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Our main concern is with the development of a Slater-type orbital
(STO) multicenter molecular integral package for use with standard ab
initio quantum chemistry codes such as the Columbus code and Alchemy.
Significant advances have been made toward this goal, as shown by the
enclosed papers.

A new strategy has been adopted: First program all molecular
integrals in Mathematica (a computer algebra language that can give
arbitrary precision with our alpha-function method); then, using assured
accurate results as a guide, use FORTRAN to obtain speed and acceptable
accuracy. We believe that this dual thrust will finally crack the
"intractable"” problem of STO multicenter integrals. Applications will soon

be made to real molecules.
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Lowdin Alpha-Function, Overlap Integral, and Computer Algebra

Herbert W. Jones

Physics Department

Florida A&M University
Tallahassee, Florida, 32307, U.S.A.

Abstract

A commerical computer algebra programme, Mathematica, is used to
generate the C matrix that characterizes our implementation of the Lowdin
alpha-function r;lethod as applied to Slater-type orbitals. An example of a
two-center overlap integral is done to show how the arbitrary precision capability
of Mathematica can overcome severe cancellation errors encountered with
programming in FORTRAN. This strategy is cépable of being generalized to

other multicenter molecular integrals. Mathematica programmes are included.




Introduction

Efforts continue to be made to make Slater-type orbitals (STOs) a viable
alternative to Gaussian-type orbitals (GTOs) when dealing with problems of ab
initio chemistry [1]. The more physical nature of STOs should give advantages
over GTOs when working in structural chemistry and in studies of reaction
dynamics, and density functional theory [2]. Other investigators [3] have recently
made considerable progress in this essentially multicenter molecular integral
problem.

In this paper, we will initiate a new line of action that takes advantage of the
availability of commerical computer algebra programmes of evolving power and
flexibility. We will repeat our work on the Lowdin alpha-function and, by an
example, show how overlap integrals may be computed to arbitrary accuracy.

The Alpha-Function and C, E, and F Matrices

The Lowdin a-function method expands displaced orbitals in an infinite
series of spherical harmonics about a single-center (the origin) before the

required integration is attempted [4]. The functional coefficients of the spherical
harmonics are designated as a-functions. We take a displaced STO to be centered
at (0,0,a) in its local coordinate system (R, ©, ¢), and write it in terms of the
original coordinate system (r,8, ¢) [5,6]. Thus,

X = ARN-1 ¢-CR YI_I\‘/I ©,9¢),

1/2

L (2 £+1) (£-M)!

Y= A [(2L+1)(L+M)!J

5 4rn (L + M) 1/2 (-1M
¢N-1 4r (L -M)! M

 ofIM (o, tn) YYI (0, 0),




where

N+L+f N+¢
oM (fa,(r) = @L+D(L+ M) X L CHLM @)
2(¢ +M)! i=0  j=0

X Hij (€)) i-L-£-1 (Cr)j-L-l

and

ela [(-1)¥ ebr - elr] | r<a

Hj; - .
elr [(-1)i efe - ela] |, r>a.

A = (2)N+12 [(2N)!]"¥2 s the normalization factor, N, L, and M are the quantum

numbers of the orbltal and G is the screening constant or orbital exponent. ~:- Tanvenenc
Ve el “5 vt .= -5 (=8 ,---.4..—( b =% , tmd = S
Most 1mportantly for our developments the elements of the C matrix are

integers. Originally, it was obtained by programming the following expression,

using FORTRAN and a simple in-house version of computer algebra [7]:

[(L+M)2] L+M-2p L+M-2pq
L X CJWM Gjaid = ) T 5
i:O J:O p=0 q=0 V=0

[(e-M)y2] ¢-M-2p' £-M-2p-q t t-k
x pX )) z p z
p'=0 q'=0 v'=0 k=0 k'=0

aX r¥ (-1)V+a'+p+p+L (2L-2p)! (2 £-2p")!
4L+ £+p-p (L-p) p! p't ¢! q' v! v'! (L+M-2p-q-v)!

(N-L+2p+2q+2q')!
(£&-p) (£-M-2p'-q'-v')! k'l (N-L+2p+2q+2q’-k-k')!




where
x=N+L+22-2p-2v-2v-k-k',
y=2p' +2v+2v + k',

and

t = N-L+ 2p +2q + 2q'

In Table I we use the programming language Mathematica [8] to generate the

r polynomial in"a?;nd r for the zeroth harmonic (£ = 0) for the 2p orbital (N=2, L=1,
» ( &WSn)

M=0). (For our example, we multiply by (-1)L' so that the positive lobe will face

toward the origin [9]). This being accomplished, the next line selects the

coeflicients of the polynomial to obtain the C matrix, whose elements are given by

(. /é”(j T'[[ i+1, j+1J] which corresponds to our form 00210 (i,j). Our programming

notation conforms to Mathematica protocol and is chosen for ease in typing.

Thus, N=nn, L=hh, M=mm, £=h, p'=pp, q'=qp, v'=vp, k'=kp. Floor [ ] means

reduce to integer. The curly brackets represent the eight summations and their

limits. One of the great advantages of Mathematica is that its high level language

is remarkably analogous to standard mathematical notation.

Now that we have obtained the C matrix, we will next generate the E matrix

[10], which is a matrix of coefficients of the expansion of the a-function in a Taylor

series about r=0, that is, for the case r@(’ln Table II we use two lines to type in

P (&~ L-L"" has been b itted). — -
the definitions of the a-function, alpha. The Mathematica command Series [ ]

expands alpha in a Taylor series about r=0 to r5. We again collect these

coefficients and print out the E matrix, e = Eglo (i,j). The F matrix may be

obtained by expanding the a-function for r>a in terms of a, in a similar manner

~emoved ’4/

o/ 4 _
- C”W -!:0"(0" e 3/11""(“' tlQ.L be e /L.;—-#’-r:l\
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Overlap Integral

We will find the value of an overlap integral gi§en by Bhattacharrya and
Dhabal [11]. However, for convenience, our value will be positive to conform to the

convention of Mulliken, et al. [9]. The definition of the overlap integral is

S= f X; Xy, dv where

Xy =Ag rN-1 el Yg‘, (6, ¢), and for the displaced orbital Xj,= Aj, RN-1 e‘CRYa‘ (8, 9).

Expanding X, and invoking ihe\ orthogonality of spherical harmonics, and

performing the radial integration we get [12]

W NH1/2 +LyL N L Y O +
5=K('{g) M MO G, pga) T

{=0 =0

_y
x['.’—“([a(z(' —l;))l""’[a(:”rl m"”)

' 1 (-—-1)' B (_‘)l
e E,(u-k)y([,,(;'.m]“' [a(z'—m“')]'
where

n=N'—-L"+j
and

“ QL+ DL+ 1)(L+M)I(L' =~ M) 2
K =2" N(‘”A( ENNENIL+M)IL-M)! )

Table III shows the programming of the overlap formula. We have set N' = nnp,

L' = hhp, K = kk. For clarity, the overlap formula is assembled from parts to get,
S = overlap. To compare with the literature [11], we set {’' = 10, and { = 2, and the

distance between orbits as 1.4. Then we let a = {'(14) =14, b ={(1.4) =28 =

2(14/10). Mathematica can give arbitrary precision for arithmetic operations if it

5




is given numbers as the ratio of integers. This applies also to roots and
exponentiations. The operation N[overlap, 20] means for Mathematica to try and
get 20 significant figures using the overlap formula. This it succeeds in doing as
confirmed by Bhattacharya and Dhabal [11). With the command N[overlap, 30] we
request 30 digits, and get 29.

A more revealing set of parameters for this problem is a = 102/100 and b =
101/100. Now cancellation errors become evident. Thus Nloverlap, 20] yields
0.4338568005, which is only 10 digits. Mathematica trys not to return worthless
digits. The loss, we suspect, must be due to cancellation errors. This becomes
obvious if the positive parts and the negative parts of the overlap formula are
programmed separately for 20 digits. Then

overlap = 921614991.7515037098 - 921614991.3176469093 = .4338568005.

We may obtain 20 digits using the command N[overlap, 30], which gives
.43385680048834139559.
Hence, by the simple expedient of changing the number of digits requested we

may obtain arbitrary precision. Mathematica can easily deal with large numbers
of digits, so that any physical system can be computed. (The exceptional case of {

={' (a = b) can be programmed separately from a simpler overlap formula [13]).
Conclusion

Recent investigators [11, 14, 15] working with overlap integrals have found
that more than one formulalion is needed in order to cover the range of useful
parameter values and avoid intolerable cancellation errors. This is necesary
when using programmes that utilize a finite computer word length. In this
paper, it has been shown that by use of a variable word length, it is possible to
absorb cancellation errors and still work to a specified accuracy.

We have employed an Apple Macintosh IIx computer using the 1.2 version of
Mathematica. Benchmark values for overlap integrals have been achieved (in a

6




few seconds). Other multicenter molecular integrals are under investigation.
The general usefulness of our methods for integral packages depends on newer
and faster versions of computer algebra schemes and the employment of
mainframes or workstations.
Acknowledgment

Support of this work was provided by the Air Force Office of Scientific

Research under Contract No. F49620-89C-007.




10.
1L
12,
13,

14.
15.

Bibliography
International Conference on ETO Multicenter Molecular Integrals, edited by
C.A. Weatherford and H.W. Jones (Reidel, Dorrecht, 1982).
W. Yang, Phys. Rev. Lett. 66, 1438 (1991).
J.F. Rico, R. Lopez, and G. Ramirez, J. Chem. Phys. 91, 4202 (1989); J.
Grotendorst and E.O. Steinborn, Phys. Rev. A 38, 3857 (1988); I.I. Guseinov,
Phys. Rev. A 31, 2851 (1985).

P.O. Lowdin, Adv. Phys. 5, 1 (1956); H.W. Jones and C.A. Weatherford, J.
Mol. Structure (Theochem) 199, 233 (1989).

H.W. Jones and C.A. Weatherford, Int. J. Quantum Chem. Symp. 12, 483
(1978).

H.W. Jones, Phys. Rev. A 30, 1 (1984).

Contributions in Mathematics and Natural Sciences, edited by H-W. Jones
and C.B. Subrah}?manyam (FAMU Foundation, Tallahassee, 1986).

e

Mathematica: A System for Doing Mathematics by Computer, S. Wolfram
(Addison-Wesley, Reading, 1988).

R.S. Mulliken, C.A. Rieke, D. Orloff, and H. Orloff, J. Chem. Phys. 17, 1248
(1949).

H.W. Jones, B. Bussery, and C.A. Weatherford, J. Quantum Chem. Symp.
21, 693 (1987).

A K. Bhattacharya and S.C. Dhabal, J. Chem. Phys. 84, 1598 (1986).
H.W. Jones, Int. J. Quantum Chem. 18, 709 (1980).

H.W. Jones, Int. J. Quantum Chem. 19, 5§67 (1981).

