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Vector Analysis of Ice Fabric Data

MICHAEL G. FERRICK AND KERRAN J. CLAFFEY

INTRODUCTION reduces, by one, the dimension of the hemisphere and of
any plane or line. An orientation diagram may indicate

Environmental conditions at the time of ice forma- a random or a patterned structure, depending on the
tion largely determine its structure. Ice crystals are dominant features of the diagram. A random fabric
uniaxial, and the optic axis corresponds to the c-axis. refers to a homogeneous distribution of the plotted
Random c-axis orientation is commonly observed near points and represents an isotropic material. In this
the top surface of newly formed sea ice in the Arctic. configuration there is an equal probability of finding
Once acoverhas formed, the ice structure is characterized points in equal area elements anywhere on the net. In
by long vertical columns that extend downward in the contrast, the most significant feature of an anisotropic
growth direction of the ice sheet, a result of quiescent, material is the preferred orientation indicated by the
unidirectional growth. Under these conditions a selec- grouping of points on the net. A "girdle" corresponds to
tive growth process occurs, and the c-axes of the crys- data that are distributed along a great circle of the net,
tals become primarily oriented in the horizontal plane of indicating a preferred planar orientation of the c-axes.
the ice sheet (Weeks and Ackley 1982). In the presence The pole of this great circle is termed the girdle axis. An
of a predominant current direction, strong c-axis align- area of highly concentrated data points (point maxi-
ment develops in the direction of the current with mum) indicates a linear preferred orientation of the
generally decreasing scatter as ice thickness increases crystals in the fabric. The statistical significance of the
(Weeks and Gow 1978), and this ice structure causes orientation diagram increases if the main features
anisotropic material behavior in all directions. Uniaxial (maxima/girdles) are reproducible in different compa-
compression data on first-year sea ice (Richter-Menge rable samples from the same homogeneous body.
et a]. 1987, Wang 1979) have indicated a strong depen- Pearson (1901 ) used statistical arguments to develop
dence of peak compressive strengthon c-axis alignment the equation of a line or plane that provides the closest
and on the angle between an applied load and the fit to points in space when all variables contain error.
dominant c-axis direction. Therefore, to interpret data The solution depends on knowledge of the means,
from mechanical property tests we must define the standard deviations, and correlations of the variables. A
relative orientation and alignment of the ice fabric. significant result was that the plane of best fit contains

The techniques used in the analysis of ice fabrics the line of best fit. Watson (1966) presented a matrix of
were originally developed in structural petrology (see, sums of direction cosines of vectors representing crystal
forexample, Fairbaim 1949, Knopf and Ingerson 1938, orientation in a Cartesian coordinate system. The rea-
Turner and Weiss 1963). Crystal orientation measure- soning presented was that the greatest moment of inertia
ments usually involve optical measurements of the c- of the points would be about the eigenvector corre-
axisorientations.Langway(1958)describestechniques sponding to the minimum eigenvalue of the matrix.
for obtaining ice crystal c-axis orientation data using a Mardia (1972) used the same reasoning to obtain this
Rigsby universal stage. One orientation measurement is matrix and interpret the results. Both Watson and Mardia
made for each ice crystal in a sample, and these data are propose distributions for the data on the sphere, and
plottedonaSchmidtequal areanet (Fig. 1)that represents develop statistical analyses based on these assump-
a hemisphere of unit radius. The points on the net tions. Diggle and Fisher(1985) describe a program that
compose an orientation diagram that depicts the relative computes these eigenvalues and eigenvectors and quan-
spatial concentration ofthedata, and this representation titatively contours spherical data. The analysis of ice



fabric diagrams has been largely visual, frequently and a best line and plane. The eigenvalue problem that
basedonapproximatedataconcentrationcontoursdrawn results is the same as that obtained by Pearson. Watson
on the net. However, Herron and Langway (1982) ap- and Mardia. We identify an implicit assumption in this
plied the eigenvalue/eigenvector method of Mardia method of equal measurement uncertainty in each coor-
(1972) to study various fabric types, including small cir- dinate at all points on the sphere. Normalized eigenval-
cle girdles and multi-maximapattems. The results were ues provide quantitative measures of physical distance
interpreted qualitatively, and it was not clear whetherany of the data from the plane and line, specifying the
fabrics could be quantitatively assessed with this method. directional characteristics of the c-axes of crystals in a

In this report we seek a plane through the origin that sample. Mean angular measures of variability are also
minimizes the sum of the squared normal distances developed. The development clearly indicates the fab-
from the data, and obtain the dominant c-axis orienta- rics that are well-described by the eigenvalue/eigenvec-
tion in this plane. Beginning with the ice orientation tor method, and provides a framework for developing
data, a detailed derivation from simple geometric argu- related methods that may be useful forquantifying other
ments is developed, yielding least-squares equations fabric types. We demonstrate the capabilities of the
that minimize the orthogonal distance between the data analysis on data sets representing several samples of
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Figure 1. Schmidt equal area net.
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first-year sea ice. Thedataandthe results of the analysis circle planes passing through the y-axis with the unit
are viewed on special Schmidt nets that represent data sphere. These arcs are meridians of the net that corre-
hemispheres defined by the best plane and the predomi- spond to inclination angles between -90 ° and +90',
nant basal plane, in addition to the xy-plane. representing the angle between the lower half of the yz-

plane and the plane of the arc. The labels on the x-axis
correspond to polar or equatorial crystal orientation

