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SUMMARY

This final report documents a 3-D computational and experimental investigation into
the mechanics of toughening a brittle matrix by incorporating long brittle fibers.

Computationally, small scale failure mechanisms ahead of a crack are explicitly modeled
and merged with a continuum representation of the far field outside the process zone.

Particular attention is given to the interfacial decohesion and frictional slipping near the tip

of a matrix crack which is impinging upon an inclusion. The surface integral and finite
element (SIFEH) method, which employs the principle of superposition to combine the

best features of two powerful numerical techniques, provides an extremely flexible and

efficient computational platform for modeling linear elastic fractures near material
inhomogeneities. Applications to general 3-D fracture growth in multimaterial media

demonstrate the capabilities of the computational technique and are also described. The
computational simulation is being guided by laboratory experiments. Crack growth
observations made on a model (micro-) structure comprising a glass rod embedded in a
cement matrix show the toughening mechanisms of crack pinning and crack bridging in
operation. In a second experiment, interfacial slip evolution was modeled experimentally
for planar bimaterial interfaces. This combined experimental and numerical program is
providing insight into optimal combinations of the key parameters (e.g. residual stresses at
interface, friction coefficient, strength of fibers) to maximize toughness.

Efforts to further improve the SIFEH method for this application are continuing
with the support of a contract extension. A comprehensive research report will be provided
at the completion of this investigation.



INTRODUCTION

The key episode in the fracture of a ceramic matrix/ceramic fiber composite is the

interaction that takes place between an advancing crack front and the fiber-matrix interface

of individual fibers. A "strong" interface will transmit high crack tip stresses inducing

premature fracture of the fibers, while a "weak" interface will blunt the crack tip and allow

the fracture to proceed past intact fibers. The 2-D analysis by He and Hutchinson gives

the design "rule of thumb" that the fracture toughness of the interface should be less than

one-quarter of the toughness of the fiber to promote favorable toughening mechanisms

such as bridging and pull-out. However, a completely "weak" interface will not generate

the desirable friction tractions to shield the crack tip. An optimum therefore exists with

regard to toughness of the material and physical properties, including interfacial bond,

toughness, and friction characteristics.

Recent investigations, while providing insight to these toughening mechanisms, are

restricted in their applicability by simplifying assumptions whose impact is often difficult to

assess. A number of 2-D analyses have been carried out for cracks near sliding and

bonding interfaces, 1-3 some of these in the context of fibrous inclusions. 4-8 Axisymmetric

models which account for frictional tractions on the interface have also been developed 9 10

for the special case of a single fiber that is completely engulfed by a fracture. Other work

has examined crack pinning by bonded cylindrical inclusions. 11,12

This summary report outlines a combined computational and experimental

investigation aimed at providing a complete fracture mechanics analysis of a crack growing

near a fiber and interacting with the evolving frictional sliding zone at the interface (see Fig.

1) An innovative numerical scheme, the surface integral and finite element hybrid (SIFEH)

method, has been developed to obtain results for cracks near and/or crossing multiple or

bimaterial interfaces. Extensions are now underway to account for the frictional tractions

and curvature of the fiber-matrix interface. In addition, novel experimental tools are being 0 I]

employed to verify the computational solutions.

Distr iit ion

Av 'i l~blity Codes

eDt Special

"- I\ " // n



DESCRIPTION OF COMPUTATIONAL APPROACH

Modeling Requirements:

Until very recently, the direct numerical modeling of the situation depicted in Figure

1 would have been viewed as impractical. The most common tool available, finite

elements, was known to require an extraordinary number of degrees of freedom to capture

the stress singularity along the crack periphery, a situation that was made all the more

untenable by the need to globally remesh after each time step. Thus an alternate approach

was sought.

In formulating the numerical procedure presented here, we have kept in mind that a

suitable computational approach should not only possess sufficient generality to address the

problem of Figure 1, but it should also meet the following efficiency and accuracy

requirements:

Accurate Stress Intensity Factors: The difficulty in modeling a fracture lies in being

able to accurately represent the singularity in stress along the continuous crack front. The

accuracy is usually assessed in terms of the stress intensity factor, which serves both as a

measure of the strength of the singularity and as a criterion for crack growth. It is typically

desirable to maintain the error in stress intensity factor at less than a few percent because of

the error amplification associated with some crack growth laws, especially in metal fatigue.

Effective Modeling of Crack Propagation: This is achieved by keeping the total

number of degrees of freedom in the problem to a minimum while providing a facility for

remeshing the element topology as the crack front advances. The fact that the geometry of
Fig. 1 may be viewed as consisting of multiple growing fractures (i.e. the approaching

main crack plus an undetermined number of slip zones on the interface) renders many of

the existing numerical techniques impractical for this application.

