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Advisor: Professor Benedikt A. Munk

A moment method based solution for the electromagnetic radiation and scattering

from geometries composed of transverse dipole column arrays and a finite collection

of axial slot arrays is developed. Each "array" is an infinite column of periodic

elements, with transverse referring to a dipole orientation perpendicular to the in-

finite axis and axial denoting that thin linear slots are directed along the infinite

axis. The slots are mounted in infinite ground planes, which may be surrounded by

an arbitrary stack of infinite lossless dielectric slabs, simulating a hybrid frequency

selective radome (i.e., periodic surface) in one linear polarization, which is infinite

in one dimension and finite in another. Transverse dipole arrays are used to sim-

ulate phased array antennas in a similar "finite by infinite" model. Independent

modes in scattering current expansions are defined along single columns of peri-

odic elements, with Floquet's theorem governing the current fluctuation along the

infinite axis. A coupling matrix is developed with nine sub-blocks, representing mu-

tual admittances, mutual impedances, unitless voltage gains, and unitless current

gains. Efficieni methods for calculating coupling terms are developed, u3ing both

spatialal spectral domain methods (transformable via the Poisson sum formula)
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in free space, and using the Array Scanning Method to circumvent the application

of Sommerfeld integrals with planar dielectric interfaces. Summation acceleration

techniques, such as Shanks' transformation, are used to enhance efficiency. Asymp-

totic solutions are also developed for coupling between widely separated columns of

elements. Coupling calculations are validated by spatially adding a large number

of column-to-column terms to simulate the coupling from a doubly-infinite array of

elements to a test element, which may be found directly in a plane wave expansion.

Validation of the entire moment method procedure is also provided by comparing

far zone field calculations with those expected from using solution currents from

doubly-infinite arrays with the approximation of using physical optics to correct for

the finite aperture width.
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CHAPTER I

INTRODUCTION

1.1 BACKGROUND AND PROBLEM STATEMENT

Over the last several years, much effort has been devoted to developing the the-

ory of radiation and scattering from frequency selective surfaces (FSS). This theory

has been used in many antenna and radome designs. Several computer codes have

been developed at The Ohio State University, which use the plane wave expansion

method, developed by Munk and others [1, 2], to get a very efficient expression for

fields from doubly infinite arrays (i.e., periodic in two orthogonal directions). A par-

ticularly useful code is the Periodic Moment Method (PMM) code from Henderson

[31, which can be used to model bent wire and slot arrays in a stratified medium,

where all elements are fully contained in the plane(s) of the array(s). The application

of this code and others has helped to mature the doubly infinite FSS theory.

The PMM code may be used as a first order design tool for many practical

antennas and radomes. However, it fails to predict edge termination or diffraction

effects inherent in actual designs. Measured data from radiating finite phased arrays

have demonstrated that sidelobe levels change dramatically when edge termination

effects change the "sensed" impedance from that which occurs within an infinite

array [4].

The designer of a radome panel or antenna array which is to be mounted in a

metallic body cannot design the transition between the FSS and the surrounding

surface with the present version of the PMM code. In addition, the PMM code



must be used to design antennas and radomes separately1 . Therefore, no mutual

interaction effects between the antenna and radome, which in some locations are in

close proximity, can be analyzed.

Practical FSS designs contain finite arrays in two dimensions. To fully analyze

them, it is tempting to use a brute force method which is time consuming and taxing

on computer storage. Such a method would account for all of the scattering mecha-

nisms in the finite array. The primary effect from finiteness can be viewed as edge

scattering, which is similar to an edge diffraction from a solid surface. Important

secondary effects include the scattering from the junction of two edges (similar to

corner diffraction) and the multiple interactions between edges and corners. The

transmission and reflection properties of FSS also tend to change slightly from that

predicted with infinite FSS theory as the finite size shrinks. For this reason, re-

searchers outside of the Ohio State community have recently noted the need to

model the finite scattering effects [5].

Although a brute force solution is usually too expensive, a solution to FSS scat-

tering with the primary edge termination mechanism (and multiple edge interactions

between parallel edges) is possible with an array which is finite in one dimension and

infinite in another. With such a geometry, infinite array theory may be used to fully

characterize one dimension, and the moment method may be used for the other.

A few attempts have been made recently to model scattering from FSS which are

finite in one dimension and infinite in another. Shubert [61 developed a Fourier series

based method which extended doubly-infinite array theory to analyze finite arrays in

the presence of an infinite stratified medium. His approach is not easily transferable

to arrays which are designed with different elements or impedance loadings near

the edges, which is a likely approach for modifying the edge scattering effect. His

JAssuming the antenna array plane is not parallel to the radome plane.
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approach also becomes computationally burdensome when examining an array at

near grazing incidence.

Researchers outside of Ohio State [7, 8] have recently attempted to model trun-

cated and curved arrays by assuming the equivalent currents at any particular col-

umn are the same as those which would exist on an infinite array. This approach

is the array analog to physical optics, and like its solid surface cousin, gives poor

results near grazing angles of incidence. These solutions also do not include the

modeling of dielectric materials.

Hughes [9] modeled the scattering from a finite collection of i directed dipoles

which were infinitely periodic in z as well. His work included the development of a

code which models a collection of these dipole "strings" either in free space or in the

presence of a conducting circular cylinder (also infinite in z). Simon [10] extended

Hughes work to embed dipoles which were conformal to a helix in a dielectric-clad

circular cylinder. In his work, the dipoles could be i directed, qS directed, or in any

combination of these two helical directions.

Strickler [11] used the code developed by Hughes to model an antenna mounted

over a finite width ground plane in free space. He modeled the ground plane with a

carefully tuned passive dipole array. His work explored the usefulness of designing

practical FSS using the "finite by infinite array" approach.

Finally, Hayes [12] attempted to model the scattering from individual strings

of dipoles in free space where each dipole was perpendicular to the infinite array

axis. His attempt failed to get the self impedance of an individual dipole string

or the mutual impedance between two closely spaced strings. His field expressions

also proved to be too computationally intense to be implemented into a practical

computer code.

3



The code created by Hughes has been a great help for designing FSS composed

of vertically oriented elements with radiation and scattering primarily desired in

a horizontal plane. This situation is often denoted the TM polarization. Since

the work of Hayes failed to be practical, a similar analysis capability is needed

for transverse dipoles (i.e., the TE case). Such an analysis capability is necessary

to design treatments on the edges of an array without expensive "trial and error"

hardware experiments. The analysis needs to also include the effects of near zone

coupling and truncation with a finite array of slots in a ground plane, which can

act as a radome. Since such radomes often are designed with two slotted planes

sandwiched between dielectrics, these types of geometries must be accommodated

in the analysis.

This dissertation concentrates on the development of an analysis technique

which handles the case of transverse dipoles and axial slots in a "finite by infi-

nite" array. Transverse dipoles are defined as being oriented in some direction which

is perpendicular to the infinite axis. The dipole orientations in various columns,

however, do not necessarily stay parallel to each other. Axial slots are defined to

be oriented only in the direction of the infinite axis, which makes them polarization

compatible with transverse dipoles. To clarify this geometry, Figure 1 depicts a view

from the infinite axis at a generalized set of transverse dipole and axial slot arrays,

as can be analyzed by the methods in this dissertation. Note that only the slot

arrays are embedded in a dielectric medium.

Figure 2 gives a perspective view of a set of transverse dipole array columns in

the presence of a set of axial slot array columns in a single ground plane with no

dielectrics. Note that the infinite axis is designated by i and that each column array

(dipole or slot) has a common multiple inter-element spacing, D,. Also note that
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Figure 1: Generalized Geometry of a Finite Collection of Transverse Dipole and
Axial Slot Arrays which are Embedded in an Infinite Stratified Media - View from
the Infinite Axis
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Inflnite Perfect' Conducting Plane

Figure 2: Perspective View of a Finite Collection of Transverse Dipole and Axial
Slot Arrays in a Single Ground Plane in Free Space

the dipoles may be loaded with lumped impedances at their terminals and the slots

may have lumped shunt admittance loads.

Two types of problems shall be examined with these geometries. The first is

that of a radiating set of dipoles, which forms a phased array antenna. In such an

application, a finite width ground plane for the antenna may be simulated by a set

of resonating passive dipole array columns, at some particular frequency and angle.

The radiation pattern of the antenna through the radome is of interest, as well as

the input impedances of various dipoles and the effects of truncation.

The second problem is that of passive scattering by the radome and antenna

dipoles. For this problem, the excitation comes from a plane wave which impinges

6



on the radome from the half-space not containing the dipoles. Both bistatic and

backscatter echo is of interest for this excitation.

1.2 OVERALL SOLUTION APPROACH

The solution approach adopted in this dissertation is to form integral equations

based on equivalent scattering currents for both the dipoles and slots, then solve

for the unknown currents using the method of moments [13]. With the equivalent

currents found, all other quantities such as input impedances and scattered fields

may be determined. This section presents the general moment method procedure

which is employed, with t~e details of forming the solution left for the remainder of

the dissertation.

The governing integral equations may be developed from the perspective of

the geometry shown in Figure 3, which depicts two ground planes, each of which

having a single axial slot, and a single transverse dipole. The extension to a multiple

number of slots, including infinite column arrays, will follow by a modal definition

with Floquet's theorem, as will be described later. The addition of dielectric slabs

around the slotted planes will be handled by the proper choice of Green's functions

in the integral equations.

The electromagnetic equivalence theorem [14] is employed by filling the slots

with a perfect conductor and replacing the dipole with free space. Magnetic currents

become equivalent scattering sources at the former slot locations on both sides of

the planes, and electric currents become an equivalent scattering source along the

former surface of the thin cylindrical dipole. These currents are of the form,

M=i×xn (1.1)
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Figure 3: Two Ground Planes with Single Axial Slots in the Presence of a Single
Transverse Dipole
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Figure 4: Equivalent Scattering Geometry

and

J= xf (1.2)

where E is the total electric field which exists in the slot and H is the total magnetic

field which exists on the dipole surface in the original problem. The unit vector, fi

is the outward normal direction for each equivalent surface. The new geometry with

the equivalent surfaces and equivalent scattering currents is depicted in Figure 4.

The superscripts for the currents in Figure 4 indicate the scattering object and

the subscripts donate the region of space in which the current is applicable. Using a

thin wire assumption, the equivalent electric scattering current for the dipole is axial

(for the dipole) directed and uniformly distributed about the circumference. It is
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then compressed into a single filament of current, which exists along the center axis of

the former dipole. The magnetic currents for the slots are depicted as being removed

from the perfect conductors, but are actually located an infinitesimal distance away.

Using the boundary condition that the electric field in the slots is continuous

across each region from the original problem, the opposite signs of the outward

normals implies that
-A -A

= -MII (1.3)

and

I= 111  (1.4)

One other independent boundary condition must be used to form the integral equa-

tions for the slots. It is the continuity of the tangential components of the magnetic

field across the slots in the original problem. Thus the total tangential magnetic

field at the slots from each region must be identical.

For now, assume the excitation source is an externally provided plane wave

which exists in Region I. A magnetic field equation may be written for field location

points within slot A. It is:

' [jic + 1ref -secat (MAtrfica, X -i I +HI (-M ) I)]5

F -scat -A -ca -B
- x 1H1  (-M 9 + 1  - 1 1 1  (1.5)

where Equations (1.3) and (1.4) have been used to remove all explicit references to

-MII. The field H'l1' is from the incident plane wave and ref is the corresponding

reflected plane wave from the complete conducting plane. They may be combined

to form a generalized incident field, which is

HI + H(16)
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A magnetic field equation may also be written for field locations within slot B.

It is:

[ (--A -- scat , B
-scat-B -fsalC\

i -BH M + 7II (MB I)] • (1.7)

Finally, an electric field equation may be written for the former dipole surface

locations by noting that the tangential components of the electric field must vanish

in the original problem. It is:

hC [ EIII (JAI = 0. (1.8)

Equations (1.5), (1.7), and (1.8) are vector equations involving two surface

vector components. In general, they can be decomposed into six scalar equations.

Using the thin wire and thin slot assumptions, the dominating currents will be

directed along the major axes of the slots and dipoles. Removing the other direction

of current flow, the currents of the two slots and one dipole are of the form of three

scalar unknowns. There is no need to use all six scalar equations for the three

unknowns. Therefore, we may select only the three scalar equations corresponding

to fields along the major axes, which are i for the slots and P for the dipole. With

this scalar reduction, and rearranging terms in a standard format 2, the governing

equations become:

= •I + ) + Hs (M 1)J, (1.9)

= -sca -A + sca(-B -cati-B -scat 7 C (110)
-0 11x (M I ) + IzI ( M I, I) + H II WMv~ IJ ) + H II (J II)] , ( . 0

2 Using the linearity of the radiation operator, F(-K) = -F(K), where F is either an electric or

magnetic field and K is either an electric or magnetic current.
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scata --o = (III (MBI) + -Escat (fCi(.1[E II IIII

Equation (1.11) is valid anywhere on the surface of the original dipole, but

we will constrict its application to a thin filament along the major axis at some

yet to be specified circumferential position. By the complementary nature of slots

and dipoles, the admittance of a thin rectangular slot strip should behave like the

impedance of a corresponding thin rectangular metal strip. A thin metal strip can

be approximated by a thin wire, which has a radius of one-fourth of the original

strip width [15]. Therefore, the equivalent magnetic currents may be concentrated

into thin filaments located at the center of the slots and the application of Equations

(1.9) and (1.10) may be done on thin filaments (i directed) located an "equivalent

wire radius" from the radiating currents at slots A and B, respectively. For reasons

which will be discussed later, the best choice of circumferential position for these

"testing filaments" is as far from the perfect conducting planes as possible.