BACKGROUND with right or left tilt. The set of arcs that cross the y-axis
are parallels of the net, and represent the intersection of

Measurement of the c-axis orientation of an ice planes parallel to thexz-plane with the sphere. The points
crystal with a Rigsby universal stage provides an azi- of intersection of these arcs with the perimeterof the net
muth angle, an inclination angle, the direction of in- represent the azimuth angle, and the notation on the net
clination as right or left, and the type of measurement as is in degrees of angle. Additional details that are needed
polar or equatorial. From these data we will obtain apair for plotting crystal orientation data on the Schmidt net
of angles that define the orientation. The azimuth angle are given by Langway (1958).
measures the rotation of the crystal about the z-axis that
places the c-axis in the xz-plane. The zero azimuth can
be chosen arbitrarily, depending on the requirements of DATA TRANSFORMATION TO CARTESIAN
the analysis. With the c-axis in the xz-plane, the inclina- COORDINATES
tion angle is the angle of tilt with the x-axis. An inclina-
tion angle of zero is defined as the angle where the c-axis Our analysis represents the c-ax is of each ice crystal
of the crystal is parallel to the x-axis. It is found by as a unit vector from the origin of a three-dimensional
rotating the crystal about the y-axis either to the right coordinate system in the half-space below the xy-plane,
(clockwise) or the left (counterclockwise). The optic yielding an array of points on the surface of a hemi-
axis of a crystal can be aligned parallel to the z-axis, sphere of unit radius. In this section we obtain three-
termedapolarmeasurement,orparalleltothex-axis, an dimensional Cartesian coordinates on the unit hemi-
equatorial measurement. The inclination angle measured sphere (Fig. 2) for each crystal. The initial step in
with the Rigsby stage must be corrected for the optical finding these Cartesian coordinates is to represent each
error caused by the difference in the refractive indices point in spherical coordinates (p,0,0). Because each
of air and ice. The relationship between the corrected in- crystal is represented by a unit vector, the radius p = I
clination, 1, and the measured inclination, IM, depends forall thedata.The angle 0, measured from the positive
on the measurement type and can be expressed (Kamb x-axis, is positive in the counterclockwise direction, and
1962) as can be obtained from the measured azimuth Az as

11.041, equatorial 0=A:+ ; polar-right, equatorial-left / (2)
sin1 (1L_ sin /, )  ;polar () + 180' ; polar-left, equatorial-right I

1.31 1where AZ is in degrees. Measurements made from the
negative x-axis are adjusted by 1800 in eq 2.

Taken together, the azimuth and inclination mea- The angle 0 is measured from the positive z-axis. The
surements define the orientation of the optic axis of an inclination angle was measured from the negative Z-axis
ice crystal in three-dimensional space. The line repre- for polar crystals and from the iy-plane for equatorial
senting each crystal in the sample is plotted through the crystals, and 0 is determined as
origin of a sphere of unit radius. Each of these lines
intersects the surface of the sphere at one point in each 11800 -1; polar (
hemisphere. The surface of the lower hemisphere is (3)
traditionally represented in two dimensions with the 1 900 + I equatorial
Schmidt net (Fig. 1). The Schmidt net is also known as
the equal-area net because a unit area in any position on With the spherical coordinates specified, the equiva-
the net corresponds toaunit areaon the hemisphere. The lent Cartesian coordinates are obtained directly as
crystal orientation data plotted on this net depict the
relative spatial concentration of the measured data. The x = p sino cosO
Schmidt net is composed of two sets of arcs. The set that y = p sino sin0 (4)
crosses the x-axis represents the intersection of great z = p coso
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Figure 2. Sketch of unit vectors 1,2 .... m,..jV representing the c-axis orien-
tations of ice crystals in a sample. The hemisphere, z : 0, is shown by con-
vention.

MEASUREMENT ERRORS AND effect of measurement errors on the uncertainty in x, y,
DATA FITTING and z is variable. An error in 0 only affects x and y. The

resulting uncertainty in each coordinate is periodic,
The relative uncertainties in x, y, and z caused by depending on 0, and out of phase with the other. The

measurement error must be understood in order to amplitude of these errors approaches zero near the pole
identify an appropriate method for fitting the ice fabric anda maximum at theequator. Errors in affect all three
data. Langway (1958) lists several sources of error in Cartesian coordinates. The uncertainty in z islargernear
the measurement of c-axis orientation, and indicates the equator and smaller near the pole than the larger of
that the errors in aximuth and inclination shouldeach be xandy. Uncertainties inxandy resulting from errors in
less than 5 . Taking the errors inAz and las random and 4) again vary individually with 0, displaying maximum
of comparable magnitude, we observe from eq 2 and 3 amplitudes near the pole and approaching zero near the
that the same statement holds for errors in 0 and 0. For equator.
an error of 1 in these angles we have from eq 4 that Classical least-squares methods require a dependent

variable, but the coordinates of each c-axis are all
x = sin(o + 13) cos(0 + 13) independent. Reed (1989) presented a method for fit-
y = sin() ± 1) sin(O ±13) (5) ting a line to points in the plane when both coordinates
z = cos(o ±1P) of these points are independent and uncertain due to

