
WRDC-TR-90-8007
Volume V
Part 47

AD-A250 478

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 47 - Embedded SQL User's Manual

K. Stephey, J. Slaton

Control Data Corporation
Integration Technology Services2970 Presidential Drive

Fairborn, OH 45324-6209 ML D Cy T E

September 1990 -

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Puiblic Release; Distribution is Unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSCN AIR FORCE BASE, OHIO 45433-6533

92-12229

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.

This report is releasable to the National Technical
Information Service (NTIS). At NTIS, it uil[be

available to the general public, including foreign nations

DA D L. JO SN, Pr ect Manager DATE

Wri t-Pators AFB, OH 45433-6533

/

FOR THE COMMVANDER:

RUCE A. RASIUSSEN, Chief DATE, 77
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you ', L>h to be removed form our mailing list, or if the
addressee is no longer employed by your ,)rganization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-65 -:o help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations. o r notice on a specific document.

Unclassified

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

UM 620341440 WRDC-TR-90-8007 Vol. V, Part 47

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Techno!ogy Services

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB. OH 45433-6533

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

I.TITLE (I See block 19 78011F 595600 F95600 20950607

2. PERSONAL AUTHOR(S)
Control Data Corporation: Stephey, K.. Slaton, J.

3a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/ 1/87-12/31/90 - 1990 September 30 80

6. SUPPLEME ARY NOT,

WRDC/MTI Project Priority 6203

7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.

1308 0905

9. ABSTRACT (Continue on reverse if necessary and identify block number)

This document explains how to use embedded SOL within applications to access data in an integrated environment.

BLOCK 11:

INTEGRATED INFORMATION SUPPORT SYSTEM

Vol V - Common Data Model Subsystem

Part 47 - Embedded SQL User's Manual

10. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

JNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

2a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. CFFiCE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WRDC MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIF!CATICN OF THIS PAGE

UM 620341440
30 September 1990

FOREWORD

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS) . The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iii

UM 620341440
30 September 1990

TABLE OF CONTENTS

SECTION 1 SCOPE ... 1-1
1.1 Identification .. 1-1
1.2 Purpose .. 1-1
1.3 Introduction ... 1-1
1.4 A udience ... 1-1
1.5 How this Manual is Organized .. 1-2

SECTION 2 REFERENCES ... 2-1
2.1 Reference Documents .. 2-1
2.2 Terms and Abbreviations .. 2-3

SECTION 3 SQL APPLICATION PROGRAMMING 3-1
3.1 Options Available to the Application Programmer 3-4
3.2 Getting Started .. 3-6
3.3 Design Guidelines .. 3-9
3.4 Coding Guidelines ... 3-11
3.5 Embedding SQL in COBOL .. 3-13
3.6 Embedding SQL in FORTRAN 3-14
3.7 Embedding SQL in C .. 3-15
3.8 Precompile Compile, Link, and Execute the Application 3-16
3.9 Example of Precompiling in the UNIX Environment 3-18
3.10 Example of Executing in the UNIX Environment 3-18
3.11 Receiving Precompilation Error/Informational Messages 3-19

SECTION 4 FILE INPUT/OUTPUT PRIMITIVES (FIOPs) 4-1
4.1 Parameter Formats ... 4-1
4.2 Status Return Codes/Error Handling 4-1
4.3 NAMFIL - Temporary File Name Function 4-2
4.4 OPNFIL - File Open Function .. 4-2
4.5 INPFIL - File Read Function ... 4-4
4.6 OUTFIL - File Write Function .. 4-5
4.7 SEKFIL - File Seek Function ... 4-5
4.8 CLSFIL - File Close Function .. 4-6
4.9 SRTFIL - Sort/Merge Function 4-7
4.10 Data Organization ... 4-9

APPENDIX A EXTERNAL SCHEMA DATA TYPES A-1

APPENDIX B USER VIEW REPORT .. B-1

APPENDIX C CONCEPTUAL SCHEMA MODEL C- 1

iv

UM 620341440
30 September 1990

APPENDIX D SAMPLE COBOL PROGRAMS D-1

APPENDIX E SAMPLE C PROGRAMS E-1

APPENDIX F SAMPLE FORTRAN PROGRAMS F-i

APPENDIX G DATE COMPLEX MAPPING ALGORITHMS.............G I

Acce ssion For

NTIS GRA&I
DTIC TAPi

8AUL

't,

0o

I _

UVI

"

UM 620341440
30 September 1990

LIST OF ILLUSTRATIONS

Eure

3-1 SQL Precompiler 3-2

3-2 NDML Verbs 3-4

3-3 SQL Data Retrieval and Update Constructs 3-5

3-4 Request Processor Language/DBMS Matrix 3-7

3-5 Input and Output Parameters for SQL Programs 3-9

3-6 Data Types for Statistical Functions 3-11

3-7 SQL Error Codes 3-12

C-1 Conceptual Schema IDEF 1 Model C-1

vi

UM 620341440
30 September 1990

/
SCOPE

'1.1 Idntifica

This document contains syntax and instructions for the use of the embedded SQL language
used with the Common Data Model precompiler. -2
1.2 Purse

e-nThe Embedded SQL Precompiler User's Manual is designed to help the application
programmer write embedded SQL statements in host languages such as COBOL, C, and
FORTRAN, to access the heterogeneous distributed databases supported within the Common Data
Model (CDM) operating environment. \

1.3 Introduction

- The Embedded SQL used by the CDM is adapted from the American National Standard
Mstitute (ANSI) standard, numbered X3H2-89-27, dated November 16, 1988. The Embedded

/'SQL used by the CDM is a subset of the full ANSI SQL Data Manipulation Language
specification.

ad The actual data may be distributed across multiple database management systems (DBMSs)
and computers, but the application programmer does not need to be concerned with the actual data
locations and actual data formats. These details are handled by the CDM mappings that exist
between the schemas.

Embedded SQL allows the application program to interact with the CDM. Embedded SQL
uses the three-schema definitions described to the CDM by the Neutral Data Definition Language
(NDDL) to satisfy a data request. SQL statements are embedded in the host language programs of
COBOL, C, or FORTRAN. 4z_

The CDM Frubedded SQL provides some important functions that standard SQL does not:

a. Referential Integrity; single database and across multiple databases

b. Domain verifications

c. Outer-join operations

1.4 Audience

This manual is intended for application programmers writing SQL applications. It
assumes a basic familiarity with SQL and application programming. This manual does not attempt
to teach the user to write SQL statements or program using structured programming techniques.
The Embedded SQL Reference Manual provides a detailed explanation of the syntax and semantics
guiding the development of SQL applications and should be used as a reference.

1-1

UM 620341440
30 September 1990

1.5 How this Manual is Organized

This manual contains four sections and seven appendices as described below:

SECTION 1, SCOPE

This section describes the scope of this manual.

SECTION 2, REFERENCES

This section lists other reference materials and defines commonly used terms,
abbreviations, and acronyms.

SECTION 3, INTRODUCTION TO SQL APPLICATION PROGRAMMING

This section includes the options available to the application programmers, design and
coding guidelines and the steps necessary to precompile and execute an application.

SECTION 4, FILE INPUT/OUTPUT PRIMITIVES(FIOPs)

This section includes functions available to the application programmer for accessing
sequential disk files with fixed length records. These functions provide language and operating
system independence.

APPENDIX A, EXTERNAL SCHEMA DATA TYPES

This appendix contains a comprehensive list of External Schema data types for COBOL,
FORTRAN, and C programming languages.

APPENDIX B, USER VIEW REPORT

This appendix contains a User View Report.

APPENDIX C, CONCEPTUAL SCHEMA MODEL

This appendix contains a Conceptual Schema IDEFIX model used as an example
throughout this manual.

APPENDIX D, SAMPLE COBOL PROGRAMS

This appendix consists of COBOL programs with embedded SQL.

APPENDIX E, SAMPLE C PROGRAMS

This appendix consists of C programs with embedded SQL.

APPENDIX F, SAMPLE FORTRAM PROGRAMS

This appendix consists of FORTRAN programs with embedded SQL.

1-2

UM 620341440
30 September 1990

APPENDIX G, DATE COMPLEX MAPPING ALGORITHMS

This appendix explains the algorithm functions for complex mapping algorithms that
support the user in accessing database columns with date data.

1-3

UM 620341440
30 September 1990

SECTION 2

REFERENCES

2.1 Reference Documents

1. UM 620341001, CDM Administrator's Manual, 31 May 1988, Source:
AFWAI/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

2. TBM620341000, CDM1, A IDEF1 Model of the Common Data Model, 31 May 1988,
Source: AFWAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

3. IDS 150120000C, ICAM Documentation Standards, 23 July 1984, Source:
AFWAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

4. UM 620341100, Neutral Data Definition Language User's Guide, 31 May 1988,
Source: AFWAL/MLTC, Wright- Patterson AFB, Ohio 45433-6533.

5. DS 620341100, Neutral Data Definition Language Development Specification, 31 May
1988, Source: AFWAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

6. PRM620341200, NDML Programmer's Reference Manual, 31 May 1988, Source:
AFWAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

7. DS 620341200, NDML Precompiler Development Specification, 31 May 1988,
Source: AFWAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

8. DS 620341310, Distributed Request Supervisor Development Specification, 31 May
1988, Source: AFWAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

9. DS 620341320, Aggregate Development Specification, 31 May 1988, Source:
AFWALIMLTC, Wright-Patterson AFB, Ohio 45433-6533.

10. UM 620344200, Form Processor User's Manual, 31 May 1988, Source:
AFWAIMLTC, Wright-Patterson AFB, Ohio 45433-6533.

11. UM 620341420, CDM Impact Analysis User's Manual, 31 May 1988, Source:
AFWAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

12. UM 620341403, CDM Reports and Application User's Guide, 31 May 1988, Source:
AFWAI/MLTC, Wright- Patterson AFB, Ohio 45433-6533.

13. DS 620341420. CDM Impact Analysis Development Specification, 31 May 1988,
Source: AFVAL/MLTC, Wright-Patterson AFB, Ohio 45433-6533.

14. PMP/PMS-CDC-R02, Program Master Plan and Program Master Schedule: AAAC
Program, 17 June 1988, Source: Control Data Corporation, 2970 Presidential Drive,
Fairborn, Ohio 45324.

2-1

UM 620341440
30 September 1990

15. SQL*Forms Designer's Reference, Version 2.0, 1986, Source: Oracle Corporation,
Belmont, California.

16. SQL*Forms Operator's Guide, Version 2.0, 1986, Source: Oracle Corporation,
Belmont, California.

17. SQL*Report User's Guide, Version 1.0, 1986, Source: Oracle Corporation, Belmont,
California.

18. The ORACLE Database Administrator's Guide, Version 5.1, August 19, 1986,
Source: Oracle Corporation, Belmont, California.

19. Pro*C User's Guide, Oracle Corporation, Belmont, California, Part #3504-V1.1.

20. JANUS User Guide, Version 2.0, June 1987, Source: D. Appleton Company, Inc.,
Manhattan Beach, California.

21. ANSI AX3H2-89-001 ISO-ANSI Working Draft "Database Language SQL2", October
1988.

22. ANSI X3.135.1-1989 "Database Language SQL".

23. ANSI X3.168-198X "Database Language Embedded SQL".

24. DB2 Application Programming Guide for TSO and Batch Users, IBM Corporation
(Chapter 9).

25. DRAFT SRD-TE-R.EPORTS, Common Data Model (CDM) Reports: AAAP Program,
29 July 1988, Source: Control Data Corporation, 3131 S. Dixi- Dr., Dayton, Ohio
45439-2265.

26. DRAFT SRD-TC-FORMS, AAAP-FORMS: AAAP Program: 11 March 1988, Source:
Control Data Corporation, 3131 S. Dixie Dr., Dayton, Ohio 45439-2265.

27. DRAFT SRD-TA-JANUS, AAAP-JANUS: AAAP Program: 8 April 1988, Source:
Control Data Corporation, 3131 S. Dixie Dr., Dayton, Ohio 45439-2265.

28. DRAFT SRD-TB-IMPACT, AAAP-IMPACT: AAAP Program: 11 March 1988
Source: Control Data Corporation, 3131 S. Dixie Dr., Dayton, Ohio 45439-2265.

29. DRAFT SDS-TB-FORMS, AAAP-FORMS: AAAP Program: 15 July 1988 Source:
Control Data Corporation, 3131 S. Dixie Dr., Dayton, Ohio 45439-2265.

30. DRAFT SDS-TB-IMPACT, AAAP-FORMS: AAAP-IMPACT: 15 July 1988 Source:
Control Data Corporation, 3131 S. Dixie Dr., Dayton, Ohio 45439-2265.

2-2

UM 620341440
30 September 1990

2.2 Terms and Abbreviations

AAAC - Automated Airframe Assembly Center.

AAAP - Automated Airframe Assembly Program.

Application Process - (AP) A cohesive unit of software that can be initiated as a unit to perform
some function or functions.

Attribute Use Class - (AUC) An attribute use class indicates that a particular class is used in a
particular entity class. The attribute class is either owned by that entity or inherited from another
related entity class.

C - A programming language originally developed at AT&T Bell Labs, designed for efficiency,
portability and promoting good software engineering practices.

COBOL - A programming language (Common Business Oriented Language) used for business
and early data processing applications.

Common Data - all the data of the enterprise. - (CDM) IISS subsystem that describes common
data of an enterprise and includes conceptual, external and internal scheinas and schema
transformations.