Equations (1.9) through (1.11) are linked integral equations with the scattering

-A -B -_1Ccurrents, M , -MBII, and J as the unknown quantities. The fields from these

currents may be expressed by the following radiation integrals, which are generically

given in terms of appropriate dyadic Green's functions as [16]:

1(M) = iWEfFC-R7?).MQ)dR (1.12)

iH(J) = f IV × x(R, ')] .j(R')dR' (1.13)

-E(-J) =jWJ1 r (,'.( dR (1.14)

E(M) =f I[V X= (R, R IT . -(R )R_ (1.15)

where R and R represent position vectors to source and observation points, respec-

tively. Equations (1.12) through (1.15) are presented for completeness as the general

procedure for finding the fields. The dyadic Green's function must be chosen for the
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region in which. the source and field observation point are located. For cases where

stratified dielectric layers are included, the dyadic Green's function which satisfies

the appropriate dielectric boundary conditions must be chosen. For the remainder

of this dissertation, however, we shall not explicitly identify either dyadic or scalar

Green's functions, though they shall be inherent in the solutions.

We use the moment method to solve Equations (1.9) through (1.11) simultane-

ously in an approximate sense. First, we choose a set of basis functions which we

believe can represent the unknown currents fairly well when weighted with unknown

expansion coefficients. That is, we choose

IA j NA v On (R (1.16)

n=1

-B NB BMBI E Vn 'O~n (R) (1.17)

n=1

and
jC NC CC--c

n=1

The functions 0,(') are the chosen dimensionless basis functions. The unknown

expansion coefficients, En and I, have dimensions of volts and amperes, respec-

tively.

Since the assumed current expansions contain an approximation, they create an

error function when substituted back into the governing integral equations. Using

linearity of the radiation integral and f to define the errors, we get

NA NB-ginc -sat A scat . A T scat B,
0I = -- E V A  ) - + In [I ZA~) +i. ~ z H[Hi , I n(nE II) ~

n=1 n=1

I , , NA, I ' ,2 " VB)'

NA NB0 -i. 1: VAsa )V jsa sa
n=1 n=1
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NC rCi-Hscal pOC

n=1

+ EB(R,VAVA,..,VA, V 1B, V2,VB,IC,I,..,44), (1.20)

and

NB NC_p. B "Cal po .B \ r Ca n

n=1 n=1
+ eC(- ,V 1B,VB ' .. VB ir I Clc)"1.1

• ", VNB,.1 J2 "INC (1.21)

As seen in the above equations, the value of the error is a function of the expansion

coefficients which will be used. By the method of Harrington 113], we choose the

errors to vanish in the weighted sense of being integrated with some testing functions.

That is, we choose some testing functions of the form, em, and force the condition

that J i(7)0. G (R) diR = 0 (1.22)

where i = A, B, or C. This condition is essentially governing the outcome of the

expansion coefficients which will eliminate the error in this weighted sense. Thus, by

introducing an equal number of testing functions as basis functions (for each slot and

dipole), we produce a system of linear equations. The equations may be represented

by the following matrix expression, of which the entries are actually sub-matrices

and sub-column arrays.

IAvl + Y'1 0 [A

-- I y BB ± yB B B 1GB (1.23)
CB 7C¢ I

In the index pairs, the first index denotes both a matrix row and a receiving, or

testing mode. The second index corresponds to a matrix column and a transmitting

(basis) mode.
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The entris of the coupling matrix are of the forms:

yAA -scat,.A, A( 7) d- (1.24)
-rn I  --- Ii Pn )0.

yAA - -sct. (i4 A OA(-R)'! (1.25)

-AB 9fai,..BA(R) dR (1.26)

yBA -sca(.,AB(-) d- (1.27)yB I _ ' n M 1.27)

.BB I n t,.BB( )d' (1.28)

Smnl ni B OzB~ ) R
"BC - f ca ,B,( ) OB (-R) d- (1.29)

-mn I n M 1-0GC / --. i(Ce,.CB(A)d (1.30)

GCB / s cat p .B, 9C(-R) d- 1.1
Gn - III n .31)

n / (1.32)Z91n (P C -- O" II C (R ) )

The Ys have the interpretation of mutual and self-admittances, with units of

mhos3 The Zs are of the form of mutual and self-impedances, with units of ohms.

The Vs and Is in Equation (1.23) have units of volts and amperes, respectively.

Entries in the sub-block GBC are unitless current gains and entries of GCB are

unitless voltage gains. By manipulating the equations so that each entry in the

coupling matrix is defined with a minus sign, the admittances and impedances agree

with the physical meaning attached by Schelkunoff [17]. With this arrangement, it is

relatively easy to add the effects of lumped impedance loads at the dipole terminals
3Units for the coupling matrix terms arise by normalizing all basis functions used in generating

Equations (1.24) through (1.32). For the magnetic scattering current basis functions, 0,, and

B, this normalization involves a hidden 1/volt factor. For the electric scattering current basis

functions, 0'-, there is a hidden 1/amp factor. This is identical to the normalization procedure

used by Schelkunoff [17].
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or lumped admittance loads across the centers of the slots, as they contribute directly

to the self-coupling terms of appropriate modes.

The expressions, YAA and yAA (and similar for yBB), are merely "one sided"

mutual admittances, which are added in parallel to form the total mutual admit-

tances used in the coupling matrix.

To complete the generalized solution approach, the entries of the non-zero sub-

array in the excitation vector are:

IA = I m} i , .8(R) CR. (1.33)

In a problem where the dipole is radiating, the top two sub-arrays in the excita-

tion vector are zero and the bottom sub-array contains the coefficients of delta-gap

voltage generators placed at the terminals of the basis functions [18].

With the use of the electromagnetic reciprocity theorem [141, some symmetries

may be found in the coupling matrix. The entire matrix is absolutely symmetric,

except for entries corresponding to the GBEC and GCB sub-blocks. For these blocks,

an anti-symmetry is formed with the entries obeying

GCB - BC (1.34)

for any particular integer value of n between 1 and NB and m between 1 and N¢.

The scattering or radiation problem is completed by solving for the unknown

expansion coefficients of the scattering currents, then using these currents in the

radiation integral. Usually, the fields of interest are in Region I, so only the currents

for slot A and the radiation integral for Region I are required. The unknown current

coefficients are normally found by getting the inverse of the coupling matrix or

solving Equation (1.23) with a Gaussian elimination routine.

The solution thus far has been presented in terms of two single slots and a single

dipole. The extension to "finite by infinite" arrays does not change the basic moment
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method procedure. This extension only involve the definition of basis functions which

are single infinite arrays. Each mode (slot or dipole) must have a common inter-

element spacing, Dz (see Figure 2). If a particular column of elements is denser

in z than the others (e.g., see the middle column of dipoles in Figure 2, which are

twice as dense in z as the other columns), the problem can still be handled with an

interlacing of modes in z, as long as there is a common integral number of inter-

element spacings between all arrays, which can serve as DW4 . The current on each

element of a basis function is identical, except for a possible linear phase progression

along i, which is governed by Floquet's theorem.

Often in the moment method, the testing functions are chosen to be identical to

the basis functions, which is dubbed Galerkin's method. For the case of an infinite

column mode, the strict use of Galerkin's method must be avoided since it will

result in infinite values in the entries of the excitation vector and coupling matrix5.

A "quasi-Galerkin" method of truncating the testing function to be non-zero only on

a single element of the column, denoted the reference element, can be used by making

the testing current shapes identical to the basis currents on this reference element.

The "quasi-Galerkin" method assures that the excitation vector and coupling matrix

entries are finite, and this approach is adopted in this dissertation.

1.3 OVERVIEW OF REMAINING CHAPTERS

In the chapters to follow, the solution to the moment method problem-is de-

veloped specifically for "finite by infinite" arrays involving two conducting planes of

4For the dipoles depicted in Figure 2, four periodic transverse dipole modes may be used - one

each for the first and third columns, and two interlaced modes for the middle column. Each

mode uses the D. spacing shown in the figure.

'This occurs even with the wire radius displacement between testing and basis functions.
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axial slots surrounded by dielectrics and in the neighborhood of a "finite by infinite"

array of transverse dipoles. Chapter II provides the derivation of slot-to-slot mode

coupling, which form the self and mutual admittances in the coupling matrix. Chap-

ter III gives the corresponding dipole-to-dipole self and mutual impedance deriva-

tions. The current and voltage gains in the coupling r" trix are evaluated in Chapter

IV. To complete the moment method solution, Chapter V presents the derivation of

excitation vector entries and far zone fields after the scattering currents are known.

Finally, Chapter VI gives some numerical results of complete moment method solu-

tions and Chapter VII summarizes the dissertation and concludes.
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CHAPTER II

SLOT-TO-SLOT COUPLING

In this chapter, we shall develop expressions for the self and mutual admittances

used in the coupling matrix in Equation (1.23). Several solutions are developed, with

the goal of each to be as efficient as possible for the region of space in which it is

applied (see Figure 4) and the dielectric composition of that region. Thus, a "mixed

bag of tricks" is presented such that a computer algorithm can choose the most

efficient solution for the situation in a particular application.

This chapter is divided into two main sections, which concentrate on homoge-

neous regions of space and regions which included planar dielectric interfaces. Each

of these sections is further subdivided into solutions for "outer zone" coupling (i.e.,

Regions I or III) and "inner zone" coupling (Region II).

2.1 HOMOGENEOUS REGIONS OF SPACE

2.1.1 Outer Zone Coupling

The problem of "outer zone" coupling between slot modes is depicted in Figure

5, which shows a radiating basis function of the form of a i-directed periodic fila-

mentary magnetic current on a ground plane, and a testing function displaced some

distance in i from the radiating current and an "equivalent wire radius" in j from

the ground plane. The environment is a homogeneous half-space.

To derive the radiated fields from the axial periodic magnetic current mode,

first we examine how a column of i-directed Hertzian magnetic currents radiates in
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Figure 5: Geometry of Outer Zone Coupling between Slot Modes in a Homogeneous
Half-Space; View from the Infinite Axis

free space. The appropriate geometry, in a transverse or side view, is given in Figure

6. Without loss of generality, the "reference element", denoted by m = 0, is located

at the origin and the field observation point is arbitrary.

From classical radiation theory [14], the electric vector potential at the field

observation point from the mth Hertzian element is

.EImdz
I e-JoRm

dI = 4M R=, (2.1)

where Im is the constant magnetic current level over the infinitesimal source length

and Rm is the slant path defined by

Rm = V/2 + y2 + (mDz - z) 2 . (2.2)

By the superposition of the entire array of sources, the total vector potential at the

observation point is
0o

dF= E dFr. (2.3)
M=-oo
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Current Sources
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Next, we assume that the currents on these Hertzian elements are induced by an

incoming plane wave having the propagation direction,

= is2 + isy + isz. (2.4)

By Floquet's theorem [191, the induced current on the mth element will have the

form

Im = 1o ejI rmDz ,  (2.5)

where I0 is the current induced on the reference element. The total electric vector

potential may now be rewritten as

d-= z Eodz' jmDzsz e-_R_
47- Rm (2.6)

it=-o0

Now we introduce the Poisson Sum Formula [20], which is:

E ejw'Fm.= T Ej f(t +nT) (2.7)
m=-oo n=-oo

where T = 27r/w and F(w) is the Fourier transform of f(t), as defined below,
00

F(w) f J f(t)e - jw dt, (2.8)
-00

with the inverse transform,

f(t) = 7r F(w)ej't d. (2.9)
00

Here and in most equations in this dissertation, the summation index m is used for

spatial domain expressions and n is used for spectral domain expressions.

The Poisson Sum Formula is often useful in transforming a slowly converging

infinite sum into a much faster converging sum. In the present case, the sum in

Equation (2.6) is slowly converging for most observation points, and can benefit

from the transformation. To make this transformation, we define the following:
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O0 =- D,

t = -0.9z

We also make use of the following Fourier transform pair [21],

.F z ~j-- H ( 2)(pV2 - t2) e (w (2.10)

where F denotes the forward Fourier transform operation. With this transform pair,

the Poisson Sum Formula changes Equation (2.6) into

dF--- Edz' e - j oz rz H(2)(,rpp), (2.11)
j4D, Z

where we have defined

rz = sz + nA (2.12)

rp= 1-r2z, (2.13)

and

P = r + y2. (2.14)

When the absolute value of rz is less than or equal to one, the argument of

the Hankel function in Equation (2.11) is real, and the corresponding term repre-

sents the vector potential of a propagating cylindrical wave mode. Typically, only

one propagating mode term will exist, corresponding to the n = 0 term, though

beam steering (or the incident plane wave direction) and inter-element spacing may

combine to allow a finite number of other propagating modes (grating lobes) to exist.

The infinite number of other modes are evanescent cylindrical wave modes,

which decrease in amplitude rapidly both as the mode number and distance (p)

from the array increase. To make the evanescent modes behave according to the

radiation condition, a choice of -j must be made in taking the square root which
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defines rp. The evaluation of the Hankel function with this negative imaginary

argument becomes equivalent to the evaluation of a modified Bessel function with a

real argument.

The total electric field radiated by the Hertzian array is

dE=- V x d . (2.15)

Substituting the expression in Equation (2.11) and using the irrotational property

of i, we get

Idz' e- (z -H(2)(rpp) (2.16)
dE = j4D - z Xe~~ Y 0 VIr~) 0 2.6

The gradient in Equation (2.16) is best performed in cylindrical coordinates, which

gives the result of

d7E . _ fIodz' rp e3OZz H(2 )(Orpp), (2.17)

j4Dz E-
.n=-00

where 4 is the cylindrical coordinate vector which "encircles" the z axis in the

counterclockwise sense when looking "down" from +oo.

The radiated magnetic field is obtained from Faraday's law, which gives

1dii = ---- VxdE

. wodz1 00 e-jizrz [jrprzH(2) (3rpp) + .r2H(2) (rpp)] (2.18)4 n=-oo

after several steps of algebra.

Now suppose the elemeilts of the array are no longer infinitesimal in length.

Instead, assume the magietic current on the reference element is finite has a total

length, L (centered about the origin), with a current shape given by I(z'). The

radiated fields from this new array may be obtained by integrating the fields from

a collection of Hertzian arrays. We also may assume that the array of magnetic

currents is located on the surface of a perfect conducting plane, which is the case for
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the admittance calculations that are desired. By image theory [14], the tangential

magnetic currents double after removing the plane and using a homogeneous medium

equivalence. The total fields radiated by the finite length element magnetic current

array are: 00
j2D ejzrz rp P H( (,rP) (2.19)

and

WE 0 e-3jzrz pt jrprzH (2)(frpp) + ir2H(2)
2Dn-0 " p 0 ( rpp) (2.20)

where a transmitting pattern factor has been defined by

L/2
Pt = f I(z)e j oz ' r z dz'. (2.21)

-L/2

Noting that the cylindrical wave modes may be assigned directions of

f = Arp + irz, (2.22)

the transmitting pattern factor may be rewritten as

L/2
pt - f I(1) ej / P' dl, (2.23)

-L/2

where P3 is the orientation of the element, which equals i for the slot modes. Equation

(2.23) agrees with the pattern factor definition used by Munk [1, 2] in the plane wave

expansion of the fields from doubly-infinite arrays.

