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SUMMARY

Interest has recently been renewed by the Aeronautical Research Laboratory in the
use of constrained layer damping for passive vibration reduction. This report describes the
authors’ experiences in applying the techniques to a variety of practical problems.
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1 INTRODUCTION

Damping has been under investigation for many years. Damping has been con-
nected with vibration since the nineteenth century. It was recorded in 1850 [1] that
Professor Wheatstone had demonstrated a device to illustrate the human voice,
which incorporated a damper. Since that time various researchers have investi-
gated the damping properties of many materials and configurations. A search of
the literature reveals an increase in activity in the period from 1960 to 1970. An
extensive paper on the use of constrained-layer damping was published by Ruz-
icka in 1961 [2]. There is little evidence of significant application of the technique.
However, in recent vears there has been a renewed interest with many workshops,

conferences and subsequent publications {3.4.5.6,7].

This report sets out the progress in recent years at ARL and evaluates some of
the materials that are available in Australia. A number of practical applications

are described.

It is difficult for the practising engineer to predict the effects of applied damping
treatments in many applications because of the complexity of the analysis required

and the difficulty in obtaining valid damping inforination on the materials.

In the Aircraft Structures Division of ARL the emphasis of vibration reduction
work has usually been to isolate the sensitive object from the surrounding envi-
ronment. isolate the source or use tuned mass damping systems. One instance of
a dynamic vibration absorber was the tuned absorber installed in four of the ships

i the Royal Australian Navy's Landing Craft (Heavy) squadron [8,9,10].

Many of the proprietary constrained-laver dawping materials, available in USA,
do not appear in the catalogues of the Australian agents or subsidiaries, or if they
do. they are ouly imported to order. Clearly these materials are not widely used

i Australia.
2 MATERIAL EVALUATION

Tests were carried out on aluminium plate with dimensions of 600 x 200 x 5mm
and 600 x 200 x Gmm. Several identical pieces vere cut from the same sheet such
that they all had the same lengthwise grain structure. No experiments have been
carried out te determine whether there is any difference, in stiffness or damping
properties, between pieces of aluminium cut in different directions from the same
sheet. The test rig is shown in Fig. 1. This simple rig reproduces laboratory results

consistently for the many specimens tested.
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The test procedure was in two stages. First. a random input was applied to
establish the resonant frequencies of the plate, simply supported on soft foam. In
the second stage the plate was excited sinusoidally at the first resonant frequency
and a decaying acceleration time history captured on removal of the excitation.
Both stages were conducted with and without constraining layers attached to
the plate. Figure 2 explains the symbols and notation shown in an output from
the Wavetek Modal 804A signal processor. The results for the basic aluminium

specimen are shown in Fig. 3.

It 1s possible. using the logarithmic decrement, to provide a measure of damping as
a percentage of critical damping. This applies only for a single mode of vibration
and treats the structure as a single degree-of-freedom system. The percentage of

critical damping. ~. is obtained from Eq. {1).

where
oy = amplitude of vibraton n cycles after
C
5= 0 X 100
Ce
Co = 2mwy
== nass

«n = natural frequency

If the special case is taken where oy is balf the amplitude of 24, 1. zy = %2,

then

where N is the number of cyeles to hialf amplitude.

In general, the mass and stiffness of a plate will vary when a constraining layer is
added. The resultant change in natural frequency will require 4 to be multiplied
with critical damping as shown below. so that comparison with different specimens
can be made. In order to make a valid comparison it has been assumed that,

because the damping treatment applied in these tests is symmetric about the




centre of area of the base structure. the mode shapes for the treated and untreated
plates are the same. aud consequently the generalised mass for the two cases will

be in proportion to the total mass.

Therefore. if the mass has changed in the ratio of m9 : my, and the resonant
frequency of the fundamental bending mode has changed in the ratio wp9 : wpy,

then the critical damping will have changed such that

. ey
Cc'z = Ccl ,

nijwnl

If the initial damping €'} was I%%C'cl then the new damping Cy will be

T2 ., Niawn)

]

2
Cy=-—=—=-Cs or (Cy=-—"-Cq—=
¢z - 100 dmlw'nl

=7 100 )

and the proportivual change mn damping will Le

Co mCopmawny  2ampwn

C1 1Cemiywyr y1menl

(4)

and this is how the damping results have been compared in these tests.

