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Summary of overall progress

The analysis of the advantages and disadvantages of the homomorphic

filtering technique applied to solve the exact inverse scattering problem has

continued. There have been problems with strongly scattering objects due to

phase unwrapping. Work has continued to more carefully compare the

reconstruction of V' from the backpropagation of simulated data with that

predicted for the direct problem, from the same data.

We note that phase unwrapping is avoided with the differential cepstrum;

we believe that there might be an interesting connection between this and a

novel differential formalism for the Rytov approximation.

This report focuses mainly on new developments in modelling scattering

from nonlinear media. In anticipation of the next phase of this project, namely

to consider the inverse scattering problem for nonlinear medium, we have been

studying the writing of structures into nonlinear media, specifically

photorefractive crystals. A paper on this has been rewritten following

submission to JOSA-B and has now been submitted to Opt. Comp. & Sig. Proc.

Both experimental and theoretical work continues toward writing structures

with intense beams and reading with weak beams, the partial erasure on reading

being a problem without fixing. Methods for fixing are being independently

developed within the group. . a , _ -

Statement A per telecon

Dr. Arthur Jordan ONR/Code 1114
Arlington, VA 22217-5000 |. . -

NWW 5/8/92 .

w n' 'GIr

":x '~ 7. -.



Activities

During the last four-month period

Next July, M.A. Fiddy is chair, and F.C. Lin co-chair of the Conference on

Inverse Problems in Scattering and Imaging, at SPIE's 1992 International

Symposium on optical Applied Science and Engineering, in San Diego. There

are 50 papers from all over he world being presented.

Papers and conference presentations

Lin, F.C. and M.A. Fiddy, "On the issue of the Born-Rytov controversy: I
Comparing analytical and approximate expressions for the one-dimensional
case", accepted J.O.S.A. A.

Lin, F.C. and M.A. Fidd "Optimization of the self-pumped phase conjugation
in BaTiO 3 for optical image storage and readout", submitted to Opt. Comp. and
Sig. Proc.

There are also 2 papers on inverse problems to be presented at the San Diego

meeting in July.

Lin, F.C., R. McGahan, A. Alavi and M.A. Fiddy, "Quantitative image
recovery and restoration from scattered field data at 10GHz," to be presented in
the Conference on Inverse Problems in Scattering and Imaging, at SPIE's 1992
International Symposium on optical Applied Science and Engineering, in San
Diego.

McGahan, R., F.C. Lin and M.A. Fiddy, "Cepstral filtering for recovery of
object from scattered field data," to be presented in the Conference on Inverse
Problems in Scattering and Imaging, at SPIE's 1992 International Symposium
on optical Applied Science and Engineering, in San Diego.
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Progress since last report

1. Propagation of Light in One-dimensional Half-space Nonlinear Media

Because of their large nonlinearities observable with the usage of lower-

power cw lasers, artificial Kerr media such as aqueous suspension of

submicrometer dielectric spheres may be found useful as nonreciprocal media

for switching, image amplification or as storage media for holographic imaging

[1]. We are interested in their use as controllable scattering media for design

and synthesis of optical components, in which strong scattering phenomena play

a role.

Consider a laser beam incident from free-space (region 0 for z < 0) into

the one-dimensional (l-D) half-space nonlinear medium (region 1 for z > 0)

[Figure 1]. Suppose that the incident laser beam is a time-harmonic plane wave
i(koz - anwt)ae he with radial frequency co and ko = wl goe where to and co are the

free-space permeability and permittivity, respectively. Also assume that the

nonlinear medium can be characterized by the free-space permeability go and a

permittivity sl(z) = E1[n0 (z) + An(z)] 2. The spatial distribution of

inhomogeneities in the medium modulates locally the linear refractive index

no(z) [1] while the effects of self-actions of light in the medium gives rise to the

nonlinear term An(z) [2]. For example, in artificial Kerr media such as liquid

suspensions of submicrometer dielectric particles, the electrostrictive effect

yields the intensity-dependent contribution to the nonlinear term, i.e.,

An(z) = I 1 (z) 2  (1)
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Figure 1.