It -is interesting to note that the fields radiated by the axial slot mode are

omni-directional in the cylindrical coordinate, 4,.

From Equations (1.24) through (1.29), it is seen that to compute the admittance

terms of the coupling matrix, only the i component of the radiated magnetic field

is required. The electric field will be used in slot-to-dipole coupling, and is retained

for future reference.
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The computation of "outer zone" coupling for the homogeneous half-space is

completed with the integration of the magnetic field multiplied by a testing function

at the receiving filament. From Figure 5, we consider the centers of the slots of the

two modes to be separated by the distance z along the conducting plane. Thus, the

total separation distance is p = vVIP . Using the function Itest(z) to represent

the testing current shape, the "one sided" admittance for the homogeneous half-

space is:

= -- E r Pt Pr H()(3rp 2 + a2 ), (2.24)

where a receiving pattern factor is defined by

Pr = f Itest(z)e-j/3 zrz dz, (2.25)

which is integrated over the test filament. This receiving pattern factor may also be

written in the form of Equation (2.23), except with a sign change in the exponential.

The transmitting and receiving pattern factors may be evaluated in closed form

for many commonly used basis and testing functions. Some examples of normalized

mode shapes which have closed form pattern factors include the following:

Constant Functions (CON)

1(z) = 1 (2.26)

Piecewise Sinusoids (PWS)

1(z) = sin[#(L - IzI)]
sin(.) (2.27)

Piecewise Cosinusoids (PWC)

I(Z) = cos(Oz) - cos(q) (2.28)
1 - cos(q)

Rooftop Functions (TRI)

1() 2
I(Z) = -L1ZI + 1 (2.29)
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Full Period Cosines (FPC)

1 27rz 1
I cos( ) (2.30)

Each of the above modes was defined for a total element length of L, centered

about z = 0. Assuming that the modes are shifted so that the reference element is

centered at z = zc, the following pattern factors result (in order):

P(CON) - s ( 8L--)e (2.31)
- frz 2

_ - cos(z f)]
P(PWS) - 2 2-) e2jizcrz (2.32)/3 sin( ) 1 - 2

2 -sin() cos( -lrz cos(y) sin( ),--
P(PWC) =, 1rz. eZ3I3Zcrz

(2.33)

P(TR) Lf 2r2 [1- cos(- )j e (2.34)

P(FPC) 16,r2 sin(ITZ) e±j z c rz  (2.35)
L2 rz [L2 - 4-- 2r2

where the plus sign is used for transmitting pattern factors and the minus sign is

used for receiving patterns.

It is interesting to note the asymptotic characteristics of the pattern factors,

which affects the convergence of the spectral domain sum in Equation (2.24). The

pattern factor series for the constant current mode goes as 1/n for increasing n.

Note that this current has an abrupt discontinuity at the endpoints of the mode,

which cannot occur without a charge accumulation for an actual dipole or slot. The
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pattern factors for the piecewise sinusoid/cosinusoids and rooftop functions go as

1/n 2 . Each of these current shapes go to zero at the endpoiats, but with slope

discontinuities. Finally, the pattern factor series for the full period cosine goes as

1/n 3 . This current not only goes to zero at the endpoints, but also with a first

derivative of zero.

Although the current for a slot of reasonable length (e.g. A/2) may be repre-

sented fairly well by a large number of constant pulse modes defined in subdomains,

such a solution is not usually implemented with periodic surfaces due to the de-

sire to limit the total number of modes1 and the slow convergence yielded by the

asymptotic behavior of the pattern factors.

Piecewise sinusoids/cosinusoids are typically used for basis and testing functions

of linear slot and dipole elements in periodic arrays [3]. Experience with moment

method solutions using a large number of basis functions on a single dipole shows

that the current induced in a scattering mode is nearly the shape of a single piecewise

cosinusoid and the current produced by a radiating dipole is nearly the shape of a

single piecewise sinusoid, as long as the total length of the dipole is less than about

0.6A. Each of these modes lead to reasonably fast convergence in the cylindrical

wave sums. Faster convergence can be achieved with full period cosine modes, but

since the true currents are usually not closely represented by these modes, they are

not good candidates for most circumstances.

When a slot is sufficiently long or the solution accuracy requires the use of

more than one mode to model a slot array, an overlapping set of piecewise sinusoids

'Limiting the number of periodic modes benefits primarily in the reduction of expensive cal-

culations to fill a coupling matrix, unlike in ordinary moment method applications where the

inversion of a large impedance matrix may dominate CPU time.
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or rooftop functions form a good basis set. The rooftop functions have a slight

advantage in not producing "cusps" in the overall current shape, when combined.

A final mention must be made of the special advantage offered by piecewise sinu-

soidal basis functions. This advantage is that the radiated field from such a current

function on a single element (not a periodic array) may be expressed in closed form,

even in the near zone. Thus, the mutual admittance between periodic slot modes

could have been expressed in the spatial domain without numerical integrations, and

avoiding the Poisson Sum transformation.

To express the mutual admittance in the spatial domain, one must first find

the fields radiated by a piecewise sinusoid current on a single element. Carter [22]

first derived the radiated fields from a half wavelength dipole with a sinusoidal

distribution. Brown [23] extended his work to get a closed form expression for the

electric field from a dipole of arbitrary length with one piecewise sinusoidal mode.

Brown's result has the form of spherical wave sources at each endpoint and the

center of the piecewise sinusoid. Applying duality to his result, the radiating from

a single piecewise sinusoid magnetic current in a homogeneous medium (no ground

plane), which is i-directed, has total length L, and is centered at the origin includes

the following i component of the magnetic field:

Hyo [e--jIR+ e-R 2  2c L e-i 3 R 1
4vsin( ) I R + R 2 cos(.-)J, (2.36)

where the distances are

R = 2 + y2  z2, (2.37)

R = 2 +Y 2 +(Z--L) 2, (2.38)

R 2 = Z2+,y2+(z+ p2, (2.39)

and Y0 is the intrinsic admittance of the homogeneous medium. The magnetic field

component in Equation (2.36) is in units of amperes/meter with a hidden 1 volt
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factor understood in the numerator to account for the normalization of the magnetic

current.

Now consider a second magnetic piecewise sinusoidal current of equal length

and parallel to the first. Recalling the first current is centered at the origin, the

second current may be centered at R = p/A + zi. Without loss of generality, we may

assume that its position z is greater than zero. By applying the tcsting procedure

given in Equations (1.24) through (1.29) with the radiated field in Equation (2.36),

the following expression is obtained for the mutual admittance (ignoring any ground

plane) in the spatial domain:

Y12- YO T 4cos2(LL) (eFZi( 1  e-

2 = 8 rsin2( ) [(2 + 4c 2 ,JzEi(Xl) + EiX2))

4cos(-T)(e 2 ( T)Ei(X3 ) + e-j#(z+Y)Ei(x 4 ))

- 4cos(-)(e,I3' +E(X5) + &-I I 3 Ii(X 6 ))
2

+ eiI3(z+L) Ei(X 7 ) + e-j/3 (z+L)E,(X 8 )

+ ejOz-LiEi(Xg) + e-3jIz-LEi(Xo)], (2.40)

where the following functions and arguments are defined:

Ei(X) = Ci(X) - jSi(X) (2.41)

Ci(X) = jco1 ) dT (2.42)
X

Si(X) = Xsin-r) dr (2.43)

S= ~[ + 2± +] Z(2.44)

X2_ =(/p) 2  (2.45)
X1
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3 = 0p2+(z+f)2 (2.46)

X4 =- )2 (2.47)X3

X = #[p 2 +(z - 2-z+L(2.48)

X6 ( )2 (2.49)
X 5

X7= [p2 + (z + L)2 +z + L] (2.50)

x8 (#p)2  
(2.51)

X 7

X9 [Vp2±+(z -L)2 -z±+L] (2.52)(OP)2

X = (2.53)

Since the sine and cosine integrals can be tabulated or approximated with simple

functions, the mutual admittance in Equation (2.40) is said to be in closed form.

With both spectral and spatial domain solutions available for the slot coupling

with PWS basis functions, the question which must be answered is which approach

leads to an accurate solution with the best speed? To answer this, a typical case

is chosen with the lengths of the radiating and receiving modes both at 0.4A, an

inter-element spacing of Dz = O.6A, and no z offset between the two modes. The

inter-modal spacing, p, is varied from very low values, which typically correspond to

self-admittance calculations, to 1OA. At each value of p, a reference solution for the

admittance was obtained by summing in the spectral domain (Equation (2.24)) up

to n = 10,000, which is well beyond what is required for convergence. Four methods

were then used to form the sums, until 0.1% accuracy was obtained by the formula,

Error _ - Yref (2.54)
ref
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The CPU time2 for getting such accuracy was noted in the four methods, which

were:

1. An unassisted spectral domain sum.

2. A spatial domain sum with the Fejer kernel acceleration.

3. A spatial domain sum with spiral average acceleration.

4. A spatial domain sum with Shanks' transformation.

The latter three methods involve acceleration techniques which are described

in Appendix A. These acceleration techniques work well with series which oscillate

about the convergence point, which is the case in the spatial domain. For the

spectral domain, which approaches convergence in a "monotonic" manner, none of

these techniques improves convergence.

The result of the convergence experiment is plotted in Figure 7, which shows

the CPU time for a given spacing p with each solution method.

The data shows that for p > 0.007A, the unassisted spectral domain sum is

superior to all of the methods involving the spatial domain. This is expected since

the evanescent modes of the spectral domain sum die out as p is increased, thus

the sum becomes dominated by the finite number (in this case, one) of propagating

cylindrical wave modes. Of the spatial domain techniques, the Shanks' algorithm,

which is the most difficult to program, is decidedly the fastest.

The crossover point between the spectral domain and the Shanks' method cor-

responds to a self-admittance calculation for a slot mode which has an aspect ratio

of LIW ; 14. Although the Shanks' algorithm is faster for applications of higher

2All CPU times in this dissertation are based on the VAX 8550 machine at the Ohio State

University ElectroScience Laboratory. Accuracy of the data is only about ±10%, depending on

the time-sharing load conditions on the computer when the data is being run.
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Figure 7: Comparison of Calculation Times by Four Solution Methods for Mutual
Admittance to Converge to 0.1% Error - Piecewise Sinusoidal Axial Slot Modes in
Free Space with L = 0.4A, Dz = 0.6A, z = 0
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aspect ratios, the CPU savings is not substantial enoitgh (unless extremely high as-

pect ratios are used) for the relatively few self-admittance calculations in a coupling

matrix fill to warrant the programing of the spatial domain sum for the slot-to-slot

coupling.

The spatial domain sums tend to be slower as the inter-modal spacing, p, is

increased. This is explained physically with the spiral average method in that more

pairs of slots must be added before the phase changes become nearly linear, produc-

ing the well behaved spiral. It is interesting to note that the Shanks' transformation

and Fejer kernel methods behave similarly.

To conclude this section, we present some mutual admittance data for the "one-

sided" homogeneous half-space coupling, as computed with Equation (2.24), the

preferred method. First, we show admittance data versus modal separation distance

p for the case of element lengths of L = O.4A (both modes), inter-element spacings of

D, = 0.6A, and no offset in z between the modes. The 8 z parameter for this example

is set to zero. Piecewise sinusoidal currents are assumed for both the transmitting

and receiving modes. The data is plotted in Figure 8. Note the complicated behavior

of the mutual susceptance (imaginary component) for p < 1A, in which case many

evanescent modes in the cylindrical wave expansion are contributing. Beyond one

wavelength, the admittance data behaves like the single propagating mode, which is

a simple Hankel function, decaying in magnitude as l/,1p.

Next, we repeat the mutual admittance calculations for D. = 0.6A and slot

lengths of L = 0.5A and L = 0.599A (for both transmit and receive modes). Again,

the sz parameter is set to zero. The calculated results are plotted in Figures 9 and

10, respectively. Note that the susceptance for the L = 0.5A case approaches a finite

value with a finite slope as p approaches zero. This is because the elements are at a
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Figure 9: Mutual Admittance Between Piecewise Sinusoidal Axial Slot Modes in
Region I with Free Space and L = 0.5A, Dz = 0.6AI, z = 0

resonant length. For the L = 0.599A case, the susceptance goes to +oo as p goes to

zero, which is expected with the elements longer than the first resonant length.
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Figure 11: Geometry of Inner Zone Coupling in a Homogeneous Medium

2.1.2 Inner Zone Coupling

In this section, we consider the coupling between slot modes in Region II (ref.

Figure 4) for a homogeneous medium. That is, we wish to get efficient solutions to

Equations (1.25) through (1.28) with no dielectric interfaces between the conducting

planes. The geometry to be considered is shown in Figure 11. It depicts receiving

mode locations on both the same conducting plane as the transmitting mode and

the opposite conducting plane. Note that the origin is located at the center of the

reference element in the transmitting mode.

By successive applications of image theory [141, the conducting planes may be

moved out to ±oo in the i axis. This creates the effect of making the transmitting

column array into a doubly-infinite planar array, of which each current element

has double the magnitude of the original magnetic currents. The columns of the

equivalent doubly-infinite array are spaced at

DX = 2d (2.55)
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Figure 12: Equivalent Geometry of Inner Zone Coupling in a Homogeneous Medium
with a Doubly-Infinite A tray

apart, and the inter-element spacing in i, D,, remains the same as the original

problem. The new transmitting array columns are of similar form as the original

current mode (times 2), with same amplitudes and equal phases. In the equivalent

problem, the radiated fields from the transmitting planar array are only valid for the

region 0 < x < d, which corresponds to the original region between the conducting

planes. This equivalent geometry is depicted in Figure 12. Note that the receiving

element is located an infinitesimal distance from either Plane A or Plane B.