Common Data Model - (CDM) IISS subsystem that describes common data of an enterprise
and includes conceptual, external and internal schemas and schema transformations.

Common Data Model Administrator - (CDMA) The person or group of persons responsible
for creating and maintaining an enterprise's Common Data Model. The CDMA manages the
common data rather than managing applications that access data.

Conceptual Schema - (CS) The standard definition used for all data in the CDM. It is based on
IDEF1 information modeling.

CS-IS - Conceptual Schema to Internal Schema Mapping.

Cursor - This programmer's concept is the capability in which a procedural programming
language interfaces with the SQL set oriented language. SQL retrieves a set of data and the
programmer uses a cursor to track the current processing position within that set much as a CRT
cursor indicates the user's current position on a terminal screen.

Data Field - (DF) An element of data in the internal schema. Generally, a DBMS will reference
data by this name.

Data Item - (DI) An element of data in the external schema. An NDML programmer references

data by this name.

Data Type - A specific computer representation of a domain.

DBA - Data Base Administrator.

2-3

UM 620341440
30 September 1990

Distributed Request Supervisor - (DRS) This IISS CDM Subsystem Configuration Item

controls the execution of distributed NDML queries and non-distributed updates.

Domain - A logical definition of legal attribute class values.

ES-CS - External Schema to Conceptual Schema Mapping.

External Schema - (ES) An application's view of the CDM's conceptual schema.

Forms - Structured views which may be imposed on windows or other forms. A form is
composed of fields where each field is a form, item, or window.

Forms Processor - (FP) A generic set of callable execution time routines available to an
application program for form processing.

FORTRAN - A programming language (Formula Translation) used for mathematical and
scientific applications.

IDEFI - A modeling methodology developed under the ICAM program. IDEF1 is one of the
three ICAM definition techniques to characterize the manufacturing business environment. IDEF1
is used to produce an "information model" which represents the structure and semantics of
information within the environment. IDEFIX is the extended version of IDEF1.

Integrated Information Support System - (IISS) A test computing environment used to
investigate, demonstrate and test the concepts of information management and information
integration in the context of Aerospace Manufacturing. The IISS addresses the problems and
integration of data resident on heterogeneous databases supported by heterogeneous computers
interconnected via a Local Area Network.

Interactive Application Designer - (IAD) A program that performs the functions of the screen

painter in SQL*Forms.

Interactive Application Processor - (lAP) A computer program that runs a form.

Internal Schema - (IS) The definition of the internal model, the storage structure definition,
which specifies how the physical data are stored and how they can be accessed. It is represented in
terms of the physical database components, including record types and inter-record relationships.

JANUS/LEVERAGE - A support tool developed by D. Appleton Company Inc. for data
analysis and data modeling.

LISP - List Programming language. This language is used primarily for artificial intelligence
applications. It treats program as data, with easy to use list structures.

LOGUNITWORK - A logical unit of work is a recoverable unit. A logical unit of work is a
transaction. A recoverable unit has the following properties: (1) it obeys the rules of consistency;
(2) it either happens in its entirety or not at all; (3) once it is committed, it cannot be undone.

Mapping - The correspondence of independent objects in two -chemas: ES to CS or CS to IS.

2-4

UM 620341440
30 September 1990

Neutral Data Definition Language - (NDDL) A language used to manipulate or populate
information in the Common Data Model database.

Neutral Data Manipulation Language - (NDML) A language developed by the IISS project
to provide uniform access to common data, regardless of database manager or distribution criteria.
It provides distributed retrieved and single node update.

Object - Named Common Data Model item; for example, entity class, data item.

ORACLE - Relational DBMS based on the SQL (Structured Query Language, a product of Oracle
Corporation). The CDM is implemented as an ORACLE database.

PL/I - Programming Language One. A procedural programming language originally developed
for IBM computers.

PMP&S - Program Master Plan and Schedule.

POSIX - An agreed upon portable operating system interface standard, standardized the interface
to many operating system capabilities. Originally developed by IEEE.

Pro*C - An extension of the programming language C that lets you develop user exits and other
programs that access the ORACLE database. A Pre-Compiler converts Pro*C code into pure C
code.

SQL - Structured Query Language. An agreed upon standard language for relational data base
access.

SQL2 - A standards committee successor to the SQL Standards (X3.135-1986 and X3.135-18-
1986).

SQLDA - SQL Description Area. An area of program storage used which contains meta-data
concerning an SQL staterrent.

Structured Query Language - (SQL) The primary computer language for manipulating data in
the ORACLE database.

Trigger - A sequence of SQL commands and/or SQL*Forms commands that are executed when a
certain event occurs.

User exit - A function written in a procedural programming language such as C, which may be
invoked by a trigger.

VDT - Video Display Terminal.

2-5

UM 620341440
30 September 1990

SECn-ON 3

SQL APPLICATION PROGRAMMING

This section introduces you to SQL Application Programming and explains:

* the options available to the application programmer
* how to get started
* design and coding guidelines
* how to precompile, compile, link and execute the application
* how to receive precompilation error/informational messages

Application programs can be developed, written and precompiled on the host machines
VAX/VMSTM , HP/UXTM and PYRAMID/OSx TM . The applications with embedded SQL
statements may be written in COBOL, C, or FORTRAN.

The CDM SQL precompiler parses the application program source code and identifies the
SQL statements. These statements are transformed from External Schema format to Conceptual
Schema to Internal Schema, thereby decomposing the SQL statements to single database requests.
These single database requests are transformed to generic DML commands to access the specific
databases, either ORACLE@ or DB2'M or VAX- I1M, to satisfy the request. These programs are
known as Request Processors or RPs or RP-Subs.

The SQL commands in the application source program are replaced by host language code
which, when executed, activates the run time processes associated with this particular SQL
command to evaluate the requests. These generated programs are known as modified USER-APS.

The precompiler also generates Conceptual Schema/External Schema (CS/ES)
Transformation programs. These programs transform the final results of a request from
Conceptual Schema (CS) format to External Schema (ES) format. The final results are the format
in which the application programmer requires data values. The CS/ES program also performs any
statistical functions that you request, such as MIN, MAX, SUM, etc., and any presentation request
such as ORDER BY or DISTINCT. CS/ES programs are generated only for SQL queries.

The precompiler stores and maintains a cross-reference of all application programs to the
External Schema View and data items.

3-1

UM 620341440
30 September 1990

Modified
User

Application
Program
(User-AP)

Database
If Request

II Processors
Sub

Application Programs

Program with PRECOMPILER
embedded

SQL CS-ES
Data Transformer

Program

7Referential
I Integrity

ChecksProgram

CDM

data

dictionary

Figure 3-1. SQL Precompiler

In addition to heterogeneous database access, the most significant feature of the
precompiler is that it generates Referential Integrity Test (RIT) programs for SQL Update (Insert,
Update, and Delete) requests. To facilitate your understanding of Referential Integrity, refer to the
IDEFIX model presented in Appendix C. The entity and domain RIT programs validate the
following activity at execution time:

a. An Insert into a Conceptual Schema entity is performed if its independent entity occurrence
exists. For example, a COLINEITEM instance is represented by a particular CUSTOMERNO,
CUSTOMERORDERNO, and PARTNO among other attributes. A COLINEITEM instance
will be inserted only after validating the existence of this CUSTOMER_ NO,
CUSTOMER_ORDERNO and PARTNO instance. This is a Type- 1 Referential Integrity Test.

3-2

UM 620341440
30 September 1990

b. An Insert of a duplicate key value is not performed. For example, the entity PART is
uniquely identified by a PARTNO. A part with an identical PARTNO will not be inserted. This
is a Key Uniqueness Referential Integrity Test.

c. A Delete of a Conceptual Schema entity is not performed if dependent entity occurrences
exist. For example, a CUSTOMER_ ORDER instance will not be deleted, if there are any
COLINEITEM instances associated with this CUSTOMERORDER. This is a Type-2
Referential Integrity Test.

d. An Update only of a Conceptual Schema dependent entity key value will be performed only
if its independent entity key instance exists. For example, updating PARTNO in the
COLINEITEM instance will be performed only after validating the existence of this PARTNO
instance in the PART entity. This is also a Type- 1 Referential Integrity Test. Note: update of key
attributes is not permitted.

e. An Insert/Update of a data value of an attribute must not conflict with the domain values
and ranges specified for that attribute. For example, if the valid domain values for attribute
COSTATUSCODE were defined to the CDM as being either "0" or "C" or "P", an attempt to
insert a data value of "Z" would not be permitted. This is a Domain Verification Test.

Since RITs also access databases, the code generated to test the data is known also as RPs.

Upon successful precompilation, the generated Request Processor programs are transferred
to the appropriate machine where the databases are to be accessed. Procedures are initiated to host
language precompile and compile the RPs and to compile the modified USER-AP and CS/ES
programs.

Prior to linking the user application, another type of RP is generated. This is the RP-Main.
The main program performs the functions of logging onto the database, logging off, committing
and rolling back operations, and submitting calls to the appropriate RPs to satisfy a request. One
RP-Main will be generated for each database to be accessed by an application.

Once the application is linked, it is ready for execution. All applications that access
multiple databases or require access to a database that resides on a host machine different than the
machine on which it was precompiled will require the services of a network transaction manager
and some communications software.

3-3

UM 620341440
30 September 1990

3.1 Options Available to the Application Programmer

The programmer can precompile in these environments:

VMS/VAX 780 Tm

VMS/VAX 8600TM

HP-UX/HP-835 Tm

OSx/PYRAMID 98xTM

The programmer can embed SQL statements in these host languages:

COBOL
FORTRAN
C

The SQL request can access these databases:

ORACLE
DB2
VAX-Il

The databases can reside in these environments:

VMS/VAX
HP-UX/HP-835
MVS/IBM TM

Figures 3-2 provide examples of basic SQL verbs.

DATA RETRIEVAL DATA UPDATE CURSOR TRANSACTION
VERBS VERBS COMMANDS VERBS

Select Insert Declare Cursor Commit
Delete Open Cursor Rollback
Update Fetch

Close Cursor

Figure 3-2. NDML Verbs

3-4

UM 620341440
30 September 1990

Figure 3-3 provides examples of basic SQL Constructs.

SELECT INSERT

Selectinetno

from values

DELETE UPDATE

Delete Update
set

where where

Figure 3-3. SQL Data Retrieval and Update Constructs

3-5

UM 620341440
30 September 1990

3.2 S

To create COBOL, FORTRAN, or C programs with Embedded SQL statements, follow the
steps provided below.

I1. EXTERNAL SCHEMA REPORT

The first thing required is an EXTERNAL SCHEMA or USER VIEW report. This
report must contain, at a minimum, a list of views you may write applications against. The
report must list all the views and its data items as well as data type of each data item. Refer
to Appendix B for an example of a USER VIEW Report. Refer to the CDM Reports
User's Manual for all available reports.

2. INTENT OF APPLICATION

You must have a thorough understanding of the scope of your application. You
must know:

" What purpose the application serves.
" What data is requested.
" If any specific ordering exists.
" If data is being input. If so, does this view meet all the criteria of

an updatable view?

Refer to the Embedded SQL Reference Manual to determine the criteria for an
updatable view.

3. LOGISTICS OF APPLICATION

You must know or have answers to these questions:

" What language is the application being coded in?
* What host machine will the application run on?
* What is the logical unit of work name?

4. VIEWS/HOST LANGUAGE DATA TYPE COMPATIBILITY and the CDMA

It is the responsibility of you and the CDMA to ensure that the data type of the data
items of your view are compatible with the data types supported by the programming
language. Refer to Appendix A for a list of valid data types for each programming
language supported by the precompiler.

5. WRITE THE APPLICATION

Use the coding guidelines detailed in the next section while embedding SQL in a
host language of COBOL, FORTRAN, or C.

Note: Do not code for Referential Integrity Tests. These tests are generated by the
precompiler and validated at execution.

3-6

UM 620341440
30 September 1990

6. LANGUAGE MATRIX

The language of the modified USER-APs and the CS/ES Transform programs
always will match the host language of the application program. For example, a COBOL
application program generates COBOL modified USER-APs and CS/ES Transformers.
You may choose the language you want the RP-Sub Programs to be generated in. Refer to
the Request Processor Language/DBMS Matrix in Figure 3-4 for the combinations of
language of the RP and DBMSs currently supported by the precompiler. If you do not
specify a language, the precompiler selects the same language as that of any RP-Sub
precompiled in this logical unit of work or it will default to the language of the application
program, provided that language is supported. The precompiler overrides the selection.
The RP-Main program will be generated in the same language as all of its RP-Sub
programs.

DBMS

REQUEST ORACLE
PROCESSOR INGRES5 VAX-11 DB 2
LANGUAGE INGRES6 IDMS

COBOL YES YES YES

FORTRAN YES NO NO

C YES NO NO

Figure 3-4. Request Processor Language/DBMS Matrix

3-7

UM 620341440
30 September 1990

7. COMPLEX MAPPING ALGORITHM DATA TYPES/HOST LANGUAGE
COMPATIBILITY

Complex Mapping Algorithms are software modules that you or the CDMA write to
perform a complex mapping or transformation. Complex Mapping Algorithms (CMAs)
may be written in any programming language. But, when invoked, the data types between
the calling program and the CMA must be compatible. The CDMA must ensure that
CMAs, if they are to be shared by application programs written in different languages,
perform the data type conversion themselves. If the algorithm transforms between an entire
record and one or more attributes, the data type of the record structure must be a character
buffer. It is highly recommended, that if the CMA is generic (i.e., to be invoked by
applications in different languages) then, the data types should also be generic (i.e.,
alphanumeric or character). In addition, the values must be passed by address, not by
value.