where n, = s1 /o and n2 and TP(z) are the nonlinear (Kerr) constant and the

total field in region 1 (the nonlinear medium), respectively. For liquid

suspension of submicrometer polystyrene latex spheres with 0.234 grm in

diameter, the typical value of n 2 is about 10- 9 cm 2/W [3]. Therefore, for the

moderate laser intensity from 1 to 100 W/cm 2, An(z) can be taken as a small

perturbation to no(z).

In the 1-D scattering theory, the total fields, io(z) and P1 (z), in rep.on 0

and 1 satisfy the scalar wave equations

d 2 TO(Z)
+ k o(Z) = 0; z < 0 (2)

dz2
and
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d 2 T,(z) 2 { n2 2 }d2  + k ''(z)=- k no(z) + -ni 1/(z)/2 - l }'(z); z > 0 (3)

where k1 = I /ioel .For brevity, the time-harmonic factor e- is omitted

from the total fields. The term on the right-hand side of Eq. (3) is the so-called

secondary source.

1.1. The Born Method for the 1-D Half-space Nonlinear Case with no(z) = 1

and F- = ., (n, = 1)

!n this case, the free-space Green's function G(z, z') = ikolz z'I

should be used in the inhomogeneous Fredholm equations of first kind for I 0(z)

and W(z) [4], namely,

00

'P0(z) % (z) - ko rdz'G(zz' zn21I(zI + T2 (ztl(z'); z <0 (4)

0

and
00

P () -7k12dzG(z + 2 ( z, 4 (

L2. IT, (o(z) z':a0 5
1i(z) T,() 2 Qfd'G~' 2 1  4IP (zI1I

0

where ''o°(z) and , (,z), which are also equal to the incident plane wave eiz

for this case, are the unperturbed fields in regions 0 and 1, respectively. Since

the contribution due to -kn 2 1 I (z)12 + -2- ITP,(z)14}P1(z) to the scattered fields

is very small, we can apply a perturbation method to expand the total fields of

Eqs. (4) and (5) in terms of the unperturbed fields, namely,
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.,,,-, +v,,(z + vs z +..., ,,., + ,, z is (z)+.
m = 0, 1 (6)

where "s~nz) (n = 1, 2, ... ) is the nth-order Born approximated scattered field

in region 1. After lengthy calculation, we obtain the first-order and the second-

order Bom approximated scattered fields in region 0 and 1:

IBA n2 -ikoz
T oS (z)=-Te z < 0, (7a)

2BA 3n2 -ikoz
T OS (z) = e ; z < 0, (7b)

IBA n2  n2 . ikoz
"'ils (z)=( " + i ""z0z= +j2koz e 1; z0 (8a)

and
2BA 3n2 3 n 2 n 2 2 ikoz
Ifs (z) ,--6-- 2 'kz 2 -e z>0. (8b)

1.2. Exact Solutions of To(z) and T(z) for the 1-D Half-space Nonlinear Case

with no(z) = I and cl = Fo (n, = 1)

The closed-form solutions for To(z) and T(z) can be written as

ToZ ik~z "ik'

=(z)=e + Rs e kz z < 0 (9)
and

T, (z) T, eik sz= ; z>_0. (10)

The real reflection and transmission coefficients, Rs and T., can be derived

from the boundary conditions:
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0) = ) (0) (11)

and

dT _(z) d (z)(12
d z= 0 dz z=0. (12)

These boui Aary conditions can be applied for the acoustic case or the TE case in

the electromagnetic wave theory. Since the wavenumber in the nonlinear

medium is k, = ko + T the boundary conditions yield two equations for

R s and Ts, i.e.,

1 + Rs = Ts  (13a)
and

1 -R = 1 + "Ts) Ts  (13b)

from which we obtain

n2 Ts + 4 Ts - 4 = 0. (14)

