Laser Dye Spectroscopy of Some Pyromethene-BF₂ Complexes

by


Submitted to

Applied Optics

U.S. Naval Ocean Systems Center
San Diego, CA 92152

and

Department of Chemistry
University of New Orleans
New Orleans, LA 70148-2820

June 2, 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Laser Dye Spectroscopy of Some Pyrromethene-BF₂ Complexes

T. Pavlopoulos, J. H. Boyer, K. Thangaraj, G. Sathyamoorthi, M. P. Shah, and M.-L. Soong

June 2, 1992

See attached
Laser Dye Spectroscopy of Some Pyrromethene–BF₂ Complexes

To improve the laser-action properties of the pyrromethene–BF₂ complexes (P–BF₂ complexes), we studied substitution effects at different positions of the dye molecule on the electronic spectra of several derivatives. Specifically, we used laser photoselection spectroscopy to measure the triplet-triplet (T-T) absorption and polarization spectra as well as the fluorescence and visible absorption (S-S) spectra of the following compounds: 1,2,3,5,6,7,8-heptamethyl; 8-acetoxymethyl-1,3,5,7-tetramethyl-2,6-diethyl; 1,3,5,7-tetramethyl-8-p-methoxyphenyl; 3,5-dimethyl-1,7-diphenyl; and 1,3,5,7,8-pentamethyl-2,6-diphenyl P–BF₂ complexes. The 1,3,5,7-tetramethyl P–BF₂ complex itself exhibits weak T-T absorption, which stretches from the green to the near IR spectral region. This band consists of two overlapping (differently polarized) T-T transitions. Short molecular axis (i.e., 8- and 1,7-positions) substitution causes the positively polarized T-T transition to gain considerably in intensity. Significantly, the negatively, long-axis polarized T-T transition was unaffected by the long-axis 2,6-position disubstitution. Therefore, only 2,6-position disubstitution is expected to produce superior new P–BF₂ complex laser dyes. Substitution effects from strongly interacting groups with chromophores on singlet-singlet (S-S) as well as T-T absorption spectra, together with cw laser photoselection spectroscopy, are briefly reviewed.