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A Generalized Plane-Strain Elastic Stress Solution For A Multiorthotropic-

Layered Cylinder

Mark 0. Witherell

U.S. Army ARDEC, Close Combat Armaments Center, Benet Laboratories,
Watervliet, NY 12189-4050, USA

Abstract

A methodology is presented for constructing an exact stress solution for a
multiorthotropic-layered cylinder for which all layers have equivalent axial
strain. Combined loadings of internal pressure, external pressure, and axial
force are included in the solution's formulation. The multilayered solution is
developed by applying the proper boundary conditions to a three-dimensional
elasticity solution for a monolayered orthotropic cylinder. Theoretical results
for multilayered cylinders with selected material layups and loading conditions
are compared with finite element results to verify the accuracy of the solu-
tion's formulation. The software implementation of this solution provides the
design engineer with a powerful tool for efficiently using composite materials
in cylindrical pressure vessels.

1. Introduction

Composite materials have become important in structural applications requiring
high stiffness and low weight. This situation also exists in a current problem
with Army cannon. The Army is interested in using composite materials to
lengthen cannon while still maintaining the inertial characteristics of the
shorter cannon. The design and analysis of these new cannon require a stress
solution for thick-walled composite cylinders.

1.1 Monolayered Stress Solutions

The simplest type of cannon construction involves the use of only one material
layer. The well-known stress solution by Lam6 in 1852, as outlined in [1], is
sufficient to characterize the state of stress for a monolayered isotropic
cylinder. Lekhnitskii [2] developed a more general stress solution for 1 mono-
layered anisotropic cylinder. Recently, O'Hara [3] investigated Lekhn'.skii's
equations, simplifying them for the case of an orthotropic material ulder
loadings of internal pressure, external pressure, and axial force. Shaffer [4]
and Bieniek, Spillers, and Freudenthal (5] also investigated stress solutions
for monolayered cylinders made from special types of orthotrooic materials.

1.2 Multilayered Stress Solutions

In real applications, however, cylinders are often constructed from many com-
posite layers where the fibers are wound or layed up at various angles. Most
commonly, fibers are used in + and - wrap angle pairs, where each pair can be
viewed as a single orthotropic layer. The whole structure can be considered a
multiorthotropic-layered cylinder. Stress solutions for bilayered cylinders
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have been investigated by Shaffer (6] and Witherell and Scavullo [7]. For
multiorthotropic-layered cylinders, stress solutions have been developed by
Bieniek, Spillers, and Freudenthal [5], Roy and Tsai £8], and Witherell [9].
The solution by Roy and Tsai is the most general and is a very good approximate
stress solution for a multiorthotrooic-layered cylinder with generalized plane-
strain boundary conditions under loadings of internal and external pressure and
axial force.

1.3 Exact Multilayered Stress Solution For Generalized Plane-Strain Boundary
Conditions

This paper is similiar to the work of Roy and Tsai [8], but whereas the develop-
ment of their multilayered solution does not include the total contribution to
the hoop strain eauivalence condition from the radial and hoop stress produced
by an axial force component, the solution discussed in this paper does. The
inclusion of these two hoop strain contributions in the solution is not trivial,
but it does result in a multilayered stress solution that is more rigorously
correct than that of Roy and Tsai. For several material layups and loading con-
ditions the author has investigated, the difference between the stress solution
in this paper and that of Roy and Tsai is small (less than 10 percent). To some
degree this small difference is to be expected, since the components neglected
in the Roy-Tsai solution are of a secondary nature being a conseauence of dis-
similar Poisson contraction or expansion among axially loaded layers. However,
there may oe some material layuos and loading conditions where this difference
is greater. In addition, the exact solution presented in this paper provides a
solid foundation for developing other stress solutions and eliminates any unnec-
essary uncertainties that would be associated with building on a less accurate
approximate stress solution. For example, the solution that follows is a neces-
sary part of the complete formulation for the exact thermal stress solution for
a multilayered cylinder with generalized plane-strain boundary conditions. 'his
oaoer describes the methodology of constructing the exact elastic stress solu-
tion for a multiorthotropic-layered cylinder under loadings of internal ana
external pressures and axial force. A comparison is then made between the exact
multilayered solution and a finite element solution to verify the solution oro-
cedure.