8. DATE COMPLEX MAPPING ALGORITHMS

Complex mapping algorithms help you access database columns with date data.
See Appendix E for information on using these algorithms.

3-8

UM 620341440
30 September 1990

3.3 Design Guidelines

1 . Simple Interfaces

Adhere te the principle of modular programming: create one module to perform one
function. Each routine should consist of one SQL statement. Choose from among Select,
Insert, Update, or Delete statements. The routines should have simple interfaces. Call
sub-routines to perform complex processing, rather than placing the processing in the SQL
program itself. The following input and output parameters shown in Figure 3-5 for each
SQL routine are recommended.

SQL
STATEMENT INPUT OUTPUT

Select Each search parameter Each retrieved column
Status

Insert Each column to insert Status

Update Each column to modify Status
Each search parameter

Delet Each search parameter Status

Figure 3-5. Input and Output Parameters for NDML Programs

2. Logical Unit of Work

Group applications so that all the work performed by the application can be
committed together or rolled-back together to maintain database consistency. Group all
routines affecting the same tables into one logical unit of work.

Note: A SQL routine can only participate in one logical unit of work.

3. Referential Integrity

Do not code for Referential Integrity and Domain verifications.

3-9

UM 620341440
30 September 1990

4. Distributed Data

Do not design or code the application as if the data were distributed. The
application programmer codes against a neutral view of data. The precompiler will take
care of transforming the request to the required databases and machines.

5. One-Row versus Multi-Row Retrieval

Distinguish if the query will return one row or many rows. Examples of single row
retrievals are statistical functions or retrieval of an employee name given the employee
number. An example of a many row retrieval is the selection of all line items in an order.
SQL provides syntax to allow for both types of retrieval.

6. Insert, Update, and Delete

SQL Update routines should only perform the SQL action. It is the calling
routine's responsibility to determine if the program has an error when a referential integrity
test fails. This would provide for shareable update routines.

7. Nested Queries versus Joins

For performance reasons, use joins and outer joins to join across views rather than
using nested queries.

8. Program Life Cycle

Design programs for maintainability rather than performance to provide for a longer
life cycle.

3-10

UM 620341440
30 September 1990

3.4 Coding Guidelines

I1. Templates

Use coding templates to insure consistency and compliance with coding standards.

2. User View Report

An EXTERNAL SCHEMA Report or a USER VIEW Report is necessary when
writing a SQL application to allow you to accurately specify the data items and data types.

3. Data Type Compatibility

The data type of each data item in the USER VIEW Report must correspond to the
variable definition in the SQL application program.

The following is a list of the valid, generic data types for a statistical query. Refer to
Appendix A for the specific data type supported by the programming language.

GENERIC
STATISTICAL FUNCTION DATA TYPE

AVG numeric

COUNT numeric and character

SUM numeric

MIN numeric and character

MAX numeric and character

Figure 3-6. Data Types for Statistical Functions

4. Copy and Include Facilities

Use Copy and Include facilities for commonly used table and data structure
definitions.

3-11

UM 620341440
30 September 1990

5. SQL Status Checking

The precompiler always defines and updates a program variable to indicate the
execution status. Check this status after each SQL statement.

Figure 3-7 shows error code values:

ERROR EXPLANATION

CODE

100 no data

0 no error

<0 error

-49901 failure of a type 1 referential integrity test on
an Insert or Modify

-49902 failure of a type 2 referential integrity test on a

Delete

-49903 fai-ure of a key uniqueness test on an Insert

-43306 J failure of a domain verification module

Figure 3-7. SQL Error Codes

The error codes will be found in SQLCODE (or SQLCOD for FORTRAN and
sqlca.sqlcode for C) after every SQL statement. This variable is generated into the user
program.

6. Commit and Rollback

It is your responsibility to commit or rollback the effects of the SQL update. If a
commit is not executed, the changes will not be committed to the database. You may use
the SQLCODE variable to determine whether to commit or rollback a transaction.

7. Termination

The driver program of a COBOL, C, or FORTRAN application must insert a call to
the routine "TRMDML." This routine logs off from the database.

3-12

UM 620341440
30 September 1990

8. Compile before Precompile
Remove host language compilation errors beiore precompilation. The following

sections discuss compilation of user-written Embedded SQL application programs.

9. Embedded SQL Reference Manual

All SQL application programmers are advised to consult the Embedded SQL
Reference Manual.

3.5 Embedding SOL in COBOL

COBOL compilers do not know the syntax or meaning of the SQL commands. Therefore,
a COBOL application program that contains SQL statements must be precompiled and compiled by
the CDM precompiler. The precompiler substitutes COBOL code into the application program in
place of the SQL statements. The substituted code provides the mtchanisms necessary to activate
the run time processes to evaluate the request.

To allow the precompiler to distinguish SQL statements from COBOL statements, each
SQL statement must begin with EXEC SQL and end with END-EXEC; the rest of the SQL
statement must begin in column 8 or greater. After precompilation, all SQL lines will appear as
comment lines to the COBOL compiler.

During precompilation, code is generated into the users application program. For a
COBOL application, code is generated in the Working-Storage Section and Procedure Division. A
list of reserved variable names and label statements for any COBOL application program used in
the CDM environment is shown below. These reserve terms are valid COBOL variables and
statements, but cannot be used as user-defined variables or labels.

Any variable names beginning with:

APL
CDM
CS
CSQ
ES
ESQ
FCB
JQG
KES
NDMIL
RES
RFT

If using a cursor, cannot have a variable declared as cursor-name-FLAG.

3-13

UM 620341440
30 September 1990

Any label names such as:

BREAK-NDML-nn
CDM-EX1T-nn
CDM-LOOP-nn
CD-LOOP-nn
CE-LOOP-nn
END-NDML-nn
RESULT-nn

where nn depends on the nesting structure of the embedded SQL query statements and the
number of SELECT statements in the application program.

And the following variables also should not appear as user-defined variables or labels:

DISPOSITION RIT-MESG
FILE-OPEN SQLCODE
HOLD-STATUS USER-MOD
NUMBER-OF-RECORDS

Additionally, COBOL Copy library include members CHKCDM and ERRCDM will be
included in the application's Working Storage Section.

Refer to the Embedded SQL Reference Manual for additional information on SQL Retrieval
and Update Statements.

3.6 Embedding SOL in FORTRAN

FORTRAN compilers do not know the syntax or meaning of the SQL commands.
Therefore, a FORTRAN application program that contains SQL statements must be precmpiled by
the precompiler. The precompiler substitutes FORTRAN subroutine calls into the application
program in place of the SQL statements. These subroutines provide the mechanisms necessary to
activate the run time processes to evaluate the request.

To allow the precompiler to distinguish the SQL statements from FORTRAN statements,
the first line must start with EXEC SQL in column 7 and any additional lines must have a non-
blank and non-zero in column 6 and have the rest of the SQL statement begin in column 7 or
greater. Lack of a non-blank and a non-zero in column 6 indicates termination of SQL statement.
After precompilation, all SQL lines will appear as comment lines to the FORTRAN compiler.

During precompilation, code is generated into the application program. This generated
code consists of variable definition statements and formatted input/output statements. Following is
a list of reserved variable names and CONTINUE statement numbers for any FORTRAN
application process used in the CDM environment. These are legal FORTRAN variables and
statements but must not appear in the original application program as user-defined variables or
labels.

3-14

UM 620341440
30 September 1990

Variable Names:

CDMxxx CEFLAG CHARCT
CSCNTC CSCNTI CSUSED
DECIML DIGIT DRSACT
EOFFLA ENPOSC ENPOSR
FILEST FLAGAR NDMLCT
NDMLST NOSSUB NUMREC
PTRCDM RFTCTC RFTCTI
RFTCTJ SIGN SPOSC
SPOSR

where xxx is any letter from A to Z.

Any CONTINUE Statements within the range 91000 to 99999 also must not be defined as
variables or labels.

User-defined variables should be limited to six characters.

On the HP, if your program calls non-FORTRAN programs, write an $ALIAS statement
for each non-FORTRAN program called. For example, $ALIAS MRTN C (%REF0)

Refer to the Embedded SQL Reference Manual for additional information on SQL Retrieval
and Update statements.

3.7 Embedding SOL in C

C compilers do not know the syntax or meaning of the SQL commands. Therefore, a C
application program that contains SQL statements must be precompiled by the precompiler. The
precompiler substitutes C subroutine calls into the application program in place of the SQL
statements. These subroutines provide the mechanisms necessary to activate the run time
processes to evaluate the request.

To allow the precompiler to distinguish the SQL statements from C statements, the SQL
command must begin with EXEC SQL and terminate with ";".

During precompilation, code is generated into the user's application program. This
generated code consists of variable definition statements and formatted input/output statements.
Following is a list of reserved variable names and CONTINUE statement numbers for any C
application process used in the CDM environment. These are legal C variables and statements, but
must not appear in the original application program as user defined variables or labels.

The following variable names:

cdmxxx ceflag charct
,scntc cscnti csused

dec,, .d digit drsact
eoffla enposc enposr
filest flagar ndnlct
ndmlst nossub numrec
ptrcdm rftctc rftcti
rtfctv sign sposc

3-15

UM 620341440
30 September 1990

sposr tmpnum tmpnumZ

where xxx... is any letter from A to Z

Any label names such as:

BREAKNDMLnn
CDM_EXITnn
CDMLOOPnn
CD_LOOP_nn
CELOOPnn
ENDNDMLnn
RESULTnn

where nn depends on the nesting structure of the embedded SQL query statements and the
number of SELECT statements in the application program.

The application programmer is advised to define user variables limited to eight characters.

Refer to the Embedded SQL Reference Manual for additional information on SQL Retrieval
and Update statements.

3.8 Precompile Compile. Link. and Execute the Application

You can precompile applications in the UNIX operating system environment. The
procedure you use, GENAP, is implemented as a Bourne shell script under UNIX.

GENAP offers menu options to precompile, compile, and link applications containing SQL
source code statements. It offers an interactive (menu-driven) mode.

The utility "cdmsetup" must be executed before running "genap." This sets up various
environmental variables used by GENAP.

GENAP is started by entering "genap" on the command line or selecting GENAP from the
CDM TOOLS Main Menu.

3- 16

UM 620341440
30 September 1990

APPLTCATION GENERATOR MAIN MENU

1. Precompile Only

2. Load (LinkJ Only

3. Precompile and Link

4. Help - Option Descriptions

5. Exit

In the following description of these options, the term "PRC file" refers to a COBOL, C, or
FORTRAN file with embedded statements. Such a file will have a .PRC or .prc suffix on its
name. IISSGLIB is the name (set up as an environmental variable) of the object library where the
compiled modules will be archived.

1. Precompile Only

If you choose this option, you will be asked to enter the name of your logical unit of work,
the name of the host where your application will run, your CDM username/password, the language
of the database requests, language of the PRC, embedded language (enter SQL), and whether or
not you want your obsolete generated code deleted. Then you will be asked to name each PRC
you want precompiled. Your PRC file(s) will be run through the precompiler. You will be
notified if there are any errors in the precompile and the process will stop. If the precompile is
successful, the generated code will be compiled and placed in IISSGLIB.

2. Load (Link) Only

If you choose this option, you will be asked to enter the name of your logical unit of work,
the name of the driver program, the name of the host where your application will run, language of
the PRC, embedded language (enter SQL), and your CDM usem..me/password. An RP Main will
be generated, checked for errors, compiled, and placed in IISSGLIB. Pending successful
completion of that, your application will be linked. Your driver must have previously been
compiled and the object must be in the directory where you are running GENAP from.

3. Precompile, Compile, and Load

If you choose this option, you will be asked to enter the name of your logical unit of work,
the name of the driver program, the name of the host where your application will run, your CDM
username/password, the language of the database requests, whether or not you want your obsolete
code deleted, and the name of each PRC that you want precompiled. The actions carried out by
this step are a combination of the actions in steps 1 and 2. A brief summary is: Precompile,
compile all generated code and put it in IISSGLIB, generate the RP Main, compile it and put it in
IISSGLIB, and link the application.

4. Display Help Screen

5. Exit

3-17

UM 620341440
30 September 1990

3.9 Example of Precompiling in the UNIX Environment

The following is an example of precompiling and linking an Application Program. The
application program is part of the logical unit of work DEMO, whose source code can be found in
the file CUSTORD.PRC. The program CUSTORD is invoked by the driver program CUSTDR.
There must be a driver program to start the program. CUSTDR is a COBOL AP, although similar
procedures are used for FORTRAN or C programs. The linked AP is called custdr.exe. Before
running GENAP, read the comments at the beginning of the procedure file.