E.J. Weniger and E.O, Steinborn, Phys. Rev. A 28, 2026 (1983).

H.W. Jones, Phys. Rev. A 35, 1923 (1987).




nn=2;hh=1;mm=0;h=0;

cpolynomial=Sum([a” (nn+hh+2h-2pp-2vp-2v-k-kp) *
r™ (2pp+2v+2vp+kp) * (-1) A (v+qp+p+pp+hh) * (-1) ~hh*
(2hh-2p) | * (2h-2pp) | /4~ (hh+h-p-pp) / ( (hh-p) ! *
p! *pp ! *q! *qp ! *v! *vp! * (hh+mm-2p-q-v) ! ) *
(nn-hh+2p+2q+2qp) ! / ( (h-pp) ! * (h-mm-2pp-qp-vp) | *
kp! * (nn-hh+2p+2q+2qp-k-kp) ! ),
{p, 0, Floor [ (hh+mm)/ 2]}, (q, 0, hh+mm-2p} ,
(v, 0, hh+mm-2p-q} , {pp, 0, Floor [ (h-mm)/ 2]},
{ap, 0, h-mm-2pp} , {vp, 0, h-mm-2pp-qp} ,
{k, 0, nn-hh+2p+2q+2qp} ,
{(kp, 0, nn-hh+2p+2q+2qp-k} ]

3+3a+2a2+a3+3r+3ar+ 2ar + 12 +ar?

cmatrix=CoefficientList [cpolynomial, {(a,r} ];

c=cmatrix;

MatrixForm [c]

3 3 1
3 3 1
2 2 0
1 0 0

Table 1. Generation of the zeroth harmonic of the C matrix for the 2p orbital
starting with the C matrix polynomial.




alpha=Sum [c¢ [ [i+1, j+1]] * ((-1) *j*Exp [r] - Exp [-r] ) * a®i*
r® (j-h-1), (i, 0, nn+hh+h) , {j, 0, nn+h} ] ;

alpha=(2h+1) * (h-mm) ! / (2*¥ (h4+mm) ! ) *alpha ;

alphae=Series [alpha, (r,0,5) ];

e=CoefficientList [alphae, (r,a} ];

MatrixForm [e]

0 0
0 0
0 0
0 0
15 1/15
Table II.

0 1
0 0
-2/3 1/6
0 0
-1/15 1/120

Generation of the zeroth harmonic of the E matrix for the 2p
orbital. The alpha function polynomial is expanded in a
Taylor series in r, and the coefficients are collected in matrix
form.




nnp=1; hhp=0;
a=14; b=2* (14/10);

kk=2” (nnp+nn) * (-1) *mm*Sqrt [ (2hh+1) * (2hhp+1) * (hh+mm) | *
(hhp-mm) ! / ((2nnp) | * (2nn) | * (hhp+mm) | * (hh-mm) ! )]

s1=Sum [ (nnp-hhp+j) ! *c [ [i+1, j+1]] *b” (nnp-2hhp-hh+i+j) *
((-1) ~j / (a-b) » (nnp-hhp+j+1) -1/ (a+b) A (nnp-hhp+j+1)),
(i, 0, nn+hh+hhp} , (j, 0, nn+hhp} 1;

s2=Sum [(nnp-hhp+j) ! *c [[i+1, j+1]] *b”» (nnp-2hhp-hh+i+j) /

(nnp-hhp+j-k) | * ((-1) A i/ (a+b) A (k+1) - (-1) Aj/ (a-b) A (k+1)),

(i, 0, nn+hh+hhp} , (j, 0, nn+hhp}, (k, O, E—hhp+j] 1;
s12=Exp [-b] * s1+Exp [-a] *s2
overlap=kk* (a/b) A (nnp+1/2) *s12; nny
N [overlap, 20]
0.11741378968662828485
N [overlap, 30]

0.11741378968662828485490731401

Table III. The implementation of the overlap formula to find S(1s, 2p). The 1s
orbital has a screening constant of 10, and the 2p orbital has a
screening constant of 2. The orbitals have a 1.4 unit separation.
Matlllematica is requested to produce a 20 digit result and a 30 digit
result.




Benchmark values for two-center Coulomb integrals over Slater-type orbitals

Herbert W. Jones
Department of Physics and
Institute for Molecular Computations
Florida A&M University
Tallahassee, FL. 32307

Abstract

The Lowdin alpha-function method, in which displaced orbitals are
expanded in an infinite series of spherical harmonics, is implemented for
Slater-type orbitals using a commerical computer algebra program,
Mathematica. The program, which is included, generates a C matrix with
integer elements that characterizes our approach to multicenter molecular
integrals. The general two-center, two-electron Coulomb repulsion integral is
produced analytically with a finite number of terms. Each Coulomb formula may
be evaluated to arbitrary precision, since Mathematica works with integer

arithmetic. Hence, cancellation errors can be overcome.
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Introduction

The difficulties of working with Slater-type orbitals (STOs) when doing
variational treatments of molecules are proverbial [1]. Nevertheless, progress )
continues to be made [2]. The hope is that the integrals resulting from use of
STOs will be efliciently done so that their good physical characteristics can be
utilized.

In this paper, two-center, two-electron repulsion integrals of the Coulomb
type will be evaluated to specified accuracy by use of a commerical computer
algebra program called Mathematica [3]. Our method is that of the Lowdin
alpha-function [4], in which displaced orbitals are expanded in an infinite series
of spherical harmonics with functional coefficients (alpha-functions). By use of
an in-house version of computer algebra we have been able to characterize each
STO by a C matrix [5]. The fact that these matrix elements are integers is the key

to our being able to take advantage of the high level language and power of

Mathematica.

We have already shown [6] how Mathematica can generate a C matrix for
each displaced STO and how a formula for overlap integals can be evaluated to
arbitrary accuracy. The more difficult Coulomb problem involves the integration
over two electrons and thereby casts light on how all multicenter molecular
integrals may be done.

The Alpha-function and C matrix

The Lowdin a-function method expands displaced orbitals in an infinite
series of spherical harmonics about a single center (the origin) before the required
integration is attempted [4]. The functional coefficients of the spherical
harmonics are designated as o-functions. We take a displaced STO to be centered
at (0,0,a) in its local coordinate system (R, ©, ¢), and write it in terms of the

original coorinate system (r, 9, ¢) [5,7). Thus,

2

]




'

x=ARN' e YM(@,9¢),

L 1
x=-A [(2L+1)(L+M)!:|2 3 [ 47(L +M)! ]2(—1)‘"

- NI 472(L — VD! (2€ + D(£ - VD!

=M

x af™ (a,ér)YM (o, ),

where

D¢+ M) N+L+¢ N+¢
2e+D(E+M) y y Ci\ILM

NLM =
ap T (6a,6r) 2(£+ M) i=0 j=0

(1,1)
y Hij(Ca)i-L—e— Lgryi=2-1

and

e [ e -e7], r<a
VoleT - e®-e®], r>a

A = (20N+12 [(2N)!]-V2 is the normalization factor, N, L, and M are the quantum
numbers of the orbital, and { is the screening constant or orbital exponent.

Most importantly for our developments the elements of the C matrix are
integers. Originally, they were obtained by programming the following

expression, using FORTRAN and a simple in-house version of computer algebra

[5,7]:




m ﬁ_::

[(L+M)/2] L+M-2p L+M-2p-gq

> YOG et = S

i=0 j=0 p=0 q=0 v=0
[(¢-M)/2] ¢-M-2p° ¢-M-2p'-q" t t-k
< 2 X 2 2 2
p'=0 q'=0 v'=0 k=0 k'=0

a*rY(=1vrarererl (9, _ 2p) (24— 2p)!
X AR, plp'plalq!vIvI(L+M-2p—q—v)!

(N-L+2p+2q+2g')!
(£ PNU-M-2p-q'-vI(N-L+2p+2q+2q'-k—-k')

where
x=N+ L+2¢~-2p'-2v'-2v-k-k',
y=2p'+2v+2v'+k'.
and
t=N-L+2p+2q+2q
Coulomb Integral

The definition [8] of the Coulomb two-center, two-electron repulsion integral

I=[[ 10 1,0 r 2.0 1,0 dv, dv,

We superimpose X,(1) and X,(1) at the origin, and X.(2) and X4(2) at a

distance of a along the z axis (0, 0, a). The superimposed orbitals may be merged




and expressed as a linear sum of orbitals upon expanding the spherical
harmonics.

The Coulomb integral may be written as

J=[ 2.2) 2,(2 V(r2) dv,

with the potential given as

V) =[ 20D 1,0/ 1, dv,.

The Laplace expression of 1} is

1 - ¢ 4r rl L *
—=2 2 5 o L (0,0) Y6, 0),

where r. is the smaller of rq, ry and r, is the larger.

Using orthogonality of spherical harmonics, the potential may be
determined. In our developments, in order to avoid having to distinguish be.tween
real STOs and complex STOs, and to facilitate comparisons with the literature,
only the case of orbitals with magnetic quantum M=0 will be considered. This is a
mild restriction easily removed once the chief problem of dealing with radial

integrals is worked out. Thus the potential becomes [8]

V(r,0,) =k, Y (L,L,,0 V, ) P6,),




"

where

1 T2 - t = -
V,(r,) = {_r—‘ﬁ fo dr, 1 e + 1, L dr, r"e™™ ¢,
2

with (L, ,L,,¢) = I P, (6) P, (6) P,(6)sin 66, representing the Gaunt coefficients, with w={, +{,,

172

n=N,+N,+¢{, m=N,+N, -£-1,k,=A A, [2L, +1) (2L, +1)]

2¢+1
1’ in ——P,(6).

We perform the indicated integration to get

/2. Note that Y,(8,9)=

n

1 n! —or n! rpk
Vz(rz) 7+l [ n+1 —e 2 Z m 2k+1]

T, (4)] k=0 w

m m-k

t —aor m! Y,
+ e ?
2 Zo (m—-k)! ow**!

The electron charge density for electron 2 becomes

r@r@=2 R e T 1 R 6)

L

172

with k, = A, A, [L, + (2L, + D] /2, N=N+N, -1 {={ +{,.

Noting the a-function expansion
-1 (R, 1
Ry e ™ PL(®2)=‘C—ET1' Z al[‘x. P, (6;)
4L

and taking into account orthogonality (£, = ) we finally get [9]

_kk, E @L+1)

{N 2 oD (L Ly L) (L Ly 8) [r* dr V, af.




The sums over L and ¢ are limited because of the triangular rule for the Gaunt coefficients.
For convenience, we divide the integral into three parts corresponding to the

three terms of the potential [10].

