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ON THE ESTIMATION OF A MOVING SHIP’S VELOCITY AND HULL
GEOMETRY INFORMATION FROM ITS WAVE SPECTRA

by Uk
Zhijian Wu

Chairperson: Guy A. Meadows

The wake generated by a moving ship may extend for many tens of kilometers in the
open ocean, and can be remotely sensed. Through indirect methods, the detection
of a ship and its related characteristics, is generally obtained by measuring the ship
generated waves or their spectra. From the viewpoint of remote sensing, interesting
problems exist related to the detection of a ship’s presence and the acquisition of
dynamic and static information about it. This problem can be divided into two
basic aspects. First, how to obtain a moving ship’s wave spectra from remotely
sensed images, and second, how to extract the desired ship information from the
imaged wave spectra. This thesis concentrates on the latter aspect, in particular,
how to estimate a moving ship’s direction, speed, length and hull shape from its wave
spectra.

The extraction of ship information is based on the relations of the ship’s wave

spectra, wave amplitude function and hull geometry. In this thesis, an analytic rep-
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resentation of wave elevation is introduced with the use of the Hilbert transform,
and the derivation is given for the calculation of the wave amplitude function from
the Fourier spectrum of one and two dimensional complex-valued wave elevations.
Methods and formulas are given for estimating a ship’s speed and direction from the
spectrum of a two-dimensional wave patch, a single wave cut or two wave cuts. A
theoretical model of the wave amplitude function is developed, and three methods
are designed for the estimation of a ship’s length from the wave amplitude func-
tion. Under the assumption of thin-ship theory, an inversion technique to predict
the geometry of a ship’s hull from the wave amplitude function or its magnitude is de-
veloped through the application of a spectral method and the constrained maximum
likelihood method. Examples comparing theoretically calculated data and fow tank
experimental data are given to demonstrate the methods developed and estimate

performance.
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CHAPTER 1

INTRODUCTION

Although a ship’s length is bounded within a range of values, the wake it gener-
ates in the open ocean may extend for many tens of kilometers. Through indirect
methods, the detection of a ship and its related characteristics, is generally obtained
by measuring the ship generated waves or their spectra. From the viewpoint of re-
mote sensing, interesting problems exist related to the detection of a ship’s presence
and the acquisition of dynamic and static information about it. For example, a
ship’s velocity, size and hull shape are desired characteristics. Figure 1.1 illustrates
a scheme for obtaining this information about a ship from remotely sensed images.
This problem can be dividefi into two basic aspects, one is how to obtain a moving
ship’s wave spectra from remotely sensed images, the second is how to extract the
desired ship information from the wave spectra. This work concentrates on the latter
aspect, in particular, how to estimate a moving ship’s direction, speed, length and
hull shape from its wave spectra.

Ship generated surface gravity wave patterns can be remotely detected using
several techniques, including visible photography, infrared sensing and microwave
radars. Several radar remote sensing techniques can be used to estimate ocean surface

directional wave properties, for example, the Ocean Wave Spectrometer (ROWS), the




remote sensing images

)
intensity spectra
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extraction of ship hull
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Figure 1.1: A scheme to extract ship information from remote sensing images.

Three-Frequency Airborne Radar (TRIFAR) and Synthetic Aperture Radar (SAR)
[1]. Vesecky et al. have studied remote sensing of ocean waveheight spectrum using
SAR [2]-[4], and Monaldo et al. have studied the transformation of surface wave
slope- and height-variance spectra from radar images [5] in recent years. These
techniques may find their applications in the detection of ship characteristics from
remotely sensed images. Ship wave spectra have distinct features which are different
from those of ambient ocean waves. Tuck et al. have studied the Fourier spectra of
real ship wave elevations and indicated the possibility of utilizing this information to
estimate ship speed [6]. The estimation of ship hull geometry information from ship
waves or their spectra can be considered as an inverse Kelvin wake problem, and has
been explored by Kuhn, Newman et al. recently [7]-[9).

Since the inverse Kelvin wake problem is relatively new, little directly related
published work exists. The study of this problem will naturally rely, to a great

extent, on the existing theories and results on the forward Kelvin wake problem, i.e.,




predicting the wave field due to the geometry of the ship. The forward problem has
been studied for several decades with the desire to predict the ship wake and reduce
the ship wave resistance to a ship [15}-[28].

Mathematically, the inverse Kelvin wake problem has some characteristics similar
to inverse problems in other areas. Thus, the methods developed in those areas will
be helpful in finding solutions of this inverse Kelvin wake problem [46]-[{54].

In this work, the study of the estimation of a moving ship’s speed, direction and
hull geometry characteristics from its wave spectra is based on the recognition of
the relations among the wave spectra, the wave amplitude function and the ship
hull shape. On the spectrum diagram the wave number distribution contains the
ship’s speed information, the position of spectrum loci contains the ship’s direction
information, and the magnitude of the wave spectra contains the ship’s hull geometry
information.

In the following, Chapter 2 and Chapter 3 serve as the theoretical foundation of
the study. Based on basic ship wave theory and Fourier theory, Chapter 2 discusses
ship generated free waves and their Fourier spectra. An analytic representation of
wave elevation is introduced with the use of the Hilbert transform. The concept of
complex wave elevation with this analytic representation is helpful in simplifying the
derivation of of the wave amplitude function from the wave spectra.

In Chapter 3, the derivation is given for the estimation of the wave amplitude
function from the spectra of one and two dimensional complex-valued wave eleva-
tions. The spectrum loci on a spectrum diagram, a distinct characteristic of ship
wave spectra, are important for the estimation of the ship speed and direction, and
thus are mathematically described. The formulas to calculate the wave amplitude

function are given in detail. The effects of sampling intervals on the resolution of




wave angles and the wave amplitude function, and the relation between the sampling
intervals for a real ship and its model must be understood and considered in tow tank
experimental studies or other practical applications. Thus, one section is included
for these contents.

With the fundamentals and formulas given in Chapter 2 and Chapter 3, the
following chapters develop the theory and methodology for the estimation of a ship’s
velocity, length and hull surface shape. Chapter 4 first shows the discovery of the
presence of a moving ship in an ambient random wave field through a simple example.
The methods and formulas for calculating a ship’s speed and direction from the
spectrum of a two-dimensional wave patch, a single wave cut or two wave cuts are
then discussed in detail. The examples with theoretically calculated data and tow
tank experimental data are given to demonstrate the methods and the estimation
performance.

In Chapter 5, a theoretical model of the wave amplitude function is developed
for the estimation of a ship’s length from the wave amplitude function. This model
explicitly reveals the periodic character inherent in the real and imaginary part and
even in the magnitude of the wave amplitude function. It also shows the relation be-
tween a ship’s length and the periodicity, and the effects of the bow and stern’s shape
on the periodic character. With this understanding, three methods, the spectrum
method, zero-crossing method and frequency demodulation method, are designed
to estimate ship length. Examples are given for each method and the results are
compared.

Chapter 6 develops a technique to extract a ship’s hull geometry shape from
the wave amplitude function or from its magnitude under the assumption of the

thin-ship theory. The spectral method is used in converting the continuous inverse




problem to a discrete problem, and the selection of basis functions are discussed.
The ill-condition of matrices in the resulting equations, noise in input parameters
and the wave amplitude function have severe effects on the solution as analyzed in the
chapter. To reduce the effects to a minimum, Bayes estimation theory is applied to
the inverse problem, and the constraints are considered in both linear and nonlinear
cases. The maximum likelihood method with constraints is found to be especially
useful in the examples of mathematically well-defined hulls and that of a sea-going
tug, the USS Quapaw.

The final chapter, Chapter 7, summarizes the research conducted in this study

and gives some recommendations for further efforts.




CHAPTER 11

SHIP WAVE SPECTRA

The extraction of ship information is based on the relations of the ship’s wave
spectra, wave amplitude function and hull geometry. The wave spectra have rela-
tions with wave elevation and slopes through Fourier transform. Ship wave numbers
contain the desired ship speed information, the position of spectrum loci in spatial
frequency space or wavenumber space contains the ship direction information, and
the magnitude of wave spectra contains the hull geometry information.

In this chapter, an analytic representation of wave elevation is introduced to
simplify the mathematical manipulation in wave spectra later, and then the relation

between elevation and slope spectra is discussed for stationary ship wave motions.

2.1 Ship Wave Elevation and its Analytic Representation

Propagating waves and the signals they carry can be modeled as functions of
space and time, and they can be analyzed by using multidimensional Fourier trans-
form methods. For general cases, if s(x,t) represents a signal that is a function of
spatial position x = (z,y, z) and time ¢, and S(k,w) represents its four-dimensional

wavenumber frequency spectrum, then s(x,t) and S(k,w) can be expressed in terms




Figure 2.1: Reference coordinate system. The mean water surface is at z = 0.

of each other in the following equations [10] :

S(k,w) = /_: /_: s(x, t)e=I-kN gy s (2.1)

1 co CO L.
s(x,8) = o= /_ i} /_ _ S(l,w)eX e Ddkd (2.2)

where j = v/—1, and k - x represents the inner product of the wavenumber k and
the position vector x. The space-time signal s(x,t) can be considered as the su-
perposition of numerous elemental propagating waves exp {j(w — k - x} weighted by
S(k,w).

In the problems below, the wave field is generated by a moving ship in deep water
and it can be described as a three-dimensional problem, i.e, z and y in space and ¢
in time. Additionally, the assumption of linearized free-surface boundary condition
is made. Now, consider a reference system moving with the ship in the positive
x-direction with speed U, as shown in Figure 2.1, then the wave elevation 7n(z,y,t)

can be expressed in the following form [14]

) 2 . . :
n(z:,y,t) = Re{/o dw_/o dé A(w,ﬂ) e—]K(zcosBﬂum9)+J(w-KUcosO)t} . (2.3)




Here, 0 is the wave angle, A(w, 8) is called the wave amplitude function, and K(w)
is the wave number corresponding to a given frequency w in accordance with the

dispersion relation for infinite depth

w2

K= (2.4)

where g denotes the acceleration of gravity. For real problems, the wave elevation is
always real; thus, the operation, Re{-}, to take the real part is used in (2.3).

It will be more convenient, however, if the real operation in (2.3) can be left out in
the complicated mathematical manipulation. For this purpose, the complex-valued
wave elevation is introduced here with the use of the Hilbert transform. The Hilbert
transform of a real-valued signal x(%) is another real-valued signal, which is defined
by the convolution integral of x(t) and % [11]. That is, if the Hilbert transform of

x(t) is denoted by x(t), then

10 =x0) = [~ Xar . (25)

w(t—71)
An analytic signal x(t) associated with x(t) is defined by
X(t) = x(t) + 3 x(¢) (2.6)

and it can be expressed with a magnitude function a(¢) and a phase function (t),
where a(t) describes the envelope of the original function x(t), and ¢(t) describes

the instantaneous phase of x(t). Thus, x(¢) can be written in the form

%(t) = a(t) e3e® (2.7)

at) = [x(t)+x(@)}

= tan~! X(t)
‘p(t) - [X(t)] *




A useful property of an analytic signal x(t) is the Fourier transform relations
among x(t), x(t) and x(t). Let X(f), X(f) and X(f) be the Fourier transforms of

x(t), x(t) and x(t), respectively. Then, it can be proved that

X(f) = —jsgn(f)X(f) (2.8)
' 2X(f) for f>0

X(f) = L+sgn(NIX(F)=13 X(f) forf=0 (2.9)
; 0 for f<O

where sgn(f) is a sign function which is defined as sgn(f) =1 if f > 0, sgn(f) =0
if f =0 and sgn(f) = =1 if f < 0. From these relations, X(f) and X(f) can be

obtained once X (f) iz available.

Now, consider two analytic signals associated with the real signals

fi(7)

fo(r) = Re{Ael™} (2.11)

Re{ Ae™397} (2.10)

where A is complex and independent of 7, and  is real. With the help of the

following Hilbert transform relations of sine and cosine with constants ¢; and c;:

H{cos(ey7 +¢c2)} = sin(e;7 + c2)

H{sin(e17 +c2)} = —cos(er + c3)

the analytic signals of f1(7) and f2(7) are given by

- A3 for Q>0
A(r) = ' (2.12)
Ae I for 0 <0

. Aed for Q>0
fa(r) = (2.13)

A%e” I forN <0
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where A* denotes the conjugate of A.

By applying the above concept for an analytic signal to the wave elevation given
in (2.3), the complex-valued wave elevation, i.e., the analytic representation of the
wave elevation can be derived. In terms of formula (2.12), the analytic representation

of n(z,y,t) is now given by

i(z,y,t) = nlz,y,t)+ji(z,y,t)

/Oodu’./f doA-(w’o) ejK(:cos0+ysin0)-j(w-KUcooo)t
0 ¥ )

o 3= - : .
+/o d(d[rz do A(w,0) e—J}\(zcoa0+ynn0)+3(w—KUcoo0)t (214)
2

where the Hilbert transform is taken with respect to z. The above analytic repre-
sentation of wave elevation and the property of the Hilbert Transform in (2.9) will

be helpful in the following mathematical derivation.

2.2 Spectra of Wave Elevation and Slope

Equation (2.3) describes a non-steady wave motion, that is, the wave elevation
changes not only with the spatial position but also with time. If the motion is steady
state in the reference system moving with the ship, however, expression (2.3) must

be independent of time. Thus,
KUco80 —w=0 (2.15)

and the phase velocity of each admissible wave component can be obtained from

(2.15),

-
1>

=Ucosf . (2.16)

€
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From (2.4) and (2.15), the wave number K(f) can be related to the ship speed and

wave angle 6 in the form

g

The restriction (2.15) can be used to eliminate the variable t. By retaining the wave
angle § and by noting that (2.15) and (2.16) require that cos @ > 0, the free-wave

distribution of a given ship for the deep-water case now can be expressed from (2.3)

in its real form

x
n(z,y) = Re{ / T A(8) e K@=+ K@il gg ) (2.18)
-2

where

K,(9 = K(8)sind.

Note that § must now range from —% to % because of the requirement cosd > 0.

The analytic representation of wave elevation now becomes

p- 4
i(z,y) = / T A%(0) IK-O=+Ka 93l gg (2.19)

2
where the Hilbert transform is taken with respect to z. Additionally, the wave

elevation spectrum is given for the real wave elevation by

Hwo) = Fli(e,n)t = [ [~ nizy)e i e=radzdy (2.20)

and for the complex wave elevation by

Auv) = Fli ) = [ [ i@y =+mdzdy (2.21)

where u and v are the spatial frequencies associated with z and y, respectively.
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The relation between the wave elevation and its spectrum has been now estab-
lished through Fourier relations. Theoretically, thus, the ship information can be
recovered from either the wave elevation itself or its spectrum. In some real situ-
ations such as in remote sensing, however, the available information on ship waves
may not be the wave elevation or its spectra but wave slopes or the slope spectra.
Therefore, a brief investigation of the relations among them is made below.

The surface wave slope vector § is defined by the gradient of the wave elevation,

ie.,

8(z,y) = Vij = 7iz(z,y) 2 + 7y(z,9) § (2.22)

where V denotes the gradient operation, & and § denote the unit vector in z— and
y— directions, and 7, and 7}, are the partial derivatives of wave elevation with respect
to z and y, respectively. In terms of the properties of Fourier transform, the spectra

of the slope components are given by

Hy(u,v) = F{i(z,y)} = j2ruH(u,v) (2:23)

Hy(u,v) = F{iy(z,y)} = j2rvH(u,v) (2:24)
and the vector slope spectrum is given by
S(u,v) = F{3(z,y) } = j2n(nt + vi) H(u,v) . (2.25)

A slope component in any direction i, denoted by §,(z,y), can be obtained from the

directional derivatives of wave elevation, that is,
sn(zv y) =n- 5(2, y) . (226)
Thus, its spectrum is

Sn(u,v) = fi- F{3(z,y) } = 27 [ - (uz + v§)] H(u,v) . (2.27)




——
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In terms of the above relations, slope spectra can be obtained once elevation spectra
are available. Similarly, elevation spectra is also obtainable from slope spectra, except
at zero frequency since the denominator will be zero at zero frequency . The zero
frequency component of the elevation spectra represents the average value of wave
elevation, and it is not very important in many real situations. Because of the
relation between slope spectra and elevation spectra, the discussion in later chapters

will focus only on the elevation spectra.




CHAPTER II1

ESTIMATION OF THE WAVE AMPLITUDE
FUNCTION FROM WAVE SPECTRA

In this chapter, ship wave spectrum patterns are discussed and the relationship
between the wave amplitude functions and wave spectra is derived. As stated in
the last chapter, the ship generated stationary wave elevation and its spectrum are
entirely dependent on wave numbers and the wave amplitude function. Generally
" speaking, the wave elevation or wave spectra can be directly measured or remotely
sensed, but the wave amplitude function can not. As will be seen in the following
chapters, however, dynamic and static information about a moving ship, such as
speed and hull geometry, is strongly reflected in wave numbers and the wave ampli-
tude function. Thus, recovering the wave amplitude function from wave spectra is
an important procedure for obtaining this information.

The wave pattern analysis, especially the estimation of the wave amplitude func-
tion, also plays an important role in the ship wave resistance analysis because of its
direct relation with wave resistances. For the purpose of analyzing the ship wave
resistances, different derivation methods to calculate the wave amplitude function
were introduced in the last twenty years [15]-[22]. Ship wave patterns not only con-

tain the information that can be extracted to estimate ship wave resistances, but

14
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also contain other useful ship information, thus, ship wave pattern analysis is also
an important means for remotely sensing ship information [6].

In this chapter, the explicit and succinct expressions for the wave amplitude
function are established from one- or two-dimensional wave spectra based on the
analytic representation of wave elevation. The distinct characteristics of ship wave
spectra can be observed in these derivations, and they become the basis for the
estimation of ship speed and direction in the next chapter. The effect of sampling
intervals on the wave angle and wave amplitude function is also discussed for practical
use of this formulas. In this chapter, the first section discusses two dimensional wave

fields; the second section discusses one dimensional wave cuts; and the final section

discusses the effect of sample intervals.
Before discussing the estimation of the wave amplitude function, it is helpful to

review briefly some formulas about the § function, which can be found in reference

[41],
§(z) = b6(-z) (3.1)
6(z,y) = &(z)é(y) (3.2)
f(2)b(z — a) = f(a)8(z — a) (3.3)
[ 8(z = )é(y ~ a)dy = 8(z - a) (3.4)

8(a(e) = T poroble - ) (35)

where z; is the root of ¢(z) = 0, and its derivative ¢'(z;) # 0 .
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3.1 Estimation from 2-D Wave Fields

As seen in Chapter 2, the ship generated surface wave can be described as a
two-dimensional (2-D) wave field. The two-dimensional wave or spectrum data can
be obtained either in tow tank experiments 23], [30], or possibly by remote sensing
methods [5], [31]. The most distinct signature contained in ship wave spectra, dif-
ferent from general ocean wave patterns, is the locus in the spatial frequency plane.
The first subsection below discusses the properties of the wave spectra. The second
subsection discusses the relation between the wave amplitude function and the wave
spectra, the discrete forms for calculating the wave amplitude function and the effect

of truncated errors.

3.1.1 Loci of Ship Wave Spectra

In this subsection, discussion starts from the complex-valued wave elevation.
From Chapter 2, a stationary wave elevation is given by
i(2,) = 1(2,) + §(2,9) = [ A°(0) I =+K-Ogp (3.6)
)
where the wave angle 4 ranges from —% to § and the wave amplitude function A(6)
is complex.
To obtain the wave elevation spectrum, the Fourier transform of the wave eleva-

tion is taken and it follows that

Buw) = [~ " i(s,y)e it dady
— /% A.(a){/w /°° e—jzr[(u-’—(ﬁﬂ)z-o-(u-Efé,ﬂ)y]dxdy}do
K. (0)

/ o

It}

4

A*(8)6(u —

8(0 — K;—ff))do . (3.7)

oy M
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Now, let
a(d) = u—K—;(W—Q (3.8)
9:(0) = v—%—g—) (3.9)

and let 6, and 4, be the roots of g1(0) and g2(0), respectively. Then, in terms of the
6 formulas, (3.7) becomes

5(0 — 0,) 6(6 - 65)
AN

5(6, — 65) (3.10)

H(u,v) = /_i A*(9)
A*(61)
l91(61)1 lg2(62)]

where g; and g, represent the derivatives of g; and g,, respectively, with respect to

8. In terms of (3.10), thus, the wave spectrum H(u,v) is combined with a number

of impulses with intensity —AE)__ oy position §; = 6,. Here, 0, or 6, is solved
l91(61)Ml92(62)1

from ¢,(8) = 0 and g,(8) = 0, that is,

_ K:(9)

u o= (3.11)
_ K, (9)

vo= (3.12)

This set of parametric equations represent a locus on the (u,v)-plane, or the wave
spatial frequency plane and des;cribe the distribution of ship wave components on
this plane. That is, only the spectrum values on this locus are non-zero. Besides,
the spatial frequencies u and v in the domain of the Fourier transform are consistent
very well with the ship wave numbers, K, and K,, in the z— and y— directions.
Thus, the locus on the spatial frequency plane contains ship information.

The wave angle 0 and the wave number K(6) can be expressed as functions of u

and v. By solving (3.11) and (3.12), it follows that

0 = tan‘l(s) (3.13)
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Figure3.1: Loci of wave spectra in the spatial frequency (u,v) plane for different
ship speeds U.

Ko _orin? 4 o2y
K(9) ey i 2x(u® + v°) (3.14)
where
Kbéé% . (3.15)

The locus of ship wave elements can be also expressed by one equation. For this,

canceling 6 in (3.13) and (3.14), it follows that
K,
4 __ 0v2/.2 2y .
u (—21r) (v*+0v)=0 . (3.16)

The loci on the (u, v) plane for different moving speeds are plotted in Figure 3.1.
As shown in the figure, the wave components are located in the first and fourth
quadrants of the (u,v) wave spatial frequency plane since the wave angles 6 are in

[-Z,%2] and u > 0.

b,
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3.1.2 Calculation of the Wave Amplitude Function

In this subsection, an explicit and succinct expression for the wave amplitude
function is established from two-dimensional continuous or discrete wave spectra.

Since the wave spectrum is combined with the § functions as shown in (3.10),
it is possible to obtain the expression of A(#) by integrating both sides of (3.10),

resulting in

A0 = 1600156 [ Bl v)ad, (317)

However, this result complicates further manipulation, because the integral is with
respect to 6; and the integrand is a function of u and v, although there is the relations
among u, v and 6,.