Accurate Representation of Near-Interface Crack Tip Fields: When there remains

but a narrow ligament separating an advancing fracture from a bonded bimaterial interface,
the form of the singularity at the crack tip is known to deviate dramatically from the

homogeneous case. As this is also reflected in the magnitude of the stress intensity factor,

we can expect the interface to have pronounced effect on the fracture growth near bonded



fibers/inclusions. This class of problems is important both as a precursor to the onset of

interfacial slip and to the limiting case of interfacial friction.

Surface Integral Method:

The effectiveness of the surface-integral method at modeling 3-D fractures in

infinite regions is now well established. 13 14 It is based on representing a fracture as a

distribution of force multipoles (or displacement discontinuities). Superimposing the

differential effects of the constituent multipoles leads to the governing integral equation

below: SW 1 E 16 )d
SC

where the scalar function s evaluated at x can represent any one of the displacement or

stress components, 8 is the crack opening, E is a material constant relating crack opening to

the equivalent multipole strength, SC is the fracture surface, and y, also known as the

fundamental solution (or influence function), defines the effect on s of a multipole of unit

strength. The influence functions can be found by differentiating the relevant point force

solution in accordance with a Taylor series expansion (for details see Refs. 15,16). Thus
we may note that the range of problems that can be solved by this method is limited by the

availability of the point force solution.

The application of Eq. (1) requires that we first establish the magnitudes of the

crack openings. An approach that works well is to generate a system of equations using

boundary collocation, i.e., the known traction boundary conditions are enforced on the

crack surface at as many points as there are unknown nodal values of crack opening.
However the resulting equations are all singular at x=t to the degree of being

indeterminable. To bound the integrand, we subtract a singular function which by virtue of

its being physically equivalent to a rigid-body translation, does not alter the equality. The

following singular, but integrable, equation results:

r F- (2)
t( ) = J -y [6(r) - 6(x")] dA

Ssr



where t(x) refers to the tractions acting on the surface of the fracture and ST spans the entire

crack plane.

The advantages of the surface integral method may be summarized as follows.
First, only the surface of the fracture has to be discretized; this considerably simplifies the
process of remeshing the fracture as it grows. Second, the singularity at the crack tip does
not require special treatment because its essential features are explicitly contained within the
influence functions of the multipole. Third, accurate stress intensity factors can be obtained
using coarse element meshes provided that a p1/2 variation of crack opening is assumed in
the near-tip region, where p is the perpendicular distance from the crack front.

Surface Integral and Finite Element Hybrid Method:

With the existing library of influence functions being quite limited, the surface
integral method cannot be directly applied to the problem of a fracture near an arbitrarily
shaped region of material inhomogeneity. Thus to retain with such problems the
advantages of a surface integral analysis, it has been combined with the finite element
method using incremental superposition. The resulting hybrid method opens up the
possibility of accounting for a wide range of volume effects, including material

13,17,18 19. 13,20inhomogeneities , thermal effects 19 , and plasticity.

The following derivation of the governing hybrid equations considers the case,
shown in Fig. 2, of a fracture which is fully embedded within a region of material
inhomogeneity (referred to here as the subregion). It has been assumed that the only
influence functions available for use are those for a multipole in an infinite, homogeneous
region. It has further been assumed that the interface is sufficiently far away from the crack
front so as not to either alter the form of the crack tip singularity or produce strong coupling
at the interface, where the component methods will be joined.

A solution can be found by superimposing the results of the three models shown in
Figure 2. Model I is an uncracked finite element model of the complete bounded domain.
Model U is a surface integral model of the fracture in an infinite, homogeneous region.
Since the results of Model II are not valid beyond the interface because of the mismatch in
material properties, it is equivalently represented as a finite body being held in equilibrium



by tractions RC. Model Ill is an uncracked finite element model of the subregion. It has

been introduced to meet the requirement of displacement continuity at the interface. Since

the component models of Fig. 2 individually satisfy equilibrium and strain compatibility

within the limits of their respective formulations, all that remains to define the solution is to

enforce both the prescribed boundary conditions and the traction/displacement continuity
across 3. This is accomplish ,2 tirough the application of corrective tractions and

displacements.