In tl e first series of tests three different materials were used as constraning layers
on aluminiuw plate. Thicknesses of 1.5um carbon fibre cloth laminate, 1.5mm
Keviar cloth laminate and 1.5mm aluminium alloy i eacli case was bonded to
aluminium plate using Flexon F241 acrylic adhiesive. These damping treatments
were chosen initially as they were the most likely materials to gain acceptance for
bonding to service aircraft. The damping characteristics for each treatment are
shown in Figs. 5.6 and 7. The resonant frequency for the composite panel has

ncreased and so has the mass. The results are shown in Table 1.

In the sccond series of tests the effect of the thickuess of the constraining layer
was investigated. The damping material used was a general purpose double-sided
adhesive tape made by TESA*. Coustraining layers were aluminium of three thick-

nesses, 0.3. 0.9 and 1.5 millimetres.

Figs. 8.9 and 10 show the results of transfer function analysis using broad band
noise input. and a captured decay signal when the structure was excited at the

fundamental bending frequency using a sinusoidal input.

* TESA TAPES is a division of Betrsdorf Australia Ltd.




Table 2 sets out the numerical values for comparison purposes. Unfortunately the
TESA tape. although an excellent visco-clastic damping material, has a very low
shear strength, and the constraining layer would creep when placed in a verti-
cal position. Work is being undertaken elsewhere [11] to use liquids that can be
modified. by the application of an electrical charge, such that their stiffness and
damping properties can be controlled. These materials are referred to as elec-
trorheological. This test, however, did indicate that there was little to be gained
by increasing the thickness of the constraining layer beyond one millimetre. This
will not be the case for other damping materials. Further work is necessary before
any empirical rules may be laid down. It is certain, however, that the constrain-
ing layer should have a sufficiently high shear strength that it may introduce the

maximuin strain in the damping layer.

A further investigation was carried out with various combinations of damping
materials and counstraining layers bonded to dmm and 6mm aluminium plate,
Tables 3 and 4. In cach case a single damping layer of dimension 80 x 500 mm
was applied symmetrically about the centre of one side of the aluminium plate,
Fig. 11.

A damping hmprovement was luvestigated for a ibreglass structure. Several spec-
imens were cut from a sheet of fibregluss/polyester-resin laminate. The specimens
were approximately 400 x 100 x Smun in size. A constraining layer of aluminium of
dimernision 350 X 75 x 3nun was used with o number of different potential damping
materials. The specimens were simply supported as shown in Fig. 1. The input
excitation was applicd at one end. off centre. directly below the accelerometer lo-
cation. Broad band excitation was applied i the frequency range 0 to 2000Hz,
and the amplitude adjusted to obtain a peak response close to 4 volts from the ac-
celerometer/amphfier systenn. This corresponds to approximately 40g peak. The
excitation source was switched off and the decaying signal captured on a Fast
Fourier Trausform (FFT) spectrum analyser. A single FFT was performed on the
captured time hustory. Figs. 12 to 17 show these time histories and frequency spec-
tra. These figures show that the time for vibrations to decay to zero was far less
when proprietary brands of adliesive material were used than when proprietary

damping materials with adliesive reconnuended by the manufacturers were used.




3 PRACTICAL APPLICATIONS

At an early stage in these tests on various specimens it became apparent that
constrained layer damping had some distinct advantages over the non-constrained
treatments. The opportunity to try constrained layer damping arose in several

applications described below.
3.1 Aircraft Stabilator

Aircraft are subjected to buffeting and turbulent airstreams. These inputs excite
the various resonant vibration modes of the aircraft. If the structure is lightly
damped the vibrations may become large cnougl to cause structural failure due
to fatigue of vital components. Concern was being expressed about the levels of
vibration on the tail surfaces of the F/A-18 aircraft in service with the RAAF. An
F/A-18 stabilator was made available for a number of tests and the opportunity

was taken to investigate whether the damping could be significantly increased.