An alternative method is to start the derivation directly from (3.7) and integrate
with respect to u since H(u,v) is a functicn of u and v. In terms of the properties

of the § function, (3.7) can be written as

7 — 4 i K-(6) K,(6)

A(u,v) = A*(6o) /_ , Su= =5 )0~ =5 s (3.18)
where 8 = 0o(u, v) satisfies (3.11) and (3.12). In order to simplify this expression,
let

K,(ﬂ)_K sin 6
2r "2rcos?d

R() =

then (3.18) becomes

H(u,v) = A"(6o) /_ i 6(u — Reot 0)5(v — R)d6

= x| 71@5(11 — Rh(R))é(R ~ v)dR

_ A(%)
= —R,—(—o-s)—6(u—vh(v)) (3.19)
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where h(R) 2 cot 8 and the derivative R’ is given by

dR(6) _ , 1+sin’8

R(O) = —g5~ =Kogroay

(3.20)

Note that u — Rh(R) = 0 and R — v = 0 are equivalent to (3.11) and (3.12); thus,

the last step in (3.19) is valid. Here, R A(R) is given by

Rh(R) = Rcotd
%(Ko+\/K3+161r’R’) . (3.21)

To cancel the § function on the right side of (3.19), integrate both sides of (3.19)

with respect to u. The result is

/: H(u,v)du = %:—E% . (3.22)

Since H (u,v) is combined with & functions as shown in (3.19), it is possible to write
H(u,v) into the § function with its intensity Hin:(u, v), i.e., H(u,v) = Hipe(u, v)6(u—
vh(v)). Thus, the integral of the left hand side of (3.22) is equal to Hini(vh(v),v), and
it represents the intensity of the spectrum on the locus. Hence, the wave amplitude

function can be written from (3.22) in the form

A(8(u,v)) = F(8(u,v)) Hy(u,v)

1 4 sin? 0(u, v)

Fre o
o 97 cos® 0(“, v) Hmt(ua v) . (3“3)

Note that u is retained, and #’s subscript “0” is omitted in (3.23) for simplicity, but
remember that 4 and v must be on the locus, that is, must satisfy (3.11) and (3.12).

The wave amplitude function is an even function of the wave angle when the
ship wave is symmetric in the y-direction. This can be proved in terms of the above
relations. From (3.13), the wave angle is a odd function of v, i.e., (u,v) = —8(u, —v).

When the ship wave is symmetric in the y-direction, that is, n(z,y) = n(r —y) the
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wave spectrum is even with respect to v, i.e., H(u,v) = H(u,—v), according to the
Fourier transform properties. Thus, H(u,v) = H(u,—v) too. It is found from (3.23)
that the amplitude function A(0) is even with respect to 8, that is, A(f) = A(-0),
when the wave elevation is even with respect to y. For many ship types, the hull is
symmetric with respect to the ship central plane, thus the ship wave is symmetric
with respect to the centerline, and the wave amplitude function is even with respect
to wave angles.

There are different ways of obtaining the wave spectrum in real applications. One
way is from the wave elevation or slopes, that is, the wave spectrum is calculated
by taking the Fourier transform of the observed wave data. Another possibility is to
obtain the wave elevation spectra indirectly. For instance, the wave spectrum can be
estimated from radar images. In practical applications, the data are discrete; thus,
the discrete formula is useful for real situations and a discussion is given below.

To derive the discrete formulas, some definitions of discrete variables are given
first. If we let n; and n; be the discrete forms of z and y, and Az and Ay the
interval sizes in the z— and y—directions in the spatial domain, and let k; and k;
be the discrete forms of u and v , and Au, Av the interval sizes in the u— and v—
directions in the spatial frequency domain, then z = n,Az, y = n2Ay, u = kAu,
and v = k;Av.

Under the assumption that #j(z, y) is very small outside the range of -%1- <z< %*
and —%2 <y< %1, the infinite-range Fourier transform can be approximated by its

Fourier transform with finite ranges L, and L, in the z— and y—directions, i.e.,

Auwo) = [~ [7 iz, yestetizy

~ /-; /-_:; fi(z,y)e I3 u=4vdady | (3.24)
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After discretization, (3.24) can be expressed in the form

N;
-~ -il-l -51 klnl ,anz
Ak k) ~ Aczdy S il k) expl—j2n(S + A2)] (3.25)
ny= I—;’*m:
N M
=-—,..,-10,1,2,...;,— -1
b= -3 —1,0,1,2,,
N; N, .
k= -—é_, -1,0,1,2, ...,? -1

where N; and N; are the number of data points in the z— and y— directions.

The right hand side of (3.25) can be computed using powerful FFT algorithms.
Once the discrete Fourier transform of wave elevation has been found, the algorithm
for recovering the wave amplitude function can be established from (3.23) in the

discrete form

A(B(ky, k3)) = R'(O(ky, ka))H" (K1, k2)Au

_ 1 +sin?0(ky, k3) =,
= Ko o8y, ) (krr ) A (3.26)

where Ko = &, Au= A+N;’ and 4, k; and k; satisfy

B(ky ky) = -1( ) (3.27)

K (0)12 Ko

(Auk)? +(Avk)? = | (Groig)’ -

(3.28)

That is, the spectrum values can only be taken from those on the spectrum locus.
Equation (3.26) does not contain the summation operation because there is only one
non-zero value of H (u,v) for each v. Once the discrete spatial frequency spectrum
H (k1,k3) of the ship wave elevation 7j(z,y) is obtained, the ship wave amplitude
function can be extracted from it.

In practical cases, the real-valued ship wave elevation n(n;,n;) or its spatial

frequency spectrum H(ky,k;) is available. According to the definition of 7(z,y)
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and the properties of the Hilbert transform, the spectra H(k;, k;) and H(ky, k;) are
related by

4

2H(k1,k2) for kl >0
H(ky k) = H(ky,ky) forky =0 (3.29)

0 fork; <0

\

Thus, the wave amplitude function also can be expressed by the spectrum H(k,, k2),
that is,

1+ sin’ 0(k1, kg) H*

Ak k) = Ko g k)

(k1, kz)Au (3.30)

with k; > 0. Note that the value at k; = 0 is not considered in the above formula,
since when k; = 0, # = % and cosd = 0. This will result in the infinity of
A(0(ky, kp)).

In the above discussion, it has been assumed that the truncation error caused by
the finite data length in the z— and y— directions can be neglected, and thus the
FFT algorithm is used to obtain the wave spectrum, and then the wave amplitude
function is recovered from it. In some situations, however, the truncation error is too
large to be neglected. In this case, the wave amplitude function may be recovered

by using an inversion technique. It is assumed that the truncated wave elevation is

represented by

ir(z,y) = ii(z,y) 97(2,y) (3.31)
where the two-dimensional gate function gr(z,y) is defined as
L L
1 for -t<e<h, lacy<h

gr(z,y) = . (3.32)
0 otherwise

Its Fourier transform is given by

Gr(u,v) = L1 L3S,(7 L1u)S,(x Lav) (3.33)
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where S,(§) £ sin €/¢ is called the sampling function. By using the convolution
property and the result in (3.7), the spectrum of the truncated wave elevation in
(3.31) is given by

X

Hr(w,9) = Ll [* 40)Su(xIa(u = 225, (r oo — £

2r

))do . (3.34)

Thus, if Ar(u,v) is known, the wave amplitude A(#) can be founded by solving this

integral equation.
3.2 Estimation from 1-D Wave Cuts

In many real situations, two-dimensional wave elevation data or spectra may not
be available, but one-dimensional (1-D) wave cuts or spectra may be obtained by
some remote sensing means or by field measurements. In this section, the relation
between one-dimensional wave spectra and the wave amplitude function is discussed
based on the complex-valued wave elevation cuts. Then, a special example is given,
in which the wave cut is measured by a stationary sensor, and the wave amplitude
function is recovered from its FFT spectrum.

The derivation of the wave amplitude function from wave spectra includes three
steps. First, the one-dimensional wave cut is expressed as a function of time accord-
ing to a pair of wave cut path equations; then the spectrum is obtained by taking the
Fourier transform of the wave elevation; finally, the wave amplitude function is ex-
pressed in terms of the spectrum. Now, consider a general case shown in Figure 3.2,
where a wave cut is taken in the ship generated wave field by a sensor moving with
a uniform speed U, in a direction making an angle a with the positive x-axis, i.e.,
the direction that the ship is moving. In the reference system moving with the ship

at constant speed U, the wave cut path can be described by a pair of parametric




sensor (xo.y,)

ship wave

Figure 3.2: 1-D wave cut in the ship wave field.
equations

z(t) = zo+ (Upcosa-U)t (3.35)

y(t) = yo+Upsinat (3.36)

where t is a parameter representing the measurement time, and (zo, yo) is the sensor’s
initial position in the given coordinate system at ¢ = 0. If the sensor is mounted
on an airplane or satellite, the sensor’s speed U, will be much larger than the ship’s
traveling speed U. In some cases, however, the sensor is considered to be fixed in a
position to measure the wave cuts when a ship passes through, for instance, in tow
tank experiments. When U, cosa > U, z(t) increases with t, otherwise it decreases
with t.

The complex-valued wave elevation cut can be derived by substituting (3.35) and

(3.36) into (2.18) and then by taking the Hilbert transform. Its form is given by

(1) £ i) y(0) = { [ 4701 5% Ordpyee (3.37)
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Figure 3.3: Curves of %%); versus § for different wave cut angles a.

where {.}"* specifically defines a conditional conjugate operation, that is, no opera-
tion is taken when ®(8) > 0, but the conjugate operation is taken when ®(6) < 0.

®0(8) and ®(0) are defined by

Bo(6) S Ku(8)z0 + Ky(0)yo (3.38)
8(9) 2 Zir [K.(6)(U, cos @ — U) + K, (6)U, sina]. (3.39)

With the above wave cut expression, the wave spectrum is obtained by taking

the Fourier transform of 7j(t) with respect to t:

H(f) = Fla®}= [ ie e

/_7_ {A7(0) %) }*0 5(f — |@(9)]) dO

_ 1 . j®9(60) 1o A
= g Ay (3.10)
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Figure 3.4: Curves of %:;g% versus § for different wave cut angles a.
where 8y must satisfy the equation
f—12(0)=0 (3.41)
and must be such that ®'(d,) # 0. Here, the derivative, ®'(9), is calculated from
(3.39) and is given by
") e I e . L
®(9)= 5702 cos? 0[(U, cosa—U)sind + UysinasecO(sin*d+1)] . (3.42)
When U, cosa > U, &(0) and &'(9) can be approximated by
KoU, cos(0 — a)

b0 =~ T — (3.43)
’ KOUP . . + 2

~ 44

o (9) 27rcosza[cosasm0+smasec0(sm 0+1)] (3.44)

where Ko = #;. These forms are similar to the ones given by Tuck, Collins and Wells
[6). The curves of 8 versus %,g}; and -:—,:;g} are plotted in Figure 3.3 and Figure 3.4

for the above approximate relations.
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By rewriting (3.40), the wave amplitude function A(#) now can be expressed in

the form
A(0) = |®'(8)| { H*(f) }** %@ (3.45)

where the subscript of # is omitted for simplicity, but keep in mind that § must
satisfy (3.41). When the ship wave is symmetric to the ship central line, the wave
amplitude function is an even function of 8, thus the calculation may be taken only
for 0 < 0 < % or = < 0 < 0. Because of the fact that I?(f) =0 for f <0, only
the positive frequency components needs to considered in the above calculation. The
valid wave angle can be found for each positive f by solving (3.41) or by estimating
from curves in Figure 3.3 and Figure 3.4. In terms of (3.45), the wave amplitude
function can be calculated if the wave cut spectrum H(f) has been obtained together
with the parameters U, U,, a, and the initial position (z¢,y0). The methods for
obtaining the ship speed U and the wave cut angle a will be presented in the next
chapter.

As an example, a special case now is considered in which a sensor is assumed fixed
in position and the wave elevation is measured as the wave field is generated when
the ship passes, as is typically done in tow tank wave measurement experiments.
Both U, and a are zero for this case. 0 < cosd < 1 when 0§ ranges from —3 to 3,
thus, now ®(#) = —s—&— < 0. For this case, the wave amplitude function in (3.45)

2xU cos

and the f constraint condition in (3.41) become

A(9) = ﬂ(f)%ej%m = I?(f)II(T”ff)—[ej°°(9) (3.46)
f- 27rUgc030 =0. (3.47)

Since frequency f is positive, its minimum value that can be considered in the esti-

mation of the wave amplitude function from the spectrum is fpnin = in terms of

.
22U

i
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(3.47). Given a value of f larger than f,;n, there are corresponding values for wave
angle 8 and H(f). Hence, A(f) can be evaluated in terms of (3.46).

Usually, the spectrum H(f) is obtained from the FFT of discrete wave cut data or
mapped from other discrete spectra. Therefore, f is discrete. For the wave elevation
cut, if the data length is N and the sample interval is At, then the discrete positive

frequency is given by

_k_
NAt

k=ko,ko+1,..

fo = (3.48)

N
.-

where kg denotes the smallest integer larger than %. The corresponding discrete

wave angle is given by

_ -1,9NAt
O = oo (Grrm
k= ko, ko + 1, ..., v (3'49)

5 -
From this formula, it is found that the data length should be large in order to obtain
a good resolution for small wave angles. The minimum resolvable wave angle is
dependent on cos™! %; the possible maximum resolvable wave angle is dependent
on the sample interval, which will be discussed in the next section.

The above derivation is based on the assumption of the time sequential wave
cut data. In some applications, however, the path of a wave cut may be described
by a path equation y = yo + tan az, for instance, the one-dimensional wave data
is cut from two-dimensional wave data in the r and y spatial domain. For this
case, the wave elevation is given in the form of #j(z) 2 i(z,y(z)), its spectrum
can be obtained by taking the Fourier transform with respect to z. Then similar

procedures to calculate the wave amplitude function can proceed. For instance, the
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wave amplitude function for a wave cut 7j(z, yo) is given by

AB) = A0 s, g(u)ﬂ%gemw)w (3.50)

2xU2 cos? 8
g
- _=90. 3.51
u 2702 cos 8 0 ( )

where y is a constant and H(u) is Fourier transform with respect to variable z.

Similar to the two-dimensional case, it is assumed in the above discussion that the
truncation error caused by finite data length can be neglected. In some situations,
however, the truncation error is too large to be neglected, and thus some remedy
methods are needed. One method is to extend the truncated wave cut according to
the theoretical ship wave asymptotic behavior as given in [20]. Another possibility,
which will be discussed here, is the use of an inversion technique to recover the
wave amplitude function from truncated wave spectra, which is similar to the two-
dimensional case discussed in Section 3.1.

In the second method, it is assumed that the data length is T, and that the
truncated wave cut is represented by 77(t) = 7j(t) gr(t — ), where the gate function
is defined as gr(t) = 1 while <t < %‘- and zero otherwise. The Fourier transform
of the one-dimensional gate function is T S,(#T f). By taking the Fourier transform

of fjr, the spectrum of the truncated wave cut is given in the form
Hr(f) = Te ™ [7 (4(0)3%0 o STOONS (xT(f ~ 0(O))) 40 (352
-3

When Hr(f) is known, A(9) can be found by solving this integral equation. Though,
the calculation will be more complicated than the method neglecting truncated er-
rors.

So far, the first section and this section have discussed the methods to recover
the wave amplitude function from either one- or two-dimensional wave spectra. Gen-

erally speaking, the calculation for one-dimensional data is simpler and performance
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is better than those for two-dimensional data if the one-dimensional data contain
enough required ship information. The reason that the accuracy may be degraded
in two-dimensional discrete cases is that the spectrum consists of discrete sample
pixels, the impulse on the locus can not be always located on these sampling points,
and a slight deviation from the locus may result in a large error for that impulse
value. However, the advantage of using two-dimensional data is that it is much eas-
ier to remove the background noise, such as a rough wind generated wave, and it
is also easier to estimate a ship’s speed and direction from two-dimensional wave
fields than from one-dimensional wave cuts. For the above reasons, it is suggested
that the signal processing and the estimation of ship speed and direction proceed
in the two-dimensional basis, but the wave amplitude function be recovered from

one-dimensional data that are extracted from the two-dimensional data.

3.3 Effect of Data Sampling Intervals

The wave amplitude function is a function of the wave angle. Theoretically, the
wave angle ranges from —% to 5 for ship generated surface waves. In most situations,
however, the data we obtained are discrete, and the range of the wave angle is
dependent on the sample interval and the ship speed as will be seer.l below. The
following two subsections discuss the effect of sampling intervals on the maximum
resolvable wave angles in one and two-dimensional cases, based on Nyquist’s sampling
theory. The final subsection discusses the relationship between the wave sampling

intervals for a real ship and its model, because ship models and tow tank experimental

data are usually used.
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3.3.1 Maximum Resolvable Wave Angles in 1-D Cases

The maximum resolvable wave angle from a one-dimensional wave spectrum is
determined in this subsection, based on Nyquist’s sampling theory and the relation
between the wave angle and wavelength.

To apply Nyquist’s sampling theory to the ship wave sampling problem, the
wavelength expression is given first here. For a ship moving at speed U, the wave

number K and wave angle 4 have the following relation from Chapter 2:

9

According to the definition of wavelength A and (3.53), it follows that

]2

2r
K

= 2—”U2 cos? @
g9

= 0.641U% cos? 6 . (3.54)

A

According to Nyquist’s sampling theory, in order to reconstruct a signal from its
sampling values without aliasing error, the sampling interval A in the spatial domain

must be such that
1
A S EAmin (355)

where \,;n is the shortest wavelength that the signal contains. If the data sampling
is taken in the time domain mentioned in Section 3.2, then A = U,At. Applying

this sampling criterion to the above ship wave problem, it follows that
T 172 cna?
A< ;U cosf . (3.56)

Some comments can be made here in terms of (3.56). Since the wavelength ranges

from 0 to 3’—"U 2, corresponding to the wave angle in [—3, 3], the sampling interval
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must be from 0 to ZU %, Thus, the sampling interval must approach zero, in order to
cover the wave angle approaching +%. In practice, the determination of the sampling
interval depend< on many other facts, and the interval can not bc very small. For
any sampling interval A larger than zero, the signal components with the wave angle
close to &% will inevitably have some distortion. However, if the intensities of these
components are very small when the wave angle approaches +%, this distortion may
be neglected in real applications.

If the sampling interval A is given, then the minimum wavelength which can be
resolved from the sampling signal is determined by Ani, = 24; additionally, if the
ship speed U is also given, the maximum wave angle which can be resolved from the

sampling signal is given from (3.56) by

gl
xU7)

Omaz = cos-l( (357)

Thus, the available signal components in the wave spectrum will be in the range of
0 = Omin to 0 = 01y,z, Where O,nin has been discussed in Section 3.2 and is given by
cos™! E% if A = UpAt is considered.

For easy reference with different ship speed parameters, the curve of maximum
resolvable wave angles from one-dimensional wave spectra versus [—,A-; is plotted in
Figure 3.5. As an example for a one-dimensional case, given A = 12.5 meters and
U = 10 meters/second, it follows the maximum resolvable wave angle 8,,,, = 51.36°,

and the minimum resolvable wavelength Apin = 25 meters.

3.3.2 Maximum Resolvable Wave Angles in 2-D Cases

The above discussion about one-dimensional cases can be extended directly to

two-dimensional cases. In order to reconstruct a two-dimensional signal from its
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Figure 3.5: Maximum resolvable wave angle from 1-D or 2-D wave spectra versus %.

sampling values without aliasing error, the following conditions must be satisfied,

according to Nyquist’s sampling theory:

1 1
< - o=
Az - 2Azm"‘ 211,,.“
A, < by =L (3.58)
Yy - 2 Ymin — 2vmcz *

where A, and A, are the spatial sampling intervals in the z— and y—directions,

= ml.; and \ = —L— are the minimum wavelengths contained

Ymin Umas

respectively. A

Emin
in the two-dimensional signal in the z— and y—directions. %ma; and v, denote
the maximum spatial frequency components that the signal contains. If sampling
intervals A, and A, are given, the spectrum components that can be presented are
in the range [~um,um] and [~vm,vm] in the spatial frequency (u,v) plane, where

- _1 1
Um = gp- and v, = T
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According to the results discussed in Section 3.1, the non-zero spectrum compo-
nents for ship waves are always located on a locus on the (u,v) spatial frequency

plane, as represented by

9

= xU%cosd (3.59)
gsind
v 2xU% cos?0 - (3.60)

The locus will have an intersection point with the edge u = u,, or v = v,,. The
maximum resolvable wave angle can be determined from the intersection point. If
the locus has an intersection point with 4 = u,,, then the maximum resolvable wave

angle can be obtained by solving u = u,, and (3.59),

g
U2)

cos™! (

Omaz

-l(wz) (3.61)

If the locus has a intersection point with v = v, then the maximum resolvable wave

angle can be obtained by solving v = v, and i
. —1rl g g
1121 2
sin"{ 3~ Zxvuy, +\/(2w2v,,.) +4)

= sin (5[50 +\[(E007 4 4]} (3.62)

In most cases, the sampling intervals in the z— and y—directions are set to be the

Omaz

same, i.e. A; = A, = A. It can be proved that in the first quadrant of the (u,v)
plane, the locus is under the line u = v for 0 < 0 < %, and is above the line u = v

for £ < 6 < %. From (3.59) and (3.60),

u—v= — tand)

g
21rU2c050(1

thus,

u > v if0<6< (3.63)

NE
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u < v if (3.64)

N

<h<

0ol 3

From (3.64), it can be concluded for the cases of A, = A, = A that when
Omaz < §, the locus has an intersection point with u = u,, and when § < Omar < 3,
the locus has an intersection point with v = v,,, and A can be expressed from (3.60)
in the form
fU’ co8 Opnaz if0 < Omar < 3

ZU?c08 Omaz Ot Omaz  if § < Omaz < §
(3.65)

Figure 3.5 also gives the maximum resolvable wave angle curves versus the ratio of
the ship speed U and the sampling interval A = A, = A,. From Figure 3.5, we find
that the sampling intervals must be small enough to recover the wave components
with large wave angles. Considering the above example again for a two-dimensional
case, given A = 12.5 meters, U = 10 meters/second, then 8,,,; = 55.47° in terms of

formula (3.62).

3.3.3 Sampling Intervals for a Real Ship and its Model

This subsection discusses the relation between the wave sampling intervals for a
real ship and its model. For this purpose, a non-dimensional parameter F,, called
the Froude number, is introduced here. With physical length L, speed U and gravi-

tational acceleration g, F, is defined by
v
V1

It is widely used in the ship wave resistance analysis. According to studies of ship

F.= (3.66)

wave resistance, the wave resistance of two geosims with the same hull shape are the

same when their Froude numbers are equal [21].
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If applying the above result to a real ship with length L and moving speed U and
its model with the same hull shape but length L,, and moving speed U,,, then the

following ratio cau be obtained when their Froude numbers are equal:

U2 Ln
B (3.67)

To express the sampling interval relation, let the sampling intervals corresponding
to the real ship and its model be denoted by A and A,,, respectively. The ratio of

the two sampling intervals can be connected to the above ratio in the relation
—E2_m_n (3.68)

for either the one-dimensional case in (3.57) or the two-dimensional case in (3.65).
This tells us that when the Froude number is kept the same, the sampling interval
corresponding to the ship model can be taken as A,, = Lg‘A.

So far, this section has discussed the effect of sampling intervals on the maximum
resolvable wave angles in one and two-dimensional cases, and the relation between
the wave sampling intervals for a real ship and its model. In summary, from the
viewpoint of analysis of ship wave spectra and extraction of ship geometry informa-
tion, the determination of sampling intervals depends mainly on the ship speed and
ship length. The smaller the sampling interval, the smaller the distortion of wave
spectra, the larger the maximum resolvable wave angle. Additionally, it will be seen
in Chapter 4 that the smaller the sampling interval, the more periodic zero points are
available in the wave amplitude function. Therefore, the sampling interval should be
selected as small as possible. In practice, however, the resolution and properties of
data acquisition systems and their operation position, such as SAR, greatly limit the
small sampling intervals to be used. Other limitations may be the data storage and

data processing, but they are less critical compared to the former. For the wave gen-
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erated by a ship model, the sampling interval can be taken as the one proportional

to the ratio of the lengths of the model and real ship.