2. Geometry, Material, and Loading Definition

A multilayered cylinder can be viewed as an assembly of many single-layered
cylinders. It is fitting, therefore, to begin with a review of the monolayered
orthotropic cylinder problem. There are actually two monolayered solutions that
are used to construct the generalized plane-strain monolayered stress solution
for internal and external pressures and axial force. The first solution, called
SOLl. is for internal and external pressure loadings with plane-strain boundary
conditions (zero axial strain). The second solution, called SOL2, is for axial
loading with generalized olane-strain boundary conditions (constant axial
strain).

2.1 Monolayered Problem

In the monolayered case, the cylinder is assumed to be long with ends that are
either fixed, as in SOLL, or parallel such that the axial strain is uniform, as
in SOL2. The geometry and loading for SOL1 and SOL2 are shown in Fig. 1. The
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cylinder has an inner radius 'a' and an outer radius 'b'. For SOLI, the
cylinder is subjected to internal pressure 'p' and external pressure 'q', and it
has an axial force Fzi necessary to enforce the plane-strain axial constraint.
For SOL2, the cylinder is only subjected to an axial force FzZ. For both SOLI
and SOL2, a cylindrically-orthotropic material is assumed with its principal
axes coincident with the cylindrical coordinate system defining the cylinder
geometry. An orthotropic material is characterized by nine independent material
constants consisting of three engineering modulii (EI,E 2 ,E3 ), three shear modu-
lii (G12 ,G2 3 ,G3 1 ), and three Poisson's ratios (v12 ,v2 3 ,'31). The numbers 1,2,3
indicate the principal material directions. For the above assumptions, the
1,2,3 directions correspond to the radial, hoop, and axial directions of the
cylinder (rez). In addition, since the principal stress directions correspond
to the principal directions of both the cylinder geometry and the applied
loadings, shear effects are eliminated, and the number of material constants
necessary for the analysis reduces to six.

3. Stress Equations For a Monolayered Orthotropic Cylinder

L.ekhnitskii's two solutions for a cylinder with one anisotropic layer were
simplified by O'Hara [3] for the case of a cylindrically-orthotropic material.
The equations for these two solutions (SOLI and SOL2) are given in the Appendix
and are identical to those found in O'Hara's report with several corrections for
some minor typographical errors. SOL1 and SOL2 each include three stress
equations corresponding to the r, e, and z directions. SOLI also contains an
equation which defines Fzi, the axial force necessary to enforce the plane-
strain axial constraint. SOL2 also has an additional equation that contains a
complicated constant (T) used in the three other stress equations.

3.1 Monolayered Stress Components at Inner and Outer Surfaces

In developing the multilayered solution, applying the correct boundary con-
ditions at the interface of two orthotropic layers necessitates the use of
stress values evaluated at the inner (r=a) and outer (r=b) surfaces of each
layer. This evaluation process leads to six stress equations for SOLI and six
stress equations for SOL2 given below.

