions allow the assignment of residues 7-
12. Several immonium ions are also detected. No y-type ions are present in the
spectrum, which is reasonable because the most basic amino acid is located near the N-

terminus of the peptide. For comparison, the CAD spectrum obtained at AV=30 for the

(M+2H)** ion, m/z 881, generated from renin substrate is shown in Figure 2b. The CAD
spectrum is remarkably similar to the SID spectrum. It exhibits a series of b-type ions,

which allows the assignment of residues 3-6 and 9-10, and a series of doubly-charged




b-type ions, which allows the assignment of residues 7-13.

The surface-induced dissociation spectrum for a triply-protonated, 27-residue
peptide, melittin, is shown in Figure 3a (m/z 950=(M+3H)"""; AV=55). A series of b-type
ions allows the assignment of residues 3-5 and a series of doubly-charged y-type ions
allows the assignment of residues 5-9, 12 and 13. Again, low mass ions are of greater

abundance than high mass ions. For comparison, the CAD spectrum obtained at AV=30

for the (M+3H)*** ion, m/z 950, generated from melittin, is shown in Figure 3b. Essentially
the same ions are present as those detected in the SID spectrum. Interestingly, the two
spectra of Figure 3 (165 eV SID and 90 eV CAD) are very similar to the 565 eV CAD
spectrum reported by Barinaga and coworkers [20].

Experiments are in progress to determine the influence of molecular size, collision
energy, charge state, and type of surface on the information content of the spectra.
Conditions required to produce side-chain cleavage ions of type d and w [21] will also be
determined. Peaks corresponding to these ions are present in the SID spectra of singly-
charged ions produced by FAB [19], but are not present in the ESI/SID spectra of Figures
1-3.

Conclusions

The spectra reported here show that surface-induced dissociation provides
structural information on multiply-charged peptides at sample concentrations compatible
with electrospray ionization. The strong similarity between SID and CAD spectra may be
the result of partitioning the internal energy to a iarge number of vibrational modes, such
that the effects of different collision energies are not pronounced. Alternatively, multiple

sites of protonation within the peptide ion may serve to promote specific fragmentation




pathways. Overall, the results show that surface-induced dissociation is at least as

effective as collision-activated dissociation for the structural characterization of multiply-

protonated peptides.
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Figure Legends

Figure 1. Surface-induced dissociation spectrum for the (M+2H)*" ion (m/z 649) of
angiotensin | at a collision energy of 100 eV (AV=50).

Figure 2. (a) Surface-induced dissociation spectrum for the (M+2H)"" ion (m/z 881) of

renin substrate at a collision energy of 100 eV (AV=50). (b) Collision-activated
dissociation spectrum for the (M+2H)** ion (m/z 881) of renin substrate at a collision

energy of 60 eV (AV=30).

Figure 3. (a) Surface-induced dissociation spectrum for the (M+3H)"*" ion (m/z 950) of

mellitin at a collision energy of 165 eV (A=55). (b) Collision-activated dissociation
spectrum for the (M+3H)**™ ion (m/z 950) of mellitin at a collision energy of 90 eV

(AV=30).




fb\ CL\ QCLKLL\ =T=R-A ] v ~ 13
00¢! 000! 008 009 110) 4 00¢
i o
A |
[4
9
- 0C
old
THAdHIAAYA
SIH
- ov

pouRPUNQY AATIR[DY ¥

)




/D\ E\ Q‘C(..K.(—.L\ .u,J.LQ‘ ON .O_I.m

0081 0091 00% | 00z ! 0001
o
L _
q 6q
O m
%9
- Ol
St
0z
008 009 00k 002
I .hq /
Q \
¢
.09 o d
++Q 7
9 1A - oz
L
Odd~
<
SAATIHAdHIAALA SIH

ot

“

AourpUnqQy OAl)R[dY]




oﬁc—

0091

2w

(W}

T
2
92

o0bi
_ volrep

e

00zt

by _._.__:....._ " =_,..—_ LS B A
« ’ ea (1A
Ge
_..a

_..:ﬂ
Ea
or

09

08

- 001

U S B

000

a2

(X}

2

00¢

_ _ 1K)

2 ov

T o —

0

[T} 08

o8

001
SA I dHIAANG _

FONVANNEY FAIIVIIY %




»B\E\ QCLGLC\V.U_K—\‘ - ZINYIE A
o0ov1 Q0¢| 0001 008 009 (81034 002
VLI Sy Ny ‘1 i ,.,....,‘14114_%4 " , - " - 0
NN
" —N> ﬁ. « t m; c ;
++ \ ' \A mp Q ;
61 A |
0Z; + >\ /:E> " rq
" NQ - 02
LB (HE )
¢+ ¢
q
O/} o
_. - 09 4
- 08
CHN— OO IMSITY dTOLITANTAYDID ,
/1

001

pouepuUNqy QATR[AY

iIlll-'l-llIL




o govy 002zt 0001

AR 4 _= AL
% T

(24
oo> [ X3

1
e

02

6
‘.>

8i4
LX)

-

~—>

(22}

(1 enW)

008 009

ooy

Se

211H - DOUNUNIMST IV 1O LE IAN IAVDID

qg ‘b4

002
Y
d
e
X 0oz
HN
€ ua op
9 oMl
q
[13:)
(1))
001§

J

 IONVONNEY NIV 1Y %