measurement error. The method allows the errors in the
Expanding eq 5 and grouping terms according to the fit tobe weighted according to the relative uncertainties
error we obtain in the measurement ofx and y. The measurement errors

discussed above could be considered by extending this
x = sino coso cos 2 3 + sinp3 (A cos3 + B sinp3) method to three dimensions. However, we note for
y = sin) sine cos 2 3 + sinp (C cosp3 + D sin3) (6) small 13thatcos3 cos 210- I and sino-0, indicatingthat
z = coso cosp + sin3 (E) errors in x, y, and z resulting from measurement errors

are relatively small. As a first approximation we will
where A, B, C, D, E are composed of sines and cosines choose equal weighting in each direction at every point,
of 0 and 0. The relationships given in eq 4 are contained and the best fit line and plane will minimize the perpen-
in eq 6, but they have been modified by errors of 13. The dicular distances from the data.

4



DETERMINATION OF THE BEST PLANE used to fit the plane should be much larger than 3. For
BY ORTHOGONAL LEAST-SQUARES a data point m located at (xm,ym,zm) we can evaluate

F(xm,ym,zm; c1,c2,c3) = Fm with eq 8 as
The unit vectors representing the c-axis orientation

of each crystal in a sample have a common point at the Fm = C iXm + C2ym + C3Zrn (10)
origin of the unit sphere. The problem we consider in
this section is to find the plane of best fit to fabric data The unit vector representing the c-axis of the mth crys-
that contains the origin, and to provide quantitative tal (Fig. 3) is
measures of the quality of the fit. The form of the
equation of a plane through the origin is Um = Xm i I + Ym i2 + Zmi 3 = 4 1mi I +

4 2mi2 + 'I 3mi3 = (jmij (11l)

f(x,y,z) = Ax + By + Cz = 0 (7)

The vector Wm is the projection of Urn onto n, rep-
We choose the function F(xy,z;c 1,c2,c3) with this same resenting the normal vector from the plane to the point
form and depending linearly on parameters C1, c2, c3 as (Xrn,ymzm)

3
F(x,y,z;cl, c2 , c3)= clo I + c 202 + c 303 = 0 W rn (Um n)n (12)

i=lI

(8) where (urn - n) is a scalar product between unit vectors.
Throughout this development the notation (-) over a

where 01 =x, 2 =y, 03 = z are a specified set of mutually vector indicates that it does not have unit length. The
orthogonal functions and the ci are unknowns to be normal distance dm from point m to the plane is
determined. The pole of a plane is the point P of inter-
sectionwiththehemisphereofalinenormaltotheplane dm = (urn n) = lXm + c2ym + c3zm (13)
through the origin. The unit normal n to the plane of best
fit to the data has the form and we observe that

n = cIi + C2i2 + c3i3 = cij (9) Id, =Iwml < 1 (14)

where i 1, i2 and i3 are unit vectors in the x, y and z Wm =
d . n

directions, respectively, and repeated indices indicate The sign ofdm distinguishes distances on opposite sides
summation, of the plane.

A unit vector in 3-dimensional space represents each The orthogonal projection of urn in the best fit plane
crystal in a sample, and the total number of crystals N is represented by the vector vm, and

Best Fit / Basal Plane n-- m

Figure 3. Sketch of the unit vector u, representing the mth crystal in an ice sample and
its projections vm onto the best-fit plane or the basal plane, and wn onto n or c the
unit normal vector to the corresponding plane. The angles between um and the best
(plane, line) are (am, 8rn), respectively.
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Vm= Um - Wm= XmiI + Ymi 2+ Zmi3 =O (15) where&i.istheKroneckerdelta. N -observe fromeq 13
that dm = CK m" and differentiation of this equation

This vectorjoins the origin and the point xm. Ym, :m, the yields
orthogonal projection of(xm 'Ym ,m) in the plane. The al_ . 2)
vector v m is unique and the best approximation ofu m in a i -jk
the plane. An equivalent statement is that the closest
point in the plane to (.ii,Y-m) is Xm, Ym. :,.Fromeq Inserting eq 17.21 and 22 into eq 20 we obtain the
15 we can determine Xm, ym, :m as normal equations as

nXm = Xm - dmcl (im - dmci) (dm&ij + ciojm) 0

Ym =Ym- dmc2 forn=1,2,..., N (16)
=m = :m - dmC3 or expanding and rearranging as

or im = Oim- drag for i = 1.2.3 (17) Ojmd (I - ci) + Oim Ojm "i = d (. (23)

where Oim and i.m represent elements of N-dimensional Finally, because n is a unit vector and i is a summation
vectors Oi and 0i, respectively, index, (I - T ) =0 and eq 23 becomes

We want tochoose the ci values that specify theplane
through the origin with normal distances Idml between Oimcjmci dm-c (24)
the points representing theNcrystals in a sample and the
plane that are as small as possible. The N-vectord = (d1I  In eq 24 we observe that dm2 = X., a constant, yielding
d2, ... , dN)T represents the individual normal distances an eigenvalue problem,
from the data to the plane, where T indicates the trans-
pose. Minimum normal distance to the plane is equiva- Ac = Ax (25)
lent to maximum length of ir,, the projection of ur onto
the plane. We will seek a least-squares fit and define E where each term aij of the 3 x 3 symmetric matrix A is
as a function of the unknown coefficients

Nj = Oimjm = OT Oj (26)

E (cI3) = "V2= im (18) The eigenvalue X is the sum of the squared normal
Il = I 2 = 1 i = I distances of the data from the corresponding plane.