SOLI - Stress equations evaluated at inner radius (r = a):

ara = RAPQo + RAQ.q

RAP = -1 , RAQ = 0

aO, a = TAP.p + TAQ-q (2)

k(l+Co 2k )  -2kCo k -1

TAP = --------- TAQ =--------2k '2
(1-Co  ) (1-Co 2

az,a = ZAPo + ZAQ.q

ZAP = (A13 -A2 3 "TAP) -A2 3 "TAQ
A33  A3 3
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SOLI - Stress eQuations evaluated at outer radius (r = b):

arb = RBP-p + RBQ-q (4)

RBP=O0 , RBQ =-1

aeb = TBP-p + TBQ.O (5)

TSP = -TAQ.C0
2 , TBQ = -TAP

azb= ZBP-p + ZBQ-q (6)

ZBP = -ZAQ-C0
2  

,ZBQ = -ZAP + 2A13

The axial force eauation for SOLI can also be rewritten in a similiar form

Fzj = FZP-p + FZQ-q (7)

27ra2 ((TAP+TAQ+1) (A23-A1 3 )]L3 (1-k2) A 3

FZQ = -27rb 2  E(TBP+TBQ+1) (A23-A,3 )] _
A33  (-)A 23]

wenere

b

and the comoonents Ai are the elements of the compliance matrix for an
orthotropic material, as given in the generalized Hooke's Law,

[c] = [A] [a]

'k' is an orthotropic material constant given by

k all(9)J 22
where, in general,

Aj= Aij Ai3_j (10)A-33 -

SOL2 - Stress equations evaluated at inner radius (r a)

ar,a = 0 (11)

aOea = TAF-Fz 2  (12)

TAF = hT (1+TAP+TAQ)

aza= ZAF-Fz2  (13)

ZAF I A23 -TAF

4 A33



SOL2 - Stress equations evaluated at outer radius (r = b):

ar,b = 0 (14)

ae,b = TBFFz2  (15)
h

TBF = (I+TBP+TBQ)

azb = ZBF-Fz 2  (16)

ZBF A2 3 TBF
T A3 3

where

A23 -A13

and 
h 11 A22

T2h(bz-ap) 2 Lba2 (A bz(l-C0 k+l)z (A13+kA2 3 )T (b - A 3 L1 A 3+A23) - --- -- -- --o-- -- --
A33 (I-o 2k (I+k)

a2(1-Cok-1)Z (A13-kA2 3 )-

(I-Co 2 k ) (1-k) J

In each of the twelve stress equations above, there are constants (two for SOLI
and one for SOL2), e.g., TAP and TAQ for the aea stress of SOLI and TBF for the
ae,b of SOL2, which determine the magnitude of the contribution to the given
stress caused by either the internal or external pressure for SOLI or the axial
;orce for SOL2. These constants are material- and geometry-dependent, ana each
nas a three-letter name. The first letter corresponds to the stress direction
(r,e,z), the second letter signifies the point at which the stress has been
evaluated (a,b), and the third letter corresponds to either the pressure (q,p)
it is applied to or the axial force Fz2. For example, TAQ is the constant for
the Theta stress, evaluated at r = a (A), magnifying the external pressure a
(Q), and ZBF is the constant for the Z stress, evaluated at r=b (B), magnifying
the axial force Fz2.

4. Stress Solution For a Multiorthotropic-Layered Cylinder

In this section we discuss the methodology of constructing the stress solution
for a multilayered cylinder, where each layer has material and geometry defini-
tions identical to those previously discussed for the monolayered case. The
solutions SOLI and SOL2 are used as the basis for the multilayered solution.