L




CHAPTER IV

ESTIMATION OF A MOVING SHIP’S SPEED
AND DIRECTION

From the viewpoint of remotely sensing a ship moving in the open ocean, inter-
esting problems exist related to the detection of the ship’s actual presence, and the
acquisition of its dynamic and static information, for instance, the ship’s direction
and speed and the ship’s size and hull shape. These problems will be discussed in
the following chapters based on the knowledge given in the previous chapters. This
chapter focuses on the estimation of a ship’s direction and speed from one dimen-
sional and two dimensional wave spectra. Before this discussion, the problem of the

presence of a moving ship in ambient ocean waves is briefly discussed.

4.1 Presence of a Moving Ship in Ambient Ocean Waves

Although a ship’s length is bounded within a range of values, the wake it generates
in the open ocean may extend for many tens of kilometers. In the indirect methods,
the detection of a ship and its related characteristics is obtained by measuring ship
generated waves or their spectra.

One important feature of the ship wake, different from that of ambient ocean
waves, is its wave spectrum. As analyzed in Chapter 2 the spectrum of the complex-

valued wave elevation, H (u,v), has one locus on the spectrum diagram, and the

39
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Figure 4.1: (a) Pseudo image of the wave elevatior calculated from WAVEAMP for
the Quapaw hull model with direction x = 10° and speed U=2.229 m/s.
The crest appears dark and the trough bright. (b) Pseudo image of the
Fourier transform H(u,v) of the wave elevation from (a).
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Figure4.2: (a) Pseudo image of the Quapaw ship wave elevation in a random sine

ambient wave. (b) Pseudo image of the Fourier transform of the wave
elevation from (a).
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spectrum of the real-valued wave elevation, H(u,v), has two loci on the spectrum
diagram. Because of the distinct spectrum characteristics, it is usually easier to
detect the presence of a moving ship from the sea noise background in the spectral
domain than in the spatial domain.

To understand this point, let us examine a simple example of a ship wave plus a
random sine ambient wave. This is meant to simulate a ship in a swell background.
The ship wave without any ambient waves and background noise is shown as a
pseudo image in Figure 4.1(a) together with its FFT spectrum in Figure 41(b)
In Figure 4.1(a), the origin of the coordinate system has a translation and rotation
relative to the ship center, the origin of the ship reference system defined in Chapter 2.
This difference results in a rotation of the loci on the spectrum diagram, but it dose
not change the shape of the loci. Further discussion about it will be given in the
next section.

This ship wake is calculated using WAVEAMP, a program to compute the Kelvin
wave elevation [29)], for a 1:12 scale model of a seagoing tug, the USS Quapaw, which
has a length of 4.953 meters and a speed U of 2.229 meters/second with an angle of
10° relative to the x-axis. The ship wave height has a maximum value 0.231 , mean
0.007 and standard deviation 0.013 meters. The ship wave involved in a ra.n;lom sine
ambient wave is displayed in Figure 4.2(a) together with its FFT spectrum in Figure
4.2(b). The random sine wave has a simple model, Aysin( K.z + K,y), where A; K,
and K, are random variables generated point by point by a computer program. A,
originally has a Gaussian distribution with mean 0.05 meters and standard deviation
0.05 meters, denoted as N(0.05,0.05), and K. and K, originally have a Gaussian

distribution M (3.14, 1.0) in rad./meter. They are smoothed using a median filter with

a 9-point window size, equivalent to 1.8 by 1.8 meters. The smoothed Ay, K, and
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K, have means close to their original means, but have different standard deviations
of 0.014 meters, 0.28 rad./meter and 0.28 rad./meter, respectively. Finally, they are
used to calculate the random sine wave and are added to the ship wave.

From this example, it can be found that in the spatial domain, the ship wave,
particularly the wave on the left of the ship, has been corrupted by the random sine
wave because of their close wave direction, but the loci can be still recognized clearly
from the spectrum. In real situations with severe background noise, conventional or
special signal processing may be used to enhance the desired ship wave signal.

4.2 Estimation of a Ship’s Speed and Direction from 2-D
Wave Spectra

This section discusses the estimation of a moving ship’s speed and direction from
its two dimensional wave spectrum. The discussion will begin with two kinds of
spatial coordinate systems and their corresponding spectrum coordinate systems,
and then the formulas for estimating the speed and direction are derived.

In the following, the discussion will focus on the estimation from the magnitude
of a Fourier spectrum, instead of the one from a power spectrum, since a power
spectrum and the magnitude of a Fourier spectrum have a direct relation and are
equivalent when the spectrum locus position is used to estimate a ship’s speed and
direction.

It has been shown in Chapter 2 that under the steady state assumption, the ship

speed U, wave angle @ and wave number K(#) have a direct relation

K(8) = Tﬁ?iﬁ . (4.1)

This relation indicates that the ship speed depends only on the wave number, or

the wave length at a given wave angle. Theoretically, once the wave number K ()
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is available, the determination of ship speed becomes a trivial problem. However,
the determination of the wave number and wave angle needs prior information about
the ship’s direction. If this information is not available, then the problem becomes
complicated, and both the ship’s direction and speed need to be determined simul-
taneously.

To determine the ship’s direction, two coordinate systems in the spatial domain,
shown in Figure 4.3, are considered in this section. One is the reference system
moving with a ship as defined in Chapter 2; another is the image coordinate system
whose origin is the imaging center and the positive x-direction is the sensor’s direc-
tion. If zoy denotes the ship reference coordinate system and z,0mym the image

coordinate system, then their relation is given as

Tm = ZTmo+ Tcosa—ysina (4.2)
Ym = Ymo+ Zsina +ycosa (43)
or
T = (Tm— Tmo)cosa+ (Ym — Ymo)sina (4.4)
Yy = —(Tm — Zmo)sina+ (ym — Ymo) cos (4.5)

where (zmo, ¥mo) is the coordinate of the origin o of the ship reference system in the
image coordinate system and where a is the angle between axes oz and o, z,,, which
represents the ship’s direction relative to the sensor’s direction. With the relations,
the ship wave n(z,y) expressed in the ship reference system can be expressed in the

image coordinate system as

Mm(Tms¥m) = N[(Tm — Zmo) cOs @ + (Ym —~ Ymo) sinq,

~(Zm — Tmo) sina + (Ym — Ymo) cOsS ] . (4.6)
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Figure 4.3: Two coordinate systems in spatial domain: the ship reference coordinate
system zoy and image coordinate system Z,,0mym

vV i Vm

|\

Figure 4.4: Two coordinate systems in frequency domain: the ship reference coordi-
nate system uov and image coordinate system u,, 0 Um
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Corresponding to the the above spatial domain coordinate relations, the spec-

trum domain coordinate relations can be established through the Fourier transform

relation. The Fourier transform of 7(z,y) has been given in (2.20), i.e., H(u,v) =

F{nm(z,y) }. The Fourier transform of 7,,(Zm,ym) is given as

Hm(“m’ vm) = ]:{ nm(zma ym)} = -/_oo /_oo ﬂm(zm’ ym)e—jQW(umzm+vmym)dzmdym

~(Zm — Tmo) sina + (ym — Ymo) cOS ]e'jz"(“"'"’"+”"""")dzmdym

o oo . . .
= [/—o° '/-oo n(z, y)e—ﬂr[:(um cos a+um sin a)+y(—um una+vmcoaa)]dzdy ]

.e~ 127 (umTmo+vmymo)

= H(upcosa+ v, sina, —tny, sina + vypcosa )e 327 (4mZmotvmymo)

o0 (]
/ / N[ (Zm — Zmo) cos @ + (Ym — Ymo) sin a,

(4.7)

From the above relation of the Fourier transforms Hp(tm,vm) and H(u,v), the

coordinate relation in the spectrum domain is given as

u =

v =

or

um—-

Um =

In terms of the above expressions, the following comments can be made:

U COS A + Uy SIN X

— Uy, Sina + v, COS

ucosa — vsin o

usina + vcos o

(4.8)

(4.9)

(4.10)

(4.11)

(1) The spectrum domain coordinate system uov, corresponding to zoy, has a ro-

tation, with an angle a, relative to the spectrum domain coordinate system ., 0; vm,

corresponding t0 Zm0mym. Thus, if a is determined, then the ship’s direction relative

to the sensor’s direction can be obtained.
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(2) The translation (Zmo, Yymo) between the two spatial coordinate systems reflects
only on the phase of Hp,(um,vm). Thus, it is not important to know the translation
since the wave number and wave angle are determined from the magnitude of the
Fourier spectrum or the power spectrum.

(3) When a = 0, then |Hm (t4m, ¥m)| = |H(¥m,vm )|, the wave number components
and the spatial frequencies have simple relations, i.e., K; = 2xu,, and K, = 27rvp,
and the wave angle is given as § = tan‘ll"‘:. For this case, the speed can be calculated
by directly measuring the position of the locus points in the spectrum diagram.

(4) According to the spectrum coordinate relation, it follows u2, + v2 = u? + v?;

thus, the wave number K is invariant with the coordinate system transform, that is,
K =2n\/u? + v} =2xrvu2 + 02 . (4.12)

With the above relations and the conclusions, the general formulas to determine
a moving ship’s direction and speed are derived in the following. First, consider the
ship’s wave spectrum locus in the uov coordinate system. From (4.1), Kcos®d = §;

thus, for any two locus points, it follows
Kicosby = \/ K3cos0, (4.13)
where the subscript, 1 or 2, indicates that the wave number and angle are obtained
from the given point 1 or 2. Since cos§ = —mt—my = 222, (4.13) can be rewritten as
Keuy = /Kyug . (4.14)
In the u,0mVm coordinate system, (4.14) becomes
\/I?g(u,,,l cosa + vpp sina) = \/I?l(umg cos a + Upmg sin ) (4.15)

and, thus, the angle o can be estimated from

an-! VEium: = VEjum
VEivm2 — VKvm

a=-—t

(4.16)
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Similarly, the ship speed can be calculated from

- 9 (3 VK
U=,|o———7=/— n — (4.17)
Kjcos?0; 27 |umjcosé + v sin &

where j =1 or 2.

In real situations, the ship wave spectrum is discrete, and thus the locus points
on the spectrum diagram will not always exactly locate on the sampling grids. This
results in errors on some locus points when they are read from the spectrum diagram.
To remove this effect on the calculation of the ship’s speed and direction, many pairs
of locus points can be used to calculate the ship’s direction and speed, and then their
average is taken as the estimate of the direction and speed. Specifically, consider
there are M pairs of locus points available. The angle a is calculated with each pair
of points, and the average of the calculated angles &;, : = 1, ..., M is then considered

as the estimate of o, i.e.,

L
Mn’

Mx

a= &.’ . (4.18)

1

The average of U;, i = 1,...,2M is considered to be the estimate of the ship speed ,
that is,
1 2M

331 2= U

=1

fw/]
il

12M

g vKi
= Vor - 4.19
M E 27 |umicos@ + vmisin a (4.19)

The formulas for estimating a moving ship’s direction and speed from a two

dimensional wave spectrum have been derived above. The scheme for the estimation
is now shown in Figure 4.5. In real situations, ship waves are involved in a random
sea background. Thus, a wave spectrum contains not only the ship wave components

but also the noise components. To remove the random noise and other undesired
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Figure 4.5: Scheme for estimating a moving ship’s direction and speed from its wave
spectrum

components, digital processing techniques may be used. The clipper shown in the
figure is used for the this purpose.

Theoretically, the two dimensional Fourier transform of the ship generated wave
is composed of é-functions; thus, there are many inﬁnite-éize impulses located on the
loci of the spectrum diagram as discussed in Chapter 3. When the finite wave patch
is sensed as in real situations, they are on the order of O(L.) (6], where L. denotes
the characteristic length of the finite patch. For the case of high signal to noise
ratio, a simple processing method can be used. For instance, a clipper is used to
remove the background noise components. This processing is helpful in determining
the position of each locus point. From the positions (umi, vm;) of locus points, the
ship’s direction and speed finally are calculated. The algorithm can be implemented
in software with a fast and accurate estimation performance.

To demonstrate the above method, consider here an example of the Quapaw’s
wave elevation field, shown in Figure 4.1(a). It is assumed in the calculation that
the ship’s direction and speed are a = 10° and U = 2.229 meters/second, and that
the sampling intervals in the x- and y-directions are 0.2 meters. The ship’s direction
and speed are estimated from the spectrum of the wave field, whose contour plot is

shown in Figure 4.6. Note that the subscript “m” has been used in this figure to
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Figure 4.6: Contour plot of the Fourier transform H,(%m,vm) of the Quapaw’s wave
elevation.

emphasize the image coordinate system. A total of 183 locus points are evaluated
for the right locus on the spectrum with a threshold of ug + o, where uy and oy
are the mean and éta.ndard deviation of the spectrum intensity. According to the
computer calculation, the estimated direction is & = 9.999° with a relative error of
0.006% and a r.m.s. error of 0.233°; the estimated speed is U = 2.230 meters/second
with a relative error of 0.03% and a r.m.s. error of 0.019 meters/second.

4.3 Estimation of a Ship’s Speed and Direction from 1-D
Wave Spectra

This section discusses the estimation of a moving ship’s speed and direction from
its one dimensional wave spectrum. The expression for the spectrum of a wave cut
making an angle with the positive x-axis has been given in (3.40). The wave cut
spectrum has two peaks under certain conditions, and the frequency positions of the

two peaks can be used to estimate the ship’s direction and speed, as suggested by
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Tuck et al [6]. For this one-cut method, the formulas for estimating the direction
and speed are given here first, and then another method, called the two-cut method,
is introduced for estimating the ship speed from two wave cuts parallel to the ship’s

central line. Examples are also given to demonstrate the two methods.

4.3.1 One-cut Method

The discussion begins with the wave cut spectrum and its properties. The spec-

trum expression for a wave cut have been given in (3.40), that is,

H(f)= @ (A® eIPo() }re

|’ (0)

with a constraint condition for 8, f — |#(8)] = 0, as in (3.41). This condition
indicates @ is a function of frequency f; thus, there may exist some frequencies such
that &' (9) = 0, and hence there may exist some singularities for the spectrum. For
the finite length wave cut, this will cause some sharp peaks on its spectrum diagram.
The peak height is proportional to the square root of the data record length [6]. The
frequency points of the peaks on the wave cut spectrum can be determined by two

equations, (3.41) and
(@) =0 . (4.20)

Here, ® depends on the wave angle 6 as well as the wave cut angle a. Substituting
the approximation of @ given in (3.43), ®(9) ~ Ml ggﬁﬂ, into (4.20) and then
solving the resulting equation together with f—|®(8)| = 0 yields the relation between

8 and a:

-1 sin26
cos20 -3

a = tan

(4.21)
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The curve of a versus @ is plotted in Figure 4.7 (a). It is found from the figure or
calculation that |sin~'1|(= 19.5°) is the maximum wave cut angle for the peaks to
exist.
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Figure 4.7: Relations between the wave angle #, cut angle a and frequency f, at
peaks. (a) a versus 8; (b) 72(%% versus 0; (b) ;—:{ﬁ versus a; (b) iL;
versus a.

With the above relation of § and «a, the special frequency points f, are obtained
from f — |®(6)| = 0 in the form

2rfp 1

= — 4.22
KoU, cos@+v/4 —3cos?b (4.22)

The frequencies also can be directly expressed in a function of the wave cut angle a:

o f, 3
=,|————— 4.2
KoU, 4 —r}y(a) (4.23)

where Ko = #%, and U, and U are the speeds of the sensor and ship, respectively,
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and where

(1 —8tan?a) £3v1 — 8tan’a
2(1 + tan? @)

1'1,2(0) = (424)

represents the value r; with “+” or r; with “—” before the sign of square root.
Since r; and r; are real, 1 — 8tan’a > 0, which is equivalent to a < |sin~'1] as
asserted above. In terms of (4.23) and (4.24), there are one or two frequency points,
corresponding to r; and r;, where the peaks appear. When a = 0, there is a finite
frequency point fy1 and an infinite frequency point f,; = co; when 0 < a < |sin™1},

there are two finite frequency points, f,; and fp2; when a = |sin~'1| there is only
one finite frequency point f; = fpa.

From the above special frequency points, the ship’s direction is estimated first
and then the speed is calculated. When 0 < a < |sin~'}|, the direction is estimated

by calculating the ratio of the above special frequencies, i.e.,

—p2
% = —-—t ~ :g((? ) (4.25)

The frequencies f,; and f,3 are found from the wave cut spectrum, then the wave
cut angle is obtained by solving (4.25), and finally the ship speed is calculated from
(4.23) by noting the relation of Ko with the speed, i.e., Ko = #. Figure 4.7 (d)
shows the curve of the ratio % versus the wave cut angle . When a = 0, the ship

speed is directly estimated from f,; with the formula

21rf,,1
—r -1 . 4.26
KoU, (4.26)

To demonstrate the above one-cut method, consider here an example in which
the wave elevation cut, shown in Figure 4.8(a) is calculated using WAVEAMP. The
ship model is the same as in the above two dimensional case. Each cut has 256 data

points and a sampling interval of 0.001 seconds. It is assumed that the ship has a
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(a) Wave elevation cut calculated from WAVEAMP for the Quapaw
model with wave cut angle @ = 10°, speed U = 2.229 m/s, and
(Zmo, Ymo) = (—48.5087, —20.5690); (b) Magnitude of the Fourier trans-
form (dotted line) of the wave elevation from (a), and two peaks (solid
lines) where f — |®(8)| = 0.
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direction of a = 10° relative to the sensor’s direction, and that the sensor’s speed
is U, = 199.219 meters/second. The frequency points at peaks are obtained from
the spectrum, whi;:h is the dotted line in Figure 4.8(b). The two desired peaks have
been detected and are shown in solid lines in the figure. Since the two peaks are
located close together, the peak P, has a little left shift in the spectrum shown in the
dotted line. Thus, the peak P; has to be determined after removing the peak P, from
the spectrum using a bandpass filter with good selectivity. The filtering, position
detection and all other calculation can be automatically completed using a computer
program. According to the computer calculation, the detected position of the two
peaks are f,; = 62.5 H, and fp; = 95.7 H,; the estimated direction is & = 10.019°
with a relative error of 0.19%; the estimated speed is I/ = 2.195 meters/second with

a relative error of 1.51%.

4.3.2 Two-cut Method

When a wave cut is parallel to the ship’s central line, the wave cut angle is equal
to zero. For this case, an alternative method can be used, which is called here the
two-cut method because two wave cuts parallel to the ship’s central lines are used. In
this method, the ship speed is estimated from the relative phase difference between
the Fourier transforms of the two wave cuts. The derivation and example are now
given below.

First, recall the relation between the wave amplitude function and the Fourier

transform of a wave cut with @ = 0, which are given in (3.46) and (3.47):

A(8) = H(f) |K;1(r0)|ej(K,(O)zo+K,(0)yo) (4.27)
g

-_ T =0 . 4.28

f 27U cosd 0 (4.28)
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Now, consider two parallel wave cuts with cut angle a = 0, distance Ay = y; — 1
and the same starting point ¢ in the x-direction. The Fourier transforms of the two
wave cuts are H1(f) and Hy(f). Since the wave amplitude function A(8) is supposed
to be the same for the two wave cuts, using the above relation and dividing H,(f)

by Hi(f) leads the following relation

%:% = (IfAv B (4.29)

where the relation K, = l—ﬁ%g—; has been used. If the phase difference of H;(f) and
H,(f) is represented by Ady, then the phase relation in (4.29) can be written in the

form

gsinb(f) _ Ady

Urcos?6(f) — fAy (430)
From (4.28), cos 8(f) = 337 Substituting this relation into (4.30) yields
(2r)'0% O 9 gy Ady

Note that from the above expression, 5;‘}7 approaches 1 as A¢y approaches 0. Thus,
once we can find the frequency fnin corresponding to the minimum value of |Ady]|,

then the ship speed can be found from

A g
U=55— - (4.32)

To demonstrate this two-cut method, consider an example in which the ship wave
elevation cuts were measured by three capacitance wave probes when the Quapaw
model was towed in a tow tank . Three wave cuts were obtained for each run.
The wave elevation of two runs, RUN3 and RUNS, are shown in Figure 4.9. As

an example, Figure 4.10 shows the magnitude of the spectra of wave cuts RUN5-B

1The experiments were made by Ship Hydrodynamics Laboratory, Department of Naval Archi-
tecture and Marine Engineering, the University of Michigan in October, 1990.
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Figure 4.9: Wave elevation cuts from tow tank experiments for the Quapaw model.
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Figure 4.10: Magnitude of the FFT of wave cuts, RUN5-B and RUNS5-C, and their
phase difference A¢y.

and RUNS5-C and their phase difference. Here, A¢dy has been processed using a
median filter with a 3-point window size for detecting the minimum point of the

phase difference. The estimation results are listed in Table 4.1.

So far, the methods for estimating a moving ship’s direction and speed from one
and two dimensional wave spectra have been discussed. Comparing these methods,
the two dimensional method has three primary advantages. First, it has no limitation
on the ship’s moving direction, except for the 180° ambiguity that results if no further
prior information is used. This is opposed to the one-cut method, which is suitable

only for the cut angles, a, between [—19.5°,19.5°], but is unable to tell the positive
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RUN3 RUN5
cuts || U (m/s) | error (%) || U (m/s) | error (%)
a&b 2.283 24 2.283 24
a&c| 2283 24 2.283 2.4
b&c 2.283 24 2.179 2.2

Table 4.1: Ship speed estimated from the Quapaw’s wave cuts using the two-cut
method.

or negative angle, and may result in false detection if obvious peaks also exists when
la| > 19.5°. Second, the two dimensional method works well even in the presence
of ambient waves and background noise because of the spectrum feature of ship
generated waves. In the one-cut method, the ship wave signal can be easily corrupted
by ambient waves and background noise, and thus it may result in false detection
of the peak position. Third, the two dimensional method appears to achieve more
accurate estimation results than the one dimensional methods. Because of these
reasons, the two dimensional method should be always considered first when two
dimensional spectra are available. It has recently become possible to obtain these

data from air-borne or space-borne radar systems or other modern remote sensing

techniques.




CHAPTER V

ESTIMATION OF SHIP LENGTH

This chapter gives a detailed discussion of the estimation of a ship’s length from
its amplitude function. The ship length is an important quantity to be estimated
in remotely sensing ship characteristics, and it is also an important parameter in
the further estimation of ship hull. In recovering a ship’s hull shape from the wave
amplitude function, an inversion problem is involved, that is, an integral equation
must be solved, which will be discussed in the next chapters. The integral limits
along the x-direction are specified by the ship length. Therefore, the accuracy of
the recovered ship hull shape will depend, to a great extent, on the accuracy of the
estimated ship length.

The principle of the estimation of ship length is that there is the relation between
a ship’s hull and its wave amplitude function, and that ship length information is
contained in the observable periodic character of the wave amplitude function. This
character can be found not only in the real and imaginary parts of the wave amplitude
function, but also in the magnitude of the wave amplitude function.

In this chapter, a theoretical model of the wave amplitude function is developed,
and three methods are designed for the estimation of a ship’s length. The first section

discusses the relationship between a ship’s hull and its wave amplitude function; the
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second section gives the theoretical proof and analysis about this periodic character
for general ship hull shapes and the relation between a ship’s length and its bow and
stern’s shapes; the final section gives a discussion of the estimation methods.