Overall traction continuity across S is obtained by cancelling the tractions on the

external boundaries of the two subregion models, i.e., models II and III. This is done by

calculating a pair of nodal load vectors, representing the external traction distributions on

each model, and applying the negative of both vectors to the interface nodes of model I.
Thus the finite element equations for model I will have the standard form but with two

additional load vectors on the right-hand side:

[K]{UFE) = {R} - {RC} - {RSUB} (3)

where [K] is the finite element stiffness matrix for model I, 1 U FE is the vector of

unknown finite element nodal displacements, and {R) is the vector of prescribed nodal
loads acting on model I. Defining the correction load vectors: I RC } is a nodal force

approximation of the surface integral tractions acting on 3 and thus may be reexpressed in

terms of crack opening displacement; { RSUB } refers to the nodal support reactions induced

in model MII by the imposition of nodal displacements { USUB } on the interface:

{RC} = [G]{8}; {RSUB } = [KSUB]{uSUB} (4)

where [K SUB ] is the finite element stiffness matrix for the subregion.

Displacement discontinuity across 3, being already assured in model I, is enforced

by requiring the interface nodes in model III to displace as the negative of displacements *

which are computed at the corresponding locations in model II:

(USUB} - Us} -[L I N T ] {8} (5)

thus effectively cancelling the discontinuity in the displacement field introduced in model II
when we truncated the surface integral domain at 3.



The enforcement of traction boundary conditions at the crack surface is based on the

surface integral equations of model II. Since the fracture has not been explicitly accounted

for in either finite element model (i.e. I or II), these models will produce nonzero

tractions, {TC } and {I'SUB}, at locations coincident with the surface of the fracture. To

cancel these extraneous tractions, they are reversed in sign and applied as additional

boundary conditions in the surface integral formulation:

[C][5} = {T} - {TC} - {TSUB} (6)

The evaluation of {TC) and {TSUB ) is based on the equations of those finite elements in

models I and III, respectively, which would contain the fracture if it was to be explicitly

modeled. Since the mesh topologies of finite element models I and III are identical for the

subregion, it follows that:

{TCI = [S]{UFE}; {TSUB) = [S]{uSUB (7)

where the same [S] applies to both {TCI and (TSUB .

The final step in this derivation is to rewrite the above expressions as a system of

equations in terms of designated primary variables UF and & Two coupled systems of

equations result when we substitute Eqs. (4) and (5) into (3), and Eqs. (7) and (5) into (6).
When written in partitioned matrix form, they are expressed by:

F K G-KsubLint 2 FUfe l  _ fRi (8)

L s C-S Lin t  J 8 6 J T J

Thermally-induced strains can be modeled with the SIFEH formulation. Linear,

isotropic thermal effects are computed as correction load vectors and superimposed on the

model presented above.2 1 The resulting coupled system of equations takes the following

form:

F K G-KsubLint 1 f Ufe 1 _ F R+Rthl (9)

L s C-SLint J 8 J LT-TthJ



where { Rth I and { T'h}I represent, respectively, the loading in the finite element model and

on the crack surface due to thermal effects. Both correction load vectors can be computed

using the surface integral and f'mite element formulations.

One of the key advantages of the hybrid method is that the surface integral model of

the fracture can be set up independently of the finite element model of the surrounding

domain. The implication of this for crack propagation analysis is that only the fracture

surface has to be remeshed as the crack advances through the fixed finite element model.

This feature has facilitated the development of a fully automatic remeshing algorithm,

suitable for use on remote supercomputing facilities where interactive inspection of the

crack mesh may not be available. The remeshing strategy is based on first representing the

crack front as a parametric cubic spline and then dividing the fracture surface which it
encloses into two domains: a leading edge region where tip elements assume a p 1/2

variation of the crack opening, and an interior region where it suffices to employ low-order

interpolation functions to capture the variation in crack opening. In the leading edge region

where the shape and size of the tip element plays such a critical role in determining the

accuracy of the stress intensity factors, heuristics are employed to construct the element

geometries. The interior of the fracture is discretized by first dividing it into nearly convex

subregions using a modified version of the algorithm proposed by Bykat 22 and then

triangulating each subregion in succession using a method of geometric decomposition

developed by Chae 23

DESCRIPTION OF EXPERIMENTAL INVESTIGATION:

The Resource Extraction Laboratory has developed a unique laboratory facility for
the study of fracture growth near material inhomogeneity. Experimental simulation has

supported and directed development of the SIFEH code. The apparatus used in this role

are described in the following sections.