4.1 Decomposition of the Generalized Plane-Strain Multilayered Solution

The complete multilayered solution for internal pressure, external pressure, and
axial force loadings with generalized plane-strain boundary conditions is
constructed from the superposition of three separate multilayered solutions.
Figure 2 shows the decomposition of the overall problem into its three parts.
The first solution, called MSOL1, is the multilayered plane-strain solution for
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internal and external pressure. This solution requires finding the set of
interface pressures ;uch that the hoop strain of each layer at every two-layer
interface is equal. Stated another way, the radial displacement must be con-
tinuous through the cylinder (no gaps). This solution, which uses SOLl, has
already been obtained by Witherell (9]. The total axial force necessary to
enforce the plane-strain boundary conditions for MSOLI is denoted as Fzit and is
the summation of the axial forces for each of the layers (Fzl) as given in Eu,.
(7). The second solution, called MSOL2 (or the axial force solution), is the
multilayered solution obtained by applying an axial force to each layer such
that all the layers have equivalent axial strain. For this solution, each layer
is considered independent, and thus gaps or overlaps result at each layer inter-
face once the axial forces are applied. These gaps or overlaps are taken care
of in the third solution. It should be noted that the axial strain produced in
each of these layers is the total axial strain for the overall solution. The
total axial force that results for the MSOL2 solution is equal to the sum of the
axial forces on each layer (Fz2) and is denoted as Fz2t. Finally, the third
solution, called MSOL3, is a plane-strain solution for a set of interface
pressures that eliminates the gaps or overlaps produced by MSOL2. MSOL3 is
called the plane-strain equilibrating solution because it equiliorates the hoop
strain at the layer interfaces by removing the gaos or overlaps produced by
MSOL2. The form of the solution for MSOL3 is identical to MSOL1, except that it
does not have internal or external pressures acting on the overall cylinder
(this was accomplished in MSOLI), only pressures acting on the interfaces of
each layer. Also, since MSOL3 is a plane-strain solution, it does not affect
the total axial strain of the MSOL2 solution. The MSOL3 solution does, however,
produce a total axial force which must be accounted for. The total axial force
for MSOL3 is denoted as Fz3t and is obtained by the summation of all the layer
axial forces (Fz3) (Fz3 is of the same form as Fz1 in Eq.(7)) produced by the
interface pressures of MSOL3. The net axial force for the overall solution,
prescribed for a given problem, is denoted as Fnet and is equal to the sum of

SFZ2t, and FZ t . The following section contains the necessary details +or

constructing the MSOL1, MSOL2, and MSOL3, as well as combining these three solu-
tions to obtain the overall solution.

4.2 The MSOLI Multilayered Solution

MSOL1 is the solution for the multilayered cylinder with internal and external
pressure under plane-strain boundary conditions and, as mentioned earlier, has
already been developed. The following discussion gives the important asoects of
this solution also used to develop MSOL3.

4.2.1 Step 1 For MSOL1

The first step in constructing MSOLi is to equate the circumferentia7 (hooD)
strain of adjacent orthotropic layers at their interface. In other words, we
equate the hoop strain at r = b of the ith layer with the hooD strain at r = a
of the i+1 layer

Ce,b(i) = EO,a(i+l) (19)

Recalling that [E] = [A] (a], 1,2,3 correspond to the r,@,z directions, and by
using the stress equations of SOLI with q(i-1) = p(i), we have

Gil-q(i-1) + Gi2.q(i) + Gi3-q(i+l) = 0 (20)
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where

Gil = -Coa(i)'a 2 2 (i)-TAQ(i)

Gi2 = -[A12(i) - 91 2 (i+1) 
+ 9 2 2 (i)

"TAP(i) + 92 2 (i+I)
'TAP(i+1) ]

Gi3 = - 22i+1)'TAQ(i+1)

4.2.2 System of Equations For MSOL1

For each two-layer combination there is one equation defining the hoop strain

equivalence condition. For a cylinder with 'N' orthotropic layers, there are

N-1 equations and N-1 unknowns. Setting up these equations in matrix form and

noting that p(1) and q(N) are the prescribed internal and external pressures of

the overall cylinder results in

G12 G13 I (1) G1-G .p(l)

G21  G22 G23  0 q(2) 0

G31  G32 G33 q(3) 0

- - (21)

0
GN..2,1 GN-2,2 GN-.2 31

GNI,1 GNi,2 L Q(N-1) -GN-1,3.a(N)I

or
(G] [Q] [ JR] (22)

4.2.3 Stress Distribution in Each Layer For MSOLi

This system of equations can be easily solved to determine the interface
pressure vector (Q]. By recalling that q(i-1) = p(i), we can now calculate the

stress distribution in layer i using the general stress equations for SOLI found

in the Appendix with p(i) and q(i) as input.