$ genap

S**APPLICATTON GENERATOR MAIN MENU***

1. Precompile Only
2. Load (Link) Only
3. Precompile and Link
4. Help - Option Descriptions
5. Exit

PLEASE ENTER AN OPTION NUMBER: 3
Enter Name of Logical Unit of Work: demo
Enter Name of Host Where Application Will Run: hp
Enter the Language of RP SUB: cobol
Enter language of Source Program(s) (C/FORTRAN/COBOL): cobol
Enter the type of Embedded language used (NDML/SQL) : sql
Enter Your CDM Username/Password: cdm/cdm
Enter Name of the Application: custdr
Do You Want Obsolete Generated Code Deleted (Y/N) : y
Enter Name of PRC (C/R To Stop, Leave .PRC Off): custord
Enter Name of PRC File (C/R To Stop, Leave .prc Off): <CR>

Beginning precompile

SQL PRECOMPILE SUCCESSFULLY COMPLETED

ALL GENERATED CODE SUCCESSFULLY COMPILED

Beginning Generation of RP-Main

GENERATION OF REQUEST PROCESSOR MAIN COMPLETE

ORACLE Precompiling the RP-Main
COBOL Compiling the RP-Main

Beginning Link

LINKING COMPLETED'

3.10 Example of Executing in the UNIX Environment

$ custdr.exe

3-18

UM 620341440
30 September 1990

3.11 Receiving Precompilation Error/Informational Messages:

After precompilation, you can obtain status information. If the precompilation was
successful, the procedure file GENAP continues to compile the generated code resulting from all
the successful precompilations. Applications precompiled under a logical unit of work must all be
successfully precompiled before an executable can be linked.

You can find errors or warning messages in two files in the UNIX environment:

errlog.dat
luwname.err

where luwname is the name of the logical unit of work for the User Application that you
specified to GENAP.

Errors encountered and logged in errlog.dat are fatal or system errors. Refer the problem
to the system administrator. These errors usually occur when:

The ORACLE instance is inactive
The CDM database has incorrect meta data

Messages in the .err file are either informational, syntax, or semantic errors.

All precompilation syntax and semantic errors must be corrected and the failed application
program must be re-submitted for precompilation. Only the programs that did not precompile
successfully need to be re-precompiled. The precompiler allows for separate precompilation.
Upon re-precompilation, if you replied "Y" to the option "Do you want obsolete Generated Code
Deleted", these generated modules will be deleted from the generated object code library
IISSGLIB.

3-19

UM 620341440
30 September 1990

SECTION 4

FILE INPUT/OUTPUT PRIMITIVES (FLOPS)

The File Input/Output Primitives (FIOPS) provide a generic transportable interface to
access system specific files allowing language and operating system independence for file
manipulations.

This section is included for the user manipulating large amounts of data. For that situation,
files may be used to insert from and select into. These primitives are recommended for ease of use
when reading or writing the files.

The FLOPS are a group of functions to allow programs a generic interface to access system
specific files. The functions are:

* a temporary file name
" open file
" read record
* write record
" seek forward
" seek of backword
* close file
* sort/merge

The FOP functior7 are limited for use with sequential disk files with fixed length records.
The functions cannot be used with tape files.

4.1 Parameter Formats

Character strings are arrays of characters with fixed maximum lengths, terminated by a
NUL character ('LOW-VALUE' in COBOL, VO' in C) if less than the maximum length. Address
parameters are pointers to variables, and integer parameters are binary signed integers, at least 32
bits wide (PIC S9(9) COMP in COBOL, long int in C).

Note that in the C examples to follow, character arrays are one longer than needed, and a
NUL is assigned to the last character for ease of use in C functions. This is not necessary, but
many C string functions require a terminating NUL. As a reminder, arrays in C start with element
zero (0) and the last subscript is one less the declared size.

4.2 Status Return Codes/Error Handling

Status return codes are defined as strings (arrays) of five characters. A return code of all
zeros ("00000") indicates successful completion of the called function, otherwise an error has
occurred. The error codes returned are formatted in such a way that one can distinguish the
subsystem, function being performed, and determine what kind of error occurred. The FIOPs
(like other primitives) will call ERRPRO with an accompanying descriptive message to be put in
the ERRLOG file if the error is fatal. If the error code is a warning, ERRPRO will not be called.

The first two digits of the returned error codes for FlOPs are defined to be "11" (one-one).
The left "1" indicates "Primitives", and the right "1" shall indicate "File I/O" primitives. The third
digit will refer to the FOP function performed, and the last two digits will refer to function specific

4-1

UM 620341440
30 September 1990

errors. Further, the last digit will indicate the severity of the error: zero will be for warnings, and
nonzero will be for fatal errors. This will allow the programmer to easily determine a fatal/nonfatal
status.

4.3 NAMFIL - Temporary File Name Function

Create and return a name for a file, suitable for use with the Open function. These file
names will not match any currently existing on the the computer.
Usage Format:

COBOL Example:

01 FILE-NAME PIC X (80).

CALL "NAMFIL" USING FILE-NAME.

C Example:

char filename[8 I];

file name [801 = "'NO;
namfil (file-name);

Parameter:

File Name: A fully-qualified file name returned in local system format for a temporary file.
The receiving variable should be at least 80 bytes long. If the filename is less than 80 characters, it
will be followed immediately by a NUL, and the rest of the field will be underlined. If an error
occurs, the first position of this field will be returned as NUL.

4.4 OPNFIL - File Open Function

Prepare the file for access, initialize the file control block (FCB), and allocate space for the
file, if needed. The file status will be defined as "share" for input mode, and "exclusive" for
output or append modes. If a nonexistent file is opened for append access, it will be created. In
the unusual case that a file is created for append, then a valid record length must be passed to
OPNFIL.

Usage Format:

COBOL Example:

01 FILE-NAME PIC X(80) VALUE SPACES.
01 FILE-CONTROL-BLOCK1 PIC S9(9) COMP VALUE ZERO.
01 RET-STATUS PIC X(5) VALUE SPACES.

88 STATUS-OK VALUE "00000"
88 NEW-APPEND-FILE VALUE "11130".

01 STATUS-RDF REDEFINES RET-STATUS.
05 FILLER PIC X(4).
05 SEVERITY PIC X.

88 WARNING VALUE "0".

4-2

UM 620341440
30 September 1990

01 ACCESS-MODE PIC X VALUE "W"
01 RECORD-LENGTH PIC S9(9) COMP VALUE ZERO.
01 NUMBER-OR-RECORDS PIC S9(9) COMP VALUE ZERO.

MOVE (expression) TO RECORD-LENGTH.
MOVE (expression) TO NUMBER-OF-RECORDS.
CALL "OPNFIL" USING FILE-CONTROL-BLOCKI, RET-STATUS,

FILE-NAME, ACCESS-MODE, RECORD-LENGTH,
NUMBER-OF-RECORDS.

IF NOT WARNING
PERFORM ... (fatal status processing).

C Example:

#define GDSTAT "00000"
#define WARNING '0'
#define SEVERITY status [4]
int *fcb;
char status [6], file-name [81];
long rec ith, numjrecs;

/* Make sure strinv- " UL terminated */
status [5] = \0'-

rec_lth = (expression);
num_recc = (expression);
opnfil(&fcb, status, file_name, "R", &recjlth, &numjrecs);
If (SEVERITY !=WARNING)

...error processing; I

Parameters:

File Control Block (FCB): The address returned to the caller when an FCB is created and
initialized by Open. The FCB will have to be passed to the other FlOPs by the caller. The format
of the control block is system dependent and the user need not be concerned with its format. A
separate FCB is required for each file open at the same time.

Status: A generic code returned from this function which is five characters long. Possible
codes are:

"00000" - SUCCESS
"11101" - INVALID PARAMETER
"11102" - FILE OPEN ERROR
"11103" - FILE NOT FOUND
"11104" - FILE NOT CREATED
"11105" - READ ACCESS DENIED
"11106" - WRITE ACCESS DENIED
"11107" - FILE NOT SEQUENTIAL
"11130" - CREATED NEW FILE FOR APPEND

4-3

UM 620341440
30 September 1990

File Name: A fully-qualified file name in local system format. A local file name is an array
of characters, and if less than the maximum length is terminated by a space and/or NUL character.
This filename may be user specified or one returned from NAMFIL.

Access Mode: Indicates whether the file is opened for reading (input only), writing (output
only, all prior data lost), or append (output to the end of the file only, all prior data preserved).
Legal values are "R", "W", and "A" for Read, Write, and Append.

Record Length: An integer number indicating the maximum size of the records in the file.
The record buffer should be at least this size. This value is user specified for output and append
access accuracy (or used as the required length to create a file) in append mode.

Number of Records: An integer that is the estimated total number of records for an output
or append file given by the user. This parameter will allow OPNFIL to make sure that enough
space exists for the file, and possibly to reserve it for use by this process. This parameter will not
be used for Read access. The FIOPs will attempt to give the user more space for a file if required.

4.5 INPFIL - File Read Function

Retrieves data from an open file. Successive calls will read through the file in sequential
order. This function will do record input only, so that if the size of the actual record is greater than
the supplied buffer length, the record is truncated to this length. This should help prevent other
data in the program from being inadvertently overwritten. To move the record pointer to the
previous or next record without reading, use the seek function.
Usage Format:

COBOL Example:

CALL "INPFIL" USING FCB-X, RET-STATUS, RECORD-BUFFER,
BUFFER-LENGTH, RETURN-LENGTH.

C Example:

recbuf_lth = sizeof(rec buf);
inpfil(&fcb-x, status, rec-buf, &recbufIth, & rtnjlth);

Parameters:

File Control Block (FCB): A user supplied address, returned previously by the Open
routine.

Status: A generic code as mentioned previously. Possible codes are:

"00000" - SUCCESS
"11201" - INVALID PARAMETER
"11202" - FILE NOT OPENED FOR INPUT
"11203" - READ ERROR
"11210" - END OF FILE
"11240" - RECORD TRUNCATED

Record Buffer: A buffer where the record data will be stored. The record length was
previously returned by the Open call. The returned data is not NUL terminated.

4-4

UM 620341440
30 September 1990

Buffer Length: The user specified integer length of the buffer used for the returned record.
If the user gives a length smaller than the record length returned by the Open function, the data will
be truncated.

Return Length: The actual integer size of the record placed in the buffer by this function. It
should always be equal to the record length returned by the Open function for fixed record length
files, unless the buffer length is smaller than the record size, in which case the return length will be
set to the buffer length. If the buffer length is smaller than the actual record length, the data will be
truncated and an appropriate warning status code returned.

4.6 OUTFIL - File Write Function

Add a new record to a file opened for output or append. The record size must be the same
as that referenced in the Open function. File overflow will not be allowed, a "file full" error will be
returned instead.
Usage Format:

COBOL Example:

CALL "OUTFIL" USING FCB-X, RET-STATUS, RECORD-BUFFER, RECORD-
LENGTH.

C Example:

outfil(&fcbx, status, recbuf, &reclth);

Parameters:

File Control Block (FCB): A user supplied address, returned previously by the Open
routine.

Status - A generic code as mentioned previously. Possible codes are:

"00000" - SUCCESS
"11301" - INVALID PARAMETER
"11302" - FILE NOT OPENED FOR INPUT OR APPEND
"11303" - FILE FULL
"11304" - WRITE ERROR
"11305" - RECORD TOO LARGE, NOT WR'ITEN

Record Buffer: The record will be taken from this buffer and written to the file. The data
in this record is not NUL terminated, and is assumed to be the length returned by the previous
Open function.

Record Length: The integer length of the record. This parameter will be ignored for the
current implementation of fixed length records. It will be the length determined in the Open
function. Variable length output may be a future enhancement.

4-5

UM 620341440
30 September 1990

4.7 SEKFIL - File Seek Function

Repositions to a different record in the file relative to the current file position. This will
allow very limited non-sequential access. Only two possibilities will be supported, seek to the next
record and seek back one to the previous record. It is defined that a read moves the file position
pointer to the beginning of the next record so that a subsequent forwvard seek will skip a record.
Seek is only valid for files opened for read.
Usage Format:

COBOL Example:

MOVE 1 TO RECORD-COUNT.
CALL "SEKFIL" USING FCB-X, RET-STATUS, RECORD-COUNT.

C Example:

rec_cnt =1:
sekfil(&fcb_x, status, &reccnt);

Parameters:

File Control Block (FCB): A user supplied address, returned previously by the Open
routine.

Status: A generic code as mentioned previously. Possible codes are:

"00000" - SUCCESS
"11401" - INVALID PARAMETER
"11402" - FILE NOT OPENED FOR INPUT
"11410" - END OF FILE
"11420" - BEGINNING OF FILE

Record Count: This is a signed integer number of records to reposition in the file. Only
two values will be accepted. These values are +1 for seeking forward one record and -I to go back
one record.

4.8 CLSFIL - File Close Function

Terminate file access, cleanup (release resources, etc.), keep or delete the file as user
specified.

Usage Format:

COBOL Example:

CALL "CLSFIL" USING FCB, RET-STATUS, DISPOSITION.

C Example:

clsfil(&fcbl, status, "K");

4-6

UM 620341440
30 September 1990

Parameters:

File Control Block (FCB): A user supplied address, returned previously by the Open
routine.

Status: A generic code as mentioned previously. Possible codes are:

"00000" - SUCCESS
"11701" - INVALID PARAMETER
"11702" - FILE NOT DELETED
"11703" - FILE NOT CLOSED

Disposition: A one character string which indicates file disposition. There are three
options: "K", "P", and "D" for Keep, Pass, and Delete. A file closed with keep disposition will be
saved to disk. A file closed with Pass will be helpful (possibly in memory) for future access until
another process deletes it or makes it permanent. Delete causes the file to be deleted. If this
parameter is not specified (left blank or NUL) then Pass will be assumed.

4.9 SRTFIL - Sort/Merge Function

Take one or more files, merging if more than one, and order the records according to the
users' directions. The result will be put in an output file (name supplied by the user) different from
a~iy of the input file(s). The user is responsible for making the fields in the input files compatible.
The sort routine may pad records so that all output records are the same length.
Usage format:

COBOL Example:

CALL "SRTFIL" USING IN-FILE-NAMES, OUT-FILE-NAME, SORT-KEY,
OPTIONS, OUT-RECORD-COUNT, RET-STATUS.