Equation 25 in homogeneous form.
Because we consider data projected onto a plane, the
hemisphere in which the data appears is arbitrary. The (A - V/) c = 0. (27)
sum of the squares of the lengths of vm will be maxi-
mized and the sum of the squared distances from the indicates that nontrivial solutions exist if and only if
plane dm will be minimized where the gradient of E
vanishes det(A - I) = 0 (28)

VE(c, 2.c*) =0 (19) The determinant given in eq 28 yields a cubic equation

called the characteristic polynomial
with ci* indicating coefficients of the plane of best fit.

We now perform the differentiation indicated in eq X3 +pX.2 + qX + r 0 (29)
19 with respect to cj, where each choice ofjyields a scalar
equation of the form Following Beyer (1987) we obtain the solution as

aE _2'im c'im = 0 (20) n m cos p13
acq ac X" = i mcos (P - 2 It/3) - p13 (30)

From eq 17 we obtain mcos(J3-4t/3)-p/3

_ j + d, (21) where

6



rn = 2":- basis in three-dimensional space. Each eigenvector

a= (1/3) (3q- p2 ) represents the unit normal to a plane. and the corre-

b = (1/-7) (2p 3 - 9pq+ 27r) sponding eigenvalue gives the sum of the squared
normal deviations of the data from that plane. The

Asp -;, and r are real, the eigenvalues will be real and minimum eigenvalue defines the plane of best least-
1,, tact if squares fit to the data, and the higher eigenvalues are

associated with the remaining mutually orthogonal
_+ - < 0 (31) planes through the origin. With the origin fixed, the

4 27 eigenvector basis represents a coordinate system that is
The spectral theorem (Shields 1968) states that be- rotated relative to the coordinate axes.

cause A is a real symmetric matrix it is similar to a Theeigenvectors written incolumns form thematrix
diagonal matrix B composed of the eigenvalues ofA. and P. The elements of P are the direction cosines between
therefore the eigenvalues ofA are real. Similar matrices each eigenvector and the coordinate axes. The angle aij
have the sametrace and the same determinant. The trace between the eigenvector vj and the axis ii is
of a matrix is the sum of the elements on the principal
diagonal. The elements a1I, a2 2 and a33 of matrix A oij = Cos- , (vj - i) = Cos - , (Pij) (35)
represent the sum of the squares of the distances be-
tween the data and the three planes defined by the Because the columns of P are orthonormal, P is an or-
coordinate axes. As each crystal is represented by a unit thogonal matrix, p-I = pT is also orthogonal, and det P
vector, = + I. Matrices A and B are related through P as

3 3 3
tr(A) = = Ni=N 1=B)= E = E .i (32) A = PBPT (36)

i=I i=1 i=l

indicating that the sum of the eigenvalues is N, the total representing a singular value decomposition of A. The
numberof crystals in the sample. The determinants ofA diagonal elements of B are the singular values ay as well
and B are the product of the eigenvalues. The eigen- as the eigenvaluesofA. With singularvaluesordered by
values ofA are nonnegative ifA is positive semidefinite, their magnitude in the same way as the eigenvalues, the
that is, xTAx 2! 0 for any x. Large diagonal elements condition number of matrix A of full rank is
relative to those off the main diagonal are characteristic
of a positive semidefinite matrix. Since the eigenvalues cond (A) - 0 3 - k3 (37)
represent sums of squared distances, Xi -> 0 and matrix 01 X I

A ispositivesemi-definite.Wewilldesignatetheeigen- Condition numbers >>1 indicate that A is nearly sin-
values in increasing order according to magnitude as X gular.
< <_ 3, and define normalized eigenvalues as The sum of the squared normal distances between

Xi the data and the best plane, given by X 1, provides a
-= (33) measure of the planar structure of an ice sample. Values

N of X, or X'1 approaching zero indicate an increas-

The normalized eigenvalues give the mean squared ingly planar ice structure. If X, = 0. then cond(A) = o
normal distance between the points on the unit sphere and the data are perfectly planar. A visual representa-
defined by the c-axis vector of the individual crystals tion of the error is obtained from the angle am between
and the plane normal to the corresponding eigenvector. an individual crystal and its projection in the best plane
These eigenvalues provide a measure of the fit that is (Fig. 3).
equivalent to the variance in classical dependent vari- am = Irt/2 - cos-1 (urn *l) n
able least-squares methods. (38)

Eigenvectors of a real symmetric matrix correspond-
ingtodifferenteigenvaluesareorthogonal,andbecause The absolute value in eq 38 is needed if the angle
the eigenvalues are real, the eigenvectors can be taken between um and n is greater than n/2. The average an-
to be real. The vector v is an eigenvector forA belonging gular deviation a between the data and the best plane is
to the eigenvalue ) if a parameter we term the planar spread that can be

readily determined and understood:
Av=kv and v 0 (34)