4.2.4 Total Axial Force For MSOL1

In addition to finding the stress distribution in layer i, the axial force

necessary to constrain layer i to zero axial strain can be calculated using

Eq. (7) with p(i) and q(i) as input. By summing the axial forces on each layer,

we can determine the total axial force, Fzlt. for MSOL1

N
Fzit = Fz(i) (23)

i=I

-Y I



4.3 The MSOL2 and MSOL3 Multilayered Solutions

Next, we proceed with the MSOL2 and MSOL3 solutions, which need to be looked at
together. Since the internal and external pressure loadings were already taken
care of in MSOL1, they are not included here. However, we need to bring the
the total axial force Fzlt of MSOLI into this discussion because it is part of
the net axial force on the cylinder.

4.3.1 Step 1: Equating the Axial Strain of Each Layer (Each Layer Independent)

We accomplish this by equating the axial strain at the external surface of each
layer (r=b) to that of layer 1

Cz,b(l) = EZb(i) (24)

By substituting Hooke's Law with the stress components from SOL2, we arrivt at
an expression for the axial force of layer i in terms of the axial force of
layer I and the material and geometry properties of layer I and layer i

CAX(1)

Fz2 "i) = Fz2(1) CAX(i) 25

wnere

CAX(i) = A32 (i).TBF(i) + A3 3 (i)-ZBF(i) (26)

4.3.2 Step 2: Equating the Hoop Strain at Each Layer Interface

This steo reauires consideration of only MSOL2 and MSOL3 solutions, since :he
nooo strain ecuivalence at each layer interface was already satisfiec ii MSOL1

E:,b(i) = Ce,a(i+l) (19)

The hooD strain at the interface of layer i and i+1 has contributions from the
two stress solutions MSOL2 and MSOL3:

CEO,b(i) + Ce.b(i) = 60,a(i+l) + EO0a(i+l) (27)

Axial Force Plane-Strain Equilibrating
MSOL2 MSOL3

4.3.2.1 Axial Force Contribution to CO,b(i) and £e,a(i+l)

Jsing Hooke's Law and the SOL2 solution gives

EO,b(i) = Fz2(i).CTB( ) (28)

where

CTB(i) = A2 2 (i)-TBF(i) + A2 3 (i).ZBF(i) (29)

Similiarly,
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eail = FZ2(i+l)-CTA(i+l) (30)

where

CTA(i+l) = A22 (i+1).rAF(i+j) + A23(i+1)*ZAF(i+1) (31)

4.3.2.2 Plane-Strain Equilibrating Contribution to COeb(i) and EO,a(i~l)

From an earlier derivation of the plane-strain solution MSOL1

EO,b~i) = EO,a(i+1) (19)

reduces to

G,1 .q(i-1) + Gi2*q(i) + Gi3 -q(i41) = 0 (20)

4.3.2.3 Combining the Axial Force and Plane-Strain Equilibrating Contributions
Into Eq. (27)

;'z2 (i)-CTB(i) - Fz 2 (i41)-CTA(i~l) + Gij 1 q(i-l) * Gi 2 -q(i) + Gi3 -o(i+!) = 0 (321

Now substituting Eq. (25) for Fz2(i) and Fz2(i41) results in

~z22.CX(1) CTB(l) CTA(i+1) ) G 2 oi i.(~)=0~3
z2(')-CAXCi -CAXi-~i1 +GVO )+Gi-~lj =0 k'13

At this ooint, the only unknowns are the axial force Fz2(2) and the interface
oressures a(i-1), q(i), and q(i~l). Step 3 enables us to get Fz2 (1) in terms of
the interface pressures and other known quantities, and thus we can solve the
entire system of equations.