5.1 Relationship between a Ship’s Hull and its Wave Am-
plitude Function

In the study of fluid motion, wave flows due to a moving body are imagined to
be generated by a continuous volume distribution of singularities within the body,
extending out to its surface {14]. In this section, the discussion starts directly from
the relationship between the wave amplitude function and wave source densities or
source singularities. The non-dimensional form of the relation has been described by
Eggers et al. [20]. After some mathematical manipulations, the dimensional form of

this relation is given by

A0) =220 [ oz y, e (K(O)z + (K02 + K,0w}dD  (5.)

where o represents the source distribution, D is the source region, and K, K, and
K, are the wave numbers defined in Chapter 2. To estimate a ship’s length and
hull by using this formula, the following two assumptions are made about the source
region and the relation between the singularity distribution and the ship hull.

To simplify the source region, it is now assumed that the ship hull is thin, that
is, the beam is small compared to all other characteristic lengths of the problem
[14]. Thus, the singularity distribution can be envisaged to be on the ship’s center-
plane, instead of on the ship’s hull surface, and the source region is considered to be
—% <z < % and ~H < z <0, where L and H denote the ship length and draft,

respectively. Under this assumption, (5.1) becomes

3
A9) =Y SU": 6 /_ i /_°H o(z,z) exp {K(8)z + j K.(8)z}dzdz . (5.2)
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This formula will be used to analyze the periodic character of the wave amplitude
function.

In the estimation of ship hull shape in the next chapter, the explicit relation
between the wave amplitude function and the ship hull is useful, and thus is given
below. To the first-order approximation, the relationship between a hull’s geometry

and its centerplane singularity distribution can be obtained:

o(z,y) = %g_gz,_z) (5.3)

where ((z, z) defines the local half-beam of the hull surface. Thus, combining (5.2)

and (5.3) gives the explicit relation between the wave amplitude function and the

ship’s hull:
3
A() = 325}‘# /_ i p ch,%ﬁlexp {K(0)z + jK.(0)z}dzdz . (5.4)

For simplicity in discussion, the normalization of r and z with respect to the ship

length L and draft H is considered. By letting
T = %z' z €[-1,1] (5.5)
z = HZ Z €[-1,0] (5.6)

equations (5.2) and (5.4) respectively become

2 1 ’ ! LA
0 = 2 LHUK(8 /" ' IO 0 g g '
A(9) = ZLHUK3(6) /.1 [ o(2',2)eO 40 dg'as (5.7)
_ 2 473 1o §¢(z',2") (0 _u(d)z 3.7,
A9) = -5 HU*K2(0) /_ 1 /_ el 0 4 (5.8)
where
L gL 1
o) = EKZ(O) " 2U%cosf = 2F2cosf (5.9)
HU? gH H 1
0 — 2 = —wrmee——m—— D e e .
#6) g k= (6) U?cos?d L F2cos?d (5:10)

For ease of notation, the prime on z and z will be ignored in the following discussion.
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5.2 Periodic Character of the Ship Wave Amplitude Func-
tion

The periodic character of the ship wave amplitude function can be observed when
the wave amplitude function is described as a function of the longitudinal wave num-
ber K, and plotted on a K,-A diagram. This periodicity is proved mathematically
in this section, and the inherent connection between the ship length and the periodic
character will be discussed.

In the following derivation, the wave amplitude function with two dimensional
integral form in (5.7) is rewritten into a marginal integral of only z. Its integrand
is expressed in the form of a power series and the integral is then calculated. Af-
ter mathematic manipulations, the real and imaginary parts of the wave amplitude
function are expressed in the form of cosine functions and their periodic characters
are then analyzed.

The wave amplitude function in (5.7) can be expressed as a marginal integral of

z by defining a function F(z), i.e.,

A(K) 2 A0) = [ '1 F(z)el"*dz (5.11)
where
F(z)é%LHU:’K;’ ﬂ o(z,2)e¥*dz . (5.12)

Here, the wave amplitude function has also been written into a function of variable
K. instead of §. The integrand function F(z) is another weighted integral of the
singularity distributions. With the assumption given in (5.3), F(z) will directly
relate to the ship hull shape, thus generally F(z) is a smooth function. In the

discussion here, it is assumed that F(z) and its derivatives are continuous in the
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region —1 < z < 1, so that F(z) can be expressed in the form of a power series of =

F(z) = Ea,z’ Zaz,a: +2a2.+1::2'“ . (5.13)

=0
Now, substitute (5.13) into (5.11) and then integrate it. In the calculations, the

following integral formulas are useful:

/z" cosar = ppg,(a,z)cosaz + qr,(a,z) sinaz (5.14)

/:1:" sinaz = pp,(a,z) cosaz + gqr,(a,z) sinaz (5.15)

where n is an integer and

0 forn=0
Pr.(a,7) = (21 e (5.16)
,_0 ( 1) (n—2r—l)' I forn >0
[7] . zn-2r
qr.(a,2) = Z( -1) o) (5.17)
[?] n! zn—2r
pr(a,z) = "Z=;)(—1),+l (n— 2r)! T g2+l (5.18)
0 forn=0
9.(a,z) = (5.19)

Zr_o ]( -1) (,,_2,_1). %}:—;—;— forn>0
With the above integral formulas, the wave amplitude function in (5.11) becomes a

form from which the periodic characier can be observed much more easily:

A(K:) & Ap(K:)+jAi(K.)

= QR(K:) cos GR(K,) + jQ[(K,)COS eI(Kz) (520)

where Ar(K:) = Qr(K;)cos Op(K;) and A(K,) = QI(K;)cosO(K.) denote the
real and imaginary parts of the wave amplitude function. When the function F(z)

is an even function of z, Ag will vanish. With the notation v = %K, as in (5.9),
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Qr(K:), Qi(K.) , Or(K.) and 6;(K_) in (5.20) are defined by

Qr(K:) = 2[(202-1’&.(”))2+(Eaz-qaz.('/)) ¢ (5.21)
Qi(K:) = 2[(Zaz.+1pz,.+.(”) +(za2t+lq12-+1("))2]% (5.22)
Or(K,) = v—¢r(v) (5.23)
O1(K;) = v—¢i1(v) (5.24)
where
oy 1] im0 B2i9Ra(V)
ér(v) = tan [Z?"-_-odzepn,.- (V)] (5.25)
i) = ) 620
0 fori =0
pR:.‘(V) = (5.27)
T (1) iy e fori=1,2,3,..
QRz.'(v) = Z( 1) (?1(21)2r)! .V;'H (528)
Phas(v) = 2(-1)'*‘(2,.‘3’2’:2’1)!~,2f+1 (529
V) = SV g (5.30)

From (5.20), it is found that both the real and imaginary parts Ag and A; of
the wave amplitude function consist of signals with an K,-varying magnitude and
an K_-varying “frequency”. That is, both the magnitudes, Qr(K:) and Q(K),
and the instantaneous “frequencies”, ;1 %‘3 and & :2 , change with K. Here, the
frequency concept for a time signal is used. By quoting the terminologies in telecom-
munications, the real and imaginary parts look like two signals, both amplitude and
angle modulated with “carrier frequency” & if K is the analog of time ¢.

In the above discussion, it has been assumed that F(z) and its derivatives are

smooth and continuous in the hull surface region. Thus, there is one dominant fre-
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quency component at frequency ;L; in the above expressions of Ag and A;. However,
the real situation may not be so perfect. F(z) may be a piecewise smooth function,
that is, there are some discontinuous function and derivative points. In this case,
harmonic frequency components will appear. For example, assume that there is one

discontinuous point at z = z; € (-1,1), and F(z) is expressed in the form

Yiz0ajz’ for-1<z< 1z

F(z) = . (5.31)
TRobrd  forzy <z <1
Substituting (5.31) into (5.11) yields the results
Ar(K:) = Qr,(K:)cos(v — ¢g,(v)) +
Qry (K, 7) cos(zov — by (v, 75)) (5.32)
Al(K:) = Qn(K:)cos(v ~4n(v))+
Qu (K=, zs) cos(zsv — ¢1, (v, 21)) (5.33)

where the magnitudes Qgr,, Qr,, Qr, @r and the phases ¢r,, dr,, ¢1,, ¢1, are
combined with the coefficients pg, (v, z), qr;(v,z), p1,(v,z) and g1,(v, z), defined in
(5.16) —(5.19), at £ = ~1,zy, or 1. The detailed expressions for these magnitudes
and phases can be found in the appendix. In (5.32) and (5.33), cos(v — ¢r,(v)) and
cos(v ~ ¢r,(v)) represent higher frequency components generated at the ship’s bow
and stern, i.e., z = £1, and they are similar to those in (5.20) with frequency <.
The new frequency components cos(zyv — ¢r,(v,zs)) and cos(zpv — é1,(v,3)) are

generated by the discontinuous point at £ = z;, and their frequency 54";'9- is lower than

L
4r

since |zp| < 1. When z;, = 0, Ag and A; may contain a direct current component.
Generally speaking, each discontinuous point in the function F(z) may add a
new frequency component to Ap and Ay, and the frequency is always lower than

—4%. As mentioned before, the function F(z) is related to the shape of a ship hull.

[
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Thus, the increase in the discontinuity of the hull surface or its derivatives will
result in an increase in the discontinuity of F(z) or its derivatives and, hence, in
an increase in the frequency components in the wave amplitude function. According
to the ship wave resistance theory, the resistance is proportional to the weighted
integral of the square of the wave amplitude function [14]. Hence, this increase of
the frequency components may result in an increase in the ship wave resistance.
Therefore, ship hulls are usually designed to be smooth so that the resistance can be
reduced. Additionally, note that the coefficients in (5.16) —(5.1%, contain the factor
z™ %1 or z"~?" in each term, and are small for £ = z, < 1 compared to those for
z = £1. Thus, these lower frequency components generally will not be dominant
as found in real examples. Therefore, the following discussion will still focus on the
problems with the assumption of smooth hulls.

In the estimation of ship length from Ag or Ay, the phases Og(K;) and O/(K;)
are more interesting than the magnitudes Qr(K%) and Q(Ki) because of the direct
relation of the ship length with the phases. For this reason, the discussion about the
estimation of ship length from Ar and A; will mainly focus on phase. It is found
from (5.23) and (5.24) that Or(K;) = %K, and O/(K;) = %K, when ¢r(v) é1(v)
approaches zero. Thus, the curves Ar(K;) and Aj(K;) corresponding to the real or
imaginary parts of the wave amplitude function have the period %’ If the period is
measured, then the ship length can be estimated.

In general, however, neither ¢r(v) nor ¢1(v) approaches zero, thus the estimation
of ship length becomes complicated. In terms of (5.25) and (5.26), the phases ¢g
and ¢; depend not only on v but also on the coefficients a; which are related to a
ship’s hull shape. The relationship between the phases and the ship shape is usually

not straightforward and obvious. If a reasonable approximation is made, however,
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more insight on the relation can be still gained.

5.2.1 Approximation of A(K;) for larger v

If a large value of v is assumed, the expressions for Qgr, @1, #r and ¢ can be
greatly simplified and it is found that they depend on the function values and the
first derivatives of F'(z) at the ship’s bow and stern. This subsection discusses the
validity of the assumption and gives the approximate expressions.

With the assumption of large v, the approximate expressions of the coefficients in
(5.27) —(5.30) are given first. The sums of pr,,, qr;;, 95:,, a0d qn,,, in (5.27) —(5.30)
consist of 7 or ¢ 4+ 1 terms. For not too large ¢, these sums can be approximated by
their first or second term when v is large enough. With this approximation, (5.27)

—(5.30) become

pry(v) = i;2;=ipn,(u) (5.34)
() % = an () (535)
Phan(v) = =2 =p1(v) (5.36)
(V) (2i+1)%=(2i+1)q1,(u) (5.37)

for:=0,1,2,3,...

The errors caused by the above approximation are dependent on variable v and
index :. The approximation errors for : < 7 are plotted in Figures 5.1 —5.4 together
with the curves of pg,(v),qr,(v), p1,(v) and g;(v). It is found from the figures that
given 1, there is a value such that the approximation errors will become very small
when v is larger than this value. For instance, the errors approach zero when v is
much larger than 3 for : < 3 and when v is much larger than 7 for : < 7. Recalling

expression (...13), the largest power of z in (5.13) is j = 7, corresponding to : = 3,
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Figure 5.1: pg,(v) and the approximation errors of pg,,.
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and j = 15 to ¢ = 7. Since a ship’s hull shape is usually smooth, the series F(z)
will be convergent and the coefficient a; in (5.13) will be very small or even can be
neglected for large j. From the figures, v > 3 is a reasonable assumption for most
real situations where 1 < 3.

In addition to index 2, the range of v needs to be verified to make sure that the
approximation errors are small enough. To understand which value of v is reasonable
for an approximation, v is here related to the Froude number since the scale of the
Froude number is available in ship building references. By the definition of the

Froude number given in Subsection 3.3.3, it follows that

L L g 1
v= _2-K= T2 U%os0 2F%cosf ’

(5.38)

Usually 0.1 < F, < 0.5 for ships [16]; thus, v ranges from 2% to —2; correspondingly
and increases with the increase in the wave angle §. From (5.38), the minimum v is
determined by vpin = #3 Thus, Vmin = 2 corresponds to F, = 0.50, vpmin = 3 to
F, = 0.41, and vpin = 50 to F,, = 0.10. Therefore, the assumption that v > 3 is
suitable for the cases where F, < 0.41, in particular, for most merchant ships, for
which 0.1 < F,, < 0.3 [16].

To simplify the expression of the i)hases #r and ¢;, substituting the approximate

expressions in (5.34)—(5.37) into (5.25) and (5.26), it follows that
br(v) ~ tan”'[—] (5.39)
Br
si(v) x —tan(2) (5.40)

where Br and S are given by

Lo 2tay

Br = m (5.41)
_ L26(2t 4 1)azin
Br = S% e . (5.42)

?
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By using the triangle relation that tan™'¢ = £§ — tan™"}, where “+” is taken for

positive £ and “-" for negative £, ¢r(v) can be expressed in the form
¢r(v) = £ + énolv) (5.43)

where

Br

dro(v) & — tan~'[=%] . (5.44)

Now, the phases O in the real part of the wave amplitude function can be given

from (5.23) and (5.44) by
Or(K:) = v —po(v) - (:h%) (5.45)

In terms of the above relations, the real and imaginary parts of the wave amplitude

function can be now rewritten as

AR(K.) = +Qa(K.)sin(v — $mo(v)) (5.46)

Al(K;) = Qr(K:)cos(v~¢r(v)) . (5.47)

The signs before % in (5.45) and before Qr in (5.46) are taken as before, i.e., “+” is
taken for positive g and “~” for negative fg.

At this stage, it is now possible to relate the phase parameters, Sr and Sy, and

the magnitude, Q(K;) and Q(K;), to the function F(z). To obtain this relation,

break up F(z) and its derivative F'(z) into their even and odd parts, i.e.,

F(z) = F.z)+ F,(z) = i aziz® + i azip1 22! (5.48)
F'(z) = F.(z)+ F.(z)= Z gz + 2(21 +1agiaz? . (5.49)
=0

The values of F(z) and F'(z) at the end point z = 1 can be evaluated now, and they

are given by

= i Qg (550)

=0
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Fo(1) = i_o:o a2i41 (5.51)

F(1)

3 2iay (5.52)
=0

F1) = 302+ Dasus . (5.53)

i=0
Comparing the above expressions with the definition of Bp and B in (5.41) and
(5.42) leads to

_ F@)

.BR - Fe(l) (5'54)
_ F)

Br = Q) (5.55)

Note that the even and odd parts of a function can be expressed in the function
itself, that is,
1
F.(z) = E[F(z) + F(-z)] (5.56)

1
F,(z) = E[F(z) - F(-2)] . (5.57)
Similarly, the derivative of F(z) can be expressed by

Fz) = 3[F()~F(-2)] (5.58)

Fl(z) = %[F'(z)+F'(—-z)]. (5.59)

By substituting the above relations into (5.54) and (5.55), fr and B can now be

written as

F'(1) - F'(-1)

Br = F() ¥ F(=D) (5.60)
_ F()+F(-1)
Br = F(D) = F(=D) (5.61)

Similarly, by substituting the relations in (5.50)—(5.53) and (5.56)—(5.59) into

(5.21) and (5.22), the magnitudes of the real and imaginary parts of the wave am-
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plitude function can be expressed in the form

Qr(K:) = [(F()-FDP+AFQ)+F-DPE (562
QKD = S[(F()+FDP+AFQ) - F-DPE . (569

As discussed in the last subsection, the variation of the parameters Sgr and S;
causes the frequency modulation of the wave amplitude function, and complicates
the ship length estimation. With the assumption of large v, these parameters are
simplified and are related to only the values of the function F(z) at the ship’s bow
and stern. Thus, it is possible to find their values by solving F(1), F(~1), F'(1) and
F'(—1) from (5.62) and (5.63). Since many values of Qr and Q; at different K can
be obtained, least square methods can be used.

So far, the wave amplitude function’s real and imaginary parts, Agr and A;, have
been simplified under the assumption of large ». From (5.60)—(5.63), it is found that
both the magnitude and the phasés of Ap and A; depend on the variable v = !;-K,
and the values of the function F(z) at the ship’s bow and stern. This resvlt also
explains the phenomena that the wave generated by the bow and stern are dominant
in the ship’s wake compared to those generated by other parts of the ship. Thus,
the ship wave is sometimes considered to be generated by a moving dipole, or a pair
of moving pressure points separated by a distance equal to the ship length. Based
on the approximate expressions, the discussion of the estimation of ship length from

Ap or A is further given in the following subsections.

5.2.2 Periodic Character and the Ship Length Estimation

As indicated in (5.46) and (5.47), Ar and A represent two signals that are both

. .. . de
magnitude and angle modulated. Their instantaneous angle frequencies, 32 and
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:—2’;, are given from (5.24) and (5.45) as

a dOr L 2LAr
“R = 4K, 2 I’KZ+4p% (5.64)
o & 49 L 203 (5.65)

dK, 2 L?K?+4p?
These two expressions show that the angle frequencies have a direct relation with the
ship length and wave number K. In order to understand the variation of the angle
frequencies with K and their effect on the ship length estimation, a brief analysis
of the above two expressions is given here. Note that wg and w; have the same form
except for the subscripts. Therefore, the discussion below will focus only on wj, and
the results can be extended to wpg.

For the extreme case where K, approaches infinity, wy approaches a constant %

By determining wy or its corresponding period T}, the ship length can be determined

by
Loo = 2w = — (5.66)

where L., denotes an estimate of the ship length when K, approaches infinity, and
it depends only on wy or T7.

For another extreme case where K? <« %ﬁ;‘, wr approaches another constant
%(1 - BL:)’ and the ship length can be determined in a manner similar to the above
case if wy and B; are available. If B; is not known and the estimate L., is used to
determine the ship length, then under- or over-estimation may occur depending on
the value of By, i.e., positive or negative. It will be over-estimated if 87 < 0 and
under-estimated if 8y > 0.

For general cases, the wave amplitude function is recovered from wave spectra;
thus, the available K; may neither approach infinity nor satisfy K? <« iﬁ- In these

cases, the ship length is determined in terms of (5.65). If Lo is used to determine
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the ship length, errors will be introduced. In order to know the error effect on the

estimation, consider the first order derivative of w;. From (5.65),

o = dwy _ 4L3BK,
'™ dK, ~— (I?K? +4B7)? °

(5.67)

Because K, > 0,» wy>0if 8; >0, and w;p < 0 if Br < 0. Hence, the angle frequency
wr increases monotonically with K, when 8; > 0 and decreases monotonically with
K. when B; < 0. That is, the period decreases monotonically with K, when 8; > 0
and increases monotonically with K, when 8; < 0. Thus, there are two cases for the
distribution of the zero-crossing points, i.e., the intersection points of the curve A;
and the K,-axis. For the first case, where 8 > 0, the zero-crossing points becomes
denser as K increases; for the second case, where 3; < 0, the zero-crossing points
becomes less dense as K, increases.

According to the above analysis, there is a rule of thumb to know the trend of
the estimation error when L, is used to determine the ship length. There will be
an over-estimation if the zero-crossing points become less dense (81 < 0), and there
will be a under-estimation if the cross-zero points become denser (8r > 0). This rule
is also suitable for the estimation from the curve of Ag(K;). The above estimation
error will be reduced as K increases. Hence, it is suggested that the period T} at
larger K, be taken to determine Lo,. In Section 5.3, several ideas will be proposed
to reduce or avoid the estimation error.

So far, the periodic character and its effect on the ship length estimation have
been discussed. The conclusions show that the sign of the value of 8 or 8; plays
an important role in the estimation performance, and the sign of the value 8g or
Br can usually be determined from the distribution of the zero-crossing points. In
some cases, however, it may not be easy to identify whether the zero-crossing points

become more or less dense. For these cases, the phase difference between the curves

----------J
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ARr(K:) and A[(K.) may be used to determine the sign of Br.
To determine the sign of fg from the phase difference, calculate the phase differ-

ence from (5.24) and (5.45):

29,-0p==+Z -1 28 -1 28R
AO =0, GR—:t2+(tan IK. tan LK,,.)' (5.68)

Note here that before £, “+” is taken for positive Sgr and “—” for negative fp. In
the extreme case where K, approaches infinity, the value of (tan™! %IQ(I; —tan™?! %%ﬁ;)
approaches zero, and the phase differenceis given by A© = Zif fp > 0and AO = —3
if Br < 0. Thus, the sign of fr can be determined according to whether the phase
difference is Z or —Z.

In fact, the above extreme case can be generalized provided that the value
(tan™? z’-‘% —tan™? T’}‘;) isin [—%,%]. If the phase difference is limited to the range
[-,7], then the following rule of thumb to determine the sign of Bg is obtained:
Br is positive if O leads Or (AO > 0), and Br is negative if ©; lags behind O

(AB <0).

5.2.3 Periodic Character and the Shape of a Ship’s Bow and Stern

This subsection reveals a relation between the periodic character and the shape
of a thin ship’s bow and stern under the assumption of separation of variables. This

assumption allows the ship hull surface function to be written in the separated form
¢(z,2) = f(z)h(z) . (5.69)

Note that here z and z are the normalized variables. The function ((z, zo) represents
a waterline curve of a ship at z = z,. For the upper half waterline curve, ((z, 2) is
positive. Thus, positive f(z) and h(z) can be found. When ((z, z) is separated as

in (5.69), the waterline curve depends mainly on the function f(z). The shape of
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the curve, particularly at the bow and stern of a ship, has an effect on the periodic
character of the wave amplitude function.

With the above separation assumption, the phases and the magnitude of Ag and
Ar given in Subsection 5.2.1 can be simplified and related to the hull’s first and
second order derivatives. For a thin ship, the function F(z) defined in (5.12) can be

written in the following form by substituting (5.3) and (5.69) into (5.12) :
F(z) £ f'(z) col K:) (5.70)
where
co(K2) = —= HU*K? / ° h(z) e*dz (5.71)
T rgl Ja )

Equation (5.70) is substituted into (5.60) —(5.63), yielding the following expres-

sions for the phase parameter and magnitudes.

(1)~ f(=1)

S = .12

_ FWf(=Y
= F-FD (573)
(k) = BNy Py e o e

k) = BN a4 e - Fenrp )

where f'(1) and f'(~1) denote the first order derivatives at the bow (z=1) and
stern (z = —1), and f"(1) and f'(—~1) denote the second order derivatives at the
bow and stern.