C Example:

srtfil(injfnames, outfname, sort-key, options, &outcnt, status);

Parameters:

Input filenames: A string containing one to four filenames (multiple filenames are separated
by a plus sign) indicating the file(s) to be sorted. The total length of this field will be a maximum
of 324 characters. There must be a terminating NUL character after the last input filename given.
Extra spaces around separate filenames will be ignored.

Output filename: A string containing one filename in the same format shown for the
Temporary Filename and Open functions.

Sort key description: A string describing the sort key. For each field chosen to sort upon,
there will be four subparameters in the sort key separated by commas. The sort control groups
(sets of four subparameters), if more than one, must be specified from highest priority to lowest
and are also separated by commas. There shall be no limit on the number of sort control groups,
except that the maximum lent,,' of the sort key description string will be 2000 characters. The end
of the specifications will b, licated by either a zero in subparameter 1, a blank, or a NUL

4-7

UM 620341440
30 September 1990

character. The subparameters are: (1) starting position of the field, (2) length of the field in bytes,
(3) type of field, and (4) the sort order. The starting position and field length are positive integer
numbers. The field type is a two-character field and has valid values of:

CH - character, unsigned
BI - binary, unsigned
PD - packed decimal, signed
DT - signed decimal, trailing overpunch

The sort order is either A for Ascending, or D for Descending. An example of a sort key
description might be:

"1,8,CH,A,9,4,PD,D"

which indicates that the first sort field is composed of the first eight characters of the
record in ascending order and then a four byte packed decimal field starting at the ninth character in
descending order.

Note: If the first character of the sort key descripton is NUL, blank, or zero, a file copy
(concatenate if more than one input file) will be assumed.

Sort options: The sort options string will be reserved for future use if required. Specific
defaults will be assumed in this implementation. They are: (1) the character collating sequence
will be the computer's native code, ASCII on the VAX, and EBDCIC on the IBM, (2) records
with duplicate keys will be kept in the resultant file, (3) the order of equally collating records is not
guaranteed to be preserved from input to output.

Output record count: This is the integer number of records that the output file contains

upon successful sort completion.

Status: A generic code as mentioned previously. Possible codes are:

"00000" - SUCCESS
"11901" - INVALID PARAMETER
"11902" - SORT PACIAGE ERROR
"11903" - ERROR CLOSING INPUT FILE(S)
"11904" - ERROR CLOSING OUTPUT FILE
"11905" - ERROR OPENING INPUT FILE(S)
"11906" - ERROR OPENING OUTPUT FILE
"11907" - ERROR READING FILE(S)
"11908" - INSUFFICIENT WORK SPACE
"11909" - ERROR WRITING FILE

4-8

UM 620341440
30 September 1990

4.10 Data Organization

The following table is a summary description of the parameters used by the FIOP
functions. Other data elements within each of the VAX and IBM specific routines are not included
here.

PRPE LENGTH/RANGE USED BY

ACCESS-NODE string 1 character OPNFIL
BUFFERLENGTH integer 1 to rec.lth. INPFIL
DISPOSITION string 1 character CLSFIL
FCB pointer OPNFIL, INPFIL,

OUTFIL, SEKFIL,
CLSFIL

FILENAME string 80 characters NAMFIL, OPNFIL
IN-FILE-NAMES string 324 characters SRTFIL
NUMBER-OF-RECORDS integer >0 OPNFIL
OPTIONS string not used SRTFIL
OUT-FILE-NAME string 80 characters SRTFIL
OUT-RECORD-COUNT integer >=O SRTFIL
RECORD-BUFFER string user-specified INPFIL, OUTFIL
RECORD-COUNT integer +1, -1 SEKFIL
RECORD-LENGTH integer >0 INFIL, OUTFIL
RETURN-LENGTH integer >0 INPFIL
SORT-KEY string 2000 characters SRTFIL
STATUS string 5 characters OPNFIL, INPFIL,

OUTFIL, SEKFIL,
CLSFIL, SRTFIL

4-9

UM 620341440
30 September 1990

APPENDIX A

EXTERNAL SCHEMA DATA TYPES

This appendix consists of the External Schema data types available for COBOL, C, and

FORTRAN programmers.

An application programmer writing a COBOL program may define:

a Character string (C) as PIC X(n)
a Variable character (V) as PIC X(n)
a Signed number (S) as PIC S9(n) v9(n) SIGN LEADING SEPARATE
a Decimal number (D) as PIC S9(n) v9(n) SIGN LEADING SEPARATE
a Numeric number (M) as PIC S9(n) v9(n) SIGN LEADING SEPARATE
a Packed value (P) as PIC S9(n) V9(n) COMP-3
an Unsigned number (N) as PIC 9(n) V9(n)

An application programmer writing a iORTRAN program may define:

a Character string (C) as CHARACTER*N
a Variable character string (V) as CHARACTER*N
an Integer number (I) as INTEGER
a Small Integer number (A) as INTEGER
a Floating point number (F) as DOUBLE PRECISION
a Real number (R) as REAL *4

An application programmer writing a C program may define:

a Character string (C) as char (n)
a Variable character string (V) as char (n)
a Small Integer number (A) as long
an Integer number (I) as long
a Double Precision number (0) as double
a Floating Point number (F) as double

A-1

UM 620341440
30 September 1990

APPENDIX B

USER VIEW REPORT

Tue Nov 8 page 1
External Schema Report

View Name Data Item Name Data T= Data Size #Dec

PART PARTNO NUMBER C 15 0
PARTDESC DESC C 30 0
PARTUNITOFMEASURECD CODE C 2 0
PART_NORMALLEADTIME QUANTrfY N 8 2
PARTUNIT_COST DOLLARS N 8 2

CUSTOMERORDER CUSTOMERNO ORDERNO C 10 0
CUSTOMERORDERNO ORDERNO C 10 0
COPURCHASEORDERDATE DATE1 C 6 0
COSTATUSCODE CODE C 2 0

COLINEITEM COLINENO NUMBER C 15 0
COLISTATUSCODE CODE C 2 0
CODUEDATE CODE C 6 0
CQQUANTITYREQUIRED DATE1 N 8 0
CUSTOMERNO QUANTITY C 10 2
CUSTOMERORDERNO ORDERNO C 10 0
PARTNO NUMBER C 15 0

PARTF PARTNO NUMBER C 15 0
PARTDESC DESC C 30 0
PART_UNIT OF MEASURE_CD CODE C 2 0
PARTNORMAL_LEADTIME QUANTITY N 8 2
PARTUNIT_COST DOLLARSF F 8 2

COLINEITEMF COLINENO NUMBER C 15 0
COLISTATUS CODE CODE C 2 0
CODUEDATE DATE1 C 6 0
CQQUANTITYREQUIRED QUANTITYF F 8 2
CUSTOMERNO ORDER_NO C 10 0
CUSTOMERORDERNO ORDER-NO C 10 0
PARTNO NUMBER C 15 0

B-1

UM 620341440
30 September 1990

APPENDIX C

CONCEPTUAL SCHEMA MODEL

This appendix consists of a portion of a Conceptual Schema [DEFt Model against which
NDDL user views have been developed. The appendix also consists of a USER VIEW REPORT
against which all SQL applications in this manual have been written.

Conceptual Schema IDEFI Model

*CUSTOMER NO CHAR(2) PART NO CHAR(15)
*CUSTOMER ORDER NO CHAR(2) PART UNIT COST NUM 8:2

CoPURCHASE PART UNIT MEASURE CD CHAR(2)
ORDER DATE CHAR(6) PART DESC CHAR(30)

CO STATUS CODE CHAR(2)

CUSTOMER ORDER [PR

HAS REQUIREMENT-FOR
CONSISTS-
OF -

*CUSTOM NO CHAR(2)
*CUSTOMER ORDER NO CHAR(2)
CO LINE NO - CHAR(I5)
PART NO- CHAR(S)
CO DUE DATE CHAR(6)
CO QUANTITY REQUIRED NUM 8:2
COLISTATUSCODE CHAR(2)

COLINEITEM II

Figure C-1. Conceptual Schema IDEFI Model

C-1

UM 620341440
30 September 1990

APPEND-

SAMPLE PROGRAMS

This appendix contains some sample COBOL programs. These COBOL programs are
written against the USER VIEW Report provided in Appendix B.

COBOL PROGRAM 1: SINGLE-ROW SELECT

IDENTIFICATION DIVISION.

PROGRAM-ID. CDSEL4.

* RETRIEVE THE CUSTOMER NUMBER FOR A CUSTOMER NAME

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

OBJECT-COMPUTER.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SHOW-CODE PiC ----- 9.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 CUSTOMER-NAME PIC X(40).
01 CUSTOMER-NO PIC 9(8).

01 CUSTOMER-IND PIC 9.
EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

LINKAGE SECTION.

PROCEDURE DIVISION.

MOVE 0 TO SQLCODE.
DISPLAY " DISPLAY THE CUSTOMER NUMBER FOR A CUSTOMER".

ACCEPT-INPUT.
DISPLAY " ENTER CUSTOMER NAME (QUIT TO EXIT)".

ACCEPT CUSTOMER-NAME.

IF CUSTOMER-NAME = "QUIT"

GO TO EXIT-PROGRAM.
PERFORM RETRIEVE-DATA THRU RETRIEVE-DATA-EXIT.

GO TO ACCEPT-INPUT.

EXIT-PROGRAM.

EXIT PROGRAM.

RETRIEVE-DATA.

EXEC SQL

SELECT CUSTOMERNO

INTO :CUSTOMER-NO INDICATOR :CUSTOMER-IND
FROM CUSTOMER ORDER

WHERE CUSTOMERNAME = :CUSTOMER-NAME

END-EXEC.

D-I

UM 620341440
30 September 1990

IF SQLCODE = 100
GO TO RETRIEVE-DATA-EXIT.

IF SQLCODE = 0

NEXT SENTENCE

ELSE
MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURED DURING SELECT"

DISPLAY "STATUS IS:" SHOW-CODE

GO TO RETRIEVE-DATA-EXIT.
DISPLAY "CUSTOMER NAME " CUSTOMER-NAME.

IF CUSTOMER-IND = 0

DISPLAY "CUSTOMER NUMBER: " CUSTOMER-NO

ELSE
DISPLAY "CUSTOMER NUMBER: NULL".

RETRIEVE-DATA-EXIT.

EXIT.

D-2

UM 620341440
30 September 1990

COBOL PROGRAM 2: MULTI-ROW SELECT

IDENTIFICATION DIVISION.
PROGRAM-ID. CDSEL2.

* Retrieve all EMPLOYEES for a TASK/ASSIGNMENT

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SHOW-CODE PIC ----- 9.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPLOYEE-NO PIC 9(8).
01 PROJECT-NO PIC X(15).
01 TASK-NO PIC X(15).
01 PROJECT-IND PIC 9.

EXEC SQL END DECLARE SECTION END-EXEC.

LINKAGE SECTION.

PROCEDURE DIVISION.
MOVE 0 TO SQLCODE.
DISPLAY " DISPLAY ALL EMPLOYEES FO. A PROJECT/TASK".

ACCEPT-INPUT.
DISPLAY " "
DISPLAY " ENTER EMPLOYEE NUMBER (0 TO EXIT)".
DISPLAY " "
ACCEPT EMPLOYEE-NO.
IF EMPLOYEE-NO - 0

GO TO EXIT-PROGRAM.
PERFORM RETRIEVE-DATA THRU RETRIEVE-DATA-EXIT.

GO TO ACCEPT-INPUT.
EXIT-PROGRAM.

EXIT PROGRAM.

RETRIEVE-DATA.

EXEC SQL DECLARE CUR1 CURSOR
FOR SELECT PROJECT_NO,

TASK NO
FROM TASK ASSIGNMENT
WHERE EMPLOYEE NO = :EMPLOYEE-NO
ORDER BY PROJECTNO

END-EXEC.

IF SQLCODE NOT = 0
MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURED DJRING DECLARE"

D-3

UM 620341440
30 September 1990

DISPLAY "STATUS IS: " SHOW-CODE
GO TO RETRIEVE-DATA-EXIT.

EXEC SQL OPEN CUR1
END-EXEC.
IF SQLCODE NOT 0

MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURED DURING OPEN CURSOR"
DISPLAY "STATUS IS: " SHOW-CODE
GO TO RETRIEVE-DATA-EXIT.

PERFORM FETCH-CURSOR THRU FETCH-EXIT
UNTIL SQLCODE NOT = 0.

IF SQLCODE = 100
NEXT SENTENCE

ELSE
MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURED DURING FETCH"
DISPLAY "STATUS IS: " SHOW-CODE

GO TO RETRIEVE-DATA-EXIT.

EXEC SQL CLOSE CUR1 END-EXEC.
IF SQLCODE NOT - 0

MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURED DURING CLOSE CURSOR"
DISPLAY "STATUS IS: " SHOW-CODE.

RETRIEVE-DATA-EXIT.
EXIT.

FETCH-CURSOR.
EXEC SQL FETCH CUR1 INTO :PROJECT-NO :PROJECT-IND,

:TASK-NO
END-EXEC.
IF SQLCODE NOT = 0

GO TO FETCH-EXIT.
IF PROJECT-IND - 0

DISPLAY "PROJECT NO: ", PROJECT-NO, "TASK NO: ", TASK-NO.