Eq. (14) has one real root given as

=2+ 27n2 -4./3 (15)

3n 2  + 3 +
(2 27n 2  nl2

and two complex roots which are complex conjugate each other. The real root

of Eq. (14) gives the correct approximation for the total fields when n2 << 1,

namely,

TOW z1 ik43z 2 e-2 3
'1'(z)~e - + - + -- .. )e k  (16)

and
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2 2 232•Tj()n, < I  n2 + n2 3n2 3n 2  n2 6 i T o koz 2  e 'koz.  (17)
_~z 1 --T + i 2-koz + ---- i --i z koz - 2 -..

Note that Eqs. (16) and (17) are exactly equal to the Born approximated fields
derived from Eqs. (4) and (5).

1.3. The Born Method for the l-D Half-space Nonlinear Case with no(z) = 1

and el >

In this case, the Green's functions, Goo(z, z'), Glo(z, z'), G01(z, z), and

G11(z, z') which are governed by the equations

d2G p(Z, z') 2
2 + k Gpq(Z, z') -= 8kNpz(z -z); (p, q = 0, 1) (18)dz2

are used in the inhomogeneous Fredholm equations of first kind for 'o(z) and

T(z). Note that 8pq is the Kronecker delta and 5(z - z') is the delta function.

Physically, Gp,(z, z') describes how the field, generated by a point source at z"

(in region q), behaves at the observation location z (in region p). From the

boundary conditions at z = 0:

Gpp(O, z') = Gq(O, z') (19)

and

dGp,(z, z')l dGqp(z, z') = (20)
dz z=0 z=0

where p, q = 0, 1 and q # p, we obtain

i20[ ikolz - z'I -ik0(z + z')ZGOO(z, z) A [e+ R(kl)e]; z & z<0, (21)

i2k8



Go(z, z) = iTk T(k1)ikzC Iekz; z'<0 <z, (22)

G(z, z') =- R(keikl(z + Z)] z & z' 2! 0, (23)

and

G01(z, z) = I T(kl)ekoz e iklz; z < 0 z'. (24)Gol(, z) -i2ko

Note that the coefficients

R(kl) ko + k, (25)

and
2ko

T(k1 ) -ko + k. (26)

are the same as the reflection and the transmission coefficents in the three-

dimensional case for a TE wave normally incident on a dielectric half-space

with permittivity E. Owing to the symmetry of the scattering geometry in the

dielectric half-space case, the Green's functions satisfy the symmetry properties

[5], namely,
T

Gpq(Z, z') G W(,z); (p, q = 0, 1). (27)

Therefore, the total field Tp(z) in region p (0 or 1) can be expressed as

00Otz)  =1 n22 IT J'I (28
p(z) ='z) - k'{dz'Gpl(zz) WI(zD)2 + 4--'l'1 (zD)1] i'(z (28)

0

(0 () adV1 (), aeqult ikoz
where in this case, the unperturbed fields, %°(z) and T,°(z), are equal to e

and T(k1)e ik z, respectively. After applying the perturbation method to expand
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Eq. (28) into the Born series simliar to Eq. (6) and using Eqs. (23) and (24), we
obtain the first- and the second-order Born approximated scattered fields

IBA n 2  _kz
Jos (z) =- T '(k1) ek , z < 0, (29a)

2BA 3n2 7 ikoz
'OS (z) = 1- T(k,) ek ; z < 0, (29b)

IBA (z)= n2 "T 4(k,) + n'Th'(k,)klz e ;k~ z;>0, (30a)

and

S [z) 3 7 3n22 6.2 T 2(k1)kIz2 ik~z
=[T'(kj)-i ''T (k,)kIz-22 e ; z>__0. (30b)[ ~~~8nI 0 3b

1.4. Exact Solutions of To(z) and TP(z) for the 1-D Half-space Nonlinear Case

with n(z) = I and E1 
>

Similar to Eqs. (9) and (10), '1o(z) and TI'(z) can be written as

WoZ ik~z -ik~z
(z)= e + R e z < 0 (31)

and

T,(z) = Td e Z; z_0 (32)

where kd = k1 1+ ] T Using the same boundary conditions as in Eqs.