Let i, +i, +i, = Irz drV, «,. Thus,

n!

il: Z 2 a)n+1 ai an Cl(i’J)

x{(=1)i e ¢ der i efr 4 (=1)' e rdr ri-2e ¢ g% j:dr ri-2¢ e'c'}

ey

n

1
=X 2 X o @ ¢ G

k=0

a L]
x{‘(“”’ e~ [fdr pl2nk @ @-Or _(~1)! e [dr pi2enTk nerOr

+e{aJ’ dr rj—2¢+n—k e—(w+C)r }
o

. < m! P i ..
s —Z' zj" ;g’, (m - k)! a¢™ C.L))

a o
X {(_.1)1 e—CaJ' dr rj4-l+m—k e—(w—()r + (_1)i eCaj dr rj+l+m-k e—(m_g)r
° a

_e—CaI dl’ rj+l+m—l¢: e—(m+§)r }
o




r———_—‘ o

Each term of the summation over £ and L is given by

. ... (2L+1 k!
e =Gy g i) EEER(L L, ) (L L, L) s

1

x §L+2t+2aL+l+1 ’

the (2¢£+ 1) factor having been cancelled.
Basic integrals
To carry out the analytical evaluation of the Coulomb integral, the following

basic formulas are used [11] (we have replaced the zero on the integrals by the

infinitessimal ).

a an+l £n+1

l(n,a)=|drr" = - , n#-l
gln,a) L rr n+l n+1 n
gl(n,a)=fna-fng, n=-1
f1(n,a,b) = Jtdr r"e™

: e-ba n n! n!

fi(n,a,b)= - ba)"™" + , n0;

( a ) bn+1 2.:; (n-t)' ( a) bn+l

-n-1 _ _Ry-n-l
f1(n,a,b) = ~(<b)™*! e z (-n-t-1! 1 (=b)

i1 (-n-1! (~ba)™" + T Ei(~ba)

gyl (n-t- (-b)™! | 1
+(-b) é Ty R — [ln|b|+ y+lne], n<-1

f1(n,a,b) = Ei(-ba) - [lnlb] +7+ lne], n=-L




To obtain the ¢ limit, e-P€ has been expanded and all powers of €, except €2, have

been dropped {12]. From physical considerations, all inverse powers of € and fn¢
must cancel, if all parts of the program are considered. The other needed

integrals are:

f2(n,a,b) = der r" e™

fam,aby =-S5 3 AL (hg n20;
24y = bn,” et (n—t)! ’ =Yy
~-n-1 Y _h)-n-1
f2(n,a,b)=(-by*tete S LEBZE=D 1 DT g g neny

S5 (n-1 (-ba)™* (-n-D!

f2(n,a,b)=-Ei(-ba) , n=-1

f3(n,b)=I:dr rre™® = E%, n=0;
o net-DL o, (=b)y? ,
f3(n,b) = g‘{ h D Ca Dl (-b) ra— [ln|b|+y+ lne], n<l;

f3(n,b) = - [fn'b|+y+ lne], n=-1L

For the case of Coulomb integrals [10,13] we may drop all Ei and logarithxﬂ terms.
Also, Euler's constant y does not appear. Hence, our Mathematica progam does
not include these terms.
Programming of the Coulomb integral

Mathematica is a high level language that has a remarkably close

correspondence to standard mathematical notation. Thus




"

imax jmax
2 Z(expression) = Sum [expression,{i,imin,imax, J,jmin, jmax}]

i=imin j=jmin

rf?;(x)dx = Integrate[f (x),{x,xmin,xmax}]

xmin
For added flexibility for iteration we may use Do-loops:

Do [Do[equations,{i,imin,imax},{ j,jmin, jmax}”.
It is convenient to use a Which statement that defines a function for various

parameter values:

fln_,x_|: = Which{test 1, function 1lest 2 function 2, True, function 3}

In this case, if test 1 and test 2 are unsatified, function 3 is selected.

After running the program of Table I, for the case of all 1s orbitals with equal
screening constants (G, = & = §; = 84 =1, w = § = 2, typing "coulomb” produces
Roothaan's {13] formula (2p = a = 2a). Typing a = 1/100 and N[coulomb, 20]
produces 0.62499166683332546. Typing N{coulomb,30] produces
0.62499166633325460009943731. Although we have requested 20 digits and 30 digits
we get 17 and 27 digits computed. This is because of cancellation errors caused by
the differencing of nearly equal numbers. Mathematica trys not to produce
worthless numbers.

To conform to Mathematica protocol and ior clarity in typing the following

notation is used:
Ng = nna, Ly = hha, {4 = alpha; Np = nnb, L = hhb, {} = beta; M = mm; A, = aa,
Ap=ab,Ac.=ac,Ag=ad;L=hh, f=h

10




The Gaunt coefficients are produced by explicitly integrating over three Legendre
polynomials.

Results for unequal screening constants

Table II shows the results for several examples of Coulomb integrals. These
examples deal with the more difficult case (for other methods) of &5 + Cp # Cot Ca
(w # zeta). In our programming we are only required to replace gl[j-2h+n-k, a) by
f1{j-2h+n-k, a, w-zeta] and gl1[j+1+m-k, a] by f1{j+1+m-k, a, w-zeta). The first
example produces the 12 digits given by the author [14] using a Taylor series
expansion of a computer algebra formula using pand t (p = (w + 5) al/2, t = (w-Cy
(w +8); p=0.02, t =0.01). Hence, we see that a closed formula can effectively
control the word length of the computer. For the case with a=2, there is
agreement with the seven decimal digits obtained by using expansions of the
alpha-function [9,15] in a FORTRAN implementation for the Coulomb integral.
Finally, we take two extreme examples using 4f, 3d, and 1s orbitals with
separations of a = 0.01 and a = 100. With a = 0.01 we need to request 40 digits in
order to get 21. The example with @ = 100 shows that small values present no
problems.
Conclusion

The examples shown in Table II with wide ranging parameters indicate that
Coulomb integrals can be computed to arbitrary accuracy for all physical systems.
It is important in developing fast alternative methods to have available completely
trustworthy benchmarks for all parameter ranges. This is assured because
Mathematica uses integ "» arithmetic.

Other multicenter molecular integrals are under study using symbolic

programming.
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(* basic integrals *)

gl[n_,a_]:=Which[n>=0,a”(n+l)/(n+1),n<-1,a*(n+l)/(n+l), True, 0];

fl[q_,a_,b_]:=Which[n>=0,(-Exp[—b*a]/b“(n+1)*Sum[n!/(n-t)!*(a*b)“
(n-t), {t,0,n}]+n!/b*(n+1)),
n<-1,
((-b)~(-n-1) *Sum|[ (-Exp [~b*a] * (-n-t-1) !/ (-n~1) !
/ (-b*a)~ (-n-t) + (-n-t-1)!/(-n-1)!/(-n-t)!),
(tl 1,-n—1}]),
True, 0],

£2[n_,a_,b_]:=Which[n>=0,Exp[-a*b]/b" (n+1) *Sum[n!/ (n-t) ! * (b*a) ~ (n-t)
{t,0,n}}, '
n<-1,
-(-b)*~ (-n-1) *Sum[-Exp[-b*a] * (-n-t-1) !/ (-n~-1) !/
(-b*a)*(-n-t), {t,1,~-n-1}],
True, 0];

£3[n_,b_]:=Which[n>=0,n!/b* (n+l1),
n<-1,
Sum[ (-n-t-1) !/ (-n-1)!/(-n-t) ! *(~-b) * (-n-1), {t,1,-n-1}],
True,0]; '

(*datax*)

nna=1;hha=0; alpha=1

nnb=1;hhb=0; beta=1

nnc=1; hhc=0; gamma=1

nnd=1; hhd=0; delta=1

mm=0;

(*consténts*)

aa=Sqrt[(2*alpha)” (2nna+i)/(2nna)!};
ab=Sqrt[ (2*beta)* (2nnb+1)/(2nnb) !];
ac=Sqrt[ (2*gamma) * (2nnc+1)/ (2nnc) !];
ad=Sqrt[ (2*delta)” (2nnd+1)/(2nnd) !]);
w=alpha+tbeta;

zeta=gamma+delta;
kl=aa*ab*Sqrt [ (2hha+l1)* (2hhb+1)]/2;
k2=ac*ad*Sqrt [ (2hhc+1) * (2hhd+1)]/2;
nan=nnc+nnd-1;

coulomb=0;

Table 1. Program using Mathematica for the Coulomb integral.




{*do-loops for h and hh *)
Do[ Do|
n=nna+t+nnb+h;
m=nna+nnb-h-1;
cpolynomial=Sum{a” (nnt+hh+2h-2pp-2vp-2v-k-kp) *
r~ (2pp+2v+2vp+kp) * (-1) * (viqp+p+ppthh) * (-1) “hh*
(2hh-2p) ! * (2h-2pp) ! /4~ (hh+h-p-pp) / ((hh-p) ! *
p!*pp!*q!*gp! *v!*vp!* (hh+mm-2p-q-v) ! ) *
(nn-hh+2p+2q+2qp) !/ ( (h-pp) ! * (h-mm-2pp-qp-vp) ! *
kp!* (nn-hh+2p+2q+2qp-k-kp) !},
{p,0,Floor[ (hh+mm) /21},(q,0,hh+mm-2p},
{v, 0, hh+mm-2p-q}, {pp, 0, Floox [ (h-mm) /2] },
{aqp, 0, h-mm-2pp}, {vp, 0, h-mm-2pp-qp},
{k, 0, nn-hh+2p+2g+2q9p},
{kp. 0, nn-hh+2p+2q+2qp-k} ]
cmatrix=CoefficientList [cpolynomial, (a,r}];
c=cmatrix; :
il=Sum([n!/w” (n+1l) *a*i*zeta” (i+j) *c[[i+1, j+1]]*
((-1)*j*Exp[-zeta*a] *£1[j-2h, a, ~zeta]
+(-1)~i*Exp[zeta*a]*£2[j-2h,a, zeta]
-Exp[-zeta*a] *£3[j-2h, zetal}),
{i,0,nn+hh+h}, {j, 0,nn+h}];
il=Simplify([il];
i2=Sum[n!/ (n-k) ! /w” (k+1) *zeta” (i+j) *a*i*c[[i+1, j+1]1]*
(-(-1)~j*Exp[-zeta*a] *gl[j-2h+n-k, a]
~(-1)~i*Exp[zeta*a] *£2[j~2h+n-k, a, wtzeta]
+Exp[-zeta*a]*£3[j-2h+n-k, wtzeta]),
{i,0,nn+hh+h}, {j, 0,nn+h}, {k,0,n}];
i2=Simplify[i2];
i3=Sum[m!/ (m-k) ! /w* (k+1) *zeta” (i+]j) *a*i*c[[i+1, j+1]]*
((-1)~j*Exp[-zeta*a] *gl[j+1+m-k, a]
+(-1)*i*Exp[zeta*a] *£2[j+1+m-k, a, wizeta]
-Exp[-zeta*a]*£3[j+1+m-k,wtzeta]),
{i, 0,nn+hh+h}, {j, 0,nn+h}, {k,0,m}];
i3=8implify([i3];
i123=i1+i2+i3;
i123=Simplify[il23];
i123=i123/a” (hh+h+1l) /zeta~ (hh+2h+2) /zeta” (nn-1) *k1*k2* (2hh+1) /2%
Integrate[LegendreP [hha, x] *LegendreP [hhb, x] *LegendreP [h, x],
{x,-1,1}]*
Integrate[LegendreP [hhc, x] *LegendreP [hhd, x] *LegendreP [hh, x],
(x, -1,1}1:
coulomb=coulomb+il23;
, {hh, Abs [hhc-hhd], hhc+hhd, 2},
{(h, Abs [hha-hhb], hha+hhb, 2} ]]

Table I (continued)
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Analytic Lowdin Alpha-Function Method For
Two-Center Electron-Repulsion
Integrals Over Slater-Type Orbitals

Herbert W. Jones
Department of Physics
Florida A & M University
Tallahassee, FL 32307

ABSTRACT

Using the Lowdin alpha-function method in which displaced orbitals are ex-
panded in spherical harmonics, two-center, {wo-electron repulsion integrals of the
Coulomb, hybrid, and exchange type are done analytically using Slater-type orbitals.
Computer algebra and integer arithmetic are used to obtain analytic results and
avoid cancellation errors by the generation of rational matrix elements for C, E, and
F matrices that are used to express the a-function. The formulas for the integrals are
kept simple by reversing the order of integration over each part of a split quadrant.
Only two basic integrals are used which are first efficiently evaluated by using look-up

tables and then used repeatedly.