FETCH-EXIT.
EXIT.

D-4

UM 620341440
30 September 1990

COBOL PROGRAM 3: INSERT

IDENTIFICATION DIVISION.
PROGRAM-ID. INS3.

* Insert data into userview STAFF

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SHOW-CODE PIC ----- 9.
01 OPTION PIC 9.

*

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 HOURLY-RATE PIC $9(12)V999.
01 EMPLOYEE-NO PIC 9(8).

EXEC SQL END DECLARE SECTION END-EXEC.

LINKAGE SECTION.

PROCEDURE DIVISION.
MOVE 0 TO SQLCODE.
DISPLAY " INSERT STAFF INFORMATION".

ACCEPT-INPUT.
DISPLAY " "

DISPLAY " ENTER INPUT OPTION (1=DATA,2=QUIT)'.
ACCEPT OPTION.
IF OPTION = 1

PERFORM ACCEPT-USER-INPUT THRU USER-INPUT-EXIT
GO TO ACCEPT-INPUT.

EXIT-PROGRAM.
IF SQLCODE = 0

PERFORM SQL-COMMIT THRU SQL-COMMIT-EXIT
ELSE

PERFORM SQL-ROLLBACK THRU SQL-ROLLBACK-EXIT.
EXIT PROGRAM.

ACCEPT-USER-INPUT.
DISPLAY "ENTER HOURLY RATE (PIC 9(12)V999):".
ACCEPT HOURLY-RATE.
DISPLAY "ENTER EMPLOYEE-NO (PIC 9(8)):".
ACCEPT EMPLOYEE-NO.
EXEC SQL INSERT INTO STAFF

VALUES (:HOURLY-RATE,

:EMPLOYEE-NO)
END-EXEC.
IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURED DURING INSERT"
DISPLAY "STATUS IS:" SHOW-CODE.

D-5

UM 620341440
30 September 1990

SQL-INSERT-EXIT.
EXIT.

SQL-COMMIT.
DISPLAY "INSERT SUCCESSFUL".
EXEC SQL COMMIT WORK
END-EXEC.
IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURRED DURING COMMIT"

DISPLAY "STATUS IS: " SHOW-CODE

SQL-COMMIT-EXIT.
EXIT.

.

SQL-ROLLBACK.
DISPLAY "INSERT BEING ROLLED BACK".

EXEC SQL ROLLBACK WORK
END-EXEC.
IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURRED DURING ROLLBACK"

DISPLAY "STATUS IS: " SHOW-CODE

SQL-ROLLBACK-EXIT.
EXIT.

D-6

UM 620341440
30 September 1990

COBOL PROGRAM 4: DELETE

IDENTIFICATION DIVISION.
PROGRAM-ID. CDDEL3.

* DELETE data FROM userview STAFF

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SHOW-CODE PIC ----- 9.
01 OPTION PIC 9.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EMPLOYEE-NO PIC 9(8).

EXEC SQL END DECLARE SECTION END-EXEC.
LINKAGE SECTION.

PROCEDURE DIVISION.
MOVE 0 TO SQLCODE.

ACCEPT-INPUT.

DISPLAY " DELETE STAFF INFORMATION".
DISPLAY " ENTER INPUT OPTION (1=DATA,2=QUIT)".
ACCEPT OPTION.
IF OPTION = 1

PERFORM ACCEPT-USER-INPUT THRU USER-INPUT-EXIT
GO TO ACCEPT-INPUT.

EXIT-PROGRAM.
IF SQLCODE NOT = 0

EXEC SQL ROLLBACK WORK END-EXEC.
IF SQLCODE NOT = 0

DISPLAY "ERROR OCCURED ON ROLLBACK"
MOVE SQLCODE TO SHOW-CODE
DISPLAY "STATUS IS ", SHOW-CODE

END-IF
ELSE

EXEC SQL COMMIT WORK END-EXEC.
IF SQLCODE NOT = 0

DISPLAY "ERROR OCCURED ON COMMIT"
MOVE SQLCODE TO SHOW-CODE
DISPLAY "STATUS IS ", SHOW-CODE.

EXIT.
EXIT PROGRAM.

ACCEPT-USER-INPUT.
DISPLAY "ENTER EMPLOYEE NUMBER TO BE DELETED (PIC 9(8)):".
ACCEPT EMPLOYEE-NO.
EXEC SQL DELETE FROM STAFF

D-7

UM 620341440
30 September 1990

WHERE EMPLOYEENO = :EMPLOYEE-NO

END-EXEC.
IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE

DISPLAY "ERROR OCCURED DURING DELETE

DISPLAY "STATUS IS:" SHOW-CODE.

SQL-DELETE-EXIT.
EXIT.

D-8

UM 620341440
30 September 1990

COBOL PROGRAM 5: UPDATE

IDENTIFICATION DIVISION.

PROGRAM-ID. CDUPD2.

* UPDATE TASKASSIGNMENT, CHANGING EMPLOYEE HOURS

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

OBJECT-COMPUTER.
*

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SHOW-CODE PIC ----- 9.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 EMPLOYEE-NO PIC 9(8).

01 TASK-NO PIC X(15).

01 PROJECT-NO PIC X(15).

01 EMPLOYEE-HOURS PIC $9(12)V9(3).

EXEC SQL END DECLARE SECTION END-EXEC.

LINKAGE SECTION.

PROCEDURE DIVISION.

MOVE 0 TO SQLCODE.

DISPLAY " CHANGING AN EMPLOYEE'S HOURS WORKED FOR A TASK.".

ACCEPT-INPUT.
DISPLAY "

DISPLAY " ENTER EMPLOYEE NUMBER (0 TO EXIT)".

DISPLAY "

ACCEPT EMPLOYEE-NO.

IF EMPLOYEE-NO = 0

GO TO EXIT-PROGRAM.

DISPLAY " ENTER NEW HOURS WORKED (PIC 9(12)V9(3)): ".

ACCEPT EMPLOYEE-HOURS.

DISPLAY " ENTER TASK ON WHICH EMPLOYEE WORKED: ".

ACCEPT TASK-NO.
DISPLAY " ENTER PROJECT ON WHICH EMPLOYEE WORKED: ".

ACCEPT PROJECT-NO.

PERFORM MODIFY-DATA THRU MODIFY-DATA-EXIT.

GO TO ACCEPT-INPUT.

EXIT-PROGRAM.

IF SQLCODE = 0
DISPLAY "UPDATE IS SUCCESSFUL"

EXEC SQL COMMIT WORK END-EXEC.

IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE

DISPLAY "ERROR ON COMMIT; STATUS ", SHOW-CODE

END-IF

ELSE
DISPLAY "UPDATE IS BEING ROLLED BACK"

EXEC SQL ROLLBACK WORK END-EXEC.

IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE

DISPLAY "ERROR ON ROLLBACK; STATUS = ", SHOW-CODE.

D-9

UM 620341440
30 September 1990

EXIT PROGRAM.

MODIFY-DATA.

EXEC SQL

UPDATE TASKASSIGNMENT
SET EMPLOYEEHOURS = :EMPLOYEE-HOURS

WHERE TASKNO = :TASK-NO AND

PROJECTNO :PROJECT-NO AND

EMPLOYEE NO = :EMPLOYEE-NO

END-EXEC.

IF SQLCODE NOT = 0
MOVE SQLCODE TO SHOW-CODE

DISPLAY "ERROR ON UPDATE; STATUS = ", SHOW-CODE.
MODIFY-DATA-EXIT.

EXIT.

D-10

UM 620341440
30 September 1990

COBOL PROGRAM 6: FlOP

IDENTIFICATION DIVISION.

PROGRAM-ID. INS4.

* Insert data into userview STAFF

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER.

OBJECT-COMPUTER.

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY ERRFS OF IISSCLIB.
01 SHOW-CODE PIC ----- 9.

01 FIOP-STATUS PIC X(5).

01 STAFF-INFO.

03 HOURLY-RATE-FILE PIC 9(12)V999.
03 EMPLOYEE-NO-FILE PIC 9(8).

01 OPTION PIC 9.
01 FILE-NAME PIC X(80).

01 FCB-N PIC S9(9) COMP.

01 REC-LEN PIC $9(9) COMP.
01 NUM-OF-REC PIC S9(9) COMP VALUE 2000.
01 RETURN-LENGTH PIC S9(9) COMP.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 HOURLY-RATE PIC $9(12)V999.
01 EMPLOYEE-NO PIC 9(8).

EXEC SQL END DECLARE SECTION END-EXEC.
LINKAGE SECTION.

PROCEDURE DIVISION.

MOVE 0 TO SQLCODE.
DISPLAY " INSERT STAFF INFORMATION".

ACCEPT-INPUT.

DISPLAY " ENTER INPUT OPTION (1=FILE,2=QUIT)".
ACCEPT OPTION.

IF OPTION = 1
PERFORM ACCEPT-FILE-INPUT THRU FILE-INPUT-EXIT

GO TO ACCEPT-INPUT.
EXIT-PROGRAM.

EXIT PROGRAM.

ACCEPT-FILE-INPUT.

DISPLAY " ENTER FILE NAME".
ACCEPT FILE-NAME.

MOVE "R" TO DISPOSITION.
CALL "OPNFIL" USING FCB-N

FIOP-STATUS

FILE-NAME

DISPOSITION
REC-LEN

NUM-OF-REC.

D-II

UM 620341440
30 September 1990

IF FIOP-STATUS NOT = KES-FILE-OK
DISPLAY "ERROR OPENING DATA FILE"
DISPLAY "STATUS IS: " FIOP-STATUS
GO TO FILE-INPUT-EXIT.

NEXT-RECORD.
MOVE SPACES TO STAFF-INFO.
CALL "INPFIL" USING FCB-N

FIOP-STATUS
STAFF-INFO
REC-LEN

RETURN-LENGTH.
IF FIOP-STATUS = KES-END-OF-FILE-INPUT

GO TO FILE-INPUT-CLOSE
ELSE IF FIOP-STATUS NOT = KES-FILE-OK

DISPLAY "ERROR READING DATA FILE"
DISPLAY "STATUS IS:" RET-STATUS
GO TO FILE-INPUT-CLOSE.

MOVE HOURLY-RATE-FILE TO HOURLY-RATE.
MOVE EMPLOYEE-NO-FILE TO EMPLOYEE-NO.
EXEC SQL INSERT INTO STAFF

VALUES (:HOURLY-RATE,
:EMPLOYEE-NO)

END-EXEC.

IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURED DURING INSERT"
DISPLAY "STATUS IS:" SHOW-CODE

ELSE
GO TO NEXT-RECORD.

FILE-INPUT-CLOSE.

IF SQLCODE = 0

PERFORM SQL-COMMIT THRU SQL-COMMIT-EXIT
ELSE

PERFORM SQL-ROLLBACK THRU SQL-ROLLBACK-EXIT.
MOVE "K" TO DISPOSITION.
CALL "CLSFIL" USING FCB-N

FIOP-STATUS
DISPOSITION.

IF FIOP-STATUS NOT = KES-FILE-OK
DISPLAY "ERROR CLOSING DATA FILE"
DISPLAY "STATUS IS:" FIOP-STATUS.

FILE-INPUT-EXIT.
EXIT.

SQL-COMMIT.
EXEC SQL COMMIT WORK END-EXEC.
IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE
DISPLAY "ERROR OCCURRED DURING COMMIT"
DISPLAY "STATUS IS: " SHOW-CODE.

SQL-COMMIT-EXIT.
EXIT.

SQL-ROLLBACK.
EXEC SQL ROLLBACK WORK END-EXEC.
IF SQLCODE NOT = 0

MOVE SQLCODE TO SHOW-CODE

D-12

UM 620341440
30 September 1990

DISPLAY "ERROR OCCURRED DURING ROLLBACK"
DISPLAY "STATUS IS: " SHOW-CODE.

SQL-ROLLBACK-EXIT.
EXIT.

D-13

UM 620341440
30 September 1990

APPENDIX E

SAMPLE C PROGRAMS

This appendix contains some sample C programs. These C programs are written against

the USER VIEW Report in Appendix B.