A number of coustraints apply when dealing with aircraft. The increase in mass
must be minimal. the aerodynanmic properties must not be degraded, and the safety
of the aircraft must not be placed at risk. For this experiment a 3M product called
‘Scotchmount” Y4965 wias used as the damping material. This is a double sided ad-
hesive tape with very good long term bonding cupabilities and a good temnperature
tolerance. The adhesive tape was applied 1 251mm wide strips to approximately
T07 of botl surfaces of the stabilator. Fig. 18, To ensure good bonding, a vacuum
bag technique was used. A thickness of lmm aluminium was used as the con-
straining layer. This thickness had performed well in earlier tests and was easily
shaped to the slight curvature of the stabilator. The improvement in damping
was measured using « randow deerement anadysis techinique. This technique has
been aescribed carlier and the method works well with lightly damped modes of
vibration [12]. The damping in the modes of vibration of concern improved from
1% to 1.5% of critical damping. Changes in mode shape. frequency and mass of
the modified structure made 1t difficult for an accurate comparison to be obtained.
The improvements were msuflicient to justify any thoughts of making the system
airworthy. Further improvements would have required a substantial increase in
mass which was considered to he nnaceeptable. The work is described in more

detail in Ref. 13,
3.2 Diesel Generator Set

This problem relates to a diesel-engine-powered generator-set installed in a ship.

The set is mounted on six rubber isolation-mounts that have been well chosen and




provide attenuation of 90% in the frequency range of concern. The request was
made for a reduction in the 10% that passed through the isolation mounts. Fig. 19
shows the generator set on its 1solation mounts. The generator set 1s mounted on
a platform comprising of two welded channels and several cross-members. Modal
analysis using four electro-magnetic shakers revealed a number of vibration modes,
with significant amplitudes at the mounting points, that involved bending of the
support chaunels. The approach taken was to incorporate constrained layer damp-
ing into the channels using 3mm thick Isodamp C-1002 material constrained by
eight 1600mm lengths of stainless steel angle of dimensions 125 x 125 x 10mm.
Isodamp is a product of the E.A.R. Division of Cabot Corporation. U.S.A. The
bonding medium used was Araldite K138. Figs. 20 and 21 show the installation

of these angle beams to forun a channel.

The effectiveness of the treatment was assessed by measuring the acceleration
response at each isolation mount for a wide band excitation. Figs. 22 to 25 show 4
of 24 spectra obtained from these tests. Included are the spectra which show the
least improvement and those which show the most improvement. The top figure in
each case 1s the undamped situation and the lower figure is the situation after the
treatment is applied. An miprovement can be seen to be a reduction in response
{arca under the curvei and removal of major peaks. Increases in some cases are
due to sutlicient chianges i1 mode shape to place the support mount further from

a nodal point. The treatment was cousidered to be an overall improvement.
3.3 Fibreglass Boat Hull

This application followed the request to reduce the radiated noise from a fibreglass-
hulled boat. The hull was constructed from two Smm skins sandwiching a 60mm

polyurethane foan material.

The mitial experiments were carried out on a piece of the sandwich material using
3 Scotchmount Y4905 tape to cover an area 1200 x 150mm on the 1500 x 300mm
specnnen. Several constraining layers were used and the effects on the vibration
modes at 141 and 4006 Liertz were noted. The results of these tests are presented in
Table 5. The tests were then repeated using Decibar DS4 instead of Scotchmount
tape. Deabar DS4 is o product of Industrial Noise Control Pty. Ltd. The con-
straining layer used was Gmm fibreglass. At this time. a suggestion was made that
au improvement in overall damping may he achiieved by cutting the constraining
layer into smaller pieces. The theory being that the strain energy is a maximum
at the edges of the layer and that the more edges there are, the greater the strain

energy. However, the strain energy is proportional to the amount of strain, which



is related to the length of the constraining layver. So the total amount of strain
energy will Increase to an optimum value and then drop away as the segments
become so small. in relation to the flexing of the vibration modes, that there will
be no strain energy at all. In this experiment. the constraining layer of 1200 x 150
x 6mm fibreglass was cut into 2, 4, 8 and 106 segments. The results are presented
in Table 6.

Furthermore, a damping treatment was applied to a larger piece of the sandwich
material. The panel dimensions were 2500 x 1500mm, and four pieces of con-
straining material were used. Three pieces were 1000 x 600mm and the fourth was
1200 x 600mmi. The damping material was Decibar DS4 bonded with Araldite
K138. Figure 20 shows the panel layout with excitation and measurement points
indicated. Figure 27 shows the experimental setup. the foam supports can be seen
under the smaller panel in the foreground. The larger panel in the background was
supported on four soft springs and excited by a single shaker. Responses to broad
band excitation were measured at nine locations before and after the application
of the damping treatment. Figures 28 and 29 show the results from the best and

worst cases. All locations showed a significant improvement.