(11) and (12), we can derive two relations for Rd and Td from which we obtain

3 4

n2 Td+ T(k) Td -4 = 0. (33)

Eq. (33) has also one real root given as
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2 4

+ 27n2 T3 (k1 ) ) 3n + 27n2 T 3 (k1 ) + (34)

and two complex roots. Thus, with Eq. (34) and the condition that n2 << 1, the

total fields can be approximated as

h~o(Z) " e koz+ - TT 4(k) + 3n 2.T7(k ) - e (35)

and

n<<l I  n2  3n2 3n2
T, (z) [I - -L T4 (k1 ) + i - T3(kl)kz + -f- T (k)- i T6(k,)kxz

2 i~-2 22 (k1 )kz2- ...] eiklz. (36)
-8ni

Eqs. (35) and (36) are exactly equal to the Born approximated fields in Eqs.

(29a) to (30b).
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2. Image Reconstructions for RADC Bistatic Scattering Measurements

In a previous report (October 1, 1990 to April 8, 1991), we applied the

far-field filtered backpropagation algorithm to reconstruct, from the far-field

scattered data taken at the RADC bistatic scattering experiments, the images of

two empty annular cardboard cylinders with 8.5 cm and 15 cm in diameter and

0.4 cm in thickness. These reconstructions are accomplished by backpropagating

36 sets of 10 GHz scattered field data TP,(P5,, k 0o) into the scatterer domain.

Each set of data, containing 181 data points, corresponds to one viewing

direction; the viewing angle ranges from 0 ° to 3500 with 10' increments. Each

data point within each set of data corresponds to one scattering angle; the

scattering angle ranges from 0' to 180' with 1' increment. Before using the far-

field backpropagation algorithm resulted from Eq. (23) of the previous report,

the scattered data is interpolated into the cartesian grid on the k-domain in

order to apply the fast Fourier transform. The interpolation module (the IMSL

subroutine "IQHSCV") involves a smoothing process. Also the summation over

all viewing angles (using Eq. (23) of the April 1991 report) combines both the

along- and the across-viewing-direction structures of V(5)P( P) for all views

(where V(5) is the scattering function and 'P(5) is the total field in the

scatterer). Therefore, both the along- and the across-viewing-direction

structures of V(5)(P, koo) for each view with the viewing direction 0. have

been artificially symmetrized. Although the far-field backpropagation algorithm

provides a way of fast reconstruction, the brute-force method is necessary to

integrate Eq. (20) of the April 1991 report in order to reconstruct the true

along- and the across-viewing-direction structures of V(5)'(P, koo).

Suppose that the scattered field data, t',(P, koo), were measured in the

far-field at positions P, = p, ( cosqp, + 9 sinp() after the scatterer had been

12



illuminated by a time-harmonic plane wave of wavenumber ko propagating in

the direction 0. = cos(po + 9 sinp°. In 2D diffraction tomography, we have

shown [6] that the scattered field ',([,, koPo) is written as,

( 1 0 ) = "-4" Jd V HO(ko0 Pt,- -5i)V(P5")i(P -, ko0 o) (37)

where Ho tkolp, - P5 'I) is the zeroth order of the Hankel function of first kind

and the integration is over the cross section Q of the scatterer. Under the far-

field approximation, we have

I'ko -) 4 i(kop, + n/4) e-ikosi ,. (38)

and, thus

,(1,,ko,,) " ei(koP, + n/4) Id215"eo s'P V(15)'t( ,k0 ). (39)