In terms of the function f(z, and the above expressions, the relation between the
parameters, Sr and f;, and the geometric shape of a ship’s bow and stern can be
analyzed. According to the geometric meaning of the first and second derivatives of

a function, the slopes f'(1) and f'(—1) are proportional to the bow and stern’s half
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Figure 5.5: Hull waterline curve y = £((z, 2).

angles, and f'(1) < 0 and f'(—1) > 0 for the upper half waterline curve as shown in
Figure 5.5. The second derivatives f“(1) and f“(~1) describe the concaveness and
convexity of the bow and stern. When the second derivative at the bow or stern is
positive, the shape of the waterline curve at the bow or stern is concave, and when
the second derivative at bow or stern is negative, the shape is convex. Therefore,
the parameters Sr and B; depend on the the half angle and the concaveness or
convexity of the bow and stern. In terms of (5.73), if both bow and stern are convex
(or concave), then fr will be positive (or negative); if one is convex and the other
is concave the sign of B; will be determined by whichever shape is dominant, i.e.,
whichever shape is more extreme. A similar conclusion can not easily be obtained
for Br from (5.72), because the values of f*(1) — f"(—1) and f'(1) + f'(~1) depend

on the specific derivative values.
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The above analysis tells us that the half angles and the concaveness or convexity of
the bow and stern are related to the parameters Sr and 8;. Thus, the half angles and
the concaveness or convexity of the bow and stern can be predicted if the parameters
Br and B; are known. In fact, however, the sign of the parameters Sr and §; can
also be used to predict roughly the concaveness or convexity of the bow and stern.
Obtaining the sign is usually much easier than obtaining the exact values of B and
Br. As discussed in Subsection 5.2.2, the sign of g and B; may be found from the
distribution of the zero-crossing points and the phase difference. The following is
the main conclusion about the prediction of the concaveness or convexity of the bow
and stern from the sign of Sr and Gr:

1) If Br > 0, then the bow and/or stern have a convex shape. This is because
(1) + f'(-1) < 0 when B > 0; thus, f'(1) and/or f"(—1) are negative.

2) If B < 0, then the bow and/or stern have a concave shape. This is because
£ (1) + f'(=1) > 0 when B; < 0; thus, f"(1) and/or f'(—1) (or both) are positive.

If the sign of the parameter Bp, is also available and if it can be assumed that the
half angle of the stern is larger than that of bow or vice versa, then additional infor-
mation about the concaveness and convexity of the bow and stern can be obtained

by analyzing (5.72) and (5.73) together.

5.2.4 Ship Length Estimation from the Magnitude of A(K;)

In the above subsections, it has heen assumed that both the real part Ar(K:) and
the imaginary part A;(K;) of the wave amplitude function A(K) are available. In
many practical situations, however, only the magnitude of the wave function A(K;)
is available, and its phase is not known or ambiguous. Thus, Ag(K.) and A;(K:) can

not be obtained. This particularly happens when only the power spectrum is known




81

and the phase information is lost. This may also happen in the case where the ship
center can not be exactly determined. This is because when the wave spectrum is
calculated from the wave elevation, the origin of the wave data coordinate system has
a translation with the ship center, i.e., the origin of the reference coordinate system;
thus, an additional phase factor is produced. Since the wave amplitude function is
recovered from the wave spectrum, the wave amplitude function has an additional
rhase factor, too.
This subsection discusses the estimation of ship length from the magnitude |A(K?)|-.

The periodic character can also be found in |A(K:)|, as in the real and imaginary
parts of A(K;),. For simplicity in theoretical analysis, the square of the magnitude,

denoted by A,(K), is considered in the following. From (5.46) and (5.47), it follows

that
An(K2) £ JAK)? = po(Kz) + p(K2) cos(20 — $n(v)) (5.76)
where
po(Kz) = QL(K:)+Q¥K.) (5.07)
p(K:) = [Qh(K.)—2Qk(K:)Q}(K-) cos(d1(v) — dao(v))
+QH(K-) ]2 (5.78)

QR(K:)sin(26ro(v)) — QF(K:)sin(241(v))

dm(v) = ta"—[Q}i(K,)cos(%no(V))— 3(Kz)cos(2¢4(v))

(5.79)

Since there is always a p < po, the right hand side of (5.76) is nonnegative for any
K., and, thus, the absolute symbol is omitted. A,,(K) looks also like a signal, both
magnitude and angle modulated, but the _arrier frequency” -,‘,—L; is double compared
to that of Ap(K;) or A(K.), ;L;. The frequency again contains the information

about the ship length L.
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To analyze the periodic character of A, (K;), the magnitude and phase are dis-
cussed further here. Comparing po(K;) with p(K;)cos(2v — ¢m(v)), it follows that
po(K;) is a slowly varying component. The estimation of ship length is based on the
periodic character in cos(2v — ¢ (v)). Hence, we need to make sure that p(K;) is
also a slowly varying, non-zero component compared to cos(LK,; — ¢m(v)). To do
this, the phase difference (¢ — ¢ro) in (5.78) ) is first simplified below. In terms of
(5.40) and (5.44), (#1 — dro) is rewritten as

V(ﬂl ﬂn) ] -

$1(v) — ¢m(”)"ta"'1[ (Br - ﬂn)— (5.80)

where the assumption that »* > 8} and »? > B% has been made in the last step.
Now, consider the behavior of p(K;) as v — co. In terms of (5.80), cos 2(é¢1 — ¢ro)
approach 1 when v becomes very large, and thus the oscillation magnitude of p(K)
approaches |(Q%4(K:) — Q3(K:))?|. By using the results in Subsection 5.2.1, p(K;)
can be expressed for large v from (5.62) and (5.63) as

p(Kz) ~ |Q§Z(Kz)-Q§(Kz)l

= :, F1)F (1) + »*F(1)F(=1)| (5.81)

Thus, p(K,,.) changes slowly with K, compared to cos(LK; — ¢n(v)). If v >
IF;(:);.‘; 'll) |, then p(K.) is approximately equal to % |F(1)F(-1)|.
Now, consider the phase ¢, for large v. By substituting (5.40) and (5.44) into

(5.79), #m is given approximately by

_ 2 24682 )— Q32 2432
onlt) o e )~ Qo PR A (O

If it is further assumed that »? 3> 7 and »? > B}, then ¢, can be approximated

by

bm —tan"l—ﬂuﬂ (5.83)
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where
_ _oQiB81 — Qhfro 5
fn = 21— ah 559
Substituting (5.60) —(5.63) in (5.84) yields
: _FQ F(-1
Jim B = )~ FoD) (5.85)

According to the above analysis, the phase ¢,, will be small when v is large, thus
LK in the phase plays a dominant role and the periodic character can be observed
in the curve A,,(K;). Methods for estimating ship length from An,(K.) will be
introduced in Section 5.3. One practical example, estimating the length of a real
ship hull model from A,,(K;), will be given in Section 5.4, and the results show that

good estimation can be obtained from 4,,(K).

5.2.5 Examples of Ship Hulls

This subsection gives some examples of ship hulls to demonstrate their wave
amplitude function and evaluate the parameter 8 from the theoretical calculation
and the approximation formulas given in the above subsections.

The first example is Wigley’s Hull, which is frequently used in theoretical analysis.

The normalized expression of Wigley’s hull is describe by
B 2 2
C(z’z) = —2' (1 -z )(1 -z ) z€ [-lv 1]72 € [—1,0] (586)

where z and z are the variables normalized by the half ship length and draft, re-
spectively, as defined in (5.5) and (5.6). The primes have been omitted for ease of

notation. Substituting (5.86) into (5.8), the wave amplitude function is given by

A(K;) = jQi(K,) cos(%K,_ + tan™! 2 ) (5.87)

K.L
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where
Qi(K.) = Cl(Kz)‘L'gS—sz (5.88)
(K) = o UG =24 20+ WD) ] (5.89)
wi) = Tz (5.90)

Indeed, the wave amplitude function in (5.87) has the form we expect, and its phase
consists two terms. The second term in the phase, -tan"r;"?’-, is recognized as ¢r
as discussed before, and it becomes very small as K, increase. Thus, the first term
£ K. will be dominant.

Now, let us evaluate the parameter §; from the theoretical result and from the
approximation method directly based on the shape of hull. Comparing the phase in
(5.87) with that in (5.24) and (5.40) yields 8; = 1. To obtain gy directly from the
hull shape, consider the hull shape function {(z,z). Since it is separable, 8; can be
directly estimated from f(z) = 1 — z? in terms of (5.73), and has the same value as
above. Here, f is larger than zero, thus the zero-crossing points of the curve A;(K:)
become denser as K increases and under-estimation may occur.

The second example is the Cosine-Sine Hull with the normalized hull expression
B . X
¢(z,2) = 5 [1+4 cos(xz)][1 - sm(-2-z)] z€([~1,1),z € [-1,0] (5.91)

Similar to Wigley’s hull, its wave amplitude function can be found and is given by

A(K2) = §Qi(K.)sin(3 Kz) (5.92)
where
_ 8xBUK.u(K.), 1 3
UKD = Sar-DKy) W) T KR P
( 1 #(K=) JerKs)] (5.93)

WK T WK+ (58
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This theoretical result can be further verified from the analysis of the ship hull
function. For this hull, f(z) = 1 — 2% and B approaches infinity when it is evaluated
in terms of (5.73). Thus, ¢; is £ from (5.40) and cos(¥K: — ¢1) = sin(%K:).
This is the same as the above theoretical result in (5.93). Note that the angle
frequency is a constant equal to %, meaning that theoretically, there will be no over-
or underestimation of ship length from the wave amplitude function.

The third example is the Wigley-Cosine Hull. Its normalized hull expression is
described by

(@)= 5 @) (1) zel-11]z€[-1,0] (59)

where
111+ cos(rz 0<z<1
flz) = d (r2)] (5.95)
1- 22 -1<z<0
This hull has a discontinuity at z = 0, i.e., the derivatives f"(0), f4)(0),... are

not continuous. Additionally, it is not symmetric in the z-direction, thus the wave

amplitude function will contain both real and imaginary parts, which are given by

AR(K:) = Qro(Ke) + Qn(Ke)cos(Ke = du(v) (5.96)
AK:) = QulK.)con(3K - 41(v)) (5.97)
where
x? 2
Qro(K:) = Cl(Kz)[%';g———) = (5.98)
Qr(K:) = —a(K:)| 2+(§(7_7r3_) VZ)Z] (5.99)
Qi(K;) = c1(K,)[;+(;;—5(—‘7_—;,—))2]= (5.100)
br(v) = tanu[—2=T) (5.101)
(4+1r2)u2 4x? |
o1(v) = —tan-‘{ (1~ T )]} (5.102)
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Here, ¢,(K;) is the same as in (5.89) and v = -’;K,. To compare the above result to
that from the approximation method, we substitute f(z) = 1 — z? into (5.72) and
(5.73), and obtain the parameters Sg and B; in (5.39) and (5.40), i.e., Br = ﬁ';”’- and
Br = 5—=4ﬁ , which are the same as the limits of the factors in the square brackets
in (5.101) and (5.102) as ¥ — oo. Since fr > 0, the estimation from Ag will be

under-estimated, and since 8; < 0 the estimation from A; will be over-estimated if

no compensation is made.

5.3 Methods of Determination of Ship Length

As discussed in previous sections, the wave amplitude function has a periodic
character and the ship length can be predicted from the periodicity. The simplest
method to predict the ship length is to evaluate the period when K, approaches
infinity and then calculate Lo, as described in Subsection 5.2.2. Since K, depends
on the wave angle 0, i.e., K; = zml_;, a large K requires a large resolvable wave
angle. In real situations, however, the maximum available wave angle is limited by
the data sampling interval and ship speed, which has been discussed in Section 3.3.

In general, the more periods available in the data of A(K:), the better for ob-
taining a good estimation of ship length. However, the number of the periods or the
available zero-crossing points depends on the maximum available wave angle. The
relation between the wave angle and the number of zero-crossing points can be un-
derstood through a simplified model of A(K;). As seen in the above discussion, the
real or imaginary part of A(K;) has a pattern like cos(%K, — ¢), the zero-crossing
points appear at

éK,—d): %(2m+1) form =mo,mo+1,mo+2,--: (5.103)

and, thus, the wave angles at the zero-crossing points can be expressed from (5.9)
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and (5.103) in the form

-1 - ]
(2m + )7 + ¢)F?

where F, = —Zy is the Froude number and mo is the smallest integer such that

0 = cos (5.104)

m < 1. Thus, the large number of zero-crossing points needs the large
maximum available wave angles available.

Because of these reasons, K, can not be very large in practical situations. Hence,
the effect of the phase factors ¢gr, ¢1, or ¢,, on the period estimation may not be
negligible. In addition, in order to obtain results quickly and accurately, data pro-
cessing and automatic detection are necessary. In this section, several algorithms
to determine ship length are introduced. Although the discussion about these algo-
rithms focuses mainly on the software realization, it is also possible to use them in
hardware realizations for real time estimations.

These algorithms include the spectrum method, zero-crossing method, and fre-
quency demodulation method. In the spectrum method, the period is estimated by
calculating the power spectrum of Agr, A; or A,,. In the zero-crossing method, the
zero-crossing points of the curve Ap, A; or A,, are detected, and then used to find
the period variation with K, for further ship length estimation. In the frequency
demodulation method, the frequency of Az, A; or A, is demodulated, and then
the frequency variation with K, is used to estimate ship length . In the following,
these methods are demonstrated through an example of a Wigley-Cosine hull, since
its wave amplitude function contains both real and imaginary parts and thus is a
typical example.

Generally speaking, the behavior of the curves Ag and A; is better than A, thus
the estimation of ship length from Agr or A; is easier than from A,,. However, in

practical situations, the estimation from A,, may be more useful since A,, is easier
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Figure 5.6: Spectrum method for the estimation of ship length

to determine than Ag or A;.

5.3.1 Spectrum Method

A scheme for the estimation of ship length using the spectrum method is shown
Figure 5.6. In general, the signal Ag, A; or A,, can be directly inputted to the
system for processing. In many real situations, however, the available data record
are short, only a couple of periods of signal in length, in particular, for Ag and A;.
Thus, it is preferred to use A% and A? as the input signals, so that the frequency of
the signals is doubled, and the number of zero-crossing points increases. This will
be helpful to detect the signal periods. Before the square operation is taken, it is
suggested that the signal Ap or Aj be filtered using a high pass filter to remove the
direct current component and the component lower than {‘;, as shown in Figure 5.6.
For example, consider Ar(K;) = Qro(K:) + Qr(K:) cos(—g'-K,_. — ¢r(v)). After the
high pass filter, the lower frequency component Qgro(K;) is filtered out and the
signal becomes Qp(K)cos(£K, — ¢n(v)). After the square operation, the signal is
FQR(K:) (1 — 2cos(LK, + 24R)], where cos(LK, + 24R) is the desired component
and has frequency 2% If the high pass filter is not used, there will additionally exist
the components of Qro(K:) Qr(K:) cos(} K. — ¢r) which is not desired now. After

this, the squared signal will undergo further processing for estimating ship length.
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Figure 5.7: A Wigley-Cosine hull model and its waterline curves y = *({(z,z) at
z=-0.3,-0.2,-0.1,0.0 meters.

In the bottom digram in Figure 5.6, a bandpass filter centered at fx, = =
is used to remove noise and undesired lower or higher frequency components. For
example, the component Q%(K;) in the squared signal is filtered out. The cutoff
frequency of the filter can be roqghly determined by measuring the period of the
input signal s;. Then, the output signal s,(K;) of the filter is used to calculate
the power spectrum. At this stage, the spectrum diagram shows a pulse at around
Ik, = 2—1,‘; If the transverse axis is labeled as [ = 2r fxk., then the ship length can
be directly read from the pulse position. In order to determine the pulse’s frequency
position automatically and accurately, however, a method called the pulse position
detection can be used. In this method, the pulse is cut by a threshold. The average
frequency position, denoted by fk_,, of the data points larger than the threshold is

then calculated and is used to obtain the ship length, L,, = 27 fx,.
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As a example, consider 2 Wigley-Cosine hull model with length L = 4.953 meters,
width B = 0.978 nieters and draft H = 0.362 meters. The ship’s speed is given as
U = 2.229 meters/second. The hull surface and the waterline contour plot are given
in Figure 5.7. The real part Apg, the imaginary part A; and the magnitude |A| of
the wave amplitude function and the frequency variation of Ag and A; are shown

in Figure 5.8. Agr, A; and |A| are calculated from (5.96) and (5.97). In Figure 5.8,
Awp = dedxf’ —-’2‘ = -d—?}(-(? and Awy = 1%‘;((’:—’1 - % = —%,‘é:—')-; A*wr and A*wy
are the approximations of Awg and Awy, and are calculated from (5.64) and (5.65)
with Bp = 42 and f; = =X,

The signals at each stage in Figure 5.6 are given in Figure 5.9. The input signal
s; is the squared AR, the real part of the wave amplitude function. There are 128
data points, each separated by an interval of 0.0445 rad./meter. K, ranges from
1.974 to 7.626 rad./meter, corresponding to the wave angle from 0° to 75°. The
cut-off frequency of the high pass filter is 0.1 Hz, and the cut-off frequencies of the
bandpass filter are 0.5 and 1.5 Hz. The spectrum is directly calculated according to
the definition given in [11] using the FFT algorithm. The spectrum, sz, has been
normalized by the value at the peak, and the a.bsciésa. bas labeled directly the length
scale instead of 2x fx, for easy observation of the length estimation. Cyclic spectral
analysis methods and other advanced spectral analysis methods may be used for
high performance [35] - [38]. Here, however, a simple method is used to increase the
spectrum resolution, that is, the data length is increased to 1024 points by padding
zeros. The computer calculation gives the ship length estimation as L = 4.825

meters. It is under-estimated as predicted from theoretical analysis, with a relative

error of 2.6%.
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5.3.2 Zero-Crossing Method

A scheme for the estimation of ship length using the zero-crossing method is
shown in Figure 5.10. Similar to the spectrum method, the input signal is considered
to be Am(K?) or the filtered and squared signal Ar(K;) or A;{K.). The difference
is that following the bandpass filter, the signal is clipped instead of being used to
calculated the power spectrum. The clipper is set to have a threshold such that the
signal s3(K) is a square wave signal with a magnitude close to zero. Then, the
clipped signal is differentiated, giving s3 = j‘;’&-. The differentiation is realized by
using the three point Lagrangian interpolation method [34]. The differentiated signal
is combined with the pulses located at zero-crossing poiuts. To obtain the pericds,
the positive pulses are taken using another clipper. The positive pulse signal s,(K)
is then used to calculate the periods at different K. Similarly, the pulse position
detection method is used here for fast and accurate calculation. The interval between
two pulses is the period at the corresponding K. The first and last pulses may not be
counted to avoid false periods at the beginning and end of the input signal. Finally,
these periods are used to calculated the ship length.

In the calculation of ship length from the periods, different strategies can be

considered. If the periods {Tk,;,i = 1,...,1} do not form a monotonic sequence
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and their lengths appears to be random, then the ship length is calculated from the
average of the period length, that is, L,. = 225! Tx_.. This case may happen
in the estimation from An,(K), or the magnitude of the wave amplitude function.
If the obtained periods {Tk,;,i = 1,...,{} do form a monotonic sequence, then the
ship length is calculated from the last period, i.e., Ly = 2xTk,,. In this case,
the estimation error trends can be predicted in terms of whether the sequence is
monotonically increasing or decreasing. If the variation in periods is small near Tx,,,
then the error will not be large. To achieve high accuracy in the estimation, the
following method may be used if at least three zero-crossing positions are available.
For the signal A,,, squared Ag or Ay, the phase is given by © ~ LK, + -Li,%, where
B denotes Bm, Br or Br. Since the cosine function has a phase period 2nx, © can be

written in the form

453 r . .
LKt ppm=5+2i-Dr i=1.10 (5.105)

where [ is the number of zero-crossing points K,; to be considered. If three or more
K; are available, then the ship length and 8 can be found by solving this set of
equations. Least square methods can be used if more than three points can be
available. As an example, a three-point formula is given in the following. Assume
that there are three points K;;, K. and K;3. The ship length and 8 are estimated

from

I = 2r Kz3 Kzl
L= i Tk  Ka-K) (5.106)
_ L’ K:3 - 2K+ K

4

8

s v (5.107)
K Ks2 Kz
The above discussion considers the signal s4(K.) with only the positive pulses. If

the negative pulses are considered too, then (5.105) can be modified as follows.

’

LK. +—8 =@-DF =1l

I (5.108)
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Figure 5.12: Frequency demodulation method for the estimation of ship length.

where [' is the number of zero-crossing points K; to be considered. L and # can be
derived in the same way.

As an example, consider the same Wigley-Cosine hull model. Here, the input is
A;. The signals at each stage in Figure 5.10 are given in Figure 5.11. The cut-off fre-
quencies of the bandpass filter are 0.4 Hz and 11.2 Hz (Nyquist frequency). According
to the calculated results, the zero-crossing point position is 3.55372, 4.79989, 6.04606,
without considering the first and last points. The periods are 1.24617 and 1.24617.
Thus, the estimated ship length is L = 5.042 meters. It is over-estimated as predicted

from theoretical analysis with a relative error of 1.80%.

5.3.3 Frequency Demodulation Method

In the above zero-crossing method, the periods, which vary with K, are estimated
by locating the position of the zero-crossing points, and the ship length is then
calculated. In the frequency demodulation method, the instantaneous frequency
is detected, and then the ship length is estimated. The scheme for the frequency
demodulation method is shown in Figure 5.12. The first four operations in the
diagram transform the input signal s;, an unequal-amplitude angle modulated signal,

into an equal-amplitude angle modulated signal; the last four operations detect the
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“carrier frequency” %, and then the ship length is calculated.

In order to obtain an equal-amplitude signal, a clipper is used following the
bandpass filter. Instead of determining the position of the zero-crossing points as
in the zero-crossing method, the purpose for clipping s;(K;) here is to obtain an
equal-magnitude square signal. Thus, the threshold of the clipper is large, compared
to that in the zero-crossing method. Following the clipper, a bandpass filter is then
used to obtain an equal-amplitude angle modulated signal. After the amplitude is

normalized, the unit-amplitude angle demodulated signal s4 has the form

34(Kz) = cos(LK; — 2¢) (5.109)
where ¢ = —tan"l-ﬁ% and B denotes B,,, Br or B;. The “carrier frequency” -{‘—’ is
desired and will be recovered.

In order to detect the frequency information, the differentiation, square operation

and filtering are further used. The output of the differentiator is the signal

4L

wlfe) =L~ prriap

)sin(LK, — 24) . (5.110)

The magnitude of ss contains the desired frequency information. The above differ-
entiation can be realized by the Fourier tran;form method. The method is based
on the property of the Fourier transform. That is, for an arbitrary function f(z),
its derivative is equal to the inverse Fourier transform of jwF{f(z)}. A discussion
of the design of an optimal FIR differentiator can be found in [33]. To obtain the

frequency information from the magnitude, a squarer is used and the result is

4Lp

1
se(K;) = s = 3L - DRI 4 4p°

)*(1 - cos(2LK. — 4¢) . (5.111)

Then, a low pass filter is used to filter out the high frequency component cos(2LK, —
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4¢). The output of the filter is

4Lp

m)’ . (5.112)

si(Ke) = %(L -

This is the desired frequency information containing the ship length. Similar to the
zero-crossing method, several strategies can be used to estimate the ship length. If
s7(K;) is not a monotonic function, then 8 is not a constant and the average value
of s7(K.) can be considered. Since usually L*K? >> 4|8 — $?|, the estimate of ship

length is given as

L ~ /25 (5.113)

where 37 is the average of the signal s;(K;). If s7(K;) is a monotonic or almost
monotonic function, then B can be considered as a constant and the ship length can
be obtained by solving (5.112). Since there are two unknowns, L and 8, in (5.112)
and many function values of s7(K) are available, least square methods can be used
here.