An almost endless number of solutions may be formed for the mutual coupling

from the transmitting doubly-infinite array in Figure 12 to the receiving element

on either Plane A or Plane B. Different solutions may be obtained by transforming

between spectral and spatial domains (for either or both sums), changing the order

of the sums, and applying different acceleration techniques to enhance numerical

convergence, such as the methods described in Appendix A. Because space does

not permit a total exhaustion of the solution possibilities, the author has selected

to demonstrate the convergence characteristics of only two solutions, which with

the experience and intuition of the author, provide excellent results for either near
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or far zone coupling. These methods are the plane wave expansion method and a

"spatial-spectral method" which uses Shanks' transformation.

The plane wave expansion solution was derived by M- _k and others for the

mutual impedance between doubly-infinite arrays of dipoles [1, 2]. It is derived

by forming a vector potential from a Hertzian array as a doubly-infinite sum in

the spatial domain, using the Poisson Sum Formula to convert each sum to the

spectral domain (giving the form of a plane wave expansion), performing curls to

get the fields, then integrating to get the fields from modes of a finite length and the

impedance with a testing function. In performing the latter steps, the basic plane

wave expansion form is preserved.

Applying duality to the result in [2] and doubling the result to account for the

doubled sources in Figure 12, the plane wave expansion solution is:

YO Y 0 00 o e-JipR '
_ [p, pr + pIpII (2.56)

k---2 A=On=-O ry

where I'j is the intrinsic admittance of the medium. Several additional parameters

in Equation (2.56) need explanation. The vector R refers to the position of the

center of the zeceiving element. The unit vector r^ represents the direction of the

plane waves, and is given by

kU nA
r =D= + ry + -1, (2.57)

where ry normalizes the unit vector and is chosen with the -j square root for evanes-

cent plane waves. The P functions are merely pattern factors for single elements of

the transmit and receive modes for different polarizations. They are given by:

tT - pt,rPI =p-nj_ (2.58)

and

P '  == p Al" l t, (2.59)
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where the element direction here is = i and we have defined

×_ - (2.60)

?nj x r (2.61)' 1=I ,i x '

and the total pattern factor is

ptr= f I(1) e+il., dl (2.62)

element

with the plus sign chosen for the transmitting mode and the minus sign for the

receiving mode.

For the i-directed elements, the polarized pattern factors become:

rz ptr (2.63)

Pi r rr~

ryrzPt'r (2.64)

where r, and r. are the i and i components of in Equation (2.57).

In forming the plane wave expansion, the summation indices are changed from q

and m, which correspond to spatial directions of i and i (see Figure 125 in Appendix

B), to the spectral indices of k and n, respectively. Because the axial slot currents

are z-directed, the pattern factors force preferential convergence conditions on the

spectral sum in n versus that of k. The pattern factors will decay while moving

off normal in the YZ plane, which corresponds to moving to higher order spectral

modes in n (with k = 0). In contrast, the pattern factors are omni-directional in the

XY plane, which corresponds to the sum in k.

To illustrate the convergence characteristics of the plane wave modes in kn

space, an example has been chosen with the lengths of the transmitting and receive

elements at L = O.4A, an inter-element spacing of Dz = 0.6A, ground plane spacing of
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Figure 13: Contours of Relative Evanescent Mode Strength in Plane Wave Expansion
for Self-Admittance of i-Directed Slots Inside Ground Planes: L = 0.4A, Dz = O.6A,
d = 0.3A, z = 0, W = 0.02A

d = 0.3A, no offset in z between modes, and a test separation distance of y = 0.005A

with the test filament on the same ground plane as the transmitting mode (i.e., the

Case A). The columns of currents are of equal phase. The relatively close testing

location corresponds to a self-admittance calculation for a slot width of W = 0.02A,

which is a slot of aspect ratio LIW = 20. For this typical self-admittance calculation,

the convergence of the plane wave expansion is taxed, since many evanescent modes

must be included. Since the Dz and Dr spacings in this example are each less than

one wavelength and the array is equally phased, only one propagating plane wave

mode exists, corresponding to the k = n = 0 term. The relative amplitudes of

the evanescent modes can be compared to that of this propagating mode. Such a

calculation was performed, and Figure 13 depicts contours which define boundaries

in kn space on the evanescent terms which have magnitudes more than 0.01, 0.001,

and 0.001 of the magnitude of the propagating term in Equation (2.56). Only the

first quadrant is shown, with symmetry understood about the k and n axes. The

figure clearly shows the convergence in n is faster than the convergence in k, as

expected by the nature of the pattern factors.
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The contours in Figure 13 provide a clue to how the double summations should

be carried out, maintaining computational efficiency. The following technique was

selected by the researcher. First, the k = n = 0 term is found. Next, separate sums

are formed along the k axis and the n axis, excluding the k = n = 0 term. These

sums are formed with successive terms comprising of ± term pairs on each index.

Each o' these axis sums are carried until three successive terms provide marginal

changes in the sum's magnitude of less than 0.00001 times the previous magnitude

of the sum. This establishes an upper limit on k and n which are stored. Next,

the quadrant areas are summed (excluding the axes) with the procedure of starting

with n = 1, then summing from k = 1, 2,3, ..., until convergence is found with three

successive terms changing the partial sums by a relative magnitude of less than

0.00001 of the previous sum. As this quadrant sum is made, symmetric terms are

also added in the other three quadrants. The procedure is then followed at n = 2,

n = 3, and so forth until the upper limit on n found on the axis sum is reached.

This procedure was found to provide similar speed and accuracy to the method used

in Henderson's Periodic Moment Method Code (PMM), when the default accuracy

parameter in PMM is used [3].

The plane wave expansion method is slow when a lot of evanescent modes are

relatively strong, which occurs when y is electrically small. On the other hand, when

y is larger than about one wavelength, the contribution from the evanescent modes

is so insignificant that the double sum convergence procedure described above does

not need to be carried out. Assuming that Dz < A and d < 0.5A (i.e., Dz < IA),

which is typically the case, and assuming y > IA, the single propagating plane wave

term from Equation (2.56) gives:

y p Ve-Jfly
4 DzDz (2.65)
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With the spectral plane wave expansion solution developed, we now turn our

attention to an alternative "spatial-spectral" solution. This method is based on the

spectral solution to the radiation from a single column of i-directed elements, which

in the previous section proved to be very fast. Specifically, the mutual admittance

problem in Figure 12 may be decomposed into a single infinite sum of mutual ad-

mittances between separate column modes and the same testing element, where all

of the columns are in-phase. The mutual admittance for a single column to the

test element is found spectrally with the cylindrical wave expansion in Equation

(2.24). The series of columns are then added spatially, making the total double

sum a combination of spectral and spatial domain manipulation. To accelerate the

spatial domain sum, Shanks' transformation (ref. Appendix A) is applied.

Examples were used to compre the pure spectral domain solution of the plane

wave expansion with the mixed "spatial-spectral" domain approach. Each example

used element lengths of L = O.4A, inter-element spacings of Dz = 0.6A, ground

plane spacing of d = 0.3A, and no offset in z between the transmitting and receiving

modes. Examples were made with the test element at various y positions on each

of the two ground planes (i.e., Case A of x = 0 and Case B of z = d). The plane

wave expansion method was used with the convergence criteria defined above for

y < IA, and with Equation (2.65) for y _> 1A. The spatial-spectral method was

carried out with similar convergence checks, and the resulting calculations matched

the spectral domain calculations within 0.1% almost always (including cases where

the single plane approximation in Equation (2.65) is used).

For Case A, the two solutions were run for conditions of 0.001A < y < 10X.

Piecewise sinusoidal modes were used for transmitting and receiving. The calculation

time for each admittance data was noted and is plotted in Figure 14. Note that the
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Figure 14: Comparison of Calculation Times by Two Solution Methods for Mutual
Admittance in a Homogeneous Inner Zone - Case A: L = O.4A, D, = 0.6A, d = 0.3A,
z=0

spectral method becomes faster than the mixed domain method only when the single

propagating plane wave approximation is used.

The experiment was repeated for Case B, with all of the parameters as defined

before except the test element being located on the opposite ground plane from

the transmitting mode. Again, piecewise sinusoidal current shapes were assumed.

The calculation time were noted and are plotted in Figure 15. Again, the spectral

method is only faster when the single propagating plane wave approximation in used,

which is for y > 1A. Note that the curves in Figure 15 are very similar to those in

Figure 14. Thus, the conclusion is that regardless of if the receiving mode is on the
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same plane as the transmitting mode, the preferred calculation method is to use the

spatial-spectral method (based on Equation (2.24) for each of the radiating columns

in Figure 12) with acceleration from Shanks' transformation when y < 1A and using

Equation (2.65) when y > 1,\.

To conclude this section, we present the mutual admittance data which was

calculated in the process of obtaining the CPU data in Figures 14 and 15. Specifi-

cally, this data is for testing on both planes using the spatial-spectral method when

y < 1A and the single propagating plane wave approximation when y > 1A. Figure

16 shows the mutual admittance for testing on the same plane as the radiating mode

46



0.0010

Re(Y)

0.0005

CIO

._ 0.0000 ,
/ / / , I , I

0.000 d

Im(Y) T X

-0.0010 ..

0 1 2 3 4 5

Figure 16: Mutual Admittance Between Piecewise Sinusoidal Axial Slot Modes in
Region II (Case A) with Free Space and L = O.4A, D, = 0.6A, d = 0.3A, z = 0

(Case A) and Figure 17 shows similar data for testing on the opposite plane (Case

B). Piecewise sinusoidal current shapes were assumed.

Several interesting things are noted from Figures 16 and 17. First, the mutual

susceptance in Case A as y approaches zero goes to -oo, which fundamentally is

caused by the fact that the element lengths are less than A/2. The susceptance in

Case B does not have such a singularity, though, since the testing is never infinitely

close to a radiating element. For both cases, the susceptance displays a somewhat

complicated behavior for the first wavelength, then follows the mutual conductance

(real component) in a simple non-decaying plane wave fashion for y > IA. This

plane wave is merely the propagating waveguide mode inside the original structure
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(see Figure 11). The mutual conductance data is almost exactly the same for Case

A and Case B testing. Finally, note that there is no discernable discontinuity in the

data in each plot at y = 1A, which is where the method of calculation changes.

If the ground plane spacing is expanded to d > A/2, then more propagating

waveguide modes will appear. This corresponds to more propagating plane wave

modes in Equation (2.56), which must be included to alter the solution in Equation

(2.65) when y > 1A. The spatial-spectral method with Shanks' acceleration would

not change for the near zone calculations, though.
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Figure 18: Geometry of Outer Zone Coupling between Slot Modes in a Stratified
Dielectric Medium

2.2 STRATIFIED MEDIA

2.2.1 Outer Zone Coupling

The geometry of "outer zone" coupling between slot modes in a stratified di-

electric medium is depicted in Figure 18. The radiating basis function is a periodic

i-directed thin filament located directly on the ground plane surface. The testing

function occupies a thin filament for just a single element, located an "equivalent

wire radius" away from the ground plane, as previously discussed.

Although Figure 18 shows two dielectric layers and a third dielectric half-space,

the number of layers is completely arbitrary. Layers may be thin or thick, with

the exception of the first layer, which must be thick enough so that d, > a, in
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order to preserve the thin slot assumptions which are used. As with the case of

the homogeneous half-space, we will assume the center of the reference element in

the transmitting mode is located at the origin, and that the center of the receiving

element is located at the position vector,

R = zi + a + zi. (2.66)

The "traditional" way to solve for the radiation from the transmitting periodic

mode is to find the Green's function which enforces the boundary conditions at each

dielectric interface, and at the ground plane. This Green's function will have integrals

of the Sommerfeld form, which are difficult to evaluate due to highly oscillatory

integrands. To circumvent the need to evaluate such integrals, the array scanning

method (ASM) is adopted here, which is also a completely rigorous method. This

method was reported for use in calculating the self impedance of a single dipole near

a single planar dielectric interface [24]. The application of the method in the present

research is much different, however, in that it involves a scanin only a single plane,

but with a more complicated geometry.

Although the array scanning method avoids the formulation of Sommerfeld

integrals, it does produce an integral with singularities associated with surface wave

formation. These singularities may be removed with an analytical approximation,

leaving a well behaved integrand which can be numerically evaluated. The integral

may also be interpreted as a Fourier transform involving the separation distance

x between the modes. Since the formulation of the coupling matrix often requires

similar mutual coupling geometries with the only difference being a change in the

value of x, Fast Fourier Transforms (FFTs) may be used to accelerate the overall

moment method solution.
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The basis for the array scanning method, as it is applied to calculate field and

coupling quantities from a radiating mode of singly-periodic sources, is given in

Appendix B. By extension of Equation (B.9), the admittance between the modes

depicted in Figure 18 is

Y:- f Y, dam, (2.67)

A
A

where YA is the admittance between a radiating artificially created doubly-infinite

array of periodic sources and the original receive element and DZ is the inter-column

spacing of the artificial array, as discussed in Appendix B. The As in Equation (2.67)

may be for either the dielectric slab nearest the ground plane (Media 1), free space

(Media 0), or any of the other dielectrics. However, the chosen A must be for the

same region for which the s scan parameter is a applied. For convenience and to

avoid confusion, the dielectric slab in which the sources are embedded (Media 1)

will be used for both the A and as parameters for ASM applications throughout this

dissertation.

The admittance from the full planar array, YA, may be found in a plane wave

expansion, as derived by Munk [1, 2] for the similar case of mutual impedance

between doubly-infinite dipole arrays. Applying duality to Munk's result, we get:
3-1 00 0 -,14

= Ye'Pr- > [PTe + PlPrTI]  (2.68)
k=-oo n=-oo ry P

Several parameters in Equation (2.68) need explanation. The variables Y1 and /1

refer to the intrinsic admittance and wavenumber of the dielectric slab nearest to the

ground plane (i.e., media 1). The position vector R is defined by Equation (2.66).

The unit vector il represents the direction of the plane waves in media 1, and is

given by

+S = (i +1  + 1y, +5- Z, (2.69)
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where ryI normalizes the unit vector and is chosen with the -j square root for

evanescent plane waves. Note that the parameter a. is a directional cosine for the

steering of the propagating plane wave direction, as discussed in Appendix B.