By defining a function

f(p, k o) = V(5)Ti(p, koo) eiko 0  (40)

then, Eq. (39) can be rewritten as

F%'(K) - fd2o. f(PV, ko0 o) eiko o° ' (41)

where

- R p  e'i(k°P +nt/4) T(15k°o°) (42a)F(Po(K) =23

and
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K ko(Cosq,' - cosq0 ) + 9ko(sinp, - sinqpo). (42b)

After taking the inverse Fourier transform of Eq. (41), we obtain

oo 00

f(P, koo) = JdKx JdKyei(Kx x + Ky y) F9p(Kx, Ky). (43)
-CIO -00

In fact, the limits of integration in Eq. (43) can only be from -2ko to 2ko

because the measured data Fy,(Kx, KY) are confined within a disc centered at

the origin and having a radius 2ko on the k-domain. If we transform the

integration dKxdKy to dpodqp, by using the relations:

K x = ko(cosp, - cosy0 ) (44a)

and
Ky = ko(siny, - sinp0o), (44b)

Eq. (43) becomes

2 2r 2r

V(5)T(P) = -- jJd(Pqojd(ps e ikO s- KO) /1 - (s-o 0 )2 F(po(ko(s-0o)). (45)

which is the same as Eq. (20) of the previous report that is used to formulate

the far-field filtered backpropagation algorithm. Note that the dependence of

the viewing angle in Tu(P, ko o) is averaged out in Eq. (45). However, if only

one viewing angle is considered in Eq. (45), we can reconstruct the along- and

across-viewing-direction structures of V(P)T(p, koo).
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In Figures 2 to 7, the 2-D grey-level images are the modulus plots

reconstructed, from two sets of simulated and two sets of measured scattered

field data, over a spatial area 64 x 64 cm2 in the object domain while the 1-D

linear plots are real parts of the corresponding images either along or across the

viewing direction. For comparison, the actual size of each cylinder is indicated

by the tip of the arrowhead on each 2-D grey-level plot. Figures 2a and 3a are

the reconstructions, from simulated scattered field data, of cross sections for

solid cylinders both having V = 0.03 and with 4.25 cm and 15 cm in radius,

respectively. Figures 2b and 3b (2c and 3c) are the along-viewing-direction (the

across-viewing-direction) plots of the real parts for the objects corresponding to

Figure 2a and 3a along the line y = 0 (x = 0). Figures 4a and 5 are the

reconstructions, respectively from measured scattered field data for incident

angle (or viewing angle) at 00 and 2400, of cross section for the annular

cardboard cylinder having a radius 4.25 cm, thickness 0.4 cm, and filled with

styrofoam of V = 0.03. Figure 4b and 4c are the along- and the across-viewing-

direction plots of the real parts for the object corresponding to Figure 4a along

the lines y = 0 and x = 0, respectively. Figures 6a and 7a are the

reconstructions, respectively from measured scattered field data for incident

angle at 0' and 900, of cross section for the empty annular cardboard cylinder

having a radius 15 cm and thickness 0.4 cm. Figures 6b and 7b (6c and 7c) are

the along-viewing-direction (the across-viewing-direction) plots of the real

parts for the objects corresponding to Figure 6a and 7a along the line y = 0 (x =

0). Note that after the filtering algorithm has been applied to remove noise

from experimental data, we are able to obtain consistent reconstructions for two

different viewing directions; comparing Figures 6b and 6c with Figures 7b and

7c.
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Figure 3a.
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Figure 6a.

Figure 6b.
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Figure 7a.
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Summary of work directions in the next period

The following areas will be pursued in the next few months:

i) Homomorphic filtering techniques applied to the inverse scattering

problem, for simulated and real data.

ii) Inversion of data for the recovery of nonlinear permittivity profiles,

with the expectation that we can design permittivity structures in nonlinear

media such as photorefractives.
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