As an example, consider the Wigley-Cosine hull model again. Here, the input is
A,,. The signals at each stage in Figure 5.12 are given in Figure 5.13. The cut-off
frequencies of the filters are 0.4 Hz and 1.5 Hz for the first bandpass filter, and 0.5
Hz and 1.5 Hz for the second bandpass filter. The cut-off frequency for the low pass
filter is 0.03 Hz. The signal s; in the diagram represents the frequency of A, the
ordinate has been directly labeled with the length scale L=2r k. instead of fk,
for easy observation of the estimated length. The dotted line is the average of the
frequency, which gives the estimation of ship length. The estimated ship length is
L sm = 4.949 meters with a relative error of 0.08%. The standard deviation of the

variation of 27 fx, is 0.166 meters.
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So far, three methods for the estimation of ship length have been introduced. In
general, the spectrum method is a fundamental and powerful method, in particular
for signals with noise or other undesired frequency components. The zero-crossing
method and frequency demodulation method may be used to achieve more accurate
results. In real situations, the methods can be combined in use. For example, the
spectrum method may be used first to obtain a rough estimation, then the result can

be refined using the zero-crossing method or the frequency demodulation method.

5.4 Estimation of the Quapaw Hull Length

This section applies the above theoretical analysis and methodology to a practical
problem, the estimation of the Quapaw’s length. This ship model has length L =
4.953 meters, width B = 0.978 meters and draft H = 0.362 meters. Here, the
assumptions that B/L < 1 and B/H is small are not valid; thus, this is not a thin
ship, that is, the hull is not narrow and deep. The hull surface and the waterline
contour plot are given in Figure 5.14. The hull was towed in a tow tank with a
constant speed U = 2.229 meters/second (7.31 feet/second). Three wave elevation
cuts were measured with three independent sensors fixed in the tow tank as the ship
hull passed. These wave cuts, shown in Figure 4.9 in Chapter 4, are parallel to the
ship centerline and at the distance of y; = 1.219, y; = 1.524 and y3 = 1.8288 meters
from the centerline, respectively. The wave data have been preprocessed to remove
the pulse-type noise caused by instrumentation and the stationary waves caused by
the finite length of the tow tank.

Generally, four steps can be taken for estimating the ship length, that is, 1)
calculate the FFT of the wave elevation 5(z,y;); 2) calculate the wave amplitude

function A(K.); 3) roughly guess the ship length from the curve A(K,); 4) estimate
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Figure 5.14: Quapaw hull model and its waterline curves y = +((z,2) at z = —0.3,
-0.2, —-0.1, —0.001 meters.

the ship length using the methods introduced above. Figure 5.15 gives the FFT of
n(z,ys), |A(K;)| and the spectrum of detrended |A(K;)| for the data RUN3.
Analysis of the plots in Figure 5.15 is given now. In the figure, (a) plots the
magnitude of the FFT of the wave amplitude function; (b) plots the part of (a)
to see the detail for lower spatial frequency components, and the abscissa has been
relabeled as the wave number K, which is equal to 2xu here. It is found from
(b) that there are two peaks which are much larger than others. The first peak
in Figure 5.15(b), at K, = 1.974 rad./meter, corresponds to the transverse waves;
the second peak, at K, ~ 2.5 rad./meter, corresponds to the diverging waves. This
second peak and is larger, and, thus, the wave component it represents is dominant in
the wave cut. The dominant wavelength can be estimated to be A = 2% = 2.5 meters.

According to the theoretical analysis in Chapter 3, the wave number in the z-direction
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is K; = gfo’ = gzLl=. The transverse wave crests are almost perpendicular to the
ship centerline, i.e., § ~ 0; the transverse wave number is Ko = 1.974 rad./meter.
Since the wave cut is parallel to the the ship centerline, the apparent transverse
wavelength in the wave cut is the same as K,;. However, the apparent diverging
wavelength in the wave cut is larger than the diverging wavelength itself because the
wave cut is not perpendicular to the diverging wave crests.

An empirical formula to guess the apparent diverging wavelength in wave cuts or
to guess ship length may be obtained from a simplified model of the wave amplitude
function. To do this, the relation between the wave amplitude function and the FFT
of the wave elevation cut given in (3.50) is rewritten by changing variable 8 into K

in the form

AlK) = HGE) 2 JUKI= g VT (5.114)

where H (’—;:) is the Fourier transform of the wave cut (z,y0). When U*K2 > ¢2,

the magnitude of A(K;) is approximated as

-~ 1 2 Kr

or the magnitude of H (L.f:) is written as

Kev |AK:)|
IH(27I’)I ~ ‘KKO—T}:——- . (5.116)

Now, consider a hull symmetrical in length. Its wave amplitude function can be
described as a very simple form, A(K) = jQ cos[ £(K; — Ko) + ¢xk,], where ¢k, is
the phase at K; = Ko and Q is a constant. A(K;) approaches zero when K, < Kj
since the minimum wave number is Ko. Although A(K) has a cosine form, |H(%s))

decays very fast as K increases because of the factor 51;. Thus, the first maximum
K2
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as K, > Ko is important, and it is approximately given as

~ Ko + k= (5.117)

K L

Zmas

where k£ can be between 0.5 and 1.0, depending on the phase ¢x,. For example, «
can be taken as 1.0 for ¢x, ~ (2n + 1)Z and 0.5 for @k, ~ (2n + 1)5. From this
empirical formula, the apparent wavelength in a wave cut can be roughly estimated,

if the ship length is known, using

27 2r
Aa = = 5.118
2rF2L
= ——n 5.119
14+ xxF? ( )

where F, is the Froude number. The ship length can be roughly estimated using

T

L~k

From the FFT of the wave elevation cut in Figure 5.15, for example, K,,,.,, = 2.5,
thus the ship length is roughly estimated as 3.14 to 6.28 meters.

Figure 5.16 (c) is the magnitude |A(K)| of the wave amplitude function. It is
not so smooth as the one in the above example of the Wigley-Cosine hull model.
However, the peaks labeled with P, and P; still can be recognized as a period, which
is approximately equal to 1.5 rad./meter. Thus, the ship length can be roughly
estimated as L ~ 3% = 4.2 meters.

To analyze the frequency components of |A(K;)| in detail, the data |A(K.)]| is
detrended and then its power spectrum is calculated. In order to be consistent with
the ship length scale, the abscissa has been labeled as 27 fx_ instead of fx,, the
frequency corresponding to K., in the spectrum diagrams given below. According
to the theoretical analysis in the above sections, Ar(K;) or A;(K,) contains the

component cos(%K, — ¢), and, thus, has a dominant peak at % in its spectrum;
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|A(K)| contains the component cos(LK;—4¢), and, thus, has a dominant peak at L in
its spectrum. All the analysis is based on the linearized free-surface condition and the
thin ship assumption. In the spectra of |A(K)| calculated from real ship wave data,
however, there may exist many peaks presenting different frequency components,
as seen in Figure 5.15 (d). In this diagram, the peak at around 5 meters is the
second harmonic component L, representing the ship length. The basic component
at £ is a small peak here since this spectrum is of |A(K;)|. In addition to these two
components, there are several higher order harmonic components and other frequency
components. These additional components may result from the nonlinear effects of
ship waves, which have been neglected in the above theoretical analysis. These
nonlinear effects on the wave elevation are very small, and wave components caused
by the nonlinear effects have a very small energy. However, they locate at the end of
higher frequencies in the wave elevation spectrum; thus, these components are greatly
enhanced in |A(K.)| because of the factor K2 in |A(K)| = - KZ|H(¥)|. This is
the situation found in Figure 5.15 (d), in which a couple of frequency components
are larger than the component at 27 fx, = 5. Thus, we need to guess the ship
length first using the first two important peaks in the diagram of |A(K,)| and using
the empirical formula (5.120) to know which component is our desired one in the
spectrum of |A(K)|.

The results of ship length estimated form the three wave cuts of the data RUN3
are shown in Figures 5.16, 5.17, and 5.18. The magnitude |A(K;)| of the wave
amplitude function is first calculated from the FFT of the wave cut, and then it
is detrended. The detrended signal, denoted as A4(K;), is filtered by a bandpass
filter with bandwidth 0.4 Hz and central frequency 0.8 Hz. Finally, the filtered

signal, denoted as As(K), is used to estimate the ship length. The three methods
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— T .. T 1T ]
ethods

m wave cut A | wave cut B | wave cut C | 3-cut average | rms error

Lep (e1) | 4.746(4.2%) | 4.812(2.8%) | 5.347(8.0%) | 4.968(0.3%) || 0.330(6.7%)

L. (L) | 5.240(5.8%) | 5.190(4.8%) | 5.290(6.8%) | 5.240(5.8%) || 0.291(5.9%)

Y

Lya (ex) | 4.959(0.1%) | 4.946(0.1%) | 5.078(2.5%) | 4.994(0.8%) | 0.084(1.7%)
| JdNCL) | SO0 | T ) | O e ) | SRS | Y

Table 5.1: Quapaw hull length estimated from the three wave cuts of RUN3 using
the spectrum method, zero-crossing method and frequency demodulation
method. The unit of the ship length in the table is meters, and the true
hull length is 4.953 meters.

introduced in the last section are used here. The spectrum of A; has been normalized
in the figures. The results of the ship length estimation is listed in Table 5.1, where
Lspy Lee and L 74 denote the estimated lengths using the spectrum method, zero-
crossing method and frequency demodulation method, respectively, and ¢, denotes
their relative error. According t- the statistical analysis of the nine lengths estimated
from the three wave cuts using the threc methods, the mean of the estimated ship
length is 5.068 meters with a relative error of 2.3%. The root mean square (rms) is
0.243 meters with a relative rms error of 4.9%. This example shows that although
the theoretical analysis and the methodology are based on the linearized free-surface
condition and the thin-ship assumption, they can be used for estimating a non-thin

ship’s length from real wave data, and good estimation results can be obtained.
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(e2 = 5.8%) for the zero-crossing method, and Ljg = 4.959 m (er =
0.1%) for the frequency demodulation method.
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Figure 5.17: Quapaw hull length estimation from the tow tank wave cut RUN3-B

at y = 1.524 m using three methods. The estimated ship length is
L., = 4.812 m (er = 2.8%) for the spectrum method, L., = 5.190 m
(e = 4.8%) for the zero-crossing method, and Lgg = 4.946 m (g =

0.1%) for the frequency demodulation method.
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Figure 5.18: Quapaw hull length estimation from the tow tank wave cut RUN3-C
at y = 1.8288 m using three methods. The estimated ship length is
f,.,, = 5.347 m (er = 8.0%) for the spectrum method, L.. =529 m
(eL = 6.8%) for the zero-crossing method, and Ly = 5078 m (ep =
2.5%) for the frequency demodulation method.
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CHAPTER VI

EXTRACTION OF SHIP HULL GEOMETRY
INFORMATION

The prediction of a ship’s hull geometry from the ship generated wave pattern
can be considered as an inverse Kelvin wake problem. Solutions to this problem are
becoming more practical with advances in remote sensing technology.

The idea used here to extract a ship’s hull shape is based on the relation of the
ship hull shape and the wave amplitude function under ﬁhe thin-ship assumption,
and the relation of the wave amplitude function and the ship wave spectrum. These
relations have been discussed in the previous chapters, thus, this chapter focuses
on the technique to extract a ship’s hull geometry shape from the wave amplitude
function. Mathematically, the problem is to find the function of hull surface ((z, z),

given the wave amplitude function A(@) and the integral

, 1
A =H /° %(z:2) 3ui0r n 9 (6.1)
-1J-1 Oz
where v and 4 have been given in (5.9) and (5.10), and A'(6) is defined as
2 .
NOE % cos3(0) A(6) . (6.2)

In the above, (6.1) is obtained from (5.8) under the thin-ship assumption. z and z
are the variables normalized by the ship length and draft, and e3*(9)% ¢#(®)% ig 3 kernel

function with parameter 4.
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To solve this continuous inversion problem, we prefer to convert it to a discrete
inversion problem first, and then solve it using discrete inversion techniques. The
reasons for this are that it is difficult, in general, to solve a continuous inversion
problem analytically and that the values of the wave amplitude function are usually
available in discrete form. To obtain the discrete form, the integral may be approxi-
mated as a summation using the trapezoidal rule or some other quadrature formula.
In this hull inversion problem, however, the spectral method is adopted instead of
the above quadrature methods. In the spectral method, the unknown function is
approximated as a weighted summation of some basis functions. Because the basis
functions are known and the integrals associated with them can be computed, solv-
ing the continuous inversion problem becomes a matter of solving a set of discrete
equations to determine the weights or coefficients. The advantage of the spectral
method is that the number of unknowns to be determined can be reduced greatly.
This is especially important for two dimensional inverse problems.

When both the magnitude and phase of the wave amplitude function are well
known, the ship hull inverse problem becomes a linear inverse problem. The singu-
larity of the kernel matrix in the linear problem and noise of the observed data may
have severe effects on the inversion results, and thus special techniques may have
to be considered. In particular, the methods of constrained linear inversion and the
maximum likelihood estimation with constraints will be considered in solving the
ship hull inversion.

However, if only the magnitude of the wave amplitude function is available, then
a complicated non-linear inverse problem must be handled. For the hull inverse
problem, the non-linear inversion is solved based on the criterion of the maximum

likelihood estimation with constraints using optimization techniques. Examples of
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linear inversion and non-linear inversion will be demonstrated for both mathemati-
cally well-defined ship hulls and the model of the real ship Quapaw.
In the following, bold lowercase letters denote vectors, and bold uppercase letters

denote matrices.

6.1 Spectral method

In this section, the spectral method is used to convert the continuous inverse
problem to a discrete inverse problem. In the following, the solution of the inverse
problem, {(z, z), is approximated by a weighted summation of basis functions. Insert-
ing the summation into the integral equation (6.1) yields a set of algebraic equations
for different values of the parameter 8. The solution of the algebraic equations gives
the weights, or coefficients, of the summation, and any value of {(z, z) in the specified
region can be evaluated from the summation of basis functions.

For this goal, let the basis functions in the z— and z—directions be ¢;(z),: =
1,2,.--,M and B;(2),j = 1,2,---, N, respectively. ((z,z) is now expressed in the
form

M N
((z,2) = Z Z a;;0:(z)B;(z) . (6.3)
i=1 j=1
and its partial derivative with respect to z is given as
Ao 35wt (6.4
where $;(z) denotes the derivative of #i(z). Substitution of (6.4) into (6.1) gives the
following linear equation with the coefficients a;; to be determined:
M

N
A(0) =33 ai;| Wai;(6) + iWr5;(0)] (6.5)

=1 j=1




113

where

Wxri(0) Wz;(9)

Wx 1:(0) Wz;(0)

>

Whri;(0)

nw

Wi;;(0)

>

Wx ri(0)

>

Wx ri(0)

n

Wz;(0)

[ '1 &i(z) cos [v(0)z]dz
i 'l éi(z) sin [v(0)z]dz
H /: Bi(z)e*®2dz

(6.6)
(6.7)
(6.8)
(6.9)

(6.10)

In general, the amplitude function A(9) is complex, and, thus, A'(f) is too. If

AR(6) 2 Re{A'(6)} and A}(6) S Im{A'(8)} denote the real and imaginary parts,

respectively, then (6.5) gives
M N

AR(8) =3 ai; Whi;(6)

i=1 j=1

, M N
AL(0) =03 ai; Wi(0) .

i=1 j=1

Given K values of 0, there is a set of equations

M N
Ag(0s) = Z; 3 ai; Whii(6x)
=1 j=1
, M N .
AL(0e) =303 ai; Wiij(0:)
=1 5=1
k=1,2,---,K .

(6.11)

(6.12)

In order to get a unique solution of the M x N coefficients, a;;, there must be at least

M x N equations. Thus, the number of parameters 0;. should satisfy K > -‘iM x N.

The above equations can be written in a vector and matrix form by rearranging

the subscripts. According to the rule that the subscripts (({ij},7 =1,2,:--,N),i =

1,2,-.-,M) are mapped to ({I},] = 1,2,---, MN), and the coeflicients {(a;;,j =

1,2,---,N),i = 1,2,---, M} are mapped into {b;,] =1,2,---, MN}, (6.12) can be
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written in the form
a= Wb (6~13)

where a = [AR(01), AR(82), - - -, AR(0x), A7(61), A1(62),- - -, A1(6k)])T with dimension
2K x 1, b = [by, by, ,bpyn]T with dimension MN x 1, and T signifies transpose.
The matrix W may be called the kernel matrix as it is related to the kernel function.

It has dimension 2K x M N and is given as

F Wan Wran - Wamnm Wma - Wrae-nm Wram -+ Wean
Wrii2 Wmaa -+ Wrna Wranz o+ Wra-nyna Wramiz - Wrun:
W=| Wruxk Wrux -+ Wrnk Wenk - WrM-1)vk Wrakx -+ WauNk (6.14)
Wnu Wna - Wnvi Wpno oo« Wiam-nwe Winnn -+ Wi
Wnia Wnaa - Wnya Whae oo« Wraeeny2 Wiz -+ Wiuwe
L Wiux Wnax -+ Wnwx Wik - Wra-nywnx Wnax -+ Wiunk -

where Whijr and Wy;j, denote Wh;(0:) Wii;(0k), respectively.

Now, the continuous inverse problem has been converted to an algebraic inverse
problem. In (6.13), a is usually obtained from measurements, W is known from
construction, and b is to be solved for. The kernel matrix W depends on the wave
angle, ship’s length, draft and speed, and the choice of the basis functions. Thus,

the next step is to select a set of appropriate basis functions.

6.2 Selection of Basis Functions

The most preferable basis functions should have the properties of easy compu-
tation, completeness and rapid convergence [40]. The property of easy computa-
tion means not only that the basis functions themselves should be easily calcu-
lated, but also that they should make the integrals in the elements of the above
matrix,Wxri(0),Wxri(0) and Wz;(0), be analytically integrable. Thus, costly nu-

merical computation time can be avoided. The completeness of the basis functions
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make it possible for the solution to be represented to an arbitrarily high degree of
accuracy by increasing the number of basis functions. The property of rapid con-
vergence allows the number of basis functions used to be as small as possible. In
addition, the geometry of the problem is another fact that needs to be considered
when the basis functions are selected. Study on spectral methods indicates that
the best choice for 95% of all applications is an ordinary Fourier series or a set of
Chebyshev polynomials. For the non-periodic problem, the Chebyshev polynomials
are extremely robust and give good results in almost all situations [40].

Based on the above principles, the Chebyshev polynomials T,(£) are chosen in
both the z— and z—directions. The explicit expressions of the Chebyshev polyno-

mials T,(£) are given as

T(§) = 1
T = ¢
T(¢) = 26°-1
Tn+l(€) = 2€Tn(f) =T (6) (6-15)

te[-1,1]; n21.

They have two main properties: 1) T}, (§) is even for even n, and odd for odd n; 2)
Ta(+£1) = 1 for even n, and T,(%1) = *1 for odd n.
The basis functions ¢;(z) and B;(z) are constituted by the Chebyshev polynomi-

als. One strategy to select the basis functions is to set

¢,-(.'t) = Tz) , i=12---,M (6.16)

Bi(z) = Tja(z) , 1=12,---,N. (6.17)
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The reason not to include the lowest order of the Chebyshev polynomials, To(z), in
the basis functions of the z—direction is that the derivative of To(z) = 1 is equal to
zero, and thus whether Tp(z) is included or not has no effect on a—‘%ﬂ in the integral
(6.1). Even if Tp(z) is included, its coefficient can not be determined by solving
(6.13). Thus, a constant must be finally determined according to the boundary
condition of {(z, z) after the coefficients a;; are found.

In fact, the function representing the ship hull shape, {(z, z), is zero on the ship
hull boundary or outside of the boundary on the z—z plane, that is, in the normalized

coordinate system,

¢(£1,z) = 0, (6.18)

i
o

((z,~1) (6.19)

These conditions can be imposed on the basis functions with the advantage that no
constant needs to be determined. According to this idea, the basis functions in the

z~direction are set to be

Tipa{z) -1 ifiisodd ;
$i(z) =

Tipa(z) —z ifiiseven ,
t=1,2,---, M, (6.20)
If it is desired that the boundary condition in the z—direction given in (6.17) be

imposed on the basis functions, then they should be set to be

Ti(z)+1 ifjisodd ;
Bilz)=1
T;(2)—1 ifjiseven ,

j=1721"'yN- (6'21)

The proper choice of basis functions may not only make the elements of the kernel

matrix W easier to compute, but also make the discrete inverse problem simpler. In
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solving the inverse problem given in (6.1), the basis functions will be chosen from
(6.17) and (6.20). The basis functions given in (6.20) have the property that ¢;(z)
is even for odd i, and odd for even i according to the even and odd property of the
Chebyshev polynomials. Thus, $.-(z) is even for even i, and odd for odd i. This fact
further results in that Wxp;i(8) = 0 for odd i and Wx;(8) = 0 for even ¢ since the
integrands in the symmetric integrals (6.8) and (6.9) are odd. These properties of
Whij(0) and W;;(0) can be used to simplify the kernel matrix W in (6.14). To show
this, consider an example with M =4, N = 2 and K = 4. In this case, the matrix

W is given as

(- -N -

Wnn
Wria

Wriis
Wnie

[-R-N-X-}

Wnan
Wriaa
Wrias
Wniae

Whana
Whaaia
Wra1s
Whra14

[~ - - -]

Waaz

Whraae

(-2 - - ]

(=N -1 - -]

Wian
Wraia2
Wras
Wiaie

(- - NN

Wran
Wisaz
Wraas
Wisze

Wrana
Wru2
Wras
Wrate

(- - -0 ]

Wran
Wraa2
Whreas
Wra2e

(- -N -]

(6.22)

Observing the pattern of the above matrix, we can find that if the columns of the

matrix are rearranged, then the matrix can be written in the form

Wran
Wrat2
Wra1a
w’ Wrats

QOOo

Wran
Wrazz
Wraas
Wraae

cCoO0Oo

Wera
Wre2
Waaa
Wra14

[-N-N-N -]

Wran
Wraa2
Wras
Wrea

(- - -]

(- - -]

Wnn
Wz

Wnia
Wi

(-~~~

Wnan
Wna
Wnias
Wi

[~ =]

Wran
Wisiz
Wrais
Wiaie

(- =N -]

Wi
Wiaa

1323
Wisae

(6.23)

The new pattern of the matrix shows that the linear equation given in (6.13) can
be split into two independent sets of linear equations with smaller dimensions if the
matrix elements are rearranged according to the rules that for Whp;;i, the subscripts
{({ij},j = 1,2,---,N),i = 2,4,---,M'} are mapped into ({L},hh = 1,2,---,Ly),
where M’ = M if M is even, and M’ = M — 1 if M odd, and where L, = % N;
that for Wik, the subscripts {({ij},j =1,2,---,N),i=1,3,---,M"} are mapped
into ({l2},la = 1,2,---,L;), where M" = M ~ 1 if M is even, and M" = M if M

odd, and where L; = %:N. In addition, the coefficients {(a;;,j = 1,2,---,N),i =
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2,4,---,M'} are represented by {c;,! = 1,2,---,L;}, and the coefficients {(a;;,j =
1,2,-++,N),i =1,3,..-,M"} are represented by {d;,] =1,2,:--, L;}. After the sub-
scripts are rearranged, the two independent sets of linear equations can be expressed

in the matrix forms

ar = WRC (624)
ar = W[d (6.25)
where
ap = [Ag(61), A(G2),- -, Ar(6k)}" (6.26)
ar = [A;(01), Ay(62), -, A (0k)]" (6.27)
¢ = [a,05 0 en]” (6.28)
d = [dl,d%"'vdla]r . (629)

The matrix Wg with dimension K x L; and W; with dimension K x L are given

by
Wran Wman -« Wmm Wrn - Wpe gny Wan'n ° Wew'm
Wos Wlfzu Wrna -+ Wmava Wraa - Wpop ve Wan'ia  Wau'm 6.30)
Wrnk Wank - Wmnk Wauk - Wan' —ynvxe Wan'sx - Wran' vk
and
Wnu Wna - Wnmi Wnun -0 Wi g Wiy 0 Wiy
W, = Winia Wnaa - Wnya Wi - Wi gng Wiy 0 Wi, 6.31)
Wik Whax - Wik Wiskx - Wi -yvxe Winie - Win'nx

Using the above mapping rule of the coefficients a;;, the hull surface function can

be expressed in a concise form

((z,z) = hT(z,2z)c + hT(z,2)d (6.32)
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where vectors h.(z, z) and h,(z, z) are defined as

hl(z,2) = [$a(2)B1(2), d2(2)Ba(2), .- $a()BN(2),

¢4(z),51(z), ¢M'(z)ﬂ1(z), eon ¢M:(::)BN(2)] (6.33)
hi(z,2) = [$1(2)Bi(2), $1(2)Ba(2), ... $1(z)Bn(2),
$3(2)B1(2); ... bpg#(2)B1(2), - bpp(2)BN(2)] - (6.34)

In (6.32), h?(z, z)c represents the odd part and hY(z, z)d the even part with respect
to z if the basis functions ¢;(z) are selected to be even for odd i and odd for even 1
as in (6.20).