I. INTRODUCTION

The need for basis sets to be constructed of Slater-type orbitals (STOs) when
dealing with current problems of.molecular reaction dynamics and variants of density
functional theory has been voiced by several quantum chemists. And this need
is still felt in the more traditional studies of bound state molecules.! The lack of
analytic procedures have mitigated against the use of STOs in contrast to the almost
universally used Gaussian-type orbitals (GTOs).

This paper deals with two-center two-electron repulsion integrals of the Coulomb,
hybrid, and exchange type. The Lowdin alpha-function method? is used in which
displaced STOs are expanded in spherical harmonics, as was first done by Collidge.?
This method has been augmented by computer algebra and by the use of matrices
with integer elements,? to avoid the ever present danger of computer cancellation
€errors.

In addition to presenting a method for doing all two-center integrals with the
possibility of high speed and accuracy, our method has techniques that can be used
in the solution of three- and four-center integrals.

Much of the early work on two-center integrals was done in elliptical

coordinates.5~8 Later work has used a variety of more general methods.?

II. ALPHA-FUNCTION REPRESENTATIONS
Every displaced STO may be expanded in an infinite series of spherical harmon-
ics; the functional coefficients being designated as a- functions. Assume that a local
coordinate system (R, ©, y) is displaced a distance a along the z-axis. In terms of the

original coordinate system (r,8,¢) we havel®

X = ARN—-I e*(R Yﬂl(@ ‘P)
1

A [(L+1)(L+ M) dx(l+ M) ]2
XZ N1 4x(L = M) ]IM{(2I+1)(I—M)!]

x (~1)M oV EM(ca ¢r) Y M (0, )

(1)

where
N+L+l N+l
NLM (21+ 1)( l— M)
i=0 3=0

c”“”( ) Hij - (¢a)=E (gryr =]

2




"

and

e=Ce[(-1)] &7 — (7], r<a
ij = { (3)

e~CT[(~1) efe — e~¢9y, r>a

The normalization constant A = (2¢)¥*+1/2 [(2N)1]~1/2; N, L, and M are the
quantum numbers of the orbital; { is the screening constant or the orbital exponent.
For small values of the parameters it is necessary to expand the exponentials in
the a-function, and by use of computer algebra a triple sum is reduced to a double sum
with an appropriate E or F matrix with rational elements.!! Using these expansions

our method is stable for arbitrary values of screening constants. Thus,

( N+L+l JMAX ) I :
R Y VR (CE (D i (O
1= 1=
ay(r) = (4)
IMAX N+l : .
e~¢r F(i,5) (a) (¢r) "1, r>a
L =l j=0

In our examples JMAX = IMAX = 36 was sufficient.
A simplified working form of the a-function is obtained by leaving only the r

variable intact, and storing one-dimensional Y)(7) and Z;(j) matrices.

(IMAX .
Yi(7) 7, r<a
i=l
o = (5)
ﬁ N+ 4
e€r Y, Zi(5) - -1 r>a
| 7=0

III. COULOMB INTEGRAL

The definition® of the Coulomb two-center, two-electron repulsion integral is

J = // xXa(1) xp(1) r1a xc(2) x5(2) dvy dvy (6)

We superimpose xo(1) and x}(1) at the origin, and xc(2) and x4(2) at a distance
of a along the z axis (0,0,a). The superimposed orbitals x.(2) and x4(2) may
be merged and expressed as a linear sum of orbitals upon expanding the spherical

harmonics.




The Coulomb integral may be written as

J= [xel® x3(2) v () (™
with the potential given as
V(i) = [ xa0) x6(1) riz don, (®)

The Laplace expansion of ri_zl is

)\
,\+1 Y“(gl)‘P') Y (92:9"2)) (9)

1 &2 47r
L%

where r< is the smaller of 71, 79 and r> is the larger.

Using orthogonality of spherical harmonics, the potential may be determined.
In our developments, in order to avoid having to distinguish between real STOs and
complex STOs, and to facilitate comparisons with the literature, only the case of
orbitals with magnetic quantum M = 0 will be considered. This is a mild restriction
easily removed once the chiefl problem of dealing with radial integrals is worked out.

Thus the potential becomes®

V(r,02) = k1 Y _(La, Ly, \) Vi (r2) Pr(62), (10)

where

Va(r2 {’\H/ dryrie” “""+r/ dry " “’r‘}, (11)

with (La, Ly, A) = [ Pr_(0) Pr,(6) Px(8) sin 6d9, representing the Gaunt coefficients,
andw=Ca+Cb,n—Na+Nb+A,m-—Na+Nb—A—l,kl—AaAb[(2La+1)
x (2Ly + 1)]%/2 Note that YIO(H,cp) =4/ %%,—LPI(O)

We perform the indicated integrations using the formula

n —
znk

|
_ _ wz n!
/e Wizhdr = —e¥ Z (n = k)l FF’ (12)

k=0
4




1 al N
Va(re) = a1l funtl —€ ,;) (n — k) ok+1
13)
m ~k (

+7‘28_wr22 (m k)|

The electron charge density for e]ectron 2 becomes

xe(2) x42) = 22 R enRe S BER g R (g
L

with ks = Ac Ag[(2Le + 1)(2Lg + 1)]2 /2, N = Ne + Ny — 1, ¢ = (e + (y.

Noting the a-function expansion

-1 - 1
RY-1e~¢R2 pp(0,) = N Y af P(6)) (15)

" and taking into account orthogonality (I = A) we finally get

13
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The sums over L and A are limited because of the triangular rule for the Gaunt
coefficients.

The Coulomb integral is reduced to evaluating basic integrals of the type

a o o]
/ e “z"dz, n >0, and / e Y z"dz, n>0,0orn<0 (17)
0 a

once the appropriate a-function representation and V) are substituted. These evalu-
ations are done rapidly using look-up tables and computer memory (see Appendix).

To be explicit:

.[.

(22 +1)

a .
])/ AL gy
0

5

(2L + 1)
Z Z Lc,Ld, L) (La, Ly, M)
L 2

IAX[ !

ae>

/——’%f\
>-




- n! .(._1._) sLy ¢ n—k+j-A+1 _—wr
+ Yy () [ e~V dp
0
k=0

(n — £)! W+
S m! 1 L Pkt A2 -
+Z (m— k)w TR 1)/ g wd’} (18)
N+A
| oo
+ ) [‘T:H z¥ (j)/ P12 e gy
y a

j=0
n
n! _.__—1) L. it n—k+j-2)2 _—~(w+()r
+2 (n — k) whtl 25 (J).[, T e dr

k=0 it
Soml 1 p [P o ki (W)
. ; m-— —(w r
* kzo (m— k) wht1 2 (J)/a r e dr]}

where

N =Ng+Ny—1
n=Na+Nb+A

m=Ng+Ny—X—1 (19)
W=Ca+<b
<=Cc+cd

IV. HYBRID INTEGRAL
All two-center, two-electron repulsion integrals are given by the same formula
but they differ in the location of the orbitals. The hybrid integral” has three orbitals,
xa(1), xp(1) and xc(2), placed at the origin and one orbital x4(2) placed at (0,0,a).
With this being the case the potential for the hybrid integral is identical to that of
the Coulomb integral. The charge density xc(2) x3(2) is somewhat simpler.

kp 1

— N.-1
e ¥ ¢ € o o=l S™ o (r9) P, (82) Pr_(62)  (20)

la

xe(2) x3(2) =
Integrating the density over the potential we get

kiky .
= Nul 1 Z La,Lb, LC)A)ld) /T2d1° VA Q‘Z‘e Ccr .’.Nc+l (21)

d

6




Again, the sum is limited by the triangular rule for Gaunt coefficients, and

upon a-function and V) substitutions the hybrid integral reduces to evaluating basic

integrals. To be explicit:

ki, kg
= 1{, Z Z La,Lb» LC)A)ld)
o
{J

n
+ Z 'n!(—l) yd ) ¢ TNc+n—k+j-z\ e'—(Cc+w)r dr
okt "l \J 0

| a .
n! Ylﬁ (])/ TNC+J—A e-—(cr dr
0

n M>

P (n - k)
f: m! ¢ NAm—ktjtr=1 —(Cctw)

+ ] ( )/ piletm= T eT ST 4y 22
iy (m- k) w Hl 0 =)
Ntlar o[ No+j-A=lg~1 —Cr

+ Z wntl Zld () dr

. 0 a

Symbols are as in the Coulomb case.

V. EXCHANGE INTEGRAL
For the exchange integral® we place x4(1) and xc(2) at the origin, and x3(1) and
X4(2) at (0,0,a). We substitute in the following expressions, invoking orthogonality,

and obtain an infinite series for the exchange integral, K.