N
The lengths of these eigenvectors are arbitrary. and we a = am (39)

normalize them to unit length to obtain an orthonormal N m =

7



A small planar spread indicates a small mean angle n = I (CI iI + c2 - i 3 )
between the crystals in a sample and the plane. (C2 + (' + 1/2

1 045)

DEVELOPMENT OF DEPENDENT The normal distances between the data and the plane
VARIABLE LEAST-SQUARES SOLUTIONS represented by n can then be determined using eq 13 as

We will now parallel the development of the previ- Jw = (u.n° n) = ("-vm + C__ V - -m)
ous section to obtain a set of classical dependent vari- 2(c + 1 + /2 (46)
able least-squares solutions to the problem of fitting a (CI + +

plane to three-dimensional data. This standard method
seeks a minimum error in the dependent variable and is for ni = 1,2. N
more commonly available than the orthogonal method,
but the results are sensitive to the choice of dependent The sum of the squared normal distances given in eq 46
variable. Arbitrarily selecting - as the dependent vari- is the same measure as the minimum eigenvalue ob-
able, we rewrite eq 8 as tained in the previous section. The planes that minimize

the squared x-deviations and squared y-deviations are
= F(xy) = cI 01 + C2 02 (40) obtained by interchanging the roles of 01, 02 and r

above, and repeating the analysis.
where 01 = x and 02 = y. The coefficients c, and c, are
chosen so that the deviations dm are as small as possible,

ALIGNMENT OF THE C-AXES
dm = r. - F(xm, n' c1, c,) (41)

An area of highly concentrated c-axis data on the
in which r. is ZM , the :-value of the mth point, and Schmidt net indicates a linear preferred orientation of
F(xmm,mnC . 2) is the corresponding z-value in the plane the ice crystals of a sample, and suggests the need to
of best fit. Again, the vectordcontains all the deviations determine the predominant optic axis orientation of the
dmI and we seek a !cast-squares fit to the data with fabric. We will locate this linear orientation by follow-

ing a development parallel to that used to determine the
N 2 (42) best plane. The unit vector c represents the unknown
E , c [- F (x,,, Yin; C1, C))] preferred c-axis orientation of the crystals in a sample,
= - I and is expressed as

Taking the gradient of E and setting it to zero yields the
normal equations c = ci i + c; i2 + c_ i3  (47)

N[rm-F(Ym, Ym; cl, c2)1 4 im= ,=l12 where the primes distinguish these coefficients from
,n--= those of the unit vector n given in eq 10. The plane

(43) through the origin that is normal to c represents the
or predominant basal plane orientation of the crystals in

dT ° = 0 the sample and is described by

indicating that the vectorof deviations is normal toeach F (x,y,:; /,2 , =C 1X i c2Y + c3 z = 0 (48)
vector)i. Now, inserting eq 40 and rewriting the normal
equations in vector form we obtain a pair of linear As before, the unit vector um represents the mth crystal
equations: orientation and intersects the unit hemisphere at

0 T (X,,Ym,Zm). In order to take advantage of the detail
j 'il Cj = rT 0i i = 1,2 (44) given in the previous development, the vector projec-

tionsofu onto the plane and its normal vector are again
The vector normal to the plane that minimizes the V and win. respectively. Then, with c replacing n and

sum of the squared z-distances with the data is a different normal plane, Figure 3 represents our present
condition.

n = cl i 1+ c2 i2 -i3 When searching for the best plane we sought to
minimize the squared normal distance iml. However,

or in the form of a unit vector, the closest representation of um by the unit vector c

8



Plane

Basalr-o "
Plane - n/ -ac

Figure 4. Unit vector c representing the linear preferred c-axis orientation of the
ice fabric, and the long axis of the columnar crystals of an ice sample are
represented by n. The unit vectors n and s provide the predominant orientation
of the basal plane of the sample. A unit vector a represents the direction of load
application on the sample, ii is the projection of this vector onto the basal plane,
0c is the angle between the applied load and c, and a; is the angle between the
load and n.

requires that we maximize the sum of the squares of the Linear spread between these vectors is al ways < 90 ° .
lengths ofw rn. The predominant basal plane orientation If 8M obtained with eq 49 is > 900 , Sm is replaced by its
is then the plane of maximum squared normal error with supplement. The average angle 8 between the data and
the data. Each step in the previous development applies C isI N
except that ci is replaced by c'.. Note that the matrix A £ = . (50)
given in eq 26 is unchanged because it depends only on = 0
the coefficients of the intersections of the individual N m

unit vectors urn with the unit hemisphere. Therefore, we The parameter 8 is termed the linear spread, and a small
are solving the same eigenvalue problem as before. The 8 indicates that the angles between the preferred orien-
eigenvectors obtained in eq 34 are orthogonal, and c is tation and the data are also small.
contained in the best plane. Kass (1989) has shown for As a group, the eigenvalues provide measures of the
the general case that spaces of closest fit are nested. structure of the ice sample. An eigenvalue of zero
Every p-dimensional subspace of closest fit lies in one occurs if the data are 2-dimensional, and a pair of zero
ofdimensionp+ 1. The third eigenvectors together with eigenvalues represent I-dimensional data. More gener-
c form the plane of best fit to the c-axes, ands and n form ally, small X' = X'2 together with large X' occurs with
the predominant basal plane (Fig. 4). The direction aligned data, and small )'I with significantly larger '2
cosines of the angles between the preferred linearorien- and K' indicates planar data. If in addition to small W"1'
tation and the coordinate axes are given in matrix P, and X' - I' the crystal orientations distribute symmetri-
the angles can be obtained from eq 35. cally about a great circle of the sphere. With V' = V2