4.3.3 Step 3: Summation of Axial Forces

This steo considers the total axial force contributions from MSOLI, MSOL2, and
MSOL 3

Fnet = Fzit +Fz2t + Fz3t 3)

Both Fnet and Fzit are known values (Fl was calculated in MSOL1)

N N 1
Fz2t Fz2(i) =Fz2 (1)-CAX(1)-( 1(35)

Also
N N

Fz3t =LFz3(i) = (FZP(i)-P(i) ' FZQ(i).q(i)) (36)

For the equilibrating solution, p(l) and q(N) = 0 and p(i+1) = q(i)

N-1
Fz3t = (FZP(i+1) + FZQ(i)).q(i) (37)

9



N N-1
Fnet Fzt + Fz2(1)'CAX(i).( 

+  (FZP(i+i) + FZQ(i)).q(i) (38)

Solving for Fz2(1) gives

N-iF 
Fnet - Fzlt - i |(PZP(i+l)+FZQ(i)).q(i)J

i=1L
Fz2(1 )  = -- - - - - - - - - - - - - - - - - - - - - 39)

N
CAX(i).( Z __

i=1 CAX(i)

Now, back substituting Fz2( 1) into the hoop strain equivalence condition for

interface (i) gives

F N-iF

CEQ(i) L net +Fzjt L F P j l) F Qj1.~ )1

+ Gi!.q(i-I) + Gi2-q(i) + Gi3-q(i+1) = 0

where CEQ(i) is given by "

- CTB(i) CTA(i+i)
CAX(i) CAX(i+1)j

CEQ(i) ----------------------- 4
N

CAX(j)

4.3.4 Step 4: Solution Assembly

In matrix form, the set of N-i hoop strain equivalence equations is given by

([F] + [G]) [QQ] = FZN-(C] (42)

where the components of IF] are given by

Fij = CEQ(i)-(FZP(j+I)+FZQ(j)) (I < i , j < N-i) (43)

and the components of the matrix [G] and the vector [QQ] are the same, as given
by [G] and (Q] in Eqs. (21) and (22). The constant FZN is given by

FZN = Fnet - Fzjt 44)

and the components of the vector [C] are given by

Ci = CEQ(i) , (1 4 i 4 N-i) (45)

The above matrix eguation can be easily solved to determine the components of
the vector (QQ], the interface pressures.
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4.4 Stress Distribution in Each Layer For the Generalized Plane-Strain
Multilayered Stress Solution

In order to obtain the stress distribution in layer i for the generalized plane-
strain multilayered solution, the following procedure must be employed:

1. The total interface pressure vector (QT] must be obtained by adding [Q]
found from Eq. (22) with [QQ] found from Eq. (42)

[QT] = [Q] + [QQ] (46)

2. The axial force components Fz2(i) must be obtained by

" calculating Fz2(1) (Eq. (39)) using the components of £QQ] for q(i) and
using Fzlt obtained using [Q] from MSOL1 in connection with Eqs. (7) and
(23);

* using Fz2(1) and Eq. (25), the Fz2(i) components can now be obtained
directly.

The stress distribution in layer i may now be obtained by superimposing the SOL1
solution using the components of [QT] as input for q(i) and p(i) with the SOL2
solution using Fz2(i) as input for Fz2.

5. Solution Verification

The exact multilayered solution was used to investigate the stress and strain
distribution within a ten-layered cylinder (N=10). The cylinder had an inside
radius a(1) = I inch, an outside radius b(10) = 2 inches, and each of the ten
2ayers was 0.1 inch thick. The material used was an IM6/eDoxy with a 55 oercent
fiber-volume ratio. The layuo considered consisted of five hooo-axial pairs
starting at the inside radius of the cylinder. The material properties for the
hoop and axial fiber orientations are given in Table 1. The loading conditions
for the case considered included internal pressure (p(1) = 2 psi), external
pressure (q(10) = I psi), and axial force (Fnet = 10 lbs). The results for this
case are shown in the four plots of Fig. 3. The plots show the r,e,z stress and
strain distributions as a function of radial position in the cylinder.