Crack Interaction Apparatus (CIA):

The model system is composed of 1.8 cm diameter glass rods embedded in large

cement cylinders. The specimens are tested in the specially designed crack interaction

apparatus (CIA) shown schematically in Figure 3. The CIA allows independent control of



the axial and radial stresses exerted on the specimen during testing. By internally
pressurizing a precrack cast into the cement, a quasi-static fracture is propagated in the
specimens, perpendicular to one or more rods (fibers). Brief deviations from a hydrostatic
stress boundary condition leave small stairstep markings on the fracture surface, thereby
recording the history of an advancing crack as it approaches and bows around the glass
inclusions. Successive stages in crack development can be observed on each of the
resulting halves of a ruptured specimen. By coating the glass rods prior to casting, the
friction coefficients may be controlled and its impact assessed. Figure 4 shows

representative crack growth patterns for high and low friction interfaces.

Interfacial properties for coated glass rods cast in cement are determined
experimentally with push-out tests. Glass rods (fibers) are driven from the surrounding
cylindrical specimens (in a state of hydrostatic compression) using an Instron test
apparatus. Load-displacement histories are then evaluated to determine cohesion and
frictional slip properties.

Interfacial Separation Experiment (ISE):

ISE simulates the growth of the slip zone on a planar interface normal to a
pressurized crack. The apparatus uses transparent materials with variable crack geometries
and interfacial friction coefficients to visually observe interfacial slip between the media.
(see Figures 5,6) Computer mapping of measured interface displacements determines the
shape and size of the evolving zone.

APPLICATIONS:

Crack Growth Near a Planar Bimaterial Interface:

The growth of a pressurized fracture toward a bonded bimaterial interface was
modeled using the previously described surface integral method. The near-interface crack
tip fields are accurately captured by employing the influence functions for a dipole near a
planar bimaterial interface (see Figures 7,8 and Tables 1,2). These influence functions

explicitly account for the presence of the interface so that only the surface of the fracture
has to be discretized. To obtain the fracture shape shown in Figure 9, points along the



initially circular crack front were incrementally advanced in proportion to the local values of

(KI-KIc) with KIC representing fracture toughness.

Fracture Intersecting Multiple Bimaterial Interfaces:

The surface integral formulation could not be directly applied to model a fracture

intersecting two bimaterial interfaces because the corresponding influence functions were

not available. Superposition of results derived with sets of bimaterial influence functions

and application of appropriate correction loads allows accurate modeling of near-interface

fracture behavior. Results obtained for fractures near two planar bimaterial interfaces are

presented in Figures 10-14 and Table 3.

Interaction of Multiple 3-D Mixed Mode Fractures:

Toughening brittle materials with second phase brittle fibers involving tailoring

microstructures, material properties, fiber spacing, interfaces, etc. to create an environment

that favors the growth of smaller flaws over the continued growth of some dominant

propagating flaw. Assessing the resulting pseudo-ductility involves the interaction of

multiple fractures. There are relatively few solutions in the literature for mixed-mode

interaction of numerous cracks. The surface integral method accurately replicates these

existing solutions, nut is not limited to simple geometries or loading. Figure 15 illustrates

the variation in the stress intensity factor with distance between two parallel cracks.

Results correlate well with the solutions in Ref. 26. Similar results are obtained for two

coplanar cracks as shown in Figure 16.

Surface Cracks:

The SIFEH method has proven useful for modeling surface cracks in bounded

domains. The bimaterial influence functions are combined using superposition as shown in

Figure 17. The case of a semi-circular surface crack in a finite-thickness plate under

uniform tension was used to test the approach. This geometry was investigated by Raju

and Newman 27 using finite element method, ,and has been verified by subsequent studies.

With minor refinement of the finite element mesh in the region of the surface flaw, the

SIFEH method accurately represented the stress intensity factors along the crack front as

shown in Figures 18 and 19. Similar results were obtained for the case of semi-elliptical



Evolution of Frictionally Constrained Interfacial Slip:

The interfacial decohesion and slipping at the periphery of a dominant flaw

(fracture) as it first encounters a fiber is the critical episode for determining subsequent

crack deflection, blunting, bowing, and/or reinitiation across the fiver-matrix interface.

The frictional tractions at the sliding interface provide the key energy dissipating

mechanism for inhibiting fracture propagation. The fully 3-D determination of the extent of

the sliding zone and the nonlinear coupling between it and the impinging crack presents a

formidable challenge that has not previously been accomplished. The following coupled

integral equations explicitly demonstrate the role of the coefficient of friction (ji), the
residual stresses across the interface (Yni), and the applied tractions (a) in determining the

extent of the slip zone (S) and the propensity for the main crack growth:

MainCrack: = {{ 8(--) dA + J)dA (10)

S k S S

SlidingZone: unt') , {f ,is(-4)dA + ff r " (W-) dA

Jss  sc

- , = dA + "Ir6(- ) dA

SS  . Sc

Figure 5 shows the characteristic zones for the onset of slip near a circular pressurized

crack for a specific set of parameters.