The mean squared normal distance between the data =; every set of orthonormal vectors will serve as the
and the vectorc is A:1+ K2 or I - X 3.Againusingangles eigenvectors. The data are maximally dispersed with
to visualize error, the angle Sm between an individual respect to lines and planes, and the material is isotropic.
(crystal) vector and its projection onto c (Fig. 3) is ob- If the c-axes in a given sample are sufficiently
tained as aligned, the mechanical properties of the ice will be

affected. If a; is a unit vector in the direction of an
8. = coS- ' (urn - C) (49) applied force, the angle ac between the force and the

9



dominant c-axis direction is origin is the pole vector. It intersects the unit hemi-
sphere at the pole point P with coordinates (x,,yp,z,) oroc = co- I (o •c) (51) * * * ""

c = Cos-, (a; - c) (51) (c* ,c*,c3 ). Inverting eq 4 we obtain the spherical coor-

dinates of this point as
and the complement of ay is the angle between the load
and the basal plane (Fig. 4). For a columnar ice sample 4 - cos - (c3) (56)
n gives the predominant direction of crystal elongation
and growth. The angle az between the load and the 0 tan-I (C2)
vector n is obtained as

There are two values of 0 in the range 0 < 0 < 3600 that
a = cos (a -n) (52) have the same tangent. If the value ofx = cI is negative,

0 falls in the 2nd or 3rd quadrant and the calculated
angle is adjusted by adding 1800. Again, the polar co-

SCHMIDT NET REPRESENTATIONS ordinate r on the net is obtained from eq 53, and the
Cartesian coordinates of the pole on the net are found

The results of the analysis of an ice sample are from eq 54. The determination of the Schmidt net
presentedtogetherwiththedataontheSchmidtnet.The coordinates of c, representing the intersection of the
initial step in finding the Cartesian net coordinates is to preferred linear orientation and the unit hemisphere,
obtain polar coordinates (r,0) on the net for each point, follows the same procedure as for the pole vector with
The polar angle 0 on the net is the same as the spherical (c1,c2,c3) in eq 56 replaced by (c'1,c2 ,c'3). The intercept
angle 0 given in eq 2. The spherical angle 4 given in eq of the linear orientation vector must fall on that of the
3 is used to find the radial coordinate. The supplement great circle of best planar fit.
of 4, measured from the negative z-axis, has the same During field ice coring and thin section preparation,
sine as 4, and the distance from the origin of the Schmidt a sample intended as horizontal may deviate by an angle
net r is (Knopf and Ingerson 1938) of several degrees. Sea ice with horizontal c-axis align-

ment will then be represented by a best plane at this
r = (2a)sin(/2) (53) angle. The linear dimensions on the periphery of the

Schmidt net are distorted, and it is difficult to judge
where a = 0.7071 IR, and R is the radius of the net. The normal distances between the data in this region and the
equivalent Cartesian coordinates are then obtained di- trace of the best plane. Points that appear near the
rectly as perimeter and directly across the net from each other

represent crystals with close planar alignment. For
x = r cosO these reasons it is frequently advantageous to view the

(54) data on Schmidt nets drawn on alternative planes.
y = r sinO Viewing the data on a Schmidt net drawn in the best fit

plane with n vertical eliminates sample preparation er-
Planes that pass through the origin intersect the unit ror for horizontally aligned sea ice. The great circle of

sphere as a great circle. The part of the great circle of the the best plane falls on the perimeter of the net and the
best fitplane below thexy-plane is drawn on the Schmidt pole of this plane appears at the origin. With c vertical
net. With p = 1, eq 4 is substituted into eq 8 and solved the plane of the Schmidt net is the predominant basal
for 4 to obtain plane of the sample, and the data are transformed from

the perimeter to the middle of the net. The great circle
stani -c ) (55) of the plane of best fit then must pass through the origin.

cV cos0 + c2 sin Accurate visual assessments of the linear and planar
preferred orientations of the sample are possible on this

where 0 is incremented in arbitrary steps from OP to 3600. net because ofminimal distortion of lineardistance near
The requirement of z <0 in eq 4 identifies the points of the origin. With these planes for mapping, the impor-
intersection in the lower hemisphere. We obtain polar tance of net distortion, sample preparation, and mea-
coordinates on the net from these spherical coordinates, surement accuracy are minimized by providing optimal
and then eq 54 yields a discrete representation in Carte- views of the crystal fabric.
sian coordinates of the great circle on the net. Experi- Unit vectors in the Cartesian coordinate directions
ence indicates that 0.50 increments of 0 yield a smooth were used in eq II to obtain a unit vector representing
curve on the net. each crystal in a sample. These unit vectors are related

The unit normal n to the plane of best fit from the to an orthogonal coordinate system of eigenvectors

10



Figure S. Relationship between the Cartesian and eigenvector coordinate systemsfor visualizing alternate
Schmidt net representations of ice fabric data.