At this stage. information became available on another product from the E.AR.
Division of Cabot Corporation in the U.S.A. The product is a damping tile de-
scribed on the data sheet as MIL-P-23653C (SHIPS) DAMPING TILES. They are
“high physical strength, thermally stable. graphite filled. polyvinyl chloride alloy
compounds.” [14]. A sufficient quantity of these tiles, weighing 1270 grams each
and of dinensions 305 x 305 x S was obtained to conduct an experiment with
the 1500 x 300mm fibreglass /foam saudwicli specimen. The tiles, after being cut
m half. were bonded to the speetmen using Araldite K138 epoxy resin. To improve
the damping further. & constraining laver of 1dmu of tibreglass was bonded to the
tiles. This was made up of two layvers of Tunu cach. Figure 30 shows the response
to random excitation for hoth cases. Two further experiments were conducted
using Nvlex Dyad matertal 0.5mm thick as o damper. One experiment used the
Dyad. bonded with 3N rubber adhiesive externally on one side of the specimen
and 1 the other experiment, a specimen was constructed with the Dyad bonded
between the foam and fibieglass skins as shown in Fig. 31. The bonding adhesive
i this case was Araldite K138, Figure 32 shows the response spectra for these two
cases. The test results were incouclusive and indicate that there was less strain
in the built-in Dyad than in the externally applied Dyad. This may be caused by

the low stiffness of the foam material.




4 DISCUSSION AND CONCLUSIONS

A wide range of materials has been tested 1w coustrained-layer damping ev
uation program. The tests were conducted at room temperature. The resu

obtained are a good starting point for further detailed studies.

Comparisons between the performance of damping materials when applied to d
ferent specimens are made by considering the ratio of critical damping, mass a
natural frequency betwecn specimens. The manufacturers of damping mate
als provide complex charts of shear modulus and loss factor for a wide range
frequencies and temperatures. There are no such charts for some of the rubt
adhesives and double-sided tapes that have been tested. It is worthy of note that
3M product manufactured for its adhesive properties was found to perform bett

than the 3M damping products used in the laboratory test.

The practical experiments undertaken witli a view to real-world application h:
some degree of success. Critical damping ou the aircraft stabilator was improw

from 1% to 1.3%.

On the Diesel Generator Set. certain levels of response were reduced by 60¢

Other levels were shifted. some remained the sane and some increased.

Dividing the coustraining layer into smaller segients increased the damping of tl
fibreglass /foam sandwich panel witli an associated drop in natural frequency dt
to a reduction in stiffness. An optimum level of damping was reached and furth
division of the constraining layer tended to decrease the damping. The final choi
of treatment for the hull was the ship damping tile without a constraining laye
An improvenient in noise reduction was measured during sea trials, but details a:

not available at this tne.
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TARLE 1

Comparison of damping results in first series of tests.

Total Resonant % of Critical = Damping*
Mass frequency = Damping improvement
Specimen grams Hz ] C2/Cq
Bare aluminium 1608 66.5 0.26 1.0
Carbon Fibre Layers 2090 1315 0.23 227
Aluminium Layers 2446 126.5 0.17 1.89
Kevlar Layers 1970 102.0 0.61 441

Note that this is a ratio, and a value of 1.0 means no improvement.

TABLE 2

Comparison of damping results using different thickness of constraining layer.
Damping material is TESA double sided adhesive tape.

Total Resonant % of Critical = Damping
Mass frequency Damping improvement

Specimen grams v C2/Cq

Bare aluminium Smm 1608 66.5 0.26 1.0

0.3 mm Al

constraining layers 1825 76.0 1.2 6.0

0.9 mm Al

constraining layers 2100 85.0 10.0 64.2

1.5 mm Al

constraining layers 2373 89.5 10.0 76.4




TABLE 3

Comparison of damping results using a wide range of damping materials and
constraining layers. Base structure is 5 mm x 600 x 200 mm aluminium plate.