Xa(1) = Ag r{e 7! elenr v) (ol,sol)
Ap/2Ly + 1
xp(1) =
¢! Z \/21b+1
Xe(2) = Ac rge ! -<=" Yy (92,902) (23)

xd(2) = (- —eth Z \/——a;, (r2) ¥}) (62, ¢2)

b () Y (61,01)
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by
Loy Z TSy (0y,00) YE (B 2) 2
T12 by 20 +1 1')+1 A
= [l
k1k2
K= (No-1,Nu=1 Z Ky
b d

with

K _Z Z Ley M\ 1 (Lo, A By)

lg

N,+1 b N+1 d re 29
X // dry dre ry? e-(,,rl ay, (7‘1)7‘2 ¢ e—(d‘z a, (7'2) )il
™

12 e have first determined the potential, but this leads

On a previous occasion
to di' cult basic integrals. To avoid this we shall split the (r], r2) quadrant as in
Figur 1, as was done by Lundquist and Léwdin.!3 For arbitrary functions f(r;) and

g(ra) we get a nore symmetry integration scheme. Thus,

00 00 ré oo ] L A
[ arvans re stre) S5 = [ drastra) iy [ dm st 2
0 0 7'> 0 T2 0

o0 1 ry 3 (25)
+/ dry f(r) 5 / dry g(r2) 75
0 ™ 0
Therefore, we may write
Ky = K} + K1, (26)
with
K$=3 D (L la) (Lo, A l)
a
oo T2 (27)
x’/o dry rév e~ Cer2 af (r2) A+I /0 dry rfl“H —Cem1 o (1'1)1'1

)

In a analogous manner K&I can be vritten.
To make our method analytic, the first integral for the “potential is done by

a simple in-house version of computer algebra. Because two representations of the

8




a-function must be used, depending on whether r is less than or greater than a, six
regions of the quadrant must be addressed separately. The method will be sufficiently

illustrated by just considering the first three regions, that is
Kl =k} + K} + K. (28)
Region 1. Here we have r < a. Hence,

1 2 N+l -
U} (re) = 51 /0 dry vy atl g=Cam a?b(rz) r{‘

)
,  IMAX 2 Nt 1aiis (29)
U ()= 5 2 Y U) / dryrp et THIHE gmlen
T =1 0
J=h
Using the formula®
r et k_k
dz 2" e WT = pH1l g1 emwr w'r 0
/0 zz'e T nle ICZ_—()————(n+k+1)! (30)
then,
_¢ JMAX oo (k Na+14j+k
= n! g baT2 a2 00
Ux(rg) = n! 2 E} eI (31)

j=ly k=0

wheren = Ng+ 147+ A
For our examples, we take the largest power of r2 to be 36. The computer

generates and stores the coefficients of ry. Thus,

36
Ul(rg) = e 3 ¢y (A, m) "3, (32)
m

The “potential” for Region 2 is simply‘

C.a 36

U,%("?) ,\+1 Z Cl (’\ m) m+/\+l (33)
T9
U2(ry) = Cgﬂi’ (34)




A

For Region 3 we have

Pt Rkl -1
|'+ —(arl (;,r, b b= /\
g )i oy 4

Using the formula

n—k

n

2 de " e~ YT —wr,y n! e~ we a"”
/,, R O rery Z(n—k)'

k=0
withw=_{a+(pand n=Na+j+ A~ we get

o=t B3 e 2 (‘_,c,’.

+ A+1 Z Z e Zl» k)l an*

and by computer algebra

2N+
e—wr; a C A(A
) = S5 Y. Cap(hm)ry + S34Q)
Ty m=0 L)

where C3p()A,m) and C34(A) are stored arrays of coefficients.

(35)

(37)

(38)

Finally, substituting in the proper a-functions for the second integration we get

Kj = Z Y viG)ci(am) / dr pNet1Hitm = (CG+()r

j=lg m
N+l
Ki=3 z Y Co(0) [ dr emCeACalr Nem14i=ly-
AT Z ld 2 ) re
j=0
Natlg 2N, 4
K3 = id Z Z% (5) C3r(X ® dr e—@HOr Ne=1+4j-lg=2
Ky = i, (7) C3p(A, m) re i
j=0 m=0 a
Ng+la o |
+ >, 2 (J')C'u(/\)/ dr e—(CcHCa)r Ne=14j-l4=)
j=0 a

These integrals are readily identified as composed of our two basic integrals.
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(39)




VI. DISCUSSION

Table I shows the results of evaluating two-center Coulomb, hybrid and exchange
integrals using various combinations of 1s, 2s, and 2p orbitals with arbitrary screening
constants. Our method is completely stable for these permutations, as is to be
expected. The Coulomb and hybrid integrals are assembled from a finite number
of terms as determined by the triangular rule for Gaunt coefficients; the exchange
integrals are approximated to 7 decimal digits by using 12 harmonics. These
calculations were made on a CDC CYBER 850 computer. E and F matrices and look-
up tables for A,(z) and Ey(z) are considered as data which is put into fast memory
at run time. The “set-up” time or “overhead” is in the generation of ¥ and Z one-
dimensional matrices, the production of basic integrals, and Gaunt coeflicients. This
overhead requires about 3 s of Central Processing Unit time (CPU) for the exchange
integrals and about 2 s for the Coulomb and hybrid integrals. Some of the same values
are needed for all of these integrals. In a SCF calculation, the set-up time would only
be needed once for a large number of integrals. The CPU time of the subroutines for
the Coulomb and hybrid integrals was about 0.25 and 0.4 s, respectively. The CPU
time to generate 12 harmonics for the exchange integrals was about 0.7 s.

CONCLUSION

The analytical method outlined here for two-center STO integrals can be imple-
mented with parallel processing or vector processing. And with improved program-
ming it should be possible to significantly reduce computer time. In addition, analytic
and semi-analytic methods for three- and four-center integrals for STOs can use some

of the strategies developed here.
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APPENDIX

The speed of our method depends on the rapid evaluation of the basic integrals.
These basic integrals occur man.y times, so generally speaking, they need only be
evaluated for the highest harmonic and then stored in fast computer memory to be
used repeatedly. The initial evaluations of the basic integrals are done using look-up
tables.

All the basic integrals needed can be written in a simple form after an obvious

change in variable. Thus,?

1
En(z) = / e **z"dz, n>0 (1)
0

and o
An(z) = / e *2"dz, n>0orn<0 (2)
1

These basic integrals are accurately evaluated over a z-grid with Az = 0.1 over a
range sufficient to cover all the electron repulsion integrals to be investigated. These
tables are stored on magnetic tape and put into fast memory at run time.

Silver and Rudenbergf showed how look-up tables may be generated and En(z)
evaluated by interpolation using a Taylor series whose derivatives are given by a shift
upward in n.

We found that this approach can also be used for An(z) even when n is negative.
The simplicity of this procedure is shown by first writing the Ith derivative of Ep(z)
and Ap(z).

d I
= En(2) = (=1) By () o

1
L An(z) = (=1)} Ay (2)

dz!
Then
_ dEn(z) ,  dEn(z) h? d R
En(z+ h) = En(2) + 1, h+ 1.2 3 + 7 Eq(z) T (4)
and
h2 | hl
En(z+ h) = En(z) — Epy1(2)h + En+2(z)-27 +--+ (1) En+l(=)7,' (5)

13




"

Similarly,

) I
An(z+h) = An(2) — Apy1(z) h + An+2(1)% +ooo 4 (1) Appi(z ’;_, (6)

Five terms of the Taylor series give sufficient accuracy. In our examples, n varies
from -22 to 6, but we extend n to 10 so as to use a full Taylor series in every case.

Hence, derivatives need not be stored.
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Semi-Analytical Method for Four-Center Molecular Integrals
over Slater-Type Orbitals

Herbert W. Jones
Physics Department
Florida A&M University
Tallahassee, Florida 32307

Abstract

A strategy for the evaluation of four-center molecular integrals over
Slater-type orbitals is developed using the Lowdin alpha-function approach in
which displaced orbitals are expanded in spherical harmonics. The harmonic
potentials are produced analytically and evaluated along a grid. The harmonic
charge distributions are given an analytical formulation and are evaluated over
the common grid and numerical integrations are performed, for each harmonic. '
Using an example with 1s orbitals, only nine harmonics are needed for good
results.

" Computer algebra and integer arithmetic are used to generate C, E, and F
matrices that are stored as part of the data base. T and X one-dimensional
matrices are introduced as an aid in computation. The employment of look-up
tables, and vector and parallel processing promises to make this method, which
can be generalized, practical.
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Introduction

It is generally agreed [1] that it would be desirable to use Slater-type orbitals
(STOs), because of their more physical nature, in ab initio quantum chemistry
and moleuclar physics as well as the almost universally employed Gaussian-type
orbitals (GTOs). Advances toward this long sought goal have recently been made
[2]), but a comprehensive STO computer code competitive with GTO codes has yet
to be written.

The author has continued to follow the path of the Lowdin alpha-function
method in which displaced orbitals are expanded about a single-center in an
infinite series of spherical harmonics with functional coefficients (Lowdin

a-functions) [3]. This basic method has been augmented by computer algebra and
integer arithmetic to avoid the pitfalls of cancellation errors due to the finite word

length of computers [4]. A modified closed formula [5] for the a-function led to a
C-matrix with integer elements [6,7]. To deal with small parameter 7alues, the

exponentials in the a-function were expanded using computer algebra leading to
rational elements for E and F matrices [8].

The a-function method has been applied to four-center integrals to obtain
formulas [9] and analytical procedures [10). However, there were several difficult
basic integrals that had to be dealt with and one that had to be done numerically.
A pragmatic view seems to demand that we abandon a formula approach or an
all analytic approach for this case and adopt a semi-analytical method in which
the first integral (potential) is done analytically and the second integral (energy) is
done numerically, for each harmonic. (An all numerical method has been done
[11], but its lack of speed confines it to a checking role.)

That a semi-analytical method can lead to good 'accuracy was demonstrated
by McLean [12] and Clementi [13] using elliptical coordinates for an analytic
potential, followed by two numerical integrations for linear molecules. This
procedure was proved effective for the general case by Musso and Magnasco [14],
in which a three-dimensional numerical integration is required. The advantage

of the a-function method to be presented here is that it only requires a
one-dimensional numerical integration for each harmonic used. This, together
with the better systematics of the method, promises to raise it to the level of
practicality.




Our method will be illustrated by an example using 1s-orbitals. The
generalization to higher angular momentum is straightforward [15].

Alpha-Function Representations

A 1s orbital in its coordinate system is given by X ={3¥2 e-{RAAL. Ifit is
displaced a distance b along the z axis it may be expanded in spherical harmonics
or Legendre polynomials in the original coordinate system as

X=¢32 z o.p P, (cos 6), (D
Vet Tl
where
£+ £+l . 1 po1
o, = 21;1 )i:'=o §=0 CpGj) Hy o)L 1 (gr)J-e- (2)
and
e-Cb -1y elr . e-Lr], r<b 3)
Hjj =
e-r (-1 ebb - e'Cb], r>b. 4)

~ The E matrix results when elr and e-Cr are expanded and the triple sum is

reduced to a double sum by computer algebra. The F matrix results when eb and

eCb are expanded. In our example, a 36 term expansion was found to be
sufficient.