C PROGRAM 1: SINGLE-ROW SELECT

/*

* NAME: SELCI

void selcl()

EXEC SQL BEGIN DECLARE SECTION;
char pno[15];
char pnoqual[15];
char pdesc(50];
double budamt;
long pdepno;
char pduedt[8];
char ptasno[15];
long pmgrno;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
int option;

START:
for (;;)

do

printf("\nEnter Input Option (1=DATA 2=QUIT) :");

scanf(" %d", &option);

while(option < 1 1I option > 2);

if (option == 2)
break;

else if (option == I

/* get values from the user terminal

printf("\n Enter the Project No (up to 15 digits):");

scanf(" %s", pnoqual);
EXEC SQL SELECT A.PROJECTNO,

B.PROJECTDESC,
B.PROJDEPTNO,
B.BUDGETAMOUNT,
B.PROJECTDUEDATE,
A.TASKNO,
B.MANAGERNO

INTO :pno,

:pdesc,
:pdepno,
:budamt,

E-1

UM 620341440
30 September 1990

pduedt,
ptasno,
pmgrno

FROM PROJECTB B, TASK A
WHERE B.PROJECTNO =:pno_qual AND

A.PROJECTNO =B.PROJECTNO ()
if (sqlca.sqlcode != 0)

printf("\n SELECT FAILED WITH STATUS=%d",sqlca.sqlcode);
else

printf("\nProject No qualified on: - %.15s", pno-qual);
printf("\nProject No - %.15s", pno);
printf("\nProject Desc - %.50s", pdesc);
printf("\nProject Bud Amt - %12.2f", budamt);
printf('\nProject Due Date - %.8s", pduedt);
printfU'\nProject Dept No. - %d", pdepno);
printf('\nProject Manager No. - %d", pmgrno).
printf("\nTask Number - %.15s\n", ptasno);

return;

E-2

UM 620341440
30 September 1990

C PROGRAM 2: MULTI-ROW SELECT

* NAME: cdselc6 -- Selects data from the view CUSTOMER ORDER B.

void cdselc6()

EXEC SQL BEGIN DECLARE SECTION;
char customername[40];
long order line no;
long orderno;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
printf("\nSelecting from view CUSTOMER ORDER B: \n\n");
EXEC SQL WHENEVER SQLERROR GOTO err;
EXEC SQL DECLARE CUR1 CURSOR FOR

SELECT CUSTOMERNAME, ORDERLINENO, ORDERNO
FROM CUSTOMERORDERB
WHERE ORDERNO > 892300;

EXEC SQL OPEN CURl;
while (SQLCODE != 0)

I
EXEC SQL FETCH CUR1 INTO :customer name, :order lineno, :order no;
printf("%.40s %d %d\n", customer-name, order line no, orderno);

EXEC SQL CLOSE CUR1;
goodexit:

return;
err:

printf("ERROR ON SELECT FROM CUSTOMERORDERB\n");
printf ("STATUS IS %d\n", sqlca.sqlcode);
return;

E-3

UM 620341440
30 September 1990

C PROGRAM 3: INSERT

* NAME: cdinscl Insert into PROJECT entity

void inscl()

EXEC SQL BEGIN DECLARE SECTION;
char pnofl5];
double budamt;
long pdepno;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
char tmppno(16];
char optionl5];
sqlca.sqlcode =0;
for (;

do

printf("\nEnter Input Option (1=DATA 2=QtJIT):");
scanf (11 %s",option);

while (option[O] < '1' 11 optionFO] > '2');

if (option[O] == '2')
break;

else

strfill(pno, " ,15);

printf("\n Enter the Project No (up to 15 digits):");
scanf(" %15(^\nls",tmppno);
strncpy (pno, tmppno, strien (tmppno));
printf('\n Enter the Budget Amount (10).99):");
scanf(" %f",&budamt);
printf("\nEnter the Project Department Number (4 integers):");
scanf(" %d"l,pdepno);

EXEC SQL INSERT INTO PROJECT B (PROJECT_-NO,
BUDGETAMOUNT,
PROJDEPTNO)

VALUES (:pno,
budamt,
:pdepno);

if (sqlca.sqlcode != 0)
printf('\n INSERT FAILED WITH STATUS=%d", sqlca.sqlcode);

else
printf("\n Row successfully inserted ;

if(sqlca.sqlcode != 0)

printf("\n INSERT BEING ROLLED BACK");
EXEC SQL ROLLBACK WORK;
if (sqlca.sqlcode != 0)

printf("\n ERROR ON ROLLBACK, STATUS=%d",sqlca.sqlcode);

else

E-4

UM 620341440
30 September 1990

printf (11\n INSERT BEING COMMITTED");

EXEC SQL COMMIT WORK;
if (sqlca.sqlcode != 0)

printf("\n ERROR ON COMMIT, STATUS=%d",sqlca.sqlcode);

return;

E-5

UM 620341440
30 September 1990

C PROGRAM 4: DELETE

* NAME: CDDELCl -- delete from the PROJECTB view.

void cddelcl()

EXEC SQL BEGIN DECLARE SECTION;
char pno[15];
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SOLCA;
mnt option;
3qlca.3qlcode = 0;

START:
while(option < 1 11 option > 2)

printf("\nEnter Input Option (1=DEL A RECORD 2=QUIT):");
scanf (" %d", &option);

if (option == 1)

printf("\n Enter the Project No (up to 15 digits):");
scanf("1 %15s"l,pno);
EXEC SQL DELETE FROM PROJECTB

WHERE PROJECTNO = :pno;
if (sqlca.sqlcode !=0)

printf('\n DELETE FAILED WITH STATUS=%d",sqlca.sqlcode);
goto START;

if (option - 2)

if (sqlca.sqlcode == 0)

printf("\n DELETE BEING COMMITTED");
EXEC SQL COMMIT WORK;
if (sqlca.sqlcode !-0)

printf("\n ROLLBACK FAILED WITH STATUS=%d",sqlca.sqlcode);

.-lse
printf("\n DELETE BEING ROLLED BACK");
EXEC SQL ROLLBACK WORK;
if (sqlca.sqlcode !-0)

printf ("\n COMMIT FAILED WITH STATUS=%d",sqlca.sqlcode);

return;

E-6

UM 620341440
30 September 1990

C PROGRAM 5: UPDATE

* NAME: CDUPDC1 -- UPDATE the PROJECTB view

void updcl()

EXEC SQL BEGIN DECLARE SECTION;
char pnoqual[15];
char pdesc(501;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
int option;
for (;;)

do

printf("\nEnter Input Option (I=DATA,2=QUIT):");
scanf(" %d", &option);

while(option < 1 II option > 2);
if (option == 2)

break;
if (option == 1

I
printf("\n Enter the Project No (up to 15 characters):");
scanf(" %15s",pnoqual);
printf("\nEnter the new description ->");
scanf (" %s",pdesc);
EXEC SQL UPDATE PROJECT B

SET PROJECT DESC = :pdesc
WHERE PROJECT NO = :pnoqual;

if (sqlca.sqlcode != 0)
printf("\n UPDATE FAILED WITH STATUS = %d",sqlca.sqlcode);

if (sqlca.sqlcode != 0)

printf("\n UPDATE OF PROJECTB BEING ROLLED BACK");
EXEC SQL ROLLBACK WORK;
if (sqlca.sqlcode !- 0)

printf("\n ROLLBACK FAILED; STATUS = %d", sqlca.sqlcode);

else

printf("\n UPDATE OF PROJECTB SUCCESSFUL");
EXEC SQL COMMIT WORK;
if (sqlca.sqlcode != 0)

printf("\n COMMIT FAILED; STATUS = %d", sqlca.sqlcode);

return;

E-7

UM 620341440
30 September 1990

C PROGRAM 6: HOP

* NAME: insc2

#include "errfs.h"
void insc2()

EXEC SQL BEGIN DECLARE SECTION;
char pno[15];
double budamt;
long pdepno;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
char optiontS];
irit *fcb;
char filenamE8l];
char inrec(3J2;
long reclen;
long retlen;
char fiopstf6];
long nuxnorec;
int i;
char workarea(115];
void clsfil() ,inpfil() ,opnfilO);
sqlca.sqlcode = 0;
fiopst(51 = \;
for (;

do

printf("\nEnter Input Option (1=FILE 2=QUIT):");
scanf (" %s",option);

while (option(0] < '1' 11 option[0] > '2');

if (option[O] == '2')
break;

else if(option[O] =1)

printf("\n what file is the data on (FILE.EXT)?");
scanf (" % 8 0 s ,f ilenam) ;
opnfil (&fcb, fiopst, filenam, "R", &reclen, &numorec);
if (strncmp (fiopst, SUCCESSFUL, 5) != 0)

printf('\n COULD NOT OPEN FILE; STATUS =%s",fiopst);
goto EXIT;

for (;

inpfil (&fcb, fiopst, inrec, &reclen, &retlen);
if (strncmp(fiopst,ENDOFFILEINPUT,5) == 0)

clsfil (&fcb, fiopst, "K");
break;

E-8

UM 620341440
30 September 1990

else if (strncmp(fiopst,SUCCESSFUL,5) != 0)

printf("\n %s - Error in reading file\n", fiopst);
clsfil (&fcb, fiopst, "K");
break;

strncpy(pno, inrec, 15);
for(i = 0; i < 15; i++) workareai] = '\0;
strncpy(workarea,inrec+15,12);
sscanf(workarez., "%12.2f", &budamt);
for(i = 0; i < 15; i++) workareafi] = '\0';
strncpy(workarea,inrec+27,4);
sscanf(workarea, "%41d", &pdepno);

EXEC SQL INSERT INTO PROJECTB (PROJECTNO,
BUDGETAMOUNT,
PROJDEPTNO)

VALUES (:pno,

:budamt,
:pdepno);

if(sqlca.sqlcode != 0)

printf("\n INSERT FAILED WITH STATUS = %d",sqlca.sqlcode);
break;

else
printf("\n Row successfully inserted ");

EXIT:

if(sqlca.sqlcode != 0)

printf ("\n INSERT BEING ROLLED BACK");
EXEC SQL ROLLBACK WORK;
if (sqlca.sqlcode != 0)

printf("\n ERROR ON ROLLBACK. STATUS = %d", sqlca.sqlcode);

else

printf ("\n INSERT BEING COMMITTED");
EXEC SQL COMMIT WORK;
if (sqlca.sqlcode != 0)
printf("\n ERROR ON COMMIT. STATUS = %d", sqlca.sqlcode);

return;

E-9

UM 620341440
30 September 1900

APPENDIX F

FORTRAN PROGRAM EXAMPLES

This appendix contains some sample FORTRAN programs. These sample FORTRAN

programs are written agianst the USER VIEW Reported in Appendix B.

FORTRAN PROGRAM 1: SINGLE-ROW SELECT

C
C FORTRAN PRC TO SELECT FROM THE VIEW CUSTOMERORDER B.
C

SUBROUTINE CDSELFI

EXEC SQL BEGIN DECLARE SECTION
CHARACTER*40 CUSNAM
INTEGER ORDLNO

INTEGER ORDNO
EXEC SQL END DECLARE SECTION
PRINT * 'SELECTING FROM VIEW CUSTOMERORDERB:

PRINT * ' --------------------
EXEC SQL WHENEVER SQLERROR GOTO 500
EXEC SQL SELECT CUSTOMERNAME, ORDERLINENO, ORDER-NO

* INTO :CUSNAM, :ORDLNO, :ORDNO
* FROM CUSTOMERORDERB
* WHERE ORDER NO = 5

IF (SQLCOD .EQ. 0) THEN
PRINT *, 'CUSTOMERNAME: ', CUSNAM
PRINT *, 'ORDER LINE NO: ', ORDLNO

PRINT * 'ORDERNO, ', ORDNO
PRINT * ' >'

ENDIF

GOTO 900
500 CONTINUE

PRINT *,'ERROR ON SELECT FROM CUSTOMERORDERB VIEW
PRINT *,'STATUS IS ', SQLCOD

900 RETURN

END

F-1

UM 620341440
30 September 1990

FORTRAN PROGRAM 2: MULTI-ROW SELECT

C
C FORTRAN PRC TO SELECT FROM THE VIEW CUSTOMERORDERB.

C
SUBROUTINE CDSELF4
EXEC SQL BEGIN DECLARE SECTION

CHARACTER*40 CUSNAM
INTEGER ORDLNO

INTEGER ORDNO
EXEC SQL END DECLARE SECTION
PRINT *, 'SELECTING FROM VIEW CUSTOMERORDERB:

PRINT * ' --------------------
EXEC SQL WHENEVER SQLERROR GOTO 900

EXEC SQL DECLARE CUR1 CURSOR FOR
* SELECT CUSTOMERNAME, ORDER- INENO, ORDER-NO
* FROM CUSTOMERORDERB
* WHERE ORDERNO > 5
* ORDER BY ORDERLINENO, ORDERNO DESC

EXEC SQL OPEN CUR1
300 EXEC SQL FETCH CUR1 INTO :CUSNAM, :ORDLNO, :ORDNO

IF (SQLCOD .EQ. 0) THEN

PRINT *, 'CUSTOMER NAME: ', CUSNAM

PRINT * 'ORDER LINENO: ', ORDLNO

PRINT *, 'ORDER NO: ', ORDNO

PRINT *, '

GO TO 300
ENDIF
EXEC SQL CLOSE CUR1

GOTO 1000

900 CONTINUE

PRINT *,'ERROR ON SELECT FROM CUSTOMER ORDER B VIEW

PRINT *,'STATUS = ', SQLCOD
1000 RETURN

END

F-2

UM 620341440
30 September 1990

FORTRAN PROGRAM 3: INSERT

SUBROUTINE INSFI
INTEGER OPTION
EXEC SQL BEGIN DECLARE SECTION
INTEGER EMPNO
DOUBLE PRECISION SALARY
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
SQLCOD = 0

100 CONTINUE
PRINT *,'ENTER INPUT OPTION (1=DATA,2=QUIT):'
READ (5, 1010) OPTION

1010 FORMAT(I1)
C

IF (OPTION.EQ.1) GOTO 200
IF (OPTION.EQ.2) THEN

IF (SQLCOD .EQ. 0) THEN
PRINT *, 'INSERT SUCCESSFUL'

EXEC SQL COMMIT WORK
IF (SQLCOD .NE. 0)

PRINT *,'COMMIT UNSUCCESSFUL; STATUS = ',SQLCOD
ELSE

PRINT *, 'INSERT BEING ROLLED BACK'
EXEC SQL ROLLBACK WORK
IF (SQLCOD .NE. 0)