Total Resonant % of Critical = Damping
Mass frequency = Damping improvement
Specimen grams Hz ¥ C2/Cq
Bare aluminium Smm 1608 66.5 0.26 1.0
Decibar DC spread
on one side. No 1675 68.5 0.46 1.9
constraining layer
Dow Corning Sylgard
184 constrained by 1810 77.5 1.1 55
1.5 mm Al
TESA adhesive tape
0.8 mm AL 1698 74.5 2.0 9.1
TESA adhesive tape
0.6 mm Al 1678 73.0 0.92 4.1
Decibar DC paste
0.8 mm perforated Al. 1735 71.0 0.31 1.4
Dow Corning GS75
0.8 mm perforated Al. 1700 70.0 0.35 1.5
Dow Corning 3145 RTV
0.8 mm perforated Al. 1700 70.5 0.26 1.1
Svigard 170 minimum
thickness with 1830 73.5 0.5 24
1.5 mm Al
Svigard 170 2 mm thick
with 1.5 mm Al 1920 69.0 0.4 1.9
Silastic 3145 RTV with
1.0 mm perforated 1820 72.0 0.4 1.9

stainless steel

Y



TABLE 4

Comparison of damping results using a wide range of damping materials and
constraining layers. Base structure is 6 x 600 x 200 mm aluminium plate.

Total Resonant % of Critical = Damping
Mass frequency  Damping improvement
Specimen grams ¥ Ca2/Cq
Bare aluminium 6 mm 1930 82.5 0.26 1.0
TESA adhesive tape
with 1 mm Al. 2050 90.5 2.75 123
3M tape Y-9473
1 mm Al 2095 87.0 3.14 13.8
3M tape Y-4262
1 mm Al 2095 91.0 2.0 9.2
3M tape 4965
1 mm Al 2095 91.5 1.8 8.3
Decibar DS4 sheet
bonded with Plio- 2185 82.0 0.35 1.5
bond
Decibar DS4 bonded
with Plio-bond to 2285 92.0 37 18.8
1 mm Al
Plio-bond 1 mm Al. 2030 85.5 1.37 57
Decibar DS4 bonded
with Araldite to 2410 148.0 24 20.7
8 mm plywood
Decibar DS4 bonded
with Araldite to 6 mm 2390 103.0 0.78 4.6

6 mm Masonite




TABLE §

Comparison of effect of different constraining layers on the frequency and
damping of a fibreglass/foam sandwich panel using 3M Scotchmount as the
damping layer.

Material Frequency (Hz) Damping (% of critical)
Bare panel 141 0.6
3 mm steel 145 1.5
4.5 mm steel 141 1.8
6 mm steel 122 22
6 mm fibreglass 141 1.0
Bare panel 403 0.9
3 mm steel 381 2.7
4.5 mm steel 367 3.6
6.0 mm steel 381 5.0
6.0 mm fibreglass 400 2.0




o e

————

TABLE 6

Comparison of effect of cutting constraining layer into segments on the
frequency and damping of a fibreglass/foam sandwich panel using 6 millimetre
fibreglass constraining layer and Decibar DS4 as damping material.

Constraining Frequency

layer condition Hz Damping (% of critical)
Whole 141 0.7
2 pieces 135 1.0
4 pieces 130 1.2
8 pieces 128 1.0
16 pieces 127 1.0
Whole 406 1.6
2 pieces 400 1.6
4 pieces 385 1.8
8 pieces 378 1.6

16 pieces 378 1.8
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»

Analyser
in 2 channel
Frequency at mode
cursor location
Value at
cursor Number of ensembles Running
Full scale location used for analysis program
value L
. V/V —87. 0000 H R
4.679 / 8 e z ZE
| 1000 FS
— XFER B/A Mark
LN IN “LTvE AT
TEXT/SINGLE N
0.0 MN JW ¥ —
0.0 _Hz 200. 000
679 VWV 87.0000 H
oo 598 W 82,5000 Hz
3 2.300 VNV 92. 0000 Hz
Values at markers — Hz = grequency
pectrum
— SEC = Time history
— Minimum value
L Analyser display choice and channel

'— Linear scales on both axes
(PH,LN = phase & linear)
(R,LN = real & linear)

— Transter function mode, channel A reference
(1time = instantaneous time history)
(ISPEC = " spectrum)

RMS = root mean square)