Thus
L1 36 : :
etb T I E,Gj) b+l i, r<b )
i=0 j=t
Gp =
4+l 36 ] .
e zj=0 )i:=£ FpGj) Gb)1-2+1 ni-&1, r>b (6)




A further simplification results by just keeping r intact,

441

Y,()= § T E,Gj (pit-1elh )
i=0
. 36 .
Z,G)=¢rt1 T F,aGj i, ®)
i=t
leading to
36 _
L Yo, r<b ©
j:
o, =
241 ,
elr ¥ Z, G ri-2-1, r>b o)
Jj=0

When it is necessary to evaluate the a-function over a grid for large values of

b it is expedient to introduce two more one-dimensional matrices immediately
derived from the general C matrix:

N+L+L

T, =@L+ DEMY et git-1 T CpM G @)i-L-&1 r<b
2(L+M) ! i=0 an
NLL
Xe() =22+ (e-M)} ¢i-&1 T CMGH[-1)-eth] Cb)i-L-L-1, r>b.
2(L+M) ! i=0 12)
Hence,
N+L
L T,GI1) elr. elrjri-L-1, r<b (13)
NLM J0
al =
N+L
etr T X,@ri-t-1, r>b (14)
j=0




—  These various representation®of the a-function considerably simplify our

programming and also speed up its execution.
Four-Center Integrals for 1s Orbitals

The formalism for the radial part of any STO is essentially the same,
therefore we may sufficiently illuminate our method by use of an example using
1s orbitals, given by Trivedi and Steinborn [16]. In this case, 1s orbitals with

screening constants of { = 1 are located as follows:

X a (1) at (0,0,0), xp (1) at (0,0,b), x (2) at (c,0,0), and x 4(2) at (0,d,0), with b =
¢ =d = 1.0. The method to be shown is valid for arbitrary b, ¢, and d, as well as {,,
Cb» §c» and (4. Because of our use of the E matrix expansion, our methods are
stable for nearly equal or equal values of {, and (},. Since our method is partly

numerical, no problems can originate with the relative values of {, and (4.

Our task is to evaluate the integral

I=[%, W% xpM et x @ gD dvydv, (15)
in which each orbital is at one of four separate locations. We orient the molecule
so that X , (1) is at the origin and X}, (1) is along the z axis at a distance of b from
the origin. Using potential, we have

I1=]V x, @ 23 dv, (16)
with

Virg) = [X g (D% ) £ 1 dv,. an

Substituting in the Laplace expansion for Ur;s, the expansion for X {,, and

invoking orthogonality we obtain [10]




V(ry,0,) = IZ". V, (r2) PL (cos 0,), (18)
with

)
V() = 4 Ga{p2 [dr 2 el 1y —j;— oy (ry) (19)

where r, is the larger of r; andry, and r. is the smaller.

Explicitly,
V)= 4G | — L 3 pG [Farrtuer ol
o) = —_—_— j ritits oo I
S~ ul BEP TR "
36 b
> Yb G) | drrit1-2 &G r
j=t I
251 -
+ Iy §=0Z2 G I drri2t el +8)r}, ry<b (20)
36
Velry) = 4 (5 G2 Z Y J dr r£+i+2 e r
o4l rf"l Ft
¥ 25| T
1 b (i 2 ji+1 o€ +C)
+rl+1 §=o Zp O Jy drrivt el +Q)r
z "
. M
+1r, T 2} Q)I dr ri2t e +8)r t | r;>b. (21)
j=0 T2




We will evaluate each of the harmonic potentials V, along a hundred point
grid with a spacing of 0.1 units. This is accomplished, after an obvious change of
variables, by use of the following basic formulas [17,18]

1 o
| o X° eZx dx = nl eZ X zK . (22)
KO (p+k+1)!
rCuigue
—b I: xn eZx dx = eZ&’ s ! ) 1 . (23)
k=0 (nk)! zm—l
® n-1
|7 elx dx = eZ I (n-k-1! (-z¢! - (-z»! Ei(-z) (24)
1 "o k=1 (n-1)! (o-1)!

Next, we must numerically integrate the potential over the charge density.
Using spherical coordinates, take the center of X, to be at (c, I, ) and X4 to be at
(d, A, 8). Then[9]

o m
X. =23X X @dmY2 o Y Ty YL (8, ¢)" (25)
c w0 uem g %n Y) Yo (6y 99
and
o n *
g =2 X T  @dm2 ol YV@QAH)TYY (6,9) (26

=0 v==0 2n+1
Substituting in V, X, and X3y into the equation for I and invoking

orthogonality, we get

I1=X1I, @7

with

I,= [r2dr v, R, (28)
and




"

pE)y=L I 2a 205 @n32 Tz wypt
t TR T 20 (gpaq)% v

LT

XY (4,8 <muple,0lnv> (29)

The angular brackets represent the integration of the product of three
spherical harmonics [19].
In our example, the values of £ , m, and n are taken from 0 to 8 and we have

I = A=28=900 and y = 00. The numerical integrations are done by Simpson's
Rule, obtaining I = 0.345538, which agrees with the four digits supplied by Trivedi

and Steinborn. As an internal check of our method, weset '= A = § = y = 09,
and obtain I = 0.50703 which compares well with the exact value for the hybrid
integral I}, = 0.50704 [20]. Table I lists the harmonics and their sums for our two
runs. The Central Processing Unit time on a Cyber 850 Computer was 11.4 8 in
each case. The basic integrals were pre-calculated, stored, and reused. The
matrices C, E, and F are considered as part of the data base.

Conclusion

A feasible strategy has been formulated to evaluate the general four-center
molecular integral using Slater-type orbitals. Both objectives of sufficient
accuracy and speed appear within reach. Working within the framework of the

Lowdin a-function method, careful elimination of computer cancellation errors by
use of computer algebra has proven decisive. The rapid and accurate
implementation of programmes is assured by pre-calculated exact matrix
elements and look-up tables as well as computer vector and parallel processing.
Improvements in algorithms and numerical integrations are under development.
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Exchange integral Hydrid integral
Orbital locations Orbital locations
Harmonic F=A4=298=900y=0Q0 F=A=vy=§=00
0 3465644 4573980
1 .0000000 0444000
2 -.0010363 0045491
3 .0000000 0005674
4 .0000108 .0000911
5 .0000000 .0000188
6 -.0000004 .0000048
7 .0000000 .0000014
8 .0000000 0000005
Sum 3456385 5070311

Table I. Four 1s orbitals are located by polar coordinates as indicated:
Xa (1) at (0,0,0), xp (D) at (1.0,0,0,), x 2 at (1.0,T,v), and
X 4(2) at (1.0, A, 3). Screening constants are equal to 1.0. The
harmonics and their sums are given for the two cases.
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Multicenter Molecular Integrals Using Harmonic
Expansions of Slater-Type Orbitals and
Numerical Integrations

HERBERT W, JONES and BABAK ETEMADI
Department of Physics, Florida A&Af University. Tallahassee, Florida 32107

Abstract

Formula and analytic methods have previously been explored for the evaluation of multicenter molecular
integrals over Slater-type arbitals by employing the Ldwdin a-function approach. These procedures are
greatly simplified by numerical integrations. The programming of this numerical approach is straight-
forward and hence can serve as a check on {uture developments.

Introduction

As is well known {1], the general problem of the evaluation of multicenter mo-
lecular integrals using Slater-type orbitals (STOs) in basis sets is still not competitive
with the use of Gaussian-type orbitals (GTOs) in quantum chemistry. However,
investigators [ 2,3] continue to strive to bring this about because of their belief in
the inherent superiorily of STO basis sets.

By use of the Léwdin alpha-function method [4], a formula that involves an
assembly of a triply infinite sum of formulae has been produced for the four-center
(the most centers needed ) multicenter integral using 1s orbitals and equal screening
constants {5). An analytical version of this formula has been produced [3] that is
much easier to program because all of the parameters are “ground up,” except the
radial variable, to produce a simplified a-function. This paper shows how the mul-
ticenter molecular integral problem can be further simplified by use of numerical
integration that leads to very transparent programming and reduced computer time.
However, here, we only achieve about five-decimal digit accuracy. But, of course,
accuracy and time is dependent on the numerical integration scheme. Nevertheless,
for the efficient writing of new programs, a first run using simplified and reasonabty
fast programs is greatly desired; certainly the method 1o be presented meets this
criteria,

Expansion of Displaced Orbitals

To illustrate our procedure, it is suflicient 1o use all Is orbitals, with screening
constants equal to | ({=1).

We shifl an orbital X = (x)~"/?¢~" from the origin 1o a distance a along the z-
axis. Now, with respect to the origin we have [6]

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 24, 405-410 (1990)
© 1990 John Wiley & Sons, Inc. CCC 0020-7608/90/010405-06304.00
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x =(x)""? 3 ayP((cos V), (1)
=0
where
+ I+ 141
a = LRl > > Cli, jyHya ™' (2)
2 i=0 jr0
and
e [(—1)e —e™'], r<a
l 4 = ~-r i,ya -a (3)
e’'[(—1)e’—-e7"], r>a

For accurate evaluation of the a-function at small radial distances, we must expand
exp(r) and exp(—r) for r < a and thereby obtain a power series representation
with coefficients given by an £ matrix [7]. For the case of r > a, an expansion of
exp(a) and exp(—a) leads to an F matrix (for s-orbitals the F matrix is the transpose
of the E matrix).

Thus

—a 141 IMAX
i > 2 Efti, pa'r’, r<a
a0 jet

~r 1 1+1
e’ MAX

p > 2 Fi, pa'r!, r>a

i=l j=0

4)

o =

A further simplification results by just keeping r intact. Defining

[
Yi(j) = % El(i, jla’'e e (5)

-0

and

IMAX

Z()= % Ffi, ja’ (6)

i=!

we may finally write

IMAX
> Y, r<a
a = { l.lhl (7)
e Y Z( e, r>a
J0

In the case a = 2, we get convergence over the grid from 0 to 2 (r < a), and
from 2'to 10 (r > a). The grid values of a; are accurate to 12 decimal digits by
taking JIMAX and IMAX to be 36. We choose a grid of 0.1 throughout.
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Examples of Various Multicenter Molecular Integrals
Overlap

The simplest multicenter integral is the overlap

S= f Xa{ 1) Xs( 1) dvy (8)
Locating X, at the origin and X, at (0,0,a), we have
X, =(x)""Y2e " (9)
and
Xp = (x)""2 3 ayPi(cos 9) (10)
!

Using orthogonality of Legendre polynomials,
S=4fdrrze"a, (11)

The exact formula in this case is
S=e (1 +a+al3) (12)

Fora=2, 8= 0.58645289.
Using a 100 point grid and Simpson’s rule for numerical intcgration, we get

10
S = 4]; drrie”"a; = 0.58645185 (13)

The grid spacing, 0.1, and grid length, 10, have been chosen to achieve five-decimal
digit accuracy, thereby including 99.9998% of the charge with the requisite accuracy.
The overlap is done in order to choose a proper grid. This task was accomplished
with 0.65 s of central processing unit (CPU) time, on a CDC Cyber 850 computer.