The P functions in Equation (2.68) are merely pattern factors for single el-

ements of the transmit and receive modes in media 1 for different polarizations.

They are defined in Equations (2.63) and (2.64) for the i-directed slot modes, with

the only modification being the components of coming from Equation (2.69). It

should be noted, though, that when the dielectric constants of the neighboring slabs

nearest and on each side of the slotted plane differ, an effective dielectric constant

Ee and corresponding effective wavenumber e governs the piecewise sinusoidal or

cosinusoidal current shapes in Equations (2.27) and (2.28). A procedure for getting

,e which is "sensed" by the slot is described by Kornbau, using a static capacitance

argument [25J. Although not an exact solution, he concluded that a good approx-

imation under most circumstances is to declare e to be the arithmetic average of

the dielectric constants immediately on each side of the slotted plane. Regardless of

how the effective dielectric constant is chosen, when it is applied to an axial current

mode in which the immediate environment has a dielectric constant of Ej, Equations

(2.32) and (2.33) change to the following:

P(PWC) 2 6e sn )cos( , ) cosp# ±cos(-- sin(rz
P(PWS) 2ie (2.70)

sin(V) i3 3 r2

P(PWC) 20ge Rj i(--e T i
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Throughout this dissertation, when the effective dielectric constant is not specif-

ically given for "one sided" admittance calculations, it is assumed to be the same

dielectric constant as that of the dielectric slab nearest to the ground plane.

The final clarification due to Equation (2.68) are the T factors, which encompass

the effect of the media interfaces, accounting for the infinite geometric series of plane

wave bounces within the dielectric slab nearest to the ground plane. Assume for

now that a single dielectric slab exists on the ground plane such that media 2 is an

infinite half-space. From [1, 2], and using the fact that the transmitting mode is

at the ground plane and the receive mode has the coordinate y = a, we find the T

factors to have the form,

[1 + ro] [i + r1 2e-j 2,0(dj-a)ri ]
T = c 2 ~1iri , (2.72)1 - rlorl2e -j2fIdlry1

where parallel and perpendicular polarization subscripts have been suppressed on T

and all rs. The reflection coefficients are merely the Fresnel coefficients for magnetic

fields in plane waves going from media I to either the infinite half-space (media 2) or

the ground plane ("media 0"). The reflection coefficients at the media 1-2 interface

are:
r12= Y2ry, - Yiry2  (2.73)

2ry1 + Yrry2

and

Y2ry - Ylry, (2.74)r2 =2ry2 + Ylryl'

where Y refers to the intrinsic admittance of the ith media. The y component of

the plane wave direction in media 2 is given by

/ -22 - r2 (2.75)

with a -j chosen for evanescent plane waves. Finally, phase matching at the boundary

gives

82 rZ2 = 31 rx5 (2.76)
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and

02 rz 2 = ,1 rz2 • (2.77)

Since the ground plane is a perfect electrical conductor, the other reflection

coefficients are simply

F10 .1 = F1011 = 1. (2.78)

Thus, Equation (2.72) may be simplified to the form,

T = 2 1 + r]2e-j2jI (dj-a)ryl (2.79)
1 - rl2e- 

213 1dlry

Further simplification occurs if one assumes that d1 - a - dl, but such an approxi-

mation does not need to be made, and will only limit the usefulness of the results.

It should be noted that the T factors are functions of the plane wave space

indices k and n, as well as the scan direction parameter s=. This dependence is

buried inside ry, and L'12 for each polarization.

We choose the inter-column spacing Dx for the "artificial" transmitting doubly

infinite array to be a half wavelength inside media 1. This choice is not necessary for

the metlhod, but leads to both a convenience in isolating possible singularities and a

physical interpretation of the array scanning. These features will be explained later

in the development of the solution.

With this inter-column spacing, and using Equations (2.66), (2.68), and (2.69),

substitutions may be made into Equation (2.67), which yield:

I E e- j2kG  f fkn(s8)e-jOzx8 ds, (2.80)
2A1D2 k=-oo n=-oo_ 1

where we have defined the functions,

e-jo3l (a " +  , p

fkn(Sx) = - [P P{Tr + P I} (2.81)
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for -1 < sz < 1 and fkn(Sz) = 0 for all other values of a.

Using the Fourier transform definition of
00

F(w) = f f(t)e- j ' dr, (2.82)
-00

it is easily seen that the mutual admittance may be expressed as:

010 00
E = y e- j2k31z E Fkn(I"ix). (2.83)

2AIDz k=-00 n=-oo

This expression may be further simplified by using the linearity of the Fourier trans-

form. That is,
00

SE 1  e-j 2 k IzFkE(O31 T), (2.84)
2Dk=-oo

where we have defined

00

!'kr(f1I ) = ff kE(sz)e-JjXz dsX (2.85)
-00

and
00

fkE(sz) E fkn(sz). (2.86)

For most applications involving truncated periodic surfaces, a large number of

columns of periodic slots will occur, with most columns having similar slot elements.

Thus, for the computation of the coupling matrix, most mutual admittances calcu-

lated with the array scanning method will have similar pattern factors, and certainly

will have the same T factors. The only difference in the calculations will involve the

separation distance, z, which is in the argument of the Fourier transforms. Fast

Fourier Transforms (FFTs) may be used to accelerate the overall solution, by pro-

viding an array of information on the FkE functions over a wide range of Olz values.

The series of functions, fkE, need only to be sample once, then given to an FFT

algorithm. The output of the algorithm provides FkE at a large number of discrete

values of fl/ z . Linear interpolation of this data can be used to get the transform
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at almost any particular f/laz. This procedure is faster than performing the integral

in Equation (2.85) separately for each x spacing. For this reason, Equation (2.84)

expresses the array scanning method result in a convenient form.

The result of Equation (2.84) is applicable to slot column coupling in stratified

media where the shape of the slot elements are arbitrary (i.e., not confined to simple

i-directed thin slots). Using concepts such as Munk's composite pattern factors

[1, 21, the extension is easily made. However, one must be careful not to use the

polarized pattern decompositions in Equations (2.63) and (2.64), which are valid

only for !-directed elements. Instead, one should rely on the more general forms of

Equations (2.58) through (2.62).

Computation of the Fourier transforms in the array scanning method is fairly

straight-forward, except in a few particular terms where singularities occur in fkn.

These particular k and n term combinations may be removed from the definitions

of fkr and the associated transforms, Fkz. That is, their integrals in the array

scanning method may be added separately. The singularities can occur as ry, goes

to zero, or in the case of "surface wave poles", the denominators of the T factors go

to zero. Fortunately, the integration in the neighborhood of these singularities may

be removed with analytical approximations. The procedure to do this is discussed

as follows.

Assuming all permeabilities are identical to free space and the dielectrics are

lossless, the application of the array scanning method (ASM) for the "one sided"

mutual admittance between pairs of infinite column modes of axial oriented slots

may be divided into the following three categories:

I. 'E = E2 (i.e., homogeneous half-space)

I. E < E2 (i.e., the relatively dense outside space)
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IIL. I1 > E2 (i.e., the relatively dense slab)

With the inter-column spacing (D,) chosen to be A1/2 in the ASM, and assum-

ing the element spacing (Dz) is less than a wavelength in media 1, the k = n = 0

term in the plane wave expansion is the only source of propagating plane waves,

which are launched at all angles (perpendicular to i) in media 1 as the integration

on sx is performed. All other combinations of k and n imply evanescent plane wave

excitation in the dielectric slab.

Two types of singularities can occur in the ASM integrands. The first is a simple

pole when ry, goes to zero. The second is a much more complicated singularity

associated with the resonant excitation of a surface wave when the denominator of

the T factors goes to zero. We shall examine each type of singularity as they occur

for the three dielectric categories.

First, consider the case of the homogeneous half-space. Although this case was

solved efficiently with the development of Equation (2.24) in a previous section,

it is presented here to help validate the ASM. For applications with homogeneous

half-spaces, a simple singularity associated with ry1 approaching zero occurs at four

locations in the ASM integrands. They are at ax approaching both +1 and -1 for

the k = n = 0 term, and for s approaching -1 for the k = 1,n = 0 term, and

ax approaching +1 for the k = -1,n = 0 term. For the k = n = 0 term, the

entire integral may be performed in closed form with the approximation that the

"equivalent wire radius" (a) is negligible for the propagating plane waves. Also note

that the T factor for any k,n combination and polarization is always exactly equal to

2 for the homogeneous half-space. Using axial slots and piecewise sinusoidal current

shapes, the Fourier transform of the k = n = 0 term may be approximated as:

1 ~ ~ 8 031L1 e2 0
Fo(3 1x) I -cos( -) / dsz

58



8 sin (s) (2) JO(/X). (2.87)

Note that since only the n = 0 term in Equation (2.24) and the k = n = 0 term in

Equation (2.87) have non-zero real components, the two formulas are in agreement

(neglecting a) when the constants from Equation (2.84) and the pattern factors from

Equation (2.32) are included.

For the k = ±1,n = 0 terms, the integrand cannot be approximated well over

the entire region of integration. However, an analytic approximation can be made

in the neighborhood of the singularities. This approximation involves noting that

the numerator in the integrand is almost a constant in the neighborhood of the

singularity, and that integrals of the form f C du may be evaluated in closed

form. The process yields:

FI,oOIx) ;:' Isn( __ 1- Cos( ) ej01xln(1 +A+ V/2A +A 2 )

+ J V1 - (sZ+2)2,e-iA zs dsj (2.88)
A+2)

2

and

F1 o(21~ 2 L I -Cos(~] [je-AIzn( + A +V2A + A2 )

+- V _da] (2.89)

The remaining integrals in Equations (2.88) and (2.89) are well behaved and may

be evaluated numerically. The analytical approximation in removing the integral in

the neighborhood of these singularities degrades as A becomes larger.

Because of these singularities, when applying the ASM for homogeneous half-

spaces, it is best to separate the k = -1,0, 1 and n = 0 terms from the expansion in
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Equation (2.84), and evaluate them separately at each z value of interest. The rest

of the k,n terms may be put through an FFT algorithm as mentioned previously.

Now consider the category of a relatively dense outside space (i.e., El < f2). In

this case, there are no singularities which hinder the FFT operations in Equation

(2.84). Although it is true that r., approaches zero at similar locations as in the

homogeneous half-space, the T± factor also approach zero in these same locations3

This is caused by the reflection coefficient 112± approaching -1 at these "end-fire"

angies, which makes the numerator in T± go to zero. The ratio, T±/ryl, is found

to be numerically stable and finite at arbitrarily close positions from the suspected

singularity - thus, there is no singularity. In practice, the integrand may be sampled

at a slight offset from the ry, locations and given to the FFT algorithm.

No singularity exists in the T factors for the relatively dense outside space

category.

Now consider the final category, that of the relatively dense slab (i.e., c1 > E2).

This case is perhaps the most interesting since it is the only one which supports

surface waves and it is more likely to occur in practical applications. As with the

case of the relatively dense outside space, there is no true singularity when ry goes

to zero because T± also approaches zero in the same locations. L'Hopital's rule may

be used to show that the ratio T±/ry approaches j2d1 31 as ry, goes to zero.

The much more interesting phenomena with this category is the existence of

singularities in T± as surface waves become excited in the dielectric slab 4 . With

the chosen "artificial" inter-column spacing of Dx = A1/2, these singularities are

confined to exist between the scan direction associated with the critical angle and
3 Note that 11 is irrelevant since the parallel components of the pattern factors go to zero for all

n = 0 terms with the i-directed elements.
'Again, T11 is irrelevant in this phenomena since the parallel components of the pattern factors

vanish in the term which supports the surface waves.
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the end-fire scan direcion for the k = n = 0 term only. That is, defining a critical

scan direction 5 of sc = I2/fl, the locations of the surface wave singularities are

at s = szp, where

sBC < IsIPJ < 1. (2.90)

For all values of s in this range, the magnitude of the dielectric reflection coefficients

for the k = n = 0 is exactly one.

We define a polar angle 0! such that

ejo = r12j e-j 2)3ldlryI. (2.91)

From Equation (2.79), and neglecting the equivalent wire radius a, the T factor for

the k = n = 0 term can be written as

1  + eji' 2
T_l = 2 j2 cot(-). (2.92)

Obviously, the surface wave singularities occur when 0 is either zero or a multiple of

21r. Note that the T factor is an odd function of q0 around the singularity. Since the

rest of the k = nt = 0 integrand is fairly constant in the neighborhood of a singularity,

the effect of the singularity can be removed if one defines symmetric limits of 4 about

the singularity and translates the result back to corresponding limits on s. That

is, the integral of the k = n = 0 term from 0 = -A to +A is zero, as long as A is

chosen small enough so that the remaining factors in the integrand (i.e., ry, and the

pattern factors) are roughly constant. Thus, the region from 46 = -A to +A can be

excluded from the scan integration of the imaginary component of the k = n = 0

term.

'This is in agreement with the critical angle of plane wave incidence which just allows transmission

into the outside space, from Snell's law.
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The new 46 variable is related to the scan parameter s, in a non-linear equation.

The values of s. which correspond to A = are solutions to the equation:

g(Sz) = ±A+jln Ca S SC z +2dl3 1  1- 82 = 0. (2.93)

The roots may be found by the Newton-Raphson iteration method [261, which is to

form the next guess for the root from the existing guess by the operation

B=,n+1 = Sxn g'(sz,)' (2.94)

where the prime designates the derivative of g with respect to s!, which is

g'(=) : -2s8(l - s) 2dli3s= (2.95)

i-aI S 1S

At first inspection, the T factor appears to be purely imaginary in the region

past the critical angle for the k = n = 0 term. This makes physical sense because no

radiated energy can escape the dielectric slab for these scan angles. However, one

must be careful because the derivation of the T factor from Munk [1, 2] assumed

that multiple plane wave bounces in the slab have the form of a geometric series,

which is expressed in closed form. When scanning beyond the critical angle, the

ratio between terms in the bounce series has a magnitude of exactly one, which does

not permit the use of the closed form sum. The T factor is perfectly valid, though,

if a slight amount of loss is inserted for propagation in the j direction.