FIGURE 2. LEGEND FOR SIGNAL PROCESSOR OUTPUT




387.3m V 66.5000 Hz | 6-AUG-87 11: 52 RUN
l

40°AVGS PLAIN ALUMINIUM 4CH
o0.om FS| 1 - S
RMS B | % |
LN, LN FREEZ |
0.0 Hz 200. 000
200. 0deg FS [y~ -M— B
srerpa | |
PH, LN FREEZ i |
SPLIT _ | -
183 ; J 7\4
-200. OdegMN I . S
0.0 Az 200. 000
NOISE INPUT
RUN
EXCITEDAT 66.5Hz _ 4CH
5000 FS; ‘, ''''' ]
ITIMEB 1! l f l
e
TEXT/S4INGLE§{= e V V l |
{
a 1

-5.000  MN i B
0.0 SEC 800. 000m

1 2.730 VvV 17. 9688mSEC

2 -2.737 V 23, 7812mSEC

3 1.365 V 650. 781 mSEC

4 -1.393 V 657. 812mSEC
PLAIN ALUMINIUM

FIGURE 3. RESULT OF TESTS ON BARE ALUMINIUM SPECIMEN 600 x 200 x Smm



< 600 — ]

35 200

Y

l* 510 > \ Damping

treatment

L ke
v

Specimen Smm aluminium

Contraining layer
& Dampinlg
materia
— —l/
I_ I
C |
j[ - |

—)

FIGURE 4. CONSTRUCTION OF SPECIMENS FOR FIRST AND SECOND SERIES OF
TESTS RESULTS IN TABLES 1 AND 2 AND FIGURES 5 TO 10




468.3m V 131. 500 Hz 6-AUG-87 12: 13 RUN
40 AVGS ALUM/CARBONFIBRE ~ 4CH
600.0m FS
RMS B
LN, LN FREEZ
0.0 MN A M/J L
0.0 Hz 200. 000
200.0degFs [, —
XFER B/A k
P4 LN FREEZ| | —
SPLIT e
163 |
; i
~200. Ddeg MN [ .
0.0 Hz 200. 0G0
NOISE INPUT
| RUN
[EXCITED AT 131.5Hz _ ACH
5.000 FS[] 1‘{
ITIMEB f!;‘eﬂ ! |
e T
s !
TExT/SINGLE EVEI TV '
EX SAI GLE \‘\,\Ml i i
5,000 N UL !

0.0 SEC 400, 000

1 2793 v 11. 7188mSEC
2 -2.746 V 15, 2344mSEC
3 138 369. 531 mSEC
4 -1.373 373, D47mSEC

ALUM/CARBON-=1BRE

FIGURE 5. RESULT OF TEST ON ALUMINIUM SPECIMEN BONDED TO 1.5mm
CARBON FIBRE AS IN FIGURE 4 WITH FLEXON 241 ADHESIVE

S




437.2m V 1G2. 000 Hz 6-AUG-87 12:22 RUN
40 AVGS ALUMINIUM/KEVLAR 4CH

e e e e — oy — ——

600.0m FS s |

RMS B
LN LN FREEZ

!

|

| s

0.0 MN L~ #_:J \\'\ N

0.0 Hz 200. 000
200. 0geg FS o
YFER B/4 ’\ |
PH, LN FREEZ| .
St e Rte -
SPLIT ; U
183 j
-20. Odieg MN [t
0.0 Hz 200, 060
NOISE INPUT
‘ RUN
EXCITED AT 102z 4CH
s.000  FS[T] ]
ITINES i I
RN FREEZ f\" | {\ :\ MW\/\AM N\M/
TEXT/SINGLE |} | Uv \
i 1
-5.000 N LL \
0.0 SEC 400. 000
I 2415 v 8, 59375mSEC
2 239 v 13, 2B12mGEC
3 1193 v 185, 156m5EC
¢ LI 188, 844mSEC
ALUMINTUM/KEVLAR