Three-Cente. Nuclear-Altraction Inlegral (Llecirostatic Potential)

These two integrals (three-center nuclear atlraction and electrostatic potential)
differ by only a constant. Working with the potential, we seek its value at the point
(ry, 9;) due to a charge density given as the product of two orbitals, X, located at
the origin and X, at (0,0,a):

Vira, 09 = [ doox(x(1)/r (14)
We substitute the Laplace expansion for 1/ry,,
I © X r
—=4r T T (A + D)7 S5 YV, @)Y (D, ¢2) (15)
N A=Q0 me=-A rs

. ey -

h )

w Yy
J T e

oy

AR, paae S
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where r, is the larger of ) and r, and r. is the smaller. Recognizing the orthogonality
of the spherical harmonics, we get

V{r, 9;) = 2 Vi(n)P(cos 9,) (16)
t
with
4 @ !
V:(rz)=m~lL dryrie™ ',,. a/(ry) (17)

Assuming r; = 0.5 and ¥, = 0 with a = 2, we have, dropping unnecessary subscripts,

1 0.3 R 4 [ 10 rze-r
Vi(r) = AT b drrie”ray(r) + —— 21+ N dr-’T,;‘—a,(r) (18)
Hence,
s
V(0.5,0) = 2 ¥, = 0.45038 9

-0

This value is obtained by using six harmonics and numerical integration. This is
to be compared with the exact value [8] of 0.44996.
The cpU time used was 0,69 s.

Exchange Integral

For the two-ceunter exchange integral we use the same orbitals and their locations
as before. But now the potential is needed at 100 points along the r; grid that is
similar to the r, grid. Hence,

Viry) = 2“_ I r"'f drrie”"rla/r) +2I+ ‘f drrie=r'™a(r) (20)

This requires computation at 10,000 grid points formed by a two-dimensional (r,,
ry) lattice. This was done using 4.62 s of cru time.
The exchange integral is given by

K= ff Xa( )X (1)r ¥x.(1)x4(1) dv, dvy (21)

where X, and X, coincide as well as X, and X,.
The exchange integral is equivalent to

K= f v X(2) XA 2DV (12, 92) (22)

Using the a-function expansion of X, and X, and the Laplace expansion of 1/r),
together with the orthogonal properties of spherical harmonics, one obtains [9]

K=2 K (23)

e ————

-~ o
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with
2
K = 2l+ n fdrr Vie"'ay (24)

Using five harmonics and numerical integration, we get K = 0.184190, which re-
quired 4.45 s of CPU time. The exact value obtained by using the closed formula
of Sugiura [10] is K = 0.184156.

Four-Center Integral

We finally solve a four-center two-electron-repulsion problem having three Is
orbitals located on a sphere of radius 1, and one at the origin [11].

This problem has been done by formula [ 5] and also analytically [9]. The orbital
Xa( 1) is located at the origin and X,(1) at a distance of | along the z-axis. The
orbitals are used to produce the potential as shown, Orbitals X.(2) and X4(2) are
ofl-axis with center locations given by spherical coordinates (a,y,I’) and (a,8,A),
respectively, with a = 1. Using the Legendre addition theorem, the expansions take

the form
x-23 T 800 v, en® (25)
=0 po—m 2m + l m{1,Y "l( 1 Ps
and
o 1”2
=23 3 (4a) - a8 Vi3, ¢2) 26)
n=0 p=—-n

Making the proper substitution, we may write the resulting integral as the sum of,
the product of radial functions I, multiplied by angular functions A;,,,. Thus

I= Z z z IlmnAImn (27)
I m n
where
Iimn = fdr erlaman (28)
and
, : (4”)311

Atn = > Z Yo, Y)*Y(A8)(m, ull, Oln, ») (29)

U+H <

where the angular brackets represent Gaunt coeflicients. (I", v) and (4, 8) are the
angular locations of the center of the orbitals. The evaluation of I;,,, is quite similar
to that of K, except that the formula is not closed. Reasonable answers are obtained
by taking / from 0 to 4 and m and n from 0 to 6 withm + n < 6.
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To determine the accuracy of this integral, weset y =I'=8= A =0and get a
hybrid integral whose value is known ({ = 0.507045). The numerical result here
is 7 = 0.506284.

Conclusion

It has been demonstrated that the multicenter integral problem is readily pro-
grammed and evaluated by numerical methods. A different numerical integration
algorithin might conceivably fead 10 acceptable accuracy and increased speed. In
any event, the ease in implementation of the herein described method, at least as
far as Is orbitals are concerned, ensures that it can serve as a first check on any
new developments in molecular integrals.
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Analytical method for two- and three-center molecular integrals over Slater-type
s-orbitals using expansions in spherical harmonics

Herbert W. Jones
Department of Physics
Florida A&M University
Tallahassee, FL. 32307

ABSTRACT

Using the Lowdin alpha-function method in which displaced orbitals are
expanded in spherical harmonics, two-center and three-center electron-repulsion
integrals of the exchange and Coulomb type over Slater-type s-orbitals are
evaluated. By means of computer algebra, analytical procedures are
implemented and no numerical integration is needed. The formulas for the
integrals are kept simple by reversing the order of integration over each part of a
split quadrant. Orbitals of the 1s and 2s type are used to illustrate the method,

which can be generalized.




H

I. Introduction

Almost all recent calculations in ab initio molecular physics and
quantum chemistry are done using basis sets made up of Gaussian-type orbitals
(GTOs), characterized by exp(-R2), because of the ease of computation of their
multicenter molecular integrals. It is recognized! that basis sets composed of
Slater-type orbitals (STOs), characterized by exp(-R), are more representative of
physical orbitals, however, their molecular integrals have the reputation of being
"intractable”. Yet, progress continues to be made toward the solution of the STO
integral problem.2

In this paper, the method of the Lowdin alpha-function3 is used again4 in
which displaced orbitals are expanded about a common origin or single-center in
terms of spherical harmonics with functional coefficients (alpha-functions). This

time, the analytic method is simplified by defining a "potential” in various regions
of a split (r{,rg) quadrant. Now these "potentials” do not cont»in the Ei function,

but only powers and exponentials. Hence, the second integration for energy
(Coulomb or exchange) can always be done analytically and only three types of
integration formulas are needed. As an illustration of this method, two- and

three-center exchange and Coulomb-type integrals are done for 1s and 2s orbitals.

In the Lowdin a-function method all terms separate into radial and angular
parts; our C, E, and F matrices for higher quantum numbers only differ in their
numerical elements. Hence, s-orbitals can serve as an adequate prototype for the
general two- and three-center problem.

A simple furm of computer algebra is used in our approach so that the
radial variable "r" remains identifiable, thereby making the method analytic.

Integer arithmetic is used to generate our C, E, and F matrices so as to avoid

cancellation errors (these matrices are considered as input data).




II. Alpha-Function Representations

Every displaced STO may be expanded in an infinite series of spherical
harmonics; the functional coefficients being designed as a-functions. For a
s-orbital in its own coordinate system (R,0,9), x = A RN-1 e-(R Y(8,9), where the
normalization constant A = (2{)N+1 [2N)!]-V2, { is the screening constant or orbital
exponent,and the spherical harmonic Y(©,¢) equals (4x)-V2, If the orbital is

placed at a distance of e along the z-axis of a (r,0,9) coordinate system its

representation in this coordinate system is®

L= ALY (22412 o (r) YO (8,9)
=0 L

where

ML N+L : :
apr)= 2&+1 X I C, () Hjj Gayt-1 gry-£-1
2 i=0 j=0
and
e-Ga [(-1) elr -e‘CT] , r<a
Hj; =

e-Gr [(-1)i efa -e'Ca], r>a. (1)

If the exponentials in the a-function are expanded, we get a representation in E

and F matrices:5

N+ JMAX . .
et@ I I  E,Gj Cat-1@r), r<a
( i=0 j=t

IMAX N+£ . .
elr I I Fplj) Gar@iL-l  ra 2)
i=£ j=0




l

A final simplification results by substituting in the numerical values of the

parameters to obtain Y,(j) and Z,(j), which are coefficients of the polynomials in r.

JMAX .
> Yz(j) r) , r<a
J=t
az(r) =
N+£ .
et L Z,G) el re 3)
j=0

In this paper we have used 36 for IMAX and JMAX.

II1I. Three-Center Exchange Integral

The two-electron repulsion integral is defined as

K=[[dvydvy %, (1) Xu(D) rl X(2) %42 4)

The locations of the orbitals for the three-center exchange integral is given in

Figure 1. We let a be the distance to X p(1) and b be the distance to X3(2); 0is the

angle between a and b. In their local coordinate systems the orbitals are given as

Xq (1) = Aq e 9Ty YO (6y, 1) Xp(1) = Ap e'BR; Y0 (61, 1)

X 2)= AceVy YO (82, ¢g) X4(2) = Ag e3By YO (89, ¢9). (5)

We write the expansion of X,(1):

(1) =Ap & (2e+D)V2 od (1) YO (84, 9y (6)
b 0 4 g, 71
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By use of the Legendre addition theorem we have?

w &
Xq(2) = AqZ I 4myz (2t +1)1 a% (2) qu(el, ¢7) Yl;* (89, 99) (7)

L0 w= -4y d d d
Now,
Urjp=4n T I eyl T Ym* (8, 07) Y (85, 9) ®)
0 m=- ol g LT Tp 2 w2

>
where r. is the lesser of r{ and ro, and r,, is the greater. We will use

Y% 6,9) = (22+1)/4m)V2 P, (cos 0). 9

Substituting these expressions into the formula for the exchange integral and

using the orthogonal properties of spherical harmonics, we get

K=% KI_ P, (cos 6) (10)

where

N& - Ne ™ ‘
Kp= A, ffdr;dr, 12 12 e'0T ey o (1) of (2) rl/e noQay

and

Ap = AgApAcAg (22 + 12 (12)
gt ot




To simplify the integrations necessary for K ¢ we divide the (r1, r2) quadrant

into nine regions as shown in Figure 2.