( , i )by the matrix P as thogonal analysis. In all cases this approach provided a
lower bound to the normal error of the dependent

ij= Piji i (57) variable methods. The individual samples are desig-
nated by the dependent variable analysis with mean

This relationship is depicted in Figure 5 with eigenvec- normal error closest to that of the orthogonal analysis.
tors n, c, and s as the (primed) unit eigenvectors. The The dashed lines connecting the mean normal errors for
relationship between a general vector in the Cartesian the dependent variable solutions are erratic. Different
system and its transform in the eigenvector system is dependent variable choices produced dramatically dif-
(Hildebrand 1965) ferent planes with widely varying normal errors. The

S= p-1 U.. = pT n (5) coordinate axis most nearly normal to the plane of the
pm(58) data provided the lowest meanerror.Diminishingmean

normal error generally corresponds to diminishing pla-
and P is termed the transformation matrix. Because P is nar spread. However, the minimizations of these two
orthogonal, transformations using P are orthogonal. parameters are not equivalent, explaining the lack of
Orthogonal transformations maintain length and pre- perfect agreement between the trends plotted in Figure
serve angle, and can be interpreted as a combination of 6. The mean normal errors for most of these cases are
rotations and reflections. The order of the eigenvector less than 0.1, corresponding to planar spreads of less
placement in P determines the transformation, and ei- than 120. These results indicate that these samples have
ther n or c is made vertical, planar fabrics.

The same cases were also analyzed for preferred
alignment of the c-axes. Mean squared normal distance

APPLICATIONS between the data and the best vector c is I - ):3. The
maximum normalized eigenvalue and the linear spread

We analyzed the ice fabric of many samples of first- are displayed in Figure 7. Values of )"3 that exceed 0.9
year sea ice taken from the Beaufort Sea. Both orthogo- correspond to linear spreads of less than 150. Linear
nal and dependent variable least-squares analyses were spread is larger than planar spread because it represents
used and compared. These cases are presented in Figure angles with a particular line in the plane, while planar
6 in an arbitrary order from highest to lowest mean spread represents angles with the plane itself. Compar-
normal error of the best plane obtained from the or- ing Figures 6 and 7 we observe that increasingly planar
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Figure 6. Mean squared normal error for several sea ice samples from orthogonal and x-, y- and z-

dependent variable least-squares analyses. Planar spread from the best plane is given for these same
cases. The cases are arranged arbitrarily according to 1of the orthogonal analysis and named in

sequence according to the best dependent-variable solution.
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Figure 7. Maximum normalized eigenvalue and linear spread in degreesfor several sea ice samples. The order
and labeling of the cases is the same as in Figure 6.
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sea ice fibrics do not necessarily correspond to the
degree of preferred alignment.

Schmidt net plots of the data representing cases:,,:: 10
and: I are presented in Figure 8. and parameters devel-
oped from these data are given in Table 1. Included on
each net are the intersections with the hemisphere of the
plane of best fit, the pole P of this plane, and the vector
c of best linear fit. As required, the best line is always
contained in the best plane. In case Z1 the normalized
eigenvalues are approximately equal, the planar and
linearspreads are large, and the matrix A is nonsingular.
These conditions indicate that the data are uniformly
distributed over the surface of the sphere. Cases z TO and
z are very different from z1, but are similar to each
other. For this group of samples ):. is smallest for Z 11,

C indicating that these data are the most closely, repre-

- sented by a plane. Sample zo has the smallest X.2 value
together with a small A-. and is the most linear case in
this group. The distribution of data indicated by the
eigenvalues is confirmed by the angles that quantify the
planar and linear spreads a and 6, respectively, for each
sample. The matrix A is nearly singular in the latter two
cases as A.' 0 and the condition number is large.

/ A group of samples taken in close proximity and
c? from the same vertical position in the ice sheet should

have similar structure. Together the individual and
collective analyses of these samples provide quantita-
tive measures of comparison that indicate the sample
size needed to represent the ice fabric at that location.
Three samples designated z TO, z M, z 10 were taken from
an ice core at 1.3 m from the surface. The Schmidt net
plots of both the data and the computed fits are pre-

T T
sented in Figure 8 for z10 and in Figure 9 for the other
samples and the composite data. Each of these cases has
nearly the same planar structure, pole and linear struc-
ture. This similarity is quantified by the eigenvalues,
planar spreads and linear spreads given in Table 1.

All the Schmidt nets presented above have been
standard, depicting the lower hemisphere on thexy-plane.
Alternative Schmidt nets are obtained for the hemi-
spheres below the best fit and predominant basal planes
using eq 57 and a P matrix with different eigenvector
placement in each case. As a result of these transforma-
tions the position of the data on the net shifts, correcting

for sample preparation error and allowing a visual
c assessment of the distances from the points to the best

line and plane. Fi jure 10 gives thexy and the alternative
nets for sample z10 . The data are near the perimeter of

11 the net in the standard .xy-plot. The net in the best plane
corrects the sample preparation error and displays a

Figure 8. Schmidt net plots of cases z,, zT and z1 , balanced distribution of data on opposite sides of the
including the intersections with the hemisphere of the net. The net in the basal plane depicts the points as abestplane, thepole P of this plane, and tph best vector single group near the center of the net where linearbt pdistance is accurately represented and the linear and
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Figure 9. Schmidt net plots of cases zlM, z1OB and Figure 10. Schmidt netplots of case zTo in the standard
composite case z1O including the intersections with the xy-plane with the z-axis vertical, in the best plane with
hemisphere of the best plane, the pole P of this plane, n vertical, and in the predominant basal plane with c
and the best vector c. vertical.
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Table 1. Normalized eigenvalues and condition number of matrix A, and planar and linear
spread of the data for selected cases. The type of the distribution is interpreted from these
parameters.