FIGURE6. RESULT OF TEST ON ALUMINIUM SPECIMEN BONDED TO 1.5mm
KEVLAR AS IN FIGURE 4 WITH FLEXON 241 ADHESIVE
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FIGURE7. RESULT OF TEST ON ALUMINIUM SPECIMEN BONDED TO 1.5mm
ALUMINIUM AS IN FIGURE 4 WITH FLEXON 241 ADHESIVE
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FIGURE 8. RESULT OF TEST ON ALUMINIUM SPECIMEN BONDED TO 0.3mm
ALUMINIUM AS IN FIGURE 4 USING TESA ADHESIVE TAPE
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FIGURE9. RESULT OF TEST ON ALUMINIUM SPECIMEN BONDED TO 0.9mm
ALUMINIUM AS IN FIGURE 4 USING TESA ADHESIVE TAPE
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FIGURE 10. RESULT OF TEST ON ALUMINIUM SPECIMEN BONDED TO 1.5mm
ALUMINIUM AS IN FIGURE 4 USING TESA ADHESIVE TAPE
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FIGURE 12. RESULT OF TEST ON 400 x 100 x 8mm FIBREGLASS SPECIMEN
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FIGURE 13. RESULT OF TEST ON 400 x 100 x 8mm FIBREGLASS SPECIMEN
BONDED TO NYLEX DYAD AND 350 x 75 x 3mm ALUMINIUM USING
ARALDITE ADHESIVE
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FIGURE 14. RESULT OF TEST ON 400 x 100 x 8mm FIBREGLASS SPECIMEN
BONDED TO DECIBAR DS4 SHEET AND 350 x 75 x 3mm ALUMINIUM
USING ARALDITE ADHESIVE
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FIGURE 15. RESULT OF TEST ON 400 x 100 x 8mm FIBREGLASS SPECIMEN
BONDED TO DECIBAR DS4 SHEET AND 350 x 75 x 3mm ALUMINIUM
USING 3M RUBBER CONTACT ADHESIVE APPLIED IN APPROVED

MANNER
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FIGURE 16. RESULT OF TEST ON 400 x 100 x 8mm FIBREGLASS SPECIMEN
BONDED TO 350 x 75 x 3mm ALUMINIUM USING TWO COATS OF 3M
RUBBER CONTACT ADHESIVE
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FIGURE 17. RESULT OF TEST ON 400 x 100 x 8mm FIBREGLASS SPECIMEN
BONDED TO 350 x 75 x 3mm ALUMINIUM USING 3M "SCOTCHMOUNT"
Y4965 ADHESIVE TAPE




FIGURE 18. EXPERIMENTAL CON
F/A-18 STABILATOR.

STRAINED LAYER DAMPING ON



FIGURE 19. VIBRATION TEST ON A DIESEL GENERATOR SET WITH STEEL
FABRICATED RAFT SUPPORTED ON 6 ISOLATION MOUNTS.
TWO OF THE FOUR VIBRATION EXCITERS CAN BE SEEN.
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FIGURE 20. DETAIL OF INSTALLATION OF CONSTRAINED LAYER DAMPING
ON DIESEL ENGINE/GENERATOR UNIT.




FIGURE 21. DIESEL SET WITH DAMPING INSTALLED IN MAIN CHANNELS
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FIGURE 22. DIESEL SET - RESPONSE AT LOCATION 1 BEFORE (a) AND AFTER
DAMPING TREATMENT (b)
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FIGURE 23. DIESEL SET - RESPONSE TO SHAKER NO 2 AT LOCATION 1 BEFORE
AND AFTER DAMPING TREATMENT
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FIGURE 24. DIESEL SET RESPONSE TO SHAKER NO 3 AT LOCATION 1 BEFORE
AND AFTER DAMPING TREATMENT
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FIGURE 25. DIESEL SET - RESPONSE TO SHAKER NO 4 AT LOCATION 4 BEFORE

AND AFTER DAMPING TREATMENT
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FIGURE 27. FOAM SANDWICH PANELS SET UP FOR DAMPING EXPERIMENTS
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FIGURE 28. EFFECT OF DAMPING ON LARGE GRP PANEL RESPONSE AT POSITION
"A" TO RANDOM VIBRATION
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FIGURE 29. EFFECT OF DAMPING ON LARGE GRP PANEL RESPONSE AT POSITION

"E" TO RANDOM VIBRATION
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FIGURE 30. TESTS ON FIBREGLASS/FOAM PANEL 1500 x 300 x 75mm

(a) BARE PANEL

b) WITH EAR SHIP DAMPING TILES
¢) WITH EAR SHIP DAMPING TILES + 14mm FIBREGLASS
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FIGURE 31. USE OF DYAD (a) INTERNALLY AND (b) EXTERNALLY ON A
FIBREGLASS/FOAM SANDWICH PANEL
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FIGURE 32. ?I%SUURLg%OF TESTS ON FIBREGLASS/FOAM PANELS DESCRIBED IN
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