5.1 Finite Element Solution Used in Comparison

The multilayered solution for the above-mentioned case was also compared to a
finite element solution for the same case. The ABAQUS finite element code was
used to produce the stress results used in the comparison. The finite element
model contained 20 eight-node quadratic axisymmetric elements with two equal-
sized elements used to model each of the ten orthotropic layers. The comparison
was limited to the radial, hoop, and axial stress values evaluated at the inner
and outer radii of each orthotropic layer. Table 2 contains the results of this
comparison.
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6. Discussion of Results

6.1 Comparison of Exact Solution With Finite Element Solution

A comparison of the theoretical solution with the finite element solution for
the radial, hoop, and axial stresses at the inner and outer surfaces of each
orthotropic layer is shown in Table 1. For all three stress components, the
comparison shows excellent agreement between the results generated by the theory
and those from the finite element solution. For the finite element solution,
the stresses were obtained at the nodes and were somewhat less accurate than the
stresses obtained at the integration points of the element. This error,
although very small, is seen most clearly by the fact that the radial stress
value at the inner surface of the overall cylinder is not equal to the
prescribed value of -2 psi.

6.2 Stress and Strain Distributions Produced by Exact Solution

In Fig. 3, the stress and strain distributions are displayed for the multi-
layered cylinder with the same geometry and loading conditions as the case
already discussed. As can be seen in the plot containing the radial and axial
stress, the radial stress varies continuously from -2 psi at the inside radius
to -1 psi at the outside radius. As is also seen in the plots, the axial layers
take up the majority of the axial load, and the hoop layers sustain the highest
levels of hoop stress. If the axial stress was integrated over the end surface
area, it would be equal to the net axial force prescribed for the cylinder
(Fnet=10 lbs). The strain plots show the expected smooth and continuous curve
for the hoop strain and the uniform axial strain, which the generalized plane-
strain boundary conditions require.

7. Conclusion

An exact generalized plane-strain elastic stress solution for a
multiorthotropic-layered cylinder has been develooed for loadings of internal
pressure, external pressure, and axial force. The software implementation of
this stress solution has been shown to be in excellent agreement with finite
element results.
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Table 1. Material Properties For IM6/Epoxy 55% Fiber-Volume Ratio

Fiber

Direction Er (Mpsi) E6 (Mpsi) Ez (Mosi) _r_ Oz z

Hoop 1.126 23.31 1.126 0.0152 0.3147 0.3991
Axial 1.126 1.126 23.31 0.3991 0.0152 0.3147 I
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Appendix

SOL1 - Plane-Strain Solution For a Monolayered Orthotropic Cylinder Under
Internal Pressure p and External Pressure q

! k k-- k _ k-1 aco k - 1 _ k+
.=;.(-) +

=1----------------------k CO -
(l-Co 2k) b (-Co 0 ) 2 r

L L

I PCo k + I - rk-I ICk-I - k+1 bk+l
a6  I k() - .... kC ()

(1-Co (-co ) j l

7 L

-Z Ik+l r k-I

7Z ----- (A13+kA 2 3 ) (b)
33 1 I -C_ C )

L
F 7

Ock- 1  p (A13  ck+ k+i---- -A2k-kA23 ) cc )

F

27- k+1 k+1 A13 + kA2 3Zi -:2 b2 (q-pCo )(1-Co )- ----

A3 3 (1-Co2k ) 
I + k

L7

+ a2(qCk-i - P)(ICOK) A 1 --3 k

where 'r' is the radial position in the cylinder.

SOL2 - Generalized Plane-Strain Solution For a Monolayered Orthotropic Cylinder

Under Axial Force Fz2

F
Fz2.h (ICok+1)  k-1 k-1 k+lar 2k (b) 2 ) k+ b(

L (I-Co (-Co2k 0  r
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