So far, two sets of linear equations have been established for determining the
vectors ¢ and d, and thus the coefficients a;;. If a ship hull is assumed to be bow-to-
stern symmetric in its longitudinal distribution of volume, then {(z,z) = {(-z, 2),
and thus ¢ = 0, and ap = O since the real part of the wave amplitude function is
e;lual to zero. In this special case, only (6.25) needs to be solved.

For the basis functions composed of the Chebyshev polynomials, both ¢;(z) and
Bj(z) are polynomials of z or 2z, thus Wxp;, Wx1; and Wz; in (6.8)-(6.10) are com-

binations of integrals like

c. & /_1l 2" cos[v(0)z)] dz (6.35)
5. 2 /_: 2" sin[v(0)z)] dz (6.36)
E. & /: et®dy | (6.37)

All of these are explicitly integrable, and C,, = 0 for odd n and S, = 0 for even n.
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6.3 Effects of Singularity and Data Error on Linear Inver-
sion

Theoretically, once the measurement data ar and ay are given, and the elements
of the matrices Wg and W are calculated for each given value of parameter 8, the
unknown vectors ¢ and d can be found by solving (6.24) and (6.25). To obtain a
correct or reasonably accurate solution, however, we may have to take account of the
ill-condition of the matrices, the noise involved in measurement data or the both. In
the situations of ill-conditioned matrices, the solution may be unstable when there
is a very small noise, or even no noise, just for a computer’s finite floating point
precision. Therefore, some special measures must be taken to solve linear inverse

problems.

6.3.1 Effects of the Ill-condition of Matrices

The singularity or ill-condition of a matrix can be formally defined. According
to the linear algebra theorem [42], any M X N matrix A, whose number of rows M is
greater than or equal to its number of columns N, can be written as the product of
an M x N column-orthogonal matrix U, an N x N diagonal matrix A = [diag();)] with

non-negative elements, and the transpose of an N x N orthogonal matrix V, that is,
A = U [diag()\)] VT . (6.38)

If the matrix A is square, N x N say, then the inverse of A is given by
Al= V[diag(Aii)] uT . (6.39)

The condition number of a matrix is defined as the ratio of the largest of the A;’s

to the smallest of the A;’s. A matrix is singular if its condition number is infinite,
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Figure 6.1: Elements ); of the diagonal matrices decomposed from (a) Wg and (b)
W; with K = 135 and L; = 6 associated with M =4 and N = 3; (¢)
Wr and (d) W; with K = 135 and L; = 18 associated with M =6 and
N =6. -

and it is ill-conditioned if its condition number is too large, that is, if its reciprocal
approaches the computer machine’s floating point precision.

Using this definition to examine the matrices W and W; in the above ship hull
inverse problem described by (6.24) and (6.25), we unfortunately find that even if
there are no errors, the matrices may become ill-conditioned even for not very large
M and N. As an example, consider the matrices Wg and W; with the basis functions
given in (6.17) and (6.20) and with parameters L = 100 meters, H = 10 meters and
U = 10 m/s (equivalently, the Froude number F, = 0.32 ). Figure 6.1 illustrates the
elements ); of the diagonal matrices decomposed from Wgr and W with parameters
K = 135 and L; = 6 associated with M = 4 and N = 3, and with parameters

K = 135 and L, = 18 associated with »f = 6 and N = 6, respectively. From the
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Figure 6.2: Kernel function e*®»* with F, =0.32 and & =0.10 .

figure, it can be seen that the last elements of the diagonal matrices are close to
zero and their reciprocal approaches a very large number, especially for the matrices
with larger dimensions. The condition numbers are calculated as 7.642 x 10* and
6.333 x 10* corresponding to Wgr and W, respectively, for M = 4 and N = 3, and
1.018 x 10'® and 3.084 x 10'” corresponding to W g and W, respectively, for M = 6
and N = 6. Thus, the matrices in the latter case are considered to be ill-conditioned.
The reason that the matrices become ill-conditioned for the large number of basis
functions is that the number of rows K in the matrices Wg and W/ increase as M
and N increase since there must be K > %N for even M or K > M%‘N for odd M
to avoid an underdetermined solution, but one row’s elements are not very different
from another row’s as the number of rows increases. For example, let us examine

the elements of matrix Wy in (6.31). From (6.7), (6.9) and (6.10), the elements can




123

be written as

W[,'J'k é W,.g(l),,) = (— ./—11 &;(:t) sin [v(o,,)z]dz) . (H ./_01 ﬂ,-(z)e“(o“)‘dz) (6.40)

Note that the kernel e*{®)* in the second integral varies little with the wave angle
0, especially when @ is in 0° — 40°, as shown in Figure 6.2. It is the smoothness of
the kernel that makes the rows of the matrix (6.31) become almost linear depeadent.
From the viewpoint of matrix theory, the rank of the matrix is decreased. Therefore,
an increase in the number basis functions does not improve, but may worsen the ill-
condition of the inverse problem. To avoid an ill-conditioned problem, the number of
basis functions should be reasonable, although a good approximation for the function
of the solution may be achieved for a large number of basis functions.

The condition numbers N, of the kernel matrices Wr and W; depend on the
ratio H/L and the Froude number F, since their elements depend on v and u, which
are related to H/L and the Froude number F,, as seen above. Figure 6.3 shows
the relations between N, and H/L and between N, and F, for the given numbers of
basis functions M = 4 and N = 3. The values of 8 are evenly-spaced in the range
[5°,80°], and K = 135. From the figure, the curves of N, versus H/L are flat; N.’s
have smaller values when H/L is larger than 0.08 or when F,, ranges from 0.2 to 0.5.

These areas with lower condition numbers are typical in real situations.

6.3.2 Effects of Data Noise

In practical problems, the amplitude function A(6) = Ar(#)+ j Ar(9) is obtained
from direct or indirect measurements; thus there must be some systematic or random
noise or errors associated with them and these errors further cause errors in the
solution ¢ and d of (6.24) and (6.25). The solution ¢ and d will be considered

unstable if the errors in them are unacceptably large. In addition, note that all the
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elements of the matrices Wy and W are calculated from the integrals (6.8)-(6.10)
which contain the parameters of the ship’s length L and draft H. The errors of these
two parameters will cause errors in th= matrices, and finally increase the errors in
the solution. This subsection will focus on the error analysis of the solution ¢ and d.

First, measured or observed data are expressed into their true values plus noise.
It is assumed that the noise on the measured data Ag(0;) and A;(0;) is additive
noise, thus, Ar(6:) and A;(d) with noise, denoted as Agr(dx) and A;(6;), can be
expressed as sums of the true values, Agr(8i) and A;(6:), and noise AARg(6;) and
AA(6:):

Ar(0c) = Ar(8:) + AAR(6k)

Al(0:) = An(6:) + DAL .
When noise is present, the vector forms of (6.26) and (6.27) become

az; = ap+ Aap (6.41)

~

ar

ar+ Aay . (6.42)

Let AL and AH be the errors in the estimation of the ship’s length L and draft H.
It can be proved that AL and A H will cause errors AWgr and AW/ in the matrices

Wgr and W/, and the matrices with errors can be expressed as

A

Wr = Wr+ AWz (6.43)

W; = W;+AW; . (644)
For the case where noise or errors are present, (6.24) and (6.25) now become

ap = Wit (6.45)

a = Wid . (6.46)




126

where the unknowns & and d are also written into two parts, their true values and
errors, i.e., & = ¢+ Ac, and d = d + Ad. Substitution of (6.41) ~ (6.44) into (6.45)

and (6.46) yields two expressions

Ac W3! [Aagp — AWg c] (6.47)

Ad

Wil[Aa;- AW;d] . (6.48)

Equations (6.47) and (6.48) show that the errors of the solution of (6.45) and (6.46),
Ac and Ad, depend not only directly on the errors of ar, a;, Wg and W, but also
on the properties of the inverse of the matrices Wg and W;. When the matrices
are singular or ill-conditioned, the error in the solution will be very large even for a

very very small error in the data ag, a;, L and H.

6.4 Constrained Linear Inversion

For ill-conditioned linear problems, neither the direct inversion nor the conven-
tional least square methods work well [46]. A more powerful method to treat this
kind of problem is the method of constrained linear inversion (CLI), as presented in
[46]). Before discussing how to apply this method to the ship hull inversion problem,
the concept of CLI is briefly stated below.

For a general one dimensional continuous inverse problem,
b
y(6) = / K.(0,0)z(a)da (6.49)
its discrete form is written as
y =K.x (6.50)

where K. is the kernel matrix with dimensions m xn,y = [y1, y2, -.-ym] is m measure-

ments of y(8), and x = [z;,;,...z,] is the n discrete values of the desired function

z(a).
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To solve the problem, a non-negative scalar measure, g(x), of the deviations
from smoothness in x is introduced. If x is varied until ¢(x) becomes minimal,
the resulting x may be completely smooth in the sense that ¢(x) will be zero.
Most measures of non-smoothness are simple quadratic combinations of z;. For
example, ¢ = Y7 !(zi41 — z;)? is the sum of the squares of the first differences,
g = 202 (~%is2 + 27i41 — x;)? is the sum of the squares of the second differences,
and ¢ = Y03(zi43 — 3%ip2 + 3241 — ;)? is the sum of the squares of the third differ-
ences. These summations can be written as a form xTHx, and their corresponding
matrices H are given in [46] (pp. 124-127). According to the simulations in hull
inverse problems, the measures of smoothness based on third differences are very
effective in reducing the effects of singularities and noise.

The constrained linear inversion solution is obtained by minimizing (K.x —

¥)T(K.x — y) with a constraint of ¢ = xTHx, and it can be written as
x = (KTK. + yH) 'Ky (6.51)

where v is a constraining parameter. Obviously, ¥ = 0 leads to a conventional least
square solution. In a broad sense, thus, CLI can be counted as a least square method
using constraints. The most appropriate value of 4 can be determined by computing
the residual |K.x — y|. If the residual is appreciably larger than the overall error in
Y, then v is too large, and the solution has been over constrained; if the residual is
smaller than the estimated error in y, the solution has been underconstrained.
Returning to the ship hull problem described in (6.24) and (6.25), we note that
the vectors to be determined, ¢ and d, are the coefficients of the summation of basis
functions instead of the hull surface itself. Thus, one possible method is to select the
constraints directly based on ¢ and d. In many situations, however, these constraints

may not be easy to select for lack of a priori information about the vectors ¢ and
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d. Usually, few properties of the coefficients are known in advance unlike the hull
surface function they represent. For this reason, the smoothness measure can be
selected based on the hull surface function {(z, z), which is usually smooth. To tell
these two kinds of smoothness constraints apart, the constraints based on coefficient
vectors are called the coefficient constraints and their quantity is expressed as g¢;
the constraints based on hull surfaces are called the surface constraints and their
quantity is expressed as g,.

For the surface constraints, the constrained quantity g, can be constituted from
each area element of a hull surface or from each cut line on the hull surface. In the
following, suppose for simplicity that ¢ is constituted from the measure of smoothness
of N, cut lines on a hull surface along the x-direction, and that each line has N,
points. By letting (;; = ¢(zi5 25), hei = h.(z;,y;) and hg; = h,(z;,y;), the discrete
form of (6.32) becomes

and the values on the j th line of the hull surface can be expressed as a vector

z; 2 [ G e CvaslT

= wejc + WOJd (6.53)

where matrices ¥.; and ¥,; have dimension N; x L, and N; x L, respectively, and

are defined as

e

\I'ej [helj hegj he)v,j]T (6.54)

i

We; [he1; hezj .. hen )T . (6.55)
With these definitions, the smoothness measure for the j th line is

@i(c,d) = zTHz;




damw

= cTH,,-d + dTHbjC + cTchc + dTH.‘,-d

where

&
>

&
>

¥l HE,;

=
13

O HY,;

o
&
>

vIHE,,; .
Thus, the total smoothness measure is given as

N;
%(c,d) = zqaj(C,d)

j=1

= c¢TH,d + dTH,c + ¢TH.c + dTH,d

- where

Ns
H, = ZH,,'

i=1

N,
H, = ZH;,_,'

i=1

Ns
H. = ) H;

J=1

N,
Y Hy .

=1

Hy

(6.56)

(6.57)

In general, H = H”, thus H,; = H]; and H, = H. Therefore, if H = H7, then

g.(c,d) = 2¢"H.d + cTH.c + dTH,d .

(6.58)

Having arrived at an expression for q,, the constrained linear inverse problem of

the ship hull can be described as

minimize : (Wre — ag)T(Wge - agr) + (Wpgd - a;)T(Wgd — a;)

holding constant: g¢,(c,d)
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The solution can be obtained using the Lagrangian multiplier method from

Q(c,d) = (Wge — ag)T(Wre — agr) + (Wgrd — ar)T(Wgrd — a)

+74:(¢,d) . (6.59)
By the rules of matrix calculus, taking 9_9%_2,9) =0 and Qﬁ'g = 0 yields

WIWpg ++H, H, c WZa
RYYRTY 9 - RAR . (6.60)
~+H, W{W} +~vH, d WTa,
For a ship hull symmetric in its longitudinal distribution of volume, ¢ = 0 and

ap = 0, and thus (6.60) becomes
(W?WI ++vH,)d = Wfa, . (6.61)

In many real situations, the surface constraint method may be used together with
the coefficient constraint method to solve the linear inverse problem. For example,
the coefficient constraint method is used to solve (6.60) or (6.61) instead of using the

direct inverse method.
6.5 Application of Bayes Theorem to Inverse Problems

In inverse problems, the observation data contain random noise because they
come from direct or indirect measurements, and thus it is reasonable to consider the
data as random variables. In some cases, the parameters to be predicted from the
observation data are also random variables. Hence, we wish to apply the statistic
estimation theory to inverse problems to obtain an optimum estimation with regard
to some criterion.

Now, consider a general problem

y = f(x) (6.62)
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where y is a vector representing the observed or measured data, and f(x) is a vector
depending on the vector x, which is to be estimated from y. It is assumed that the
functional relation f is known and that y and x are random vectors. If X denotes an

estimate of x based on the observation vector y, then the estimation error is defined

as

«(y) = x(y) - x (6.63)

In the Bayes estimation theory, a scale function of x and %, called the cost function,
is defined, and in many cases it is assumed to depend only on the error of estimate
e. For example, one cost function which is used frequently represents the sum of the

square of each error component and is written as

Cle¥)] = € (y)e(y) (6.64)

Another cost function assigns zero cost to all errors less than :i:% and assigns a

uniform value to all errors larger than :!:%—, that is,

Cile(y)l = (6.65)

The Bayes estimation is based on the rule that on the average cost is as small as

possible. That is, the Bayes estimate is the estimate that minimizes

B{Cley} = [ [ Culetw)lp(x, y)axdy (6.66)

where E(-) denotes expectation, and p(x,y) is the joint probability density function
of x and y.
For the above two cost functions, the estimates of x have been computed in

[44]. The minimum mean-square error (MMSE) estimate corresponding to the cost
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function in (6.64) is given as

x(y) = E{x/y} (6.67)

which indicates that the MMSE estimate is the conditional mean of x given y. The
maximum a posteriori (MAP) estimate corresponding to the cost function in (6.65)

is given as the solution of

ol
npX/y), =0 (6.68)
or
ol ol
n p(y/x) ez < 3in p(x) lx=x =0 . (6.69)

In the MAP estimation, the estimate is the values of x at which the a posteriori
density p(x/y) has its maximum.

In many cases of interest the MAP and MMSE estimates are equal and are
optimum, in particular, for the Gaussian a posteriori density. If we know nothing
about x other than the values of y, then p(x) is a constant, and an estimate X, called

the maximum likelihood (ML) estimate, can be found from the likelihood equation:

Qll'f_a(:'@ ez = 0 . (6.70)

The ML estimate corresponds mathematically to the limiting case of a MAP es-
timate in which the a priori knowledge approaches zero. In the cases where the
unknown vector X is not a random vector, the estimate X is also obtained from the
ML estimation in which the likelihood function is maximum.

In our inverse problems, the unknown coefficient vector may be treat as a non-
random vector; thus, the ML estimation will be applied to the ship hull problems. In

the following, it is assumed that the observation vector y has a multivariate Gaussian
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distribution. The Gaussian conditional probability distribution of y given x has the

form:

p(y/x) =

(21); s “? {'%b’ — £()]"S [y — £(x)] } (6.71)

where n is the dimension of y, and |S| denotes the determinant of the n x n covariance

matrix S, which is defined as

S = E{(y - Elyl(y - Eb])"} - (6.72)

Substituting (6.71) into (6.70) yields
d Tg-1
Y — X)) STy — f(x)) lx=z = 0 (6.73)
If a constraint g(x) is included, then the estimate will be found by minimizing
Q(x) = (y — £(x))'S™(y — £(x)) + v q(x) (6.74)

The above results will be used in the linear ship hull inverse problem described
by (6.24) and (6.25) and also in the non-linear ship hull inverse problem which will
be discussed in the next subsection. We introduce the following vectors and matrices

for the problem given in (6.24) and (6.25):

c Wr
x £ W,é
 d L
ap Hc Ha
yé H‘é
La, LH, Hd

With the above definitions, the problem in (6.24) and (6.25) is described as

y = f(x) = Wex ' (6.75)
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and the constraint in (6.25) is described as
q(x) =xTHyx. (6.76)
Substituting (6.75) and (6.76) into (6.74) and minimizing the resulting Q(x) yields
(WTS-'W, + vH,)x = W1S 'y . (6.77)

Finally, the estimate X can be obtained by solving this equation. Specifically, when
the measurement noise in the components of y are uncorrelated and have the same
variance o2, the covariance matrix is given as S = %I, where I *s an identity matrix,

and (6.77) becomes
(WIW, +yH,)x = WTy (6.78)

where 7' £ 6%. Equation (6.78) is the same as (6.60) except that v in (6.60) has
been replaced with 4. This difference indicates that the choice of the constraining
parameter should include the consideration of the noise variance. If large noise is

involved in data, large constraining parameter 4 is required.

6.6 Non-Linear inversion

In the above linear inverse problem, it has been assumed that both the real
and imaginary parts or, equivalently, both the phase and magnitude of the wave
amplitude function A(0) are well known. In real situations, however, the phase
information of the wave amplitude function may not be available, and only the
magnitude |A(8)| = [ A%(8) + A3(0)]} is given. For example, the phase information
may be lost or can not be recovered fully when ship wave spectra are transformed
from remotely sensed images, or when wave spectra are transformed from wave height

data without knowing the ship position. If the phase information is not available,
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then the inverse problem becomes more complicated since it involves a non-linear
problem.

The non-linear inverse problem can be derived from the previously discussed
linear problem. By squaring both sides of (6.24) and (6.25) for each k (k =1, ..., K)
and then adding the squared values for each k together, a set of non-linear equations

is obtained in the form

4
A,,,(B,,) = cTchc + dTded (6.79)
k=123,.--,K
where
[ FaN " 9
An(0r) = Ag(6e) + Ar(6x)
a
Wa = WrWwh
a
Wa, = W"‘W:Iz;,
4 T
WRe = [Wmunwmah"'oWmm.-Wmu.'--.WNM'_,)N,-WM',,.»"'-WM'N,.]
) T
Wik = [wlllk’wllﬁkﬁ""WIlvawlslhl"'vw’(u"_z)Nkvw]u"lk'°"IW]M"Nk]

To write the above equations in a concise form, let

- , 1
Am(ol)
A A:,.(OQ)
a, =
| A0 |
W . é ch
W
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The problem described in (6.79) then becomes
xTW,,.lx

XTngx
an =f(x) = . (6.80)

| XTWoix ]

Equation (6.80) is a general form for the non-linear hull surface inversion. If the
ship hull surface function can be written in the form of separation of variables as in
(5.69), then the dimension of the vector to be solved can be reduced from M x N to
M + N. This will result in a great reduction of computational efforts, especially for
large M and N. Under the assumption of separation of variables, the hull surface

function {(z, z) can be expressed in the form

M N
{(z,2) = [ a=idi(2) ] [ 6:58i(2) ] (6.81)

=1 j=1

where a,; and a,; are the coefficients to be determined, and ¢;(z) and f;(z) are the

basis functions. Substitution of (6.81) into (6.1) gives the equations

M N

AR(0) = [g az; Wxri(9)] [2; a,; Wz;(0)] (6.82)
M N

Ay (0) = [Z_; azi Wxri(0)] [; a.; Wz;(9)] (6.83)

where Wxpi, Wxr; and Wz; have been defined in (6.8)-(6.10). For K values of 6,

there is a set of equations

Ag(6) = (xT wxre) (xT wzz) (6.84)
Ap(0:) = (x] wxx) (X7 Wzx) (6.85)
k= ]_, 2, e, K

where

Py
X{ = [azl’az%---a:M]

R J—
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A
Xg' = [azhaﬂ,---azN]

wxre 2 [Wxri(0e), Wxra(0k), -y Wxrm(8:))T
wxne 2 [Wxn(6), Wxra(6k), .. Wxrm(6s)]

wzr 2 [Wz(0k), Wza(0h), s Wan (86T - (6.86)

By squaring both sides of (6.84) and (6.85) for each k (k =1,..., K) and then adding
the squared values for each k together, a vector form of the non-linear equations is

obtained in the form

-
xT Wxy x1X3 Wz1 X3

xT W xo X:XT Wz x
an=fx)=| + " U I (6.87)

L xf Wxk x;xg’ Wzk X2 |
where Wx; is an M x M matrix given as
Wk S Wypa Wha + Wxn Wi
and W3z is an N x N matrix given as
Wz = Wzk ng

The vector equation in (6.87) can be also written in the form

xTW ;1 xxT W x

XTWGQXXTWMX
a, = f(x) = . (6.88)

xTW ke xxT Wy x

where

Wxr Omn
W‘k é Xk

Omn Onn
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and

W, & Opym Omn
Oy Wz

In the above equations, the subscripts of 0 denote the dimension of the null matrices.