- PRINT *,'ROLLBACK UNSUCCESSFUL; STATUS = ',SQLCOD
ENDIF
RETURN

ENDIF
GOTO 100

200 CONTINUE
PRINT *,' ENTER THE MANAGER EMPLOYEE NUMBER (UP TO 8 DIGITS):'
READ(5,1030)EMPNO

1030 FORMAT(IS)
PRINT *,' ENTER THE SALARY FOR EMPLOYEE ',EMPNO,' (9.2):'
READ(5,1050)SALARY

1050 FORMAT(F9.2)
EXEC SQL INSERT INTO MANAGER B

* (EMPLOYEE NO, MANAGERSALARY)
* VALUES (:EMPNO, :SALARY)

IF (SQLCOD.NE.0) PRINT *, 'INSERT UNSUCCESSFUL, STATUS ', SQLCOD

GOTO 100

END

F-3

UM 620341440
30 September 1990

FORTRAN PROGRAM 4: DELETE

SUBROUTINE CDDELF1
INTEGER OPTION
EXEC SQL BEGIN DECLARE SECTION
INTEGER EMPNO
DOUBLE PRECISION EMPSAL
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA

100 CONTINUE
PRINT *,'ENTER INPUT OPTION (1=DATA,2=QUIT)'

READ(5,1010)OPTION
1010 FORMAT(II)

IF (OPTION .LT. 1 .OR. OPTION .GT. 2) GOTO 100
IF (OPTION .EQ. 2) GOTO 500
PRINT *,' ENTER THE EMPLOYEE NUMBER:'
READ (5, 1020) EMPNO

1020 FORMAT(I8)
EXEC SQL DELETE FROM MANAGERB WHERE EMPLOYEENO = :EMPNO
IF (SQLCOD.NE.0)

- PRINT *, 'ERROR ON DELETE. STATUS IS ',SQLCOD
GOTO 100

500 CONTINUE
IF (SQLCOD .EQ. 0) THEN

EXEC SQL COMMIT WORK
IF (SQLCOD .EQ. 0) THEN

PRINT *,' DELETES PERFORMED AND COMMITTED'
ELSE

PRINT *,' ERROR ON COMMIT. STATUS IS ', SQLCOD

ENDIF
ELSE

EXEC SQL ROLLBACK WORK
IF (SQLCOD .EQ. 0) THEN

PRINT *,' DELETES ROLLED BACK'

ELSE
PRINT *, ERROR ON ROLLBACK. STATUS IS ', SQLCOD

ENDIF
ENDIF
RETURN
END

F-4

UM 620341440
30 September 1990

FORTRAN PROGRAM 5: UPDATE

SUBROUTINE CDUPDF2
C

C FORTRAN PRC TO MODIFY DATA IN THE ORDERLINE ITEM B VIEW

C

INTEGER OPTION
EXEC SQL BEGIN DECLARE SECTION
INTEGER QCUST
INTEGER MQUANT
EXEC SQL END DECLARE SECTION
PRINT *, 'MODIFY PART NUMBER AND QUANTITY FOR A
PRINT *, 'LINE ITEM OF A CUSTOMER ORDER'

100 CONTINUE

PRINT *, 'ENTER CUSTOMER NUMBER (0 TO QUIT)

READ (5,1010)QCUST
1010 FORMAT(I8)

IF (CUSTNO EQ. 0) GOTO 900
PRINT *, 'ENTER NEW QUANTITY (8 DIGITS)'

READ (5,1050)MQUANT

1050 FORMAT(I8)
EXEC SQL UPDATE ORDERLINEITEMB

1 SET QUANTITY = :MQUANT
1 WHERE CUSTOMERNO = :QCUST

IF (SQLCOD .NE. 0) PRINT *, 'ERROR ON UPDATE; STATUS ',SQLCOD

GOTO 100
900 IF (SQLCOD .EQ. 0) THEN

PRINT *, 'UPDATE SUCCESSFUL'
EXEC SQL COMMIT WORK
IF (SQLCOD .NE. 0)

- PRINT *, 'ERROR ON COMMIT; STATUS = ', SQLCOD

ELSE

PRINT *, 'UPDATE BEING ROLLED BACK'
EXEC SQL ROLLBACK WORK
IF (SQLCOD .NE. 0)

- PRINT *, 'ERROR ON ROLLBACK; STATUS = ', SQLCOD

ENDIF
RETURN

END

F-5

UM 620341440
30 September 1990

FORTRAN PROGRAM 6: FlOP

SUBROUTINE INSF2
SALIAS OPNFIL C (%REF, %REF, %REF, %REF, %REF, %REF)

$ALIAS CLSFIL C (%REF, %REF, %REF)
SALIAS INPFIL C (%REF, %REF, %REF, %REF, %REF)

INTEGER FCB, INLEN, RETLEN
CHARACTER* 20 INREC
CHARACTER* 80 FILNAM
CHARACTER* 1 ACCMDE
CHARACTER*5 FIOPST
INTEGER RC
INTEGER FILOPN
INTEGER RECLEN
INTEGER OPTION
EXEC SQL BEGIN DECLARE SECTION
INTEGER EMPNO
DOUBLE PRECISION SALARY
EXEC SQL END DECLARE SECTION
EXEC SQL INCLUDE SQLCA
SQLCOD = 0

FILOPN = 0

100 CONTINUE
PRINT *,'ENTER INPUT OPTION (1=FILE,2=QUIT):'
READ (5, 1010) OPTION

1010 FORMAT(I1)
IF (OPTION .LT. 1 OR OPTION .GT. 2) GOTO 100
IF (OPTION .EQ. 2) GOTO 900
PRINT *,' WHAT FILE IS THE DATA ON (FILE.EXT)?'
READ (5,3020)FILNAM

3020 FORMAT(A80)
ACCMDE='R'
CALL OPNFIL (FCB, FIOPST, FILNAM, ACCMDE, RECLEN, NUMREC)
IF(FIOPST .NE. '00000') THEN

PRINT *, ' COULD NOT OPEN FILE; STATUS = ',FIOPSI

GOTO 100
ELSE

FILOPN = 1

ENDIF
400 CONTINUE

CALL INPFIL(FCB, FIOPST, INREC, INLEN, RETLEN)
IF (FIOPST .EQ. '11210') GOTO 500
IF (FIOPST .NE. '00000') THEN

PRINT *, 'ERROR ON FILE READ; STATUS = ',FIOPST

GOTO 500
ENDIF
CALL CHRINT(INREC(1:4),EMPNO,RC)
IF (RC .NE. 0) THEN

PRINT *, 'ERROR ON CONVERSION OF EMPNO'
GOTO 500

ENDIF
CALL CI:DP(INREC(9:20),SALARY,RC)
IF (RC .NE. 0) THEN

PRINT *, 'ERROR ON CONVERSION OF SALARY'
GOTO 500

ENDIF
SALARY = SALARY / 100.

F-6

UM 620341440
30 September 1990

EXEC SQL INSERT INTO MANAGER B
* (EMPLOYEENO, MANAGERSALARY)
* VALUES (:EMPNO, :SALARY)

IF (SQLCOD .NE. 0) THEN
PRINT *, 'ERROR ON INSERT; STATUS = ', SQLCOD
GOTO 500

ENDIF
GOTO 400

500 ACCMDE - 'K'

CALL CLSFIL (FCB,FIOPST,ACCMDE)
IF (FIOPST .NE. '00000')

- PRINT *, 'ERROR ON FILE CLOSE; STATUS = ',FIOPST

GOTO 100
900 CONTINUE

IF (SQLCOD .NE. 0) THEN
PRINT *,'ERROR ON INSERT TO MANAGER B; STATUS = ', SQLCOD
EXEC SQL ROLLBACK WORK
IF (SQLCOD .NE. 0)

- PRINT *,'ERROR ON ROLLBACK; STATUS = ', SQLCOD

ELSE
EXEC SQL COMMIT WORK
IF (SQLCOD .NE. 0)

- PRINT *, 'ERROR ON COMMIT; STATUS ', SQLCOD

ENDIF
RETURN

END

F-7

UM 620341440
30 September 1990

DATE COMPLEX MAPPING ALGORITHMS

Complex mapping algorithms have been written to support the user in accessing database
columns with date data. Each algorithm has a two-fold functionality. It can receive a field in a
DBMS specific format, and output a field in CDM specific format, or vice-versa. The CDM
specific format referred to is YYYYMMDD. There is a algorithm for each of the DBMS's
supported by the CDM, written in each language that may be generated to access the particular
DBMS. The algorithms, the DBMS accessed, and the language written in are:

Algorithm DBMS Language
DRACOB.COB ORACLE COBOL
ORACC.C ORACLE C
ORAFOR.FOR ORACEL FORTRAN
INGCOB.COB INGRES5, INGRES6 COBOL
INGC.C INGRES5, INGRES6 C
INGFOR.FOR INGRES5, INGRES6 FORTRAN
DB2COB.COB DB2 COBOL
DB2C.C DB2 C
DB2FOR.FOR DB2 FORTRAN
VAXCOB.COB VAX- 11 COBOL

In changing the appropriate algorithm the user should know which DBMS is being
accessed as well as the request processor generated language being used in accessing the particular
date database column.

For example, if the DBMS type to be mapped to was INGRES5, and request processors
were going to be generated in FORTRAN, the algorithm to be used should be INGFOR.FOR. If
the language for the algorithm is different than the language of request processors accessing the
column, unexpected results may occur.

Once the appropriate algorithm is determined, it should be defined tc the CDM using the
NDDL. The file DATECMA.DAT has been supplied to assist in this process. The file will need to
be customized and run for each complex mapping algorithm used. The sections DEFINE
MODULE and DEFINE ALGORITHM should be read in the NDDL Reference Manual before
attempting this customization. Note that for a particular algorithm, the DEFINE MODULE needs
to be run only once, but the DEFINE ALGORITHM command needs to be run twice for each tag
to datafield mapping used, to define the algorithm for both update and retrieval.

The following editing steps need to be performed on the file DATECMA.DAT.

I. Substitute the username and password of your CDM for UN and PW, in the first line.

2. Substitute your module name for the word "file" in each command. Do not include the
file extension.

3. Substitute the language of the module for the word "language" in the DEFINE
MODULE command.

G-1

UM 620341440
30 September 1990

4. Substitute a previously defined datatype for each occurence of the word "datatype" in
the DEFINE MODULE command.

a. The type and size of the datatype for the CDM-DATE parameter needs to be
CHARACTER or VARCHAR with a size of 8.

b. The type of the datatype for the DBMS-DATE parameter needs to be CHARACTER
or VARCHAR. The size of the datatype is dependent on the particular DBMS. The
appropriate DBMS and sizes are as follows:

DBMS Size
ORACLE 9
INGRES5 I I
INGRES6 I 1
VAX-11 23
DB2 6

c. The type and size of the datatype for the DIRECTION parameter needs to be
CHARACTER or VARCHAR with a size of 1.

d. The datatype of the RET-STATUS parameter uses a standard CDM datatype of RET-
STATUS. This does not need to be altered in the file.

5. Substitute the entity name and tag name to be mapped for "ecname.tagname" in both
DEFINE ALGORITHM commands. The type and size of the tag needs to be CHARACTER or
VARCHAR with a size of 8.

6. Substitute the database name, record name, and datafield name to be mapped for
"dbname.recordname.fieldname" in both DEFINE ALGORITHM commands. The type of the
datafield needs to be CHARACTER or VARCHAR with the size the same as determined in step
4.b.

7. For each tag to datafield mapping using the date algorithm, the two DEFINE
ALGORITHM statements need to be duplicated with the appropriate changes made for
"ecname.tagname" and "dbname.recordname.fieldname." The MOD INSTANCE needs to be
increased each time the DEFINE ALGORITHM command is used for a particular module.

All the algorithms are compiled and included in a CDM supplied library that will be linked
in appropriately by GENAP. These algorithms were written to be used when mapping a conceptual
schema tag to an internal schema datafield. The external schema dataitem which is mapped to the
tag using this algorithm should be defined with the same type and size as the tag.

To change the format of the dataitem from the standard CDM date format, another complex
mapping can be written by the user. However, if the standard date format is altered, any ORDER
BY in a SELECT statement on the dataitem is not advised, unless the following steps be
performed:

1. Define the type and size of the external schema dataitem to be the same as the conceptual
schema tag it is mapped to.

2. Do not use a complex mapping algorithm to map the dataitem to the tag.

G-2

UM 620341440
30 September 1990

3. Perform the logic to do the desired format conversion in the users application after the
SELECT or FETCH statements, but before displaying or using the retrieved value.

G-3

UM 620341440
30 September 1990

UN PW
/* Define the CMA module to the CDM.,/

DEFINE MODULE file IN language
PARAMETERS CDM-DATE TYPE datatype /* character8 */

DBMS-DATE TYPE datatype
DIRECTIONS TYPE datatype /* character 1 */
RET-STATUS TYPE RET-STATUS /* character5 */

/* Define the mappings from Conceptual Schema to Internal Schema.,/

DEFINE ALGORITHM file I FOR UPDATE FOR PREFERENCE 1
USING PARAMETERS
CDM DATE FROM ATITRIBUTE ecname.tagname
DBMS-DATE TO DATAFIELD dbname.recordname.fieldname
DIRECTIONS CONSTANT 'U'
STATUS;

/* Define the mappings from Internal Schema to Conceptual Schema.*/

DEFINE ALGORITHM file 2 FOR RETRIEVAL FOR PREFERENCE I
USING PARAMETERS
CDM-DATE TO ATTRIBUTE ecname.tagname
DBMS-DATE FROM DATAFIELD dbname.recordname.fieldname
DIRECTIONS CONSTANT 'R#
STATUS:

HALT;

G-4