To see more clearly what happens in the neighborhood of a surface wave singu-

larity, take for example the geometry of a dielectric slab of twice the permittivity as

the outside space with a thickness of 0.3A1 . For this case, the critical angle corre-

sponds to a scan parameter of sxc - +0.7071 and a single surface wave singularity

exists at sx - ±0.8385. In Figures 19 through 21, we have plotted the real and
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Figure 19: T_L iii the Neighborhood of a Surface Wave Singularity for k = n = 0
term, El = 2 E2 , d i = 0.3AI, loss tangent = 0.01

imaginary components of the k = n = 0 T factor in the neighborhood of this sin-

gularity for loss tar, -nts (of fl) of 0.01, 0.001, and 0.0001 in the direction. The

imaginary components clearly converge to the expected cotangent behavior about

the singularity as loss is decreased. The real component, though, approaches a single

impulse function located at the singularity. Numerical experiments confirm that the

area under the real component is independent of the loss.

For a more elegant solution, we wish to express the T factor as the sum of the

imaginary component (from Equation (2.79)) and an impulse function with a rcal

weight at the rurface wave singularity under lossless conditions. That is, we wish to

express the T fator as the sum of the expression in Equation (2.79) for sz outside
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term, El = 2 E2, dl = 0.3AI1 , loss tangent = 0.001
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some small neighborhood around the singularity, and

T. = C + 8) + 6(., - SzP)] (2.96)

for .sz within the neighborhood of the singularity. Once the weight of the impulse

functions is determined, it is easy to find the Fourier transforms for implementation

of the ASM.

The weight of the impulse functions is derived as follows. With a small amount

of loss, the area under the real part of the T factor around the singularity may be

written as

C1 fRe[2 + aei] dsx, (2.97)

where we have used the same definition of a polar angle 0 as Equation (2.91)and

we include the real constant a as a number slightly less than one to represent loss.

The limits of integration are some neighborhood in s, about the singularity, which

does not need to be specified yet. Since the denominator changes much more rapidly

than the numerator, the weight can be approximated as

C fRe [ -4ej] d s. (2.98)

Multiplying the numerator and denominator by the complex conjugate of the latter

and taking the real part yields

CJ 4  4 cos; 2( -- )d (2.99)• l+ a 2 - 2 a c os O -

where we have applied the limit as a approaches one. With a little bit of faith, we

assert that in order to completely capture the singularity, one complete rotation in €

is required. Furthermore, the value of d is nearly constant around the singularity.

Thus, we find the weight of the impulse function to be

C = 4rdsz  (2.100)

d6
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evaluated at 9_ = 3z, or = 0. We note that - 1/g'(az) where g'(s:) is given

in Equation (2.95). The value of C in Equation (2.100) agrees with the area under

real part of the T factor in numerical experiments, confirming that the singularity

is indeed captured by the one complete rotation in 0.

Now some example computations using the ASM can be made to compute the

"one sided" mutual admittance between pairs of infinite column axial slot modes.

For each example which follows, the following parameters are chosen:

D, = 0.75A1

L = 0.5A1  total lengths of transmit and receive slots

W= L/0 slot widths

z 0

dl 0.4A1

El 2E0 where E0 is that of free space

Only one dielectric slab.

Both el and E2 are lossless.

Piecewise sinusoidal current shapes for both modes, with an effective dielectric con-

,tant of Ee = El.

The first case investigated in the Category I geometry, with E2 = El = 2 fo. For

this case, the solution in Equation (2.24), developed for a homogeneous half-space,

forms a reference for checking the ASM result. This reference solution is referred

to as a geometrical optics (GO) solution, which will become clear later when it. is

applied in stratified media computations. Figure 22 shows a comparison of the ASM

and GO solutions for the "one sided" mutual admittance between the axial modes,

as a function of separation distance. The agreement between the solutions gives

confidence in the ASM implementation.
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Figure 22: "One Sided" Mutual Admittance between Axial Modes for el = Q,
D, = 0.75A1 , L = 0.5AI
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Figure 23: Direct and First Two Bounce Terms in Geometrical Optics Approxima-
tion

For stratified media, a GO reference solution is formed by using the result in

Equation (2.24) for direct and bounce ray terms, as depicted in Figure 23. The

infinite bundle of cylindrical waves from Equation (2.24) are assumed to be initially

launched as if they were in a homogeneous half-space. The bundle then reaches the

receive mode in a direct path and an infinite series of bounce paths. For the bounce

terms, the contribution to the mutual admittance is assumed to be as if it is from

the Hankel functions in Equation (2.24) with the distance p being the total bounce

path length instead of the direct length, v/-7iV . Fresnel reflection coefficients

corresponding to propagating plane waves at the appropriate ray angles are used.
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The geometrical optics approximation can be evaluated very fast, since only a

few bounce modes are needed for convergence in most cases. However, the char-

acterization of a cylindrical wavefront reflecting on a planar interface with Fresnel

reflection coefficients is fairly crude, so the accuracy is not expected to be good,

particularly as the dielectric slab becomes thin and as important ray contributions

are near grazing incidence to the boundaries. To improve the accuracy, the Hankel

functions can be spectrally decomposed and the Fresnel reflection coefficients may

be applied with rigor. However, this only leads to integrals of the Sommerfeld type,

which are cumbersome to evaluate. We wish to avoid the requirement to evaluate

Sommerfeld integrals, so we choose to use the geometrical optics approximation as

an easy checking method for gaining confidence in the ASM.

A Category II geometry is tested by letting E2 = 2E1 = 4q0. A comparison of the

ASM and GO solutions for "one sided" mutual admittance is given in Figure 24. The

agreement of the methods is fairly good for small separation distances, but decays

(in percentage terms) as the columns spread apart. This is not unexpected since the

characterization of bounces by Fresnel coefficients for the cylindrical wavefronts is

not very good at high angles of incidence.

For a typical representative of the dense slab category (III), the case of El = 2f2

is chosen. Figure 25 shows a comparison of the ASM and GO solutions for this case

for separation distances up to one wavelength in the slab. Beyond this distance,

the GO solution behaves erratically and does not come close to matching the ASM

solution. This is no doubt explained by both the Fresnel reflection approximation

breakdown and the GO solution's failure to adequately characterize the formation

of trapped surface wavs, which behave as non-decaying plane waves. The ASM

solution is expanded to 5A1 separation in Figure 26, which clearly shows the plane

wave behavior of the surface wave. Note that the near equal amplitudes of the
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Figure 24: "One Sided" Mutual Admittance between Axial Modes for el = 0.5E2,
Dz = 0.75AI, L = 0.5AI

real and imaginary components of the mutual admittance give confidence in the

analytically determined impulse function weight (ref. Equation (2.100)) for the

surface wave singularity.

This example proved to be the most computationally intense, as careful nu-

merical integrations had to be performed near the surface wave singularity. The

generation of the data plotted in Figure 26 took approximately two minutes of CPU

time on a VAX 8550 machine. The other examples took about one CPU minute.

In Figure 27, the total magnitude of the complex "one sided" mutual admit-

tances is plotted for the three previous cases. It is seen that the homogeneous

half-space case gives a coupling proportional to l/l/z, while the denser half-space

has a faster roll-off. The case of the denser slab, however, tends to have approach a
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Figure 25: "One Sided" Mutual Admittance between Axial Modes for el 2E2 ,

D, = 0.75A1 , L = 0.5A1

constant amplitude of coupling as distance is increased. This is because the coupling

is dominated by a single surface wave which is not decaying.

It is interesting to note that the coupling between the modes in the dense slab

case does not monotonically decrease with distance. There is a "partial shadow

zone" around 0.5AI < x < 2A1 , in which the surface wave has not fully formed. This

may also be explained by geometrical optics, in that single bounce rays before the

critical angle have reflection coefficients less than one, but beyond the critical angle

have magnitudes of exactly one. This change in reflection coefficient can overcome

the decrease in amplitude from a slightly longer ray path.

Since the ASM and GO solutions diverge so quickly in Figure 25, one may

be skeptical that the "partial shadow zone" phenomena in Figure 27 is correct. To

check this, the data in Figure 26 is used to simulate the "one sided" scan admittance
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Figure 26: "One Sided" Mutual Admittance between Axial Modes for el 2 E2 by
Array Scanning Method, D, = 0.75A1, L = 0.5A1
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Figure 28: "One Sided" Scan Admittance of a Doubly-Infinite Array of Slots,
Dx = 0.45A1 ,Ee = Ei = 2c 2

of a doubly infinite slot array in the dielectric. One hundred column-to-column

admittances are added spatially with Floquet phasing factors in : with a Fejer

kernel (see Appendix A) used to accelerate convergence. An inter-column spacing of

0.45A1 is chosen for the simulated doubly infinite array. This guarantees that several

of the data points from the "shadow zone" will be represented. As a comparison

the Periodic Moment Method (PMM) code is used to compute the "one sided" self-

admittance of a single doubly infinite slot mode [3]. The two predictions of the "one

sided" self admittance are plotted in Figure 28 for a complete sweep of free space

scan angles in the XY plane. The agreement is excellent, except at high scan angles

(attributed to the Fejer kernel), which gives confidence in the data in Figure 26.
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The extension of this solution to problems involving multiple layers of dielectrics

comes from a relatively easy change in the T factors. The change in the formulation

is a substitution for an effective reflection coefficient at the media 1-2 interface for the

Fresnel coefficient. Recall that the Fresnel coefficient is derived on the assumption

that medias 1 and 2 are unbounded half-spaces. The procedure of "walking through

the dielectrics" from the outer interface to the 1-2 interface, in order to find the

effective reflection coefficient, is described by Munk [21 in his Appendix D. This

procedure is summarized as follows.

Consider the stratified medium shown in Figure 29. The picture shows a set

of four dielectrics, which can be part of an arbitrary number of dielectrics. Fresnel

reflection coefficients are identified with subscripts denoting the dielectric in which

a plane wave is located, and the abutting dielectric at the interface.

Assuming Region m+ 1 is an infinite half-space, an effective reflection coefficient

may be formed at the m - 1, m interface for the aggregate effect of a plant wave

hitting this interface in the presence of both Regions m and m + 1. This coefficient,

distinguished from the Fresnel coefficient by the superscript e, is

Fm-,m + Frm,m+Ie-J 2Omdmrm 1

M-lM 1 rn,m+lrm,me - j 2omd r m C)

Thus, the simple Fresnel coefficients, which are based on two materials in infinite

half-spaces, are used to "cascade" the reflection at the m, m + 1 interface to the

m - 1,m interface. Further cascading to the "left" (as in Figure 29), is done by

using the newly found effective reflection as follows:
rm2,-1+ e-,M-j2Omrn- 1dm- ]r ytrn

Fm-2,m-1 + Frn-l me j20m-jdm- rm (2.102)n-2,m-1 - r-l,m-2 m e

These formulas hold for both electric a .. magnetic field reflections, and for each

polarization.
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Figure 29: Fresnel Reflection Coefficients Inside a Stratified Medium
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In the case of multiple dielectric layers, the phenomena of surface wave formation

becomes very complex. Although transcendental equations exist which describe the

locations of the surface wave poles, -sz, they are much more complicated than

Equation (2.95), which works for the single layer. Therefore, the removal of surface

wave contributions by identifying the strengths of the singularities in an analytical

sense is not practical for the case of an arbitrary number of layers. Instead, we adopt

the approach of inserting a slight loss tangent for propagation in the j direction

for each dielectric layer, and integrate the k = n = 0 term numerically with fine

sampling to capture the sharp bell shaped portion of the real part of TL around

each surface wave singularity. This process can also be used for the single layer

case, producing the same results as using Equation (2.100) (which produced Figure

26, i.e., an identical figure is produced when integrating numerically with a small

loss tangent), but it is much slower than the analytical solution. Therefore, the

careful numerical integration approach with small loss tangents is reserved for use

with multiple dielectric layers only.

The numerical integration approach is tested for the case of a single and double

slab geometry with the following parameters:

frequency = 10 GHz

Dz = 0.75A1

L = 0.5A1 = total lengths of transmit and receive slots

W = L/IN = slot widths

z=0

dl = O.4A 1, for both one and two slab examples

el= 4e0 , for both one and two slab examples

d2= 0.3A2 , for two slab example only

2= 2c0 for second slab in two slab case or half-space in one slab case
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Figure 30: Comparison of Numerical Integration and Analytical Singularity Removal
with the ASM in Getting "One Sided" Mutual Admittance between Axial Modes
for el = 4E0, E2-= 2c 0 , dl = 0.4A1, Dz = 0.75A1, L = 0.5AI

C3 = co for two slab example only

Piecewise sinusoidal current shapes for both modes, with the effective dielectric

constant of ce = El.

The case of "one sided" mutual admittance for the single slab case was com-

puted with both the analytical removal of the surface wave singularity and a careful

numerical integration with a loss tangent of 0.01 in the slab for j-directed propa-

gation.. The result of each method is plotted in Figure 30. Note that the methods

match very closely, as expected, and that each curve is approximately V/2 times the

data plotted in Figure 26, which is expected by the scaling of the geometry. The nu-

merically integrated data took approximately five times as much computation time

as the analytical singularity removal, after adding the overhead from the FFTs on

all other k and n terms.
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Figure 31: foo Term for the Single Slab Example

With the loss tangent of 0.01 in the dielectric slab, the integrand for the k =

n = 0 term of the expansion in Equation (2.82) is examined with X = 0. That is, foo

is examined and plotted in Figure 31. It shows the resonant behavior of a surface

wave singularity at .9zp ; 0.8385.

The double slab case was also computed with the numerical integration imple-

mentation of the ASM with loss tangents of 0.01 in each slab. The "one sided"

mutual admittance in this rase is plotted in Figure 32.

The corresponding k = n = 0 integrand (for z = 0) for the double slab case

is plotted in Figure 33. Note that there are now two surface wave singularities - a

strong one at as1 , 0.8840 and a weak one at . ' P 0.5105. The effect of the two

surface waves is a "slower" weak plane wave adding with a "faster" (but still slower
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Figure 32: "One Sided" Mutual Admittance using Numerical Implementation of the
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Figure 33: foo Term for the Double Slab Example

than free space propagation) strong plane wave. The result is seen in the admittance

data in Figure 32, which shows the beginning of the two "wobbling" plane waves

which continue forever without attenuation as z increases.