Now we may write8

I I1
K( = Kt + KI; J13)
1 ‘ © r
Ke = A, Io r;“c*“ldrz e 1T, adt(2)-—£il——-——foz rlNa*‘ldrl e—ar, az(l)rf,
r
2 (14)
I1
K, = A, [T N +1dr eo0r ob(1)__1 Irl N +1dr, e, ad (2)
4 AR la 1 1 ? T 0 ZC 2 1 2 2-
r

1

(15)

We take the "potential” in the various regions to be

1 1 r
V, = ['2 dr,pw L
¢ £+1 0 1 4 1
I
2 1 a L
=_ - (1)
Vt 7+l IO dl'l % ry
T
2
3
VL ————rU’l J-: drl% ry
2




; v
i L
5 3
Ve = Yy
6 r
v, = —21 [7Y dryP@ ry
l,1'.+1
i
7 6
Ve = Vg
8 b
1 £
V = —_- (2)
£ s Io drz pl 2
]
9 T
V=1 [ drpry
£ L+ b L
1
where
(1) = pN_+1 g-Qr b
F} rig*tl e 0T o z(1)
and
2) = N +1 a- d
Pl e e VT, a£(2). (16)

We take note of the various expressions for the a-function in the various regions:

JMAX
aZ(l) =X

: Y'E(i) I r <a an
Jj=




N
of (1) =ePr, = 2ZbG d-&-1 rn>a
£ 1 7 1 ’ 1
J=0

JMAX
ad(2) =  Yi(@ra , rp<b
L =t L

Ng*E

a‘;(2) = e-0r, z Zg (@ rzq'f—'l , Tra>bh.

j=0

We write
1 5 i
K, = £ K
L T 2
and
11 9 i
KZ = Z K£
i=6
with
- a @)
K,= A, Jo dr, p? V,
3 b
_ 2
Kg= Ap g dr2p? V,
> ® 2) >
Ke= Ag [y drp p® v,

o RN

RNo

(18)

(19)

(20)

(21)

(22)




'l

7 b b 7 8 « n 8
£= ¥4 Ia 1 p£ ¥4 L = 4 Ib drl pL

9 o " 9

K£= AL Ib dr, pz VZ. (23)

Three basic formulas for integrals are needed (the first one given by

Silverstone?):

K

1t emem dx = T 2 24)
0 o k! (ntkel)
J'm xn e'z"dx=e"§21 n! 1 , n20 (25)
1 k=0 (n-k)! L1

o 1
J 1 eX dx =eZ2 X (n-k-1) (-2k1 - (-z)n'l Ei(-z), n>o. (26)

X0 k=1 (p-1)! (n-1)!

Taking note of the different expressions for the a-function in the various
regions and making the appropriate change of variable in the basic integrals, we

get analytic expressions for the potentials:

1 JMAX .
Vp= £ X (-o)k Y5 () NgHitk+l
=t k=0

k! (ntktl)




"

2 JMAX @ .
V=1 I3 Cak  YBG) a Ny HrjHe2
rf+l =t k=0  ki(n+k+1)

2 2
VL = Py

£+1

Ty
with n = Na +£+‘j+1.
3 +
Ve =_1“l§’ Z5G) [2dr, m e(@+P)r,
&1 =0 7 a !
T2
3R N+t
V, =_ ela+Pre >;=O 1§=o Z5@ __n ro-k
J -

&+1 (0-k)! aepyktl
3A Nyt
Ve= —1 __ » = Z5G) _ ank  e(a+P)a

+1 =0 k=0 ]

rzl J (ok)! (mB)kH'
3 3R 3A , NNt 3R 3A
Ve= Vp + V, = el@+Pr, I Prm ™ + P,
rtl £+l
2 2

withn = Ny +j.

10




"

(-y)k Y% ) r}“ c+q+k+1
k! (ntk+l)

6 JMAX 6
V,= e, % m
e” ¢ mNH+1  m g
7 6
V =V
£ £
8 JMAX ™
v=—1 % 3 (Pk et Yi(g) bN a2
rfﬂ =¢ k=0 k! (o+k+l) \
r
8 8 ‘
Vl = P ¢
i
1

with n= N, +4£+q+1.

- 1 d T N +q oY+,
Vz T§=O Zz(q) Ib dry rictd e 2
r
1

R . Nd+£

n
Ve= - ey¥r, §z 3 Z$ (@ n! r n-k
T 10 k0 (nk)! e
it St
9B NgtE a1
Ve=—1 = ) zg (Q) n! bk e(Y+3) b
0 k=0
o @R gkl

11




"

=
9 £+2 <R 9B
Ve= efH)r 3 Pon ™ + P, @7)
T, om0
rfl 41

withn = N+ q
1 .2 3R 3A 6
The coefficients Pm , Pl;’ le, PL , sz , PL , sz , and PL

are generated by computer and stored.

Now, we put together the final integrals:

1 1 4

= d - N + q+m+1
KC- Alé'in(q) le'[o dr e rN+gq
2 2 b
K, = Alél Y{ (@ P, Ia dr e rN+q-¢
3 3R 3A
KL = Kz + K‘a )

Y\ O'Q
i<

3R S 3R (atp

= d {a+p+y)r N + q+m-¢
K, Az);. m};(aq) Py Ia dr e Y)r rN+q
3A

d n jb ™ rN+qg-2
K£= Azfi Yl(q) PZ A dr e rNe




4 2
K, = Azg Z}(q) P, J, dr e(r+dr pN-1+q-2t

SR 54
5R 3R
K, = A!_é‘, z Z3 @ Py [ dr e(a+B+y+dr N l+qim-22
X T (¢ 8) 1+ q- 24
= - N - -
K, = Atg Z‘;(q) PL Jb dr e1+0) rN.-l+q
: S (@ a N +j+m+l
- 3 - r
K, = ALJZHZ;,Y;(J) szjo dr e rN, +]
; : (P @+B)r N +j I
K = A 2X2Z0(G P dr e @+P)r (N +j+m -
2 S m e O P e dr a

) 4

9 R 9B

K, = K, + K,

9R 9R -
= b -(a+B+ v+ 6)r ,N_-1+j+m-2¢

K, AzgﬁZLQ)Pmebdre B+y+dr N -1+]j

9B 3B 28)
= b (i = (ot N_ -1+j-2¢

K, = Al)j} Zp G P, [, dr e{e+Pr pN -1+j

In the summations, the maximum power of r used was 36.

As an example of the three-center exchange integral we take the case of @ =

V2, b=206 = 45%, and a=B=y=8= 1.2. Table I shows the results of our

13
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computations. The last columns give the sum of the preceding columns. We

multiply each last column value by P (cos 6) and add. Hence, K =.1099365 and K
= 0845324, and therefore K = .1944689. (The Central Processing Unit time was 93 s
on a Cyber 760). This value agrees with the six figures given by Trivedi and
Steinbornl9, and Graovac, et al.1l

We may readily specify the three-center exchange integral to the two-center

exchange integral. As an example we set a =b =2, 8 = 09, and keep all screening
constants the same. Because of symmetry considerations we may write K = 2K,
and the problem reduces to integration over three regions. The value computed
was K =.1433972 (17 s CPU time). This compares well with the exact value of K =
.1433970 obtained by use of Sugiura's formula.12 This kind of comparison is an
excellent check on our method.

Let us consider two additional examples. For a two-center exchange
integral take X, (1) to be a 2s orbital with X, (1), X, (2), and X4(2) to be 1s orbitals,

with all screening constants equal to 1.0. Let the displacement distance be a = 1.0.

Then we get K = 0.35678082, which agrees with the seven digits given by Maslen

and Trefry.13 If we interchange X, (1) and X, (1), we get the same answer, which

demonstrates the consistency of our method. In the second example, we study a
three-center exchange integral with all 2s orbitals,a =Vv2, b=2.0, 8 =600, a =0.5,

f=1.0,y= 1.2, and § = 1.5. We find that K = 0.13960560.

IV. Three-Center Coulomb Integral
Coulomb integrals are simpler to formulate than the corresponding
exchange integrals. This is because we may merge the two orbitals of the same

electron and place it at the origin. Then, the potential due to these orbitals can be

14




immediately written as an analytical expression.14.15

For the three-center Coulomb integral we use the same geometry as before
(Fig. 1), but now we interchange the positions of orbitals X, (1) and X.(2). In this

case, we may consider the product of the two orbitals at the origin as a single

charge distribution. Thus

Xa (D) %y (1) = A, A, TN+ Np-2 e-(a+P)r, Y0 (8,,0,)/ (4m)12 (29)

The true potential is

Virg) = [dvy X, (1) %, (1) /1 (30)

The integration is easily carried out getting

Vi = 8@p? |_1_ -ela+Pr, ( et I @31)

(cr+B)3/2 r, 2 r,
We write each term as a separate potential
1
Vg = _L (32)
T

2

V() = e-(a+ [3)1'2 (33)
T,

3

Virg = - (a+B) e-(@+fr, (34)

2

15




The definition of the Coulomb integral is

J = I dvydvy X7 %, (D 1l X2 %4 (). 35)

In our case

J = Ide V(l‘z) xc (2) Xd (2) (36)

Substituting in the appropriate a-functions and taking orthogonality into

account we get

Jd = I A£ JL Pz (cos9)

with

Jp = fr2dv V(r) az (r) ag (r). (37)

This time,

- 32
Az = 32(@&1}5) 1
(a+B) 20+1

Now, we simply write

2 3

1
JL=Ir2dra2ad£[V+V+V} (38)

16




Taking into account the range of validity of each a-function, we write

I II III
J£= JP_+ J£+ J!,
with
1 a i 1 2 3
_ 2
Jz_Ior drazaz{V+V+V]
II b 1 2 3
J£=J r2dr o od (V+V +V)
a £ 2
III w 1 2 3
_ d
JL- fbrzdr az az[V+V+V} 39)

i
Furthermore, let each region I, II, and III define three J; values corresponding

to the three potentials.

9 i
Thus, finally J ¢ = z J K (40)
i=1

Table II tabulates J, for 13 harmonics. The last column corresponds to J 2

Multiplying the last column by P ¢ (cosB) and adding we get J = .343848 (CPU time

is 164 s).

We may check our procedures by setting @ =b = 2 and 6 = 09. This gives the
result J = .454950. Closed formulas are availablel® for two-center Coulomb

integrals. For this example, the formula gives J = .455049.

17




V. Two-Center Coulomb Integral
The two-center coulomb integral forms an exceptionally simple case with

our method. With s-orbitals only one harmonic is needed, namely, £€=0. This

comes about if we merge orbitals X (2) and X, (2). Thus,

X (2) X4 (2) = (@dny¥2 A Ay e(7+OR, Y0(0,0) 41)

We consider this charge density as essentially a 1s orbital with a screening

constant of Y+ 8. We write its a-function as agD . Hence,

X (2) X3 (2) = YOA, Ay T (2 &+ 112 a%D (2) Y9 (68,,9,) (42)

Substituting this expression into the formula for the Coulomb integral and

invoking orthogonality, only the £ = 0 term survives. Thus we get

JMAX ) ™ .
J = AZ YgD(j)Jz drei*2 V4 AT ZCDG)[7 drri+) Vely+dr
J=0 J=0
with
A, = 32(@Byd)?/(a+ B (43)

The computed value is J = .455049, the same as the formula value.

18




VL Conclusion

All expansion methods necessarily have their limitations; in our case the
number of harmonics required depend upon the magnitude of the product of each
orbital screening constant and the displacement of the orbital from the origin.17
However, when one relates this basic consideration to realistic physical problems,
the constraint is not as severe as might be supposed. In most of our examples, we
achieved excellent results with use of only 13 harmonics. We note that exchange
integrals become very small and may be discarded when displacement distances
or screening constants become large; also, when the charge overlap between
orbitals is essentially zero its Coulomb interaction may be calculated on the basis
of multipoles.18

The efficiency of this generalizable method for the evaluation of STO
multicenter molecular integrals may be significantly improved by better

programming, the use of look-up tables, and vector processing.
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"

X4 (2)
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Figure 1. Location of orbitals Xq (1), Xp(2), X.(2), and X3(2) for the
determination of the three-center exchange integrals.
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