CONCLUSIONS

Three-dimensional computational and experimental investigations have resulted in

novel tools for the investigation into the toughening mechanisms due to incorporation of

brittle fibers in brittle matrices. Application of the surface integral and finite element hybrid

(SIFEH) method to a wide variety of fracture geometries in bimaterial media have shown

the technique to be a flexible and efficient tool. Incorporation of thermally-induced strains

and interfacial decohesion/frictional slip have further enhanced the capabilities of the

method. When combined with experimental studies, the method developed will help brittle

composite manufacturers tailor the material properties to suit material demands.
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Figure 1. Representations of a crack periphery encountering a fiber.



E- .0

- 3-

-* - c

VE

p-o

ce.~

-u E

0 c .



Radial Pressure on Specimien '.

"Confininig,
Fluid

Inflaable
End Pad

-_iPi5]

AxiL-. Fressure on Specimen

Crack Driving Prcssuarc

Figure 3. Hydraulic fracturing test apparatus used to grow quasi-static
cracks toward cylindrical inclusions. Independent control of the axial and
radial pressures permits periodic marking of the crack front.
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Figure 4. Representative photographs showing the local influence of a
brittle inclusion on fracture propagation. The two contrast the growth
patterns around a brittle fiber for a "strong" (a) and a "weak" (b) interface.
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Figure 5. Schematic showing the onset of sliding on
a planar interface "ahead of a pressurized circular
crack.

~interfacial/slip
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Figure 6. Schematic of ISE apparatus for direct observation of interfacial
slip near a material discontinuity (crack).
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Figure 7. Fracture (under plane strain conditions) approaching a single
planar bimaterial interface. See Table I for results.

c/a (;! ) A(% Deviation), ) 1) (% DeviaLion),

2.0 0.9682 0.686 0.9416 0.717
1.25 0.9202 0.404 0.7887 0.625

1.15 0.9078 0.298 0.7250 1.003
1.10 0.9010 0.278 0.6787 1.693

1.00 0.8841 0.159 0.5221' -_

Table 1. Comparison of Cook and Erdogan's 28 plane strain solution with
the 3-D surface integral results.
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Figure 8. Fracture (under plane strain conditions) intersecting a planar
bimaterial interface. See Table 2 for results.

c/A (% Deviaiin., (% Deviation) o)

1.0 (0.t88.f 0.1 7...
.75 0.873.1 0.000 0.5597 -5.2-15
.50 0.912.1 -0.642 0.7916 -1.395
.25 0.9984 -1.723 0.952.1 -1.008
0.0 I.1.14 -2.97 1.083 -0.923

-. 25 1.378 -4.1.19 1.194 -0.870
-. 50 1.774 -5.203 1.287 -0.9-16
-. 75 2.621 -5.304 1.36.1 -1.132
-1.0 - - 1.360 0.354

Table 2. Comparison of Erdogan and Biricikoglu's 29 plane strain solution
with the 3-D surface integral results.
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Figure 9. Snapshot from an animation showing the blunting of a fracture as
it reaches a planar bimaterial interface. The fracture lies in the softer
medium.
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Figure 10. Fracture (under plane strain
conditions) approaching two planar

bimaterial interface. See Table 3 for
results.

Fracture .....

ah % Deviationa/h

. - Figure 11. 1/8 symmetric hybrid model
0.3 1.040 0.970 used with the double interface problem.
0.6 1.156 0.522
0.9 1.611 2.611

Table 3. Comparison of Hilton and Sih's
plane strain solution with the 3-D hybrid
results.
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Figure 12. Elliptical fracture approaching Figure 13. 1/8 symmetric model of the
two planar bimaterial interfaces. The elliptical fracture in a tri-layered domain.
fracture has been represented by its
surface integral discretization.
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Figure 14. Dependence of KI on the value of a/h for a 3-D elliptical fracture
in a tri-layered domain. Results for two different ratios of the elastic moduli
are presented. Values of K, were recorded at the observation point indicated
in Figure 12.
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Figure 15. Variatior, of Mode I arid Mode II stress intensity factors with
distance between parallel circular cracks.
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Figure 16. Variation in maximum stress intensity factor with distance
between coplanar cracks.
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Figure 17. Component geometries used with the hybrid method to model a
surface crack in a bounded domain.
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Figure 18. Specimen geometry and corresponding hybrid model
used in fatigue crack growth study.
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Figure 19. Comparison of SAFE and experimental results for
growth of a surface crack in a thick plate.