So far, we have established the non-linear equations for hull surface inversion;

the next step we need to do is to solve the equations to obtain x. Using the method

of ML with a constraint ¢g(x), the estimate X can be found by solving the following

extremum problem:

minimize : (an — £(x))TS™}(a,, — f(x))

holding constant: q(x) . (6.89)

To solve this extremum problem, several methods of non-linear optimization can be

used.

Before we give examples of ship hull estimations, it is worth to have some discus-
sions about the issue of uniqueness. Like many other inverse problems, the unique-
ness problem arises in the inversion of a ship’s hull shape, that is, whether or not a
hull form can be uniquely determined form a free wave spectrum. We may see this
problem from two aspects, that is, from physical and mathematical aspects.

In physics, the question is whether different hull shapes have their respective
wave patterns. According to Newman'’s study on this problem [9], there is one and
only one equivalent source distribution for a given wave system; however, different
physical source distributions can be related to the same equivalent source distribu-
tion, different vessels can be responsible for the same wave system, and hence, in
general, non-uniqueness exists in the hull inversion. In mathematical processing, the

uniqueness problem may also arises even if an original inverse problem is unique.

Il B S BN N N N BN N N B ER N IBE BN B B B =.
_

-
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For example, the non-linear inversion of hull shapes described above may have mul-
tiple solutions due to the non-linear operations; thus it is more complicated than the
above linear inverse problem of hull shapes.

Because of the above reasons, we must apply proper constraints on hull form
to improve problem conditioning. Such constraints may facilitate a unique relation
between a free wave spectrum and a hull form [8]. Although we have no idea about
a hull’s exact shape before we do the inversion for it, we may have some useful
knowledge about man-made ship hulls and use it as constraints. For example, hull
surface smoothness constraints, closure type constraints and volume constraints are
useful in hull inversion. In the following simulations, the hull surface smoothness

constraint, especially the third difference smoothness constraint, is used.

6.7 Examples of Ship Hull Estimations

The previous sections have discussed the problems of a ship hull’s linear and
non-linear inversion and the methods to solve them. This section evaluates the hull
model given in (6.32), and gives the simulation results of mathematically well defined
hulls and the Quapaw hull.

To evaluate the error performance of the estimated huli surface (" (z, z), we con-
sider the absolute error €, = I(f,-,- — Gi;|, the relative error e, 2 |é,~,- — Gi;1/1G;1, and the

relative overall r.m.s. residual error which is defined as

a |[Il(=z,2) = ¢(z,2) Pdz dz
o [[C(z,2)dz dz (6.90)

or, in the discrete form, as

ey oo
IRRY]

There is some difficulty in using the relative error ¢, to evaluate the performance on
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the edges of the hull surface because the true values on the edges approach zero. The
relative overall r.m.s. residual error can be envisaged as the ratio of the volume of
the error to the volume of the hull.

In addition to the above criterion on hull surface error performance, we may also

consider the residual error due to the inversion operation:
€es 2 (ap ~ WR&)T(ap — Wr &) + (a7 - W; ) (a; — Wi d) . (6.92)

Note that a large error of ¢, results in a large error of ¢,,. However, even a very
small error of ¢, never guarantees a small error of ¢,,, that is, ¢,, may be very large

even for a very small ¢,.,.

6.7.1 Evaluation of Hull Surface Models

Before giving the simulation results, we first evaluate the performance of the hull
surface model. The basis functions selected from (6.17) and (6.20) consist of only
polynomials; thus the hulls defined with polynomials can be exactly expressed when
the numbers of basis functions are sufficiently large.  So, we do not consider these
types of hulls here, but the Wigley-Cosine hull and the Quapaw hull.

For the evaluation of a hull surface model, the model vector is calculated from
(6.32) using the least square method given the values of ((z,z), then the resulting
model vector X, = [Crn dm]T is used to evaluate the hull surface values, (n(z,2) =
hI(z,z)ém + hT(z, z)dm.

The Wigley-Cosine hull has length L = 100 meters, draft H = 10 meters and
width B = 10 meters. Table 6.1 lists the values of the relative overall r.m.s. residual
error ¢,, for different numbers of basis functions. The relative overall r.m.s. residual
error €,, versus the number of basis functions N is shown in Figure 6.4, assuming

that the numbers of basis functions in the x- and z-directions are equal, i.e., M = N.
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&o(%) | N=1 2 3 4 5 6 7 8 9 10
M=1|[4882 21.95 18.14 1814 18.14 18.14 1814 18.14 18.14 18.14
M=2|4718 1688 11.37 11.37 11.37 11.37 11.37 1137 11.37 11.37
M=3|4623 1316 3.96 396 396 396 396 3.9 3.96 3.96
M=4|4612 1266 161 161 161 161 161 161 161 161
M=54611 1263 1.33 133 133 133 133 133 133 133
M=6|46.10 1257 051 051 051 051 051 051 051 0.51
M=174610 1257 051 051 051 051 051 051 051 051
M=28|46.09 1256 026 026 026 026 026 026 026 0.26
M=9|4609 1256 026 026 026 026 026 026 026 0.26
M=10|46.09 1256 0.5 015 0.5 015 0.15 0.5 015 0.15

Table 6.1: The Wigley-Cosine hull’s relative overall r.m.s. residual error ¢, in the
hull approximation using M x N basis functions.
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&ro(%) | N=1 2 3 4 5 6 7 8 9 10
M=1|4562 2616 21.77 20.67 20.50 20.50 20.40 20.28 20.22 20.21
M=2|44.46 2258 17.16 1534 14.62 1441 14.32 14.31 1424 14.23
M=3|4433 2068 11.87 899 777 726 7.02 682 6.69 6.63
M=4[4432 2057 1104 789 642 575 544 533 523 513
M=5(4421 2035 1058 6.85 502 4.07 3.61 337 328 3.17
M=6|4415 2020 1032 627 420 299 233 199 185 1.69
M=17|4414 2020 1029 625 4.06 2.78 204 167 145 140
M=8|4413 2019 1028 624 399 267 189 150 125 1.19
M=09|4413 2019 1027 622 397 261 181 138 116 1.05
M=10|4411 20.16 10.24 “6.17 391 251 166 117 091 0.78

Table 6.2: The Quapaw’s relative overall r.m.s. residual error ¢, in the hull approx-
imation using M x N basis functions.
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Figure 6.4: The relative overall r.m.s. residual error ¢,, of the Wigley-Cosine hull
and the Quapaw model in the hull approximation using N x N basis
functions.

The Quapaw hull has length L = 4.953 meters, draft H = 0.362 meters and width
B = 0.978 meters. Table 6.2 lists the values of the relative overall r.m.s. residual
error ¢,, for different numbers of basis functions. The curve of ¢,, versus N with the
condition of M = N is also plotted in Figure 6.4.

From the above analysis, the hulls can be approximately very well for the suffi-
ciently large numbers of the basis functions. For example, ¢,, can be less than 3.0%
for M = N = 6, and less than 1.0% for M = N = 10. In actual situations, the
noise in the wave amplitude function may result in larger error in the recovered hull

surface than this caused by the model approximation.
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6.7.2 Estimation of Hull Shape from the Wave Amplitude Function

It is assumed in this subsection that both the real and imaginary parts of the
wave amplitude function are fully available. Thus, the model vectors ¢ and d are
estimated from the linear inversion.

In the following, we consider first a hull defined with polynomials:
B 2, .3 2
((z,2) = E(l -z-22+2°)(1-2*) =zel[-1,1],z€[-1,0] (6.93)

which is more typical than Wigley’s parabolic hull. This hull is not symmetrical in
the longitudinal direction, and thus its wave amplitude function contains both real
and imaginary parts.

In the simulation, the values of the wave amplitude function A(6) are calculated
from (5.8) with wave angles 6 in [5°,80°]. The basis functions are selected from(6.17)
and (6.20). With the basis functions and the given ship length and draft, the kernel
matrices Wg and W; can be computed. Once the hull model vector x = [c d}7 is
- determined by solving the linear inversion problem, the hull surface values can be
evaluated from (6.32), i.e., ¢ (z,2) = h1(z,z)é+h7(z, z)a In the calculations below,
all the constraints are based on the measures of the sum of the squares of the third
differences.

With the above procedures, simulation results can be obtained. As an example,
it is assumed that the ship speed is U = 10 meters/second, the parameters in (6.93)
are L = 100 meters, H = 10 meters, and B = 10 meters. The dotted line shown in
Figure 6.6 is the wave amplitude function calculated from (5.8).

When the numbers of basis functions are taken as M = 4 and N = 3, the
constrained ML method gives an exact solution for the containing parameters v, = 0

and v, = 10~°. As the numbers of basis functions increase, the error appears in the
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solution, because the kernel matrices become singular. Figure 6.5 shows the curves
of ¢, and ¢,., versus v, when M = 6 and N = 6. It can be seen from the figure that
there is a minimum value 1.0557% of ¢,, based on the calculation of 11 x 11 points
on the hull surface, associated with a residual error ¢,., = 7.4 x 1078, The estimated
hull surface is plotted in Figure 6.7 together with the error surface contour plots of
€, and e,.

To observe the effects of the error in the hull length and draft and the noise in

the wave amplitude function on the estimation performance, a couple of assumptions

a

are made: first that there is 10% error in the ship length and draft, that is, L = 110
and H = 11 meters are used in the computation of the kernel matrices; second, that
there is 10% noise in the real and imaginary parts of the wave amplitude function
based on the energy, that is, a 10 dB signal to noise ratio. When the noise is assumed

to have a Gaussian distribution with zero mean, the standard deviation is taken as

OnR = \/O.l(oﬁa + E[AR]?) for the real part, and o, = \/O.l(o'}, + E[A[]?) for the
imaginary part of the wave amplitude function. The wave amplitude function with
noise is shown with the solid lines in Figure 6.6. Figure 6.8 shows the estimated hull
surface together with the error surface contour plots of ¢, and ¢,, given M = N = 6.
In the calculation, both the coefficient constraint and surface constraint are used,
with 4, = 107! and 4, = 380. The overall error performances are given as ¢,, = 27.2%
and €., = 0.482.

With the same parameters and conditions, we again do the simulation for the
Wigley-Cosine Hull. The wave amplitude function and the simulation results are
displayed in Figure 6.9 and Figure 6.10. The overall error performances are given as
€ro = 32.5% and ¢, = 0.55, with 4. = 10~2 and 4, = 160. Figure 6.11 shows the

curves of ¢,, and ¢,,, verses v,, given 7. = 107! and 10~2, for the modified Wigley
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Figure 6.5: Curves of ¢,, and ¢,., versus «, for the modified Wigley hull with M =
N = 6. No error and noise are present in the input data.

hull described in Eq.(6.93) and the Wigley-Cosine Hull. It is found from the figure
that the error of ¢,, has only a small change for different v, with a given .. However,

€0 has obvious variations for different «..
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Figure 6.6: (a) the real part, (b) imaginary part, and (c) the magnitude of the wave
amplitude function of the modified Wigley hull, given the parameters
L=100m, H=10m, B =10 m, and U = 10 m/s. The dotted lines
represent the wave amplitude function with no noise, and solid lines the
one with 10% noise.
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Figure6.9: (a) The real part, (b) imaginary part, and (c) the magnitude of the
wave amplitude function of the Wigley-Cosine hull, given the parameters
L=100m, H=10m, B =10 m, and U = 10 m/s. The dotted lines
represent the wave amplitude function with no noise, and solid lines the
one with 10% noise.
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Figure 6.11: Curves of ¢,, and ¢,., verses v, given 7. = 103 and 10~2, and the
parameters L = 100m,H =10m,B=10m,U =10m/s,M = N =6,
a 10% noise or error in the input data. In the subscripts of ¢, “mw”
represents the modified Wigley hull, “wc” the Wigley-Cosine hull, “a”
denotes 7. = 1071, “b” 7, = 10-2.
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6.7.3 Estimation of Hull Shape from the Magnitude of the Wave Ampli-

tude Function

It is assumed in this subsection that only the magnitude of the wave amplitude
function is available. Thus, the model vectors ¢ and d will be obtained by solving the
extremum problem described in (6.80) and (6.89). In the following, the conjugate
gradient method [42] is used to minimize Q(x) = (an, —f(x))TS~! (am —f(x))+7¢:(x),
where g,(x) is a surface smoothness constraint. This multiple-dimensional extremum
problem may result in multiple solutions, thus the constraint must be considered.
Additionally, an initial vector of x needs to be imposed for the conjugate gradient
method. To improve problem conditioning, the initial values of the coefficient vector
x are obtained using the method as shown in Subsection 6.7.1 from a known hull
model, given the same hull length and draft and the same numbers of basis functions
which will be used in the inversion. In the examples below, the variables of the hull
surface functions are assumed not be separable, the numbers of basis functions are
taken as M = 6 and N = 6, and all the constraints are based on the measures of the
sum of the squares of the third differences.

The first example is the Wigley-Cosine hull with the same hull parameters as
before but with no noise in the input data. The magnitude of the wave amplitude
function is shown as a dotted line in Figure 6.9(c). The initial values of the coeflicient
vector is obtained from the modified Wigley hull given in (6.95), and no constraint is
considered. The recovered hull is given in Figure 6.12 together with its error surface
contour plots of ¢, and ¢,. The overall error performances are given as ¢,, = 8.92%
and €., = 0.0568.

The next example is the same Wigley-Cosine hull, but 10% noise is considered.

The magnitude of the wave amplitude function with noise is shown as a solid line in
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CL(%) CH(%) CA,,.(%) Vs €res €ro

0.0 0.0 0.0 0.0 | 0.0568 8.92
0.0 0.0 0.0 100.0 | 0.2845 9.63
10.0 10.0 0.0 0.0 | 0.5988 24.74
0.0 0.0 10.0 0.0 [ 0.8254 45.32
10.0 10.0 10.0 0.1 0.8977 33.47
10.0 10.0 10.0 100.0 | 0.8977 28.85

Table 6.3: The error performance of the Wigley-Cosine Hull estimated from the mag-
nitude of the wave amplitude function with M = N = 6.

Figure 6.10(c). The hull and draft also have a 10% of error. The initial values of the
coefficient vector is obtained from the modified Wigley hull model given in (6.93),
and the surface constraint is considered with 4, = 100. The recovered hull is shown
in Figure 6.13 together with its error surface contour plots of ¢, and ¢,. The overall
error performances are given as ¢, = 28.85% and ¢, = 0.9037. Table 6.3 shows
the simulation results under different conditions, in which €z, €y, €4, represent the
relative errors in L, H and A, (0), respectively.

Finally, we consider the Quapaw hull, a more practical example in which the wave
amplitude function is ca.culated from the spectrum of the wave elevation measured
from the tow tank as seen in the previous two chapters. A total of 40 data points of
the magnitude of the wave amplitude functions is used in the hull surface estimation,
corresponding to wave angles in [12°,70°]. Figure 6.14 shows the magnitude of the
wave amplitude function verse wave angles @ for the data RUN5-A and RUNS5-B.
The hull surface estimated from RUNS5-A and RUNS5-B are shown in Figure 6.15 and
Figure 6.16 together with the error surface contour plots of ¢, and ¢, for M = N = 6.

The overall error performances are given as ¢,, = 34.607% and ¢,., = 1.335 for RUNS5-
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A, and ¢,, = 34.662% and ¢,., = 1.250 for RUN5-B. Figure 6.17 shows the curves of

€0 and ¢,., verses 7v,.

In the above, we have demonstrated the examples of ship hull estimation from
the wave amplitude functions and their magnitude. From these examples and the
simulations with different parameters and conditions, some comments can be made
as follows.

(1) When input data are perfect and the hull to be recovered can be exactly ex-
pressed using the basis functions, the exact solution of this hull’s surface {(z, z) can
be obtained in the linear inversion with reasonable numbers of basis functions, for
example, M = 4 and N = 3 for the hull given in (6.93). However, there will be errors
in the solution when the input data are not accurate and have noise.

(2) In linear inverse problems, the estimation performance is usually much more
sensitive to the noise in the wave amplitude function than the errors on the hull’s
length and draft. Larger constraining parameters are needed to achieve a better
result for larger noise. In addition to a surface constraint, a coefficient constraint is
helpful to achieve a stable solution, especially in a severe noise environment.

(3) The smoothness measure based on the sum of the squares of the third differences
are more effective than some other measures such as those based on the sum of the
squares of the first or second differences.

(4) The error in a hull length L and draft H mainly affects the accuracy of the side
edge and bottom edge of the hull in solutions. In general, the relative error in the

solutions is larger on the hull’s bottom boundary than those on the upper boundary

and central part.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

The previous chapters have presented the study on the estimation of a moving
ship’s speed, direction, length and hull shape from its wave spectra. Deep water,
steady waves and the linearized free surface condition are assumed throughout the
study.

The estimation of ship speed and direction has relied on the distinct features of
the Fourier spectrum of the ship gensrated waves. The introduction of the concept
of the complex wave elevation has been useful in simplifying the derivation of the
wave amplitude function from one and two dimensional wave spectra. In general, it
is suggested, for high accuracy and the ability to separate background noise, that a
ship’s speed and direction be estimated from two dimensional wave spectra. However,
for high accuracy and easy computation, we suggest that the wave amplitude function
be recovered from one dimensional wave spectra.

The extraction of a ship’s hull geometry has been based on the relation of the
wave amplitude function and the ship geometry under the assumption of the thin-
ship theory. The theoretical model developed for the wave amplitude function has
explicitly revealed the periodic character of the wave amplitude function and its re-

lation with the ship length. From this model, it is also found that the ship’s bow
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and stern play a dominant role in the wave amplitude function, and that disconti-
nuities in the hull surface function and its derivatives results in the increase of other
frequency components. The real and imaginary parts and the magnitude of the wave
amplitude function generally appear to be signals which are both magnitude and
angle modulated. The bow and stern’s concaveness or convexity have effects on the
frequency variation, or the distribution of the zero-crossing points of the wave ampli-
tude function, and may result in over- or underestimation of ship length. The three
methods, the spectrum method, zero-crossing method and frequency demodulation
method, have shown their effectiveness in the estimation of a ship’s length.

The extraction of a ship’s geometry information is essentially a linear or nonlinear
iaverse problem. The ill-conditioning of the kernel matrices is a critical problem in
the linear inversion. It has been shown that the constrained maximum likelihood
method for hull surfaces or/and coefficients is useful in reducing the effects from this
ill-conditioning and the noise present in input data. When the noise components,
present in the data of the wave amplitude function, have independent identical Gaus-
sian distributions, the constrained maximum likelihood method and the constrained
linear inversion method are equivalent in the case of linear inversion. The uniqueness
of the solution is another critical problem in the nonlinear inversion. In addition to
holding constraints, the proper choice of the initial coefficient vector has been shown
to be helpful in finding the desired solution. In the examples given in Chapter 6,
the initial vectors were chosen from the known hull models given the parameters of
length and draft. According to simulation results, high accuracy can be achieved
when the hulls are recovered from the perfect input data. However, the accuracy
decreases, especially at the edges of hulls, when noise is present in input data.

The results from the study show a promising possibility of detecting a moving
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ship’s characteristics through measuring the ship generated wave pattern. For a prac-
tical application of this technique, however, many problems in theory and practice
still remain to be investigated and solved. The following are some considerations and
recommendations for further study.

(1) The estimation of a ship’s length and hull shape given in the study is based on the
thin-ship theory. The theory itself has its limitations and weakness. The example of
the Quapaw hull has shown that the methods developed under the thin-ship theory
are also suitable for fat ships like the Quapaw, however, further investigation of
other more general types of hulls will be helpful in understanding the performance
and limitation of the methods which have developed.

(2) In the hull inversion, it was assumed that the hull draft was known. However, it
is still an open problem - how to estimate the hull draft from ship wave spectra.

(3) The nonlinear inversion described in (6.88) for a variable-separable hull function,
having a relatively small size of coefficient vector, has not been tested and needs to
be further evaluated.

(4) According to the results of the hull inversion, constraints are important and
necessary for obtaining a stable solution with a reasonable accuracy in either linear or
nonlinear problems. Thus, we need to search further for an optimal set of constraints,
if they exist, to achieve better performance in the hull estimation.

(5) In the above study, constant ship velocity is assumed, thus only a steady ship
wave field was considered. However, it may not be always true in practical situations.
The effects of a ship’s velocity variation and other unsteady effects on the estimations
have not been studied. To estimate a ship’s characteristics from an unsteady ship
wave field, new techniques may need to be developed.

(6) In addition to the techniques developed in this study, another critical problem
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existing in the application of remote sensing of a moving ship and extracting its
characteristics is how to transform successfully, a remotely sensed image or intensity
spectrum to a quantitative wave elevation spectrum. Monaldo and Lyzenga’s efforts
in the research on the estimation of the wave slope- and height-variance spectra from

SAR imagery [5] may be helpful in solving this problem, but further study on it is
still needed.
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APPENDIX

WAVE AMPLITUDE FUNCTION WITH ONE
DISCONTINUITY

This appendix gives the integration results with the integral
1
A(Ky) =/ F(z)e’"dz
-1
and the integrand

Y205z for —-1<zr<=z
F(z) = { 3=0"J b

Y2obiz? forzy, <z <1

Substituting (2) into (1) yields the results

(2)

Ap(K:) = Qn,(K:)cos(v — ¢g,(v)) + Qr,(Kz, zs) cos(zpw — éR,(v,2)) (3)

AI(K’-‘) = le (K,,-) COS(I/ - ¢I| (v)) + QI,(K::, zb) COS(.’L'bV - ¢Iz(v’ 35))

with

Qn(K:) = {[i(bs pr.(,1) - @i pr (v, =1)) I +

(35 qr (1) + s qry(y —1)) '}

=0

QR:(K::)

=0 =0

Qu(K:) = {[3(bipn(v,1) = aspr(v, 1)) +

=0

(4)

()

(U - a) prw ) P+ (305 — a) qr (o zs) M (6)
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(2 0uws) + asan (v, - 1) PH ™)
Qn(K:) = { [2(5-' —ai)pr(v, ) + li(bi —a)a(v, )P} (8)
y) = -1 Ef;o [b;qm(v, 1) + aiqﬁi("’ -1)
) = Tl e hom (1) — aipr, (3, =1) )
_ pan-1f _imo (b — @i)qR; (v, 7s)
¢R3(szb) = tan 1[ 2:0 (b, _ _ai)PR.-(V,zb) (10)
N = tag-1[ 2i=olbion (v 1) + aigr (v, 1)
() = Tl ipn (v, 1) — aipn (3 —1) ()
¢Iz(V1 zb) = tan-l[ Zi=0 (bl —a;)q;,.(u,zb) (12)

Y20 (bi — —ai)pr (v, 73)

where pg,(a, z), gr,(a, ), pr.(a,z) and qj,(a,z) are as defined in (5.16)~ (5.19).
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