a Type of
Case N X1 X2 kk (deg) (deg) Cond(A) distribution

Z, 90 0.2940 0.3510 0.355 29.3 56.4 1.21 Uniform

z11  77 0.00235 0.0755 0.922 2.3 13.5 392 Planar/linear

4o 44 0.00452 0.0417 0.954 3.2 10.4 211 Linear/planar

A 22 0.00073 0.0863 0.913 1.4 14.2 1250 Planar/linear

o 23 0.00140 0.0813 0.917 1.8 14.9 653 Planar/linear

zl0  89 0.00359 0.0638 0.933 2.7 12.5 260 Planar/linear

planar fits can be readily evaluated and compared to rely on the implicit assumption of equal measurement
other samples. error in all coordinate directions at all points on the unit

sphere. We find that this assumption is a first approxi-
mation for optical data obtained with the universal

CONCLUSIONS stage.
Normalized eigenvalues give the mean squared nor-

A quantitative characterization of ice fabrics is critical mal distance between the data on the unit sphere and the
for understanding the mechanical properties of sea ice, plane through the origin normal to the corresponding
but was not previously available. An orthogonal least- eigenvector. This measure of the planar fit to data is
squares analysis of uniaxial crystal orientation data was equivalent to the variance in classical dependent vari-
developed from geometric arguments with unit vectors able least-squares methods. The majority of the sea ice
representing individual crystal orientations. Minimi- samples studied had planar fabrics, and several had
zation of the perpendicular distances with a best line or aligned fabrics, characterized by mean squared normal
plane provided an eigenvalue problem that was identical distances of less than 0.1 with the data. These relative
to that obtained by other investigators using different distances are well represented by the angular measures
methods. Normalizedeigenvaluesgive the mean squared of linear and planar spread; however, the distance and
normal distance of the data from the line or plane, and angular error measures are not equivalent. For these
corresponding eigenvectors provide the dominant c- samples increasingly planar orientations of the c-axes
axis, planar, and basal plane orientations, and the di- do not correspond to increasingly linear fabrics.
rection of columnar crystal elongation. The preferred c- The normalized eigenvalues allow quantitative com-
axis orientation is always contained in the plane of best parisons between samples, and of composite data repre-
fit. The method is the basis of a relatively simple senting a collection of several samples. Proximate
algorithm for computer analysis of large volumes of samples from the same vertical position in the ice sheet
orientation data. had nearly identical structure. This similarity, quanti-

The formulation of a least-squares method greatly fied by the computed eigenvalues and eigenvectors,
influences the results. This observation was demon- was displayedon Schmidt nets forthe individual samples
strated for many samples of first-year sea ice by com- and the composite. The capability to view the data and
paring the mean squared normal distance of the data the analytical results on Schmidt nets in the planes
with planes obtained using the classical dependent defined by the eigenvectors was developed, providing
variable least-squares approaches and the orthogonal information to improve the interpretation of the data
method. The dependent-variable solutions produced and the fits by minimizing the importance of sample
dramatically different planes of best fit with erratic and preparation, net distortion, and measurement accuracy
widely varying normal errors. The error approached the limitations.
minimum given by the orthogonal method when the The eigenvalue/eigenvector analysis has been ap-
dependent variable direction was almost normal to the plied to fabrics displaying other patterns, including
best plane. Orthogonal least-squares and other analo- multi-maxima and small circle girdles. Fitting these
gous methods producing the eigenvalue problem all data with a best line or plane yields results that can only
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be qualitatively interpreted. However, when a fabric Kohnen, H. and A.J. Gow (1979) Ultrasonic velocity
displays several point maxima it may be possible to ob- investigations of crystal anisotropy in deep ice cores
jectively subdivide the data. The best line for each sub- from Antarctica, USA Cold Regions Research and
set would quantify the orientation and alignment of the Engineering Laboratory, CRREL Report 79- 10.
corresponding point maximum. The intersection of Langway, C.C., Jr. (1958) Ice fabricsand the universal
cones with orientation diagrams were drawn by Kohnen stage, U.S. Army Snow, Ice and Permafrost Research
and Gow (1979) to bound small circle girdle fabrics. A Establishment Tech. Report 62, available from
small circle girdle fabric could be assessed quantita- USACRREL, 16 pp.
tively by finding a circular cone with its axis defined by Mardia, K.V. (1972) Statistics of Directional Data,
thebest line anditsapex at theorigin. The surfaceofthe Academic Press, New York, pp. 212-286.
cone would be located to minimize the sum of the Pearson, K. (1901) On lines and planes of closest fit to
squared distances with the data, and variability mea- systems of points in space, Philos. Mag. 6th Ser., Vol.
sures could again be defined in terms of distance and 2(11), pp. 559-572.
angle. Reed, B.C. (1989) Linear least-squares fits with errors

in both coordinates, American Journal of Physics, Vol.
57(7), pp. 642-646.
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