To verify that the data plotted in Figure 32 is reasonable, we again use the

concept of spatial addition of column-to-column mode admittances with Floquet

phasing factors in i to simulate the full planar array "one sided" scan admittance.

This admittance is checked against the PMM code [3], which uses the direct plane

wave expansion solution' from Munk [1, 2]. The spatial domain sum of the ASM

data was formed from 201 slot column modes spaced at Dz = 0. 4 5 A1 apart, witb

the assistance of a Fejer kernel. The comparison of the scan admittance data from
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Figure 34: "One Sided" Scan Admittance of a Doubly-Infinite Array of Slots,
D = 0.45A1 ,ce = e1, Double Slab Example Geometry, Spatial Domain with the
Fejer Kernel

each method is shown in Figure 34. The comparison is good except at high scan

angles, which as in Figure 28, is attributed to the Fejer kernel.

To see if the column-to-column coupling data actually supports good planar

scan data at high scan angles, the same spatial domain sum was performed with

Shanks' transformation used instead of the Fejer kernel. The results of this and the

PMM predictions are plotted in Figure 35. The excellent agreement at even high

scan angles gives a strong indication that the column mode coupling data in Figure

32 is good.
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Figure 35: "One Sided" Scan Admittance of a Doubly-Infinite Array of Slots,
Dz = 0.45A1 , Ee = el, Double Slab Example Geometry, Spatial Domain with Shanks'
Transformation
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As seen in Figures 34 and 35, the scan admittance of a doubly-infinite array of

slots in the given double slab geometry is relatively constant over free space scan

angles between 0 and 60 degrees from normal in the E-plane. Such is not the case

in the single slab example plotted in Figure 28. This illustrates the concept of scan

independence, which may be achieved in an approximate sense over wide angular

sectors with an intelligent choice of dielectrics, as demonstrated by Munk and others

[27]. Thus it is seen that in addition to mechanical and structural reasons, there is

an important electrical reason to analyze and design periodic surfaces with dielectric

coatings.
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2.2.2 Inner Zone Coupling

In this section, we consider the coupling between slot modes in a stratified

version of Region II (ref. Figure 4). An example of the geometry to be considered

is shown in Figure 36. It depicts receiving mode locations for both conducting

planes. Note that the origin is located at the center of the reference element in the

transmitting mode, and that when the receiving mode is for a slotted array column

on the same ground plane as the transmitting mode, the test point is offset an

"equivalent wire radius" from the ground plane, as discussed previously. Also note

that the coordinate system has been changed from that used in the homogeneous case

(see Figure 11, for the convenience of the expressions which will be used. Although

Figure 36 depicts three dielectric layers, the number of such layers is considered

arbitrary.

The problem of inner zone coupling is again divided into two cases. Case A

is that where the receiving mode is for a slot on the same ground plane as the

transmitting mode. Case B is for a receiving mode on the opposite ground plane as

the transmitting mode. We shall first devote our attention to Case A.

The solution to the stratified inner zone coupling problem for Case A is just as

described for the st-atified (multi-layer) outer zon- coupling problem, using the Ar-

ray Scanning Method (ASM). The only modification is that the "outermost" bound-

ary, which corresponds to Ground Plane B, gives rise to magnetic field reflection

coefficients of +1 for every plane wave mode, no matter what the scan angle. The

transferring of the reflection coefficient to the media 1-2 interface is accomplished by

successive applications of Equation (2.102). Because multiple dielectric layers are

involved, the surface wave poles are integrated numerically with a slight loss tangent

(for i-directed propagation only) inserted for each layer.
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Figure 36: Geometry of Inner Zone Coupling in a Stratified Medium
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The ASM was first applied to an inner zone coupinug problem with only one

dielectric slab, which is merely a homogeneous inner zone. Specifically, an example

was chosen with slot lengths of L = 0.4OA, inter-element spacings of DZ = 0.6A,

thickness of d = O.3A, dielectric constant of el = co, and no offset in z between

the transmit and receive modes. This corresponds to the homogeneous inner zone

(Case A) problem used in Figure 16. When employing the ASM with this problem

with +1 reflection coefficients at both ground plane surfaces, a surface wave pole

becomes excited at ax = ±1 for the k = n = 0 term. This corresponds to the

excitation of a TEM waveguide mode. To complicate matters, the 1/ry singularity

exists at the same location in the ASM integrands, which makes it very difficult to

analytically remove the pole. Therefore, an approximation was made by replacing

the second ground plane (B) with a semi-infinite media with dielectric constant of

10,0000. This interface reflects almost exactly like a ground plane, and shifts the

surface wave pole just enough from the 1/ry pole so that each may be integrated

numerically with a slight loss added in the slab. This procedure produced the mutual

admittance data shown in Figure 37, which is fairly close to the data found by more

exact methods (for the homogeneous inner zone) in Figure 16. Again, this provides

further evidence that the ASM is a valid calculation technique.

The ASM was next applied to an inner zone geometry with two dielectric slabs.

In this case, the parameters chosen were ce = el = 4, 0 , E2 = 2 0, dl = 0.2A1,

d2 = 0.35A2 , L = 0.5A1, W = L/10, Dz = 0.75A1, and z = 0. This geometry is

referred to as the double slab inner zone example with d2 = 0.35A2 . Case A testing

v as examined at 10 GHz using the ASM, and the resulting "one sided" mutual

admittance is plotted in Figure 38.
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Figure 37: Mutual Admittance Between Piecewise Sinusoidal Axial Slot Modes in
Region II (Case A) with Free Space and L = O.4A, Dz = 0.6, d = 0.3,\, z = 0,
using the Array Scanning Method
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Figure 38: "One Sided" Mutual Admittance using Numerical Implementation of the
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The admittance data in Figure 38 appears to be dominated by tmvo surface

wave components. These terms form a large amplitude plane wave of "wavelength" 6

approximately equal to 3 .8 A, added with a much smaller amplitude plane wave of

much shorter "wavelength" (but still longer than AI). This interpretation of the

data is borne out by the k = n = 0 (propagating) integrand in the ASM, which is

plotted in Figure 39 for the case where z = 0. This integrand is computed using

loss tangents of 0.01 in each dielectric slab. Note that a strong surface wave pole

is located at amp 0.794 and a weaker surface wave pole is located at amp 0.262.

As a pole moves to Yzp = 1, a TEM mode would become excited (which has a

"wavelength" of A1), so the pole at 0.794 corresponds to the larger amplitude and

longer "wavelength" surface wave. This makes sense with the admittance data in

Figure 38.

To verify that the column-to-column admittance data plotted in Figure 38 is

probably correct, discrete data points from receive modes at integral multiples of

Dm = 0.45A1 were added spatially with Floquet phase factors and with the Fejer

kernel. This produces a simulation of the "one sided" scan admittance of a doubly-

infinite array of slots, which can be compared with computations from the PMM

code, which use the direct plane wave expansion method. This was done with the

Floquet phase factors referenced to a free space scan angle, and the results are

plotted in Figure 40.

There are a number of interesting features in Figure 40. The data indicates a

resonance is reached at a free space scan angle of about 31.6 degrees from normal.

From Snell's Law, this corresponds to an angle of 15.2 degrees inside the first di-

electric slab (e1 = 4E0), which translates to a scan parameter of am = 0.262. This

6"Wavelength" in this discussion refers to the effective wavelength as seen in the waveguide formed

by the ground planes.
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Figure 39: foo Term at z = 0 for the Inner Zone Double Slab Example
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resonance is therefore attributed to the first surface wave pole seen in Figure 39.

Another surface wave is excited in the slab at a. = 0.794, but this corresponds to a

an angle of 52.6 degrees in the slab, which is beyond the critical angle (30 degrees)

for emergence into the real angles in free space. Therefore, the second resonance is

not visible in the free space scan.

Ideally, the real part of the scan admittance produced by the ASM data in

Figure 40 should be zero for all scans, except for an impulse function at the surface

wave excitation. This is caused by the inability of the transmitting mode to radiate

real energy away from the array. In the plotted data, however, the impulse function

at the resonance location is opened up due to the slight loss tangent used in the T

factors. Such a loss tangent is not included in the PMM reference data. Discounting

this notable exception, the simulated scan data from the ASM computed column-to-

column admittance compares very well with the direct PMM computations, giving

more confidence in the ASM data in Figure 38.

Typically, double slab inner zone geometries are avoided in periodic surface

designs since they are not symmetric. Instead, a more likely geometry contains

an inner zone with three symmetric dielectric slabs. For example, we choose a

first slab (nearest the transmitting and receiving modes' ground plane) to have

= 4e0 with a thickness of d1 = O.2V 1 . A middle slab is chosen with E2 = 2E0

and thickness d2 = 0.33A2 . A third slab identical to the first and an accompanying

ground plane (B) completes the sandwich. The slot modes were defined with Dz =

0.6 1 , L = 0.5X1, W = L/10, and z = 0. Using piecewise sinusoidal currents

with the effective dielectric constant of Ce = el, the "one sided" mutual admittance

between the two periodic slot columns on ground plane A were computed using the

numerical integration implementation of the ASM. The result is plotted in Figure

41.
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Figure 41: "One Sided" Mutual Admittance using Numerical Implementation of the
ASM with Triple Slab Inner Zone Example Geometry, Effective Dielectric Constant
of ce = E1, Case A Testing
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Figure 42: foo Term at x = 0 for the Inner Zone Triple Slab Example, Case A
Testing

The admittance data in Figure 41 is dominated by the interaction of more than

one surface wave. This is seen more clearly in Figure 42, which shows the integrand

for the k = n = 0 term in the ASM. There are two distinct resonances which are

caused by surface wave generation.

Again, to verify that the ASM data in Figure 41 is correct, we spatially add

column-to-column admittances with Floquet phase factors and a Fejer kernel to

simulate the "one sided" scan admittance for a full doubly-infinite slot array. Using

separation distances of multiples of D, = 0.3AI1 , the simulated scan admittance from

the ASM data was computed and is plotted in Figure 43. Also plotted is a reference

solution from the PMM code.
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Figure 43: "One Sided" Scan Admittance for the Inner Zone Triple Slab Example
Geometry, D. = 0.3AI, Case A Testing
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Since the surface waves are excited beyond az = 0.5 (corresponding to the

critical angle in the first dielectric - compared to free space), there are no resonances

in the scan admittance in Figure 43 over the free space scan angles. Such a condition

is necessary (but not sufficient) when attempting to design a periodic surface with

scan independence. As seen in the data, though, scan independence is not achieved

with the triple slab example with the gradual change in the scan susceptance.

As with any inner zone example, the real component of the scan admittance in

Figure 43 should be zero over all scan angles. The reconstructed ASM data shows a

drift off zero, though, which is partially due to numerical errors in the complicated

procedure to produce the data. It may also be due to a nearing of the shoulder of a

surface wave resonance for the singularity at ax - 0.6 in Figure 42, with the slight

loss tangents used in the ASM calculations.

Now we shall consider the stratified inner zone coupling with Case B testing,

where the receiving slot element is on the different ground plane from the trans-

mitting slot column mode. The implementation of the ASM now changes, with

fundamentally different T factors describing the transmission of plane wave through

the dielectric layers. As before, though, Equation (2.67) describes the basis of the

ASM. The mutual admittance from a full planar (doubly-infinite) slot array radiat-

ing to a receiving slot element on the opposite ground plane is found by applying

duality to Munk's result 121, and reducing the result with ground plane reflection

coefficients and mode locations, for the geometry depicted in Figure 36. Without

loss of generality and for convenience, we declare the the center of the reference

element in the transmitting array to be located at

Rt = a + zi (2.103)
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and the receiving slot located at

= (2.104)

where dt,, is the total distance between the ground planes. This gives the full planar

admittance to be:
rl 00 00 e+j#lRt.fl r

YA - 2D - E Ei 4 '01m [it,1I,mi-,m2zzk--oo n=-oo ryl

+ !i* pt pr TIin] (2.105)+ rym III'l HIM MI' -

Several parameters in Equation (2.105) require explanation. As before, Y1 and

,81 refer to the intrinsic admittance and wavenumber of the dielectric slab nearest

to the transmitting mode. The unit vector 1 represents the direction of the plane

waves in the first slab, and is given by Equation (2.69). Propagation directions in

the other layers are found by successive applications of Equations (2.75) through

(2.77). The parameter, 01m, gives the phase delay from one ground plane to the

other through the m layers of dielectric, and is given by

01m = fI qi = fj e-jlidiryi. (2.106)
i=1 i= l

The pattern factors are found from Equations (2.62) through (2.64), except the

receiving mode pattern, being located in the mth dielectric slab, uses the associated

3m and m in its evaluation. Thus, the extra subscripts 1 and m in Equation (2.105)

remind the reader where the pattern factors are found.

The final clarification for Equation (2.105) are the T factors, which describe

the complete transition through the layers (without the phase delay). Simplifying

Munk's expressions [2] for the present geometry, the T factors are:

4 -I +
Trmn= [,.+.Iry (2.107)

fm [1- r,,,_r e-
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where parallel and perpendicular polarization subscripts have been suppressed on T

and all Fs. Also note that the superscript e denotes an effective reflection coefficient

(ref. Equation (2.102)) while the lack of the superscript denotes the use of the

Fresnel coefficients in Equations (2.73) and (2.74).

As with earlier implementations of the ASM, the chosen inter-column spacing for

the "artificial" transmitting array is Dx = A1 /2. Using this spacing, and substituting

Equation (2.105) into Equation (2.67), we get:

17 00 00 1

y 1 E e~~P / 1 f fn(aX)e+jOIxz- dax, (2.108)
=2A 1 _Dz Ic--00 n=-o 1

where we have defined the functions,

fkn(sz) - e 0 PI,,rmTm Yl t pr ,T- (2.109)
ry1  I1m In I

for -1 < s < 1 and fkn(sx) = 0 for all other values of a.,

Using the alternative Fourier transform definition of
00

F(w) = J f(t)e+jwt dt, (2.110)
-00

it is easily seen that the mutual admittance may be expressed as:

y_ 0 e+ j 2k ,  Fz(0z). (2.111)
2 =-0o =-oo

Using the linearity of the Fourier transform, we simplify the expression to

17 00
~3 e+J2IIFkE(# ), (2.112)Y-2A1-Dz k=_00

where we have defined

00

F= J()- fkE(j.)e +j #I"ZB dsz (2.113)
-00

and fk. is given by Equation (2.86) with the functions fAn coming from Equation

(2.109).
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As with the previous applications of the ASM, we can employ Fast Fourier

Transforms (FFTs) to accelerate the overall moment method solution in most cases,

since the application of Equation (2.112) will be repeated several times under similar

conditions, except for a change in the value of x.

To demonstrate the ASM with Case B testing, a triple slab geometry is chosen,

similar to that used in producing Figures 41 through 43 using Case A testing. Specif-

ically, the following parameters are chosen: el = 4f0, E2 = 2E0, E3 = 4f0, dl = 0.2A1 ,

d2 = 0.33A2 , d3 = 0.2A3 , Dz = 0.6A1, L = 0.5A1 , z = 0. The slot width W do

not enter into the calculations for Case B testing. Piecewise sinusoidal currents are

assumed with effective dielectric constants equal to El for the transmitting mode

and E3 for the receiving mode. As with the Case A testing, a slight loss tangent (in

this case, 0.02) is used for the j-directed propagation in each layer for calculating

the T factors. Note that this loss is not included in the phase delay term, 01m"

The mutual admittance between the slot column modes on opposite ground

planes separated by the three dielectric layers is calculated via tOe numerical inte-

gration implementation of the ASM. The result is plotted in Figure 44.

Figure 44 depicts the complicated interaction of multiple surface waves, similar

to that from Case A testing (ref. Figure 41). Note that the data in Case B testing

is also on the same order of magnitude of that in Case A testing.

The surface wave excitation for the Case B testing is also shown in Figure 45,

which plots the integrand for the k = n = 0 term in the ASM. It shows surface wave

resonances at the same ax values as those in the Case A testing (ref. Figure 42), but

with different resonant characteristics. Unlike the Case A testing, the evanescent

plane wave modes ( k,n not both zero) in the ASM were almost negligible in Case

B testing, so the Fourier transform of the data plotted in Figure 45 dominated the

admittance calculations.
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Figure 44: Mutual Admittance using Numerical Implementation of the ASM with
Triple Slab Inner Zone Example Geometry, Case B Testing

Finally, to verify that the ASM data in Figure 44 is correct, we again use

the technique of spatially adding column- to- column admittance with Floquet phase

factors and a Fejer kernel to simulate-the mutual scan admittance between two

doubly-infinite slot arrays on the opposite ground planes. Using column separation

distances of multiples of D., = 0.3A1, the simulated scan admittance from the ASM

data was computed and is plotted in Figure 46. Also plotted is a reference solution

from the PMM code, which is adjusted by a factor of -1 to account for the sign

convention Henderson used in defining the equivalent scattering currents on two

ground planes [3], which is the opposite of the current directions adopted here in

Figure 4.

As with the Case A testing scan (rti. Figure 43, since the surface waves are

excited beyond s., = 0.5, no resonances in the scan admittance in Figure 46 emerge
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past the critical angle into the free space scan angles. Also note that the agreement

of the scan susceptance between the ASM and PMM calculations is excellent. The

scan conductance with the ASM data drifts off zero again, though, due to the loss

tangent used and the numerical errors in going through a fairly complicated series

of calculations.
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CHAPTER III

DIPOLE-TO-DIPOLE COUPLING

In this chapter, we will develop expressions for the self and mutual impedances

used in the coupling matrix in Equation (1.23). Specifically, we shall solve Equation

(1.32) for transverse dipole column modes. Several solutions will be developed, each

of which haviDg regions of applicability and efficiency.

This chapter is divided into two main sections, which concentrate on solutions

in a homogeneous space, and solutions for dipole modes located near a ground plane

or a dielectric coated ground plane.

3.1 HOMOGENEOUS REGIONS OF SPACE

The first problem considered is that of self or mutual impedances between

transverse dipole modes in a homogeneous space. Solutions are developed in both

the spettral and spatial domains. The spectral domain solution is generally pre-

ferred, though the spatial domain solution offers efficiency advantages for most self

impedance and some mutual impedances between closely spaced modes,

3.1.1 Spectral Domain Solution

Consider a column of periodic i-directed Hertzian electric current sources, as

depicted in Figure 47. Without loss of generality, the "reference element", denoted

by the index m = 0, is located at the origin. The field observation point is arbitrary.
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Figure 47: Side View of a Single Column of Periodic i-Directed Hertzian Electric
Current Sources

The Hertzian sources have equal amplitudes, and a possible linear phase progression

governed by Floquet's theorem.

The spectral representation of the total magnetic vector potential at the field

observation point is derived by a process similar to that used with i-directed mag-

netic current sources in Equations (2.1) through (2.11). This results in

dA = i o E e-3z6z H2) (Irpp), (3.1)

where rz and rp are defined by Equations (2.12) and (2.13), and I0 is the current

on the reference element.

The total magnetic field at the observation point is found from the curl [14],

d- 1V x dA. (3.2)
IL
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Substituting the expression in Equation (3.1) and using the irrotational property of

i, we get

d-: - D ×x v e-jzrzH(2)({irpp). (3.3)
n=-oo

The gradient in Equation (3.3) is easily performed in cylindrical coordinates.

The resulting vector components in 0 and are then changed to equivalent i and

components, which are easily crossed with the leading i term in Equation (3.3).

The convenience of eventually using rectangular components is also noted when fields

are to be dotted with the linear directions of testing dipoles in impedance integrals

(ref. Equation (1.32)). Thus, the total magnetic field at the field observation point

reduces to

-/3odz' e_1 3 Oz rH(2)(rpp)
dH = - j4Dz ~=-oo

- irp(sin O)Hj2)(i3rpp)] . (3.4)

The radiated electric field is obtained from Ampere's Law, which is

dE= ,1 vxdH. (3.5)

JWE

This yields

d7E E ?ilx X xV [jrzeiIzrzHo (flrp)]

-X V [rp(sin O)e-j,6rz HI (Prod)] (3.6)

where 7 is the intrinsic impedance of the medium.

Performing the gradients in cylindrical coordinates, and changing the vectors

to rectangular directions results in the following rectangular field components:

_-7 0d r 2  2.2 (2)
dEz = 4Dz x e3j~zz [f3(r. + rpsin O)Ho (Opp)

n=-oo

+r2(cos20)H(2)(3rpp) , (3.7)
P
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My_ -xDl E e-jZtz(sin 4cosq5) [-PH,2)(Orpp)4n=-oo

-/3rPHo (/3rpp)] 1 (3.8)

and

E__-7 1I~dl 00)
-d]°l j,8rprz(CoOq)e-jIzrzHj2)(flrpp). (3.9)

d -4Dz n=-oo

Now assume the Hertzian dipole array is translated to some point away from the

origin, as shown in the XY plane view in Figure 48. The electric field that this trans-

lated Hertzian array provides to the observation point is found by simply replacing

the p and 4, in Equations (3.7) through (3.9) with Pd and 4,d, respectively, which are

new cylindrical coordinates localized to the displaced Hertzian source. Note that the

Hertzian dipoles are still i-directed and the z coordinate of the reference element

in the displaced array is now arbitrary. Thus, we also have a displacement variable,

zd = z - z/, which can be substituted for z in Equations (3.7) through (3.9). Also

note that although the i component of the electric field is not needed for Equation

(1.32), it is presented here for completeness.

Now suppose the elements of the radiating dipole array are of finite length, but

still i-directed. The total field from the array at the observation point is found by

integrating the contributions from an infinite number of Hertzian arrays, weighted

by the current shape assumed for the finite length dipoles. Denoting the endpoints

of the finite length dipoles by z' = a and xf = b, the electric field components are:

E.= -1 - e-3 z d r z [r2 pi + ,r p 2 + rpP3] (3.10)
4Dz E--P

z =oo

77 00 -fz r,2( .1Ey - 4 E e-Zd'z [2rpp4 - frpps] (3.11)
4zn=-oo

E- jt f 00i 3 Zt

4D 7P rprzP6 e-zdrz' (3.12)
n=-o 0
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Figure 48: Top View of a Displaced i-Directed Hertzian Dipole Array

where we have defined the following functions:

b

PI=J I(x')H(2 )(/3rppd) d x ' (3.13)
a

b

P2 = I(')(s in 2 d)H(2) (,rppd)da,' (3.14)
a
b

P3 = I I(x) C" HSd-2)(fOrpd)dx (3.15)
a Pd
b

R4 = / l(-T') H, b cs* H )(Plrppd ) dx' (3.16)

a Pd
b

P5 = f I(x)(sin dCos 4d)HI2 )(,Srppd)dz (3.17)
a
b

P6 = f I(')(cos d)H 2)(#rppd)d '. (3.18)
a

It should be noted that the current, 1(x'), which is used in the integrals for P1

through P6 is the assumed current shape for the reference dipole of the infinite
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Figure 49: Top View of Far Zone Geometry for a Radiating Column of Periodic
Transverse Dipoles

column array. Currents on all other elements are of the same form, with only a

linear phase adjustment from Floquet's theorem.

The functions PI through P6 are in a sense, pattern functions for the assumed

current shape. Thus the motivation for designating them with the variable p. Un-

fortunately, field expressions cannot be derived with a single pattern function of the

form used for the plane wave expansion from doubly-infinite arrays (ref. Equation

(2.62)). Such expressions for singly-infinite modes can only be derived when the

elements are aligned in the direction of the infinite direction (i), which was the case

with the axial slots in Chapter 2. Furthermore, the pattern functions pI through P6

can only be found in closed form using far zone approximations, which are developed

as follows.

Consider the far zone geometry of a radiating transverse dipole column array,

as shown in Figure 49.
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We use the leading term of the asymptotic series expansion for the Hankel

functions of arbitrary order, which is [28]:

H (Orpp) -ii e P (3.19)

For amplitude purposes, we make the approximations Pd ; p and Od SZz 0, for the

entire length of the dipole mode. For phase purposes, we carry the slightly better

approximation, Pd " P - x cos qS. Using these far zone approximations in Equations

(3.13) through (3.18), the pattern functions become:

PI 1 Pfz.C (3.20)

P2 "t Pfz C . sin 2  (3.21)

P3 Pf " C. j cos20 (3.22)
P

P4 Pfz C. j sin 0cos 0 (3.23)
P

P5 Pfz.C.sin icos 0 (3.24)

P6 PfZ " C.jcosd, (3.25)

where the constant C is

C = J2 e-itPP, (3.26)

and the far zone pattern integral is

L/2

Pf = f I(,)ejrpz' cos0 dx'. (3.27)

-L/2

This pattern function is in agreement with the Pt function defined in Equation

(2.62), thus it may be found in closed form for many common current shapes. For

example, consider the piecewise sinusoidal current,

I(M) sin(- ) (3.28)

sin(1)
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The resulting far zone pattern function is
2 [ c os ( qL ) - cos(Orp L cos 0b) 3.9

Pfz(PWVS) = si- 2~ [1s~):sI?.cs) (3.29)Pf(~ )-sin() [ #(r 2 cos 2 0 - 1) 1J"

When Irpcos 01 = 1, L'Hopital's Rule is used on Equation (3.29) to produce Pp

L/2.

Finally, one should note that the asymptotic solution for the fields needs only to

be carried for the propagating cylindrical wave modes of Equations (3.10) through

(3.12). These modes are identified by having a real valued directional parameter,

rp. For most cases, this corresponds to only the n = 0 term.

A comparison was made of the asymptotic solution for the radiated electric

field versus the more rigorous solution of numerically evaluating the p integrals and

including enough evanescent cylindrical wave modes from Equations (3.10) through

(3.12) for convergence. The numerical integration was performed with a 16 point

Gaussian quadrature procedure [28]. A typical radiating transverse dipole mode was

chosen with L = A/3 and Dz = A/3. The dipoles were i-directed and the reference

dipole was centered at the origin. A piecewise sinusoidal current was assumed on

the dipole. In the solution comparisons, an error parameter was defined by

Error = x 100%, (3.30)

where the subscript w denotes either an x, y, or i field component. The computation

time for each method was also noted.

Figure 50 shows the error in using the asymptotic solution for the i component

of the electric field from the example array, as seen along an observation path on the

i axis (at z = 0). As expected, the error decreases as the observation point moves

away from the array. The ratio of CPU times for the methods is also plotted. Note

that the asymptotic solution is generally about 40 times faster than the rigorous

solution.
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Figure 50: Error in Asymptotic Solution of y from Example Dipole Array in Free
Space along an Axial Path - L = A/3, z = 0, Dz = 0

114



4

A Asymptotic Solution Time x 100%
Rigorous Solution Time

it I ' I ' O A A
,,'., ,,; , ', , . . .. ,- ,,, ;,-,,.g,,-

A I % I I

Q) Error in Asymptotic

U 2Solution for E. Y' L=A/3
L_ D,= X,/3

n Observation

Path

0 I I a

1 2 3 4 5

Figure 51: Error in Asymptotic Solution of Ex from Example Dipole Array in Free
Space along a Transverse Path - L = Dz = A/3, z = 0, az = 0

Figure 51 shows similar asymptotic error and time savings data for the example

radiating dipole array along an observation path on the j axis (at z = 0). Again,

only the i component of the field is used.

Based on Figures 50 and 51, one may be tempted to declare that a good rule of

thumb is to use the asymptotic solution when the observation point is beyond about

2.5A from the center of the radiating mode. To test this, both field component

were found along a circumferential path at the radius of 2.5A. The error in the

asymptotic solution is plotted in Figure 52. Note that the error in E peaks at an

angle between the ; and j axes. The error in Ey is maximum on the ;i axis, but this
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Figure 52: Error in Asymptotic Solution of Ex and Ey from Example Dipole Array
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5Z = 0

is of little concern since this field component is very small compared to the other at

that location.

With the procedure to find the electric field in the spectral domain devel-

oped, the mutual impedance between two transverse dipole modes in a homogeneous

medium may be expressed. Consider the geometry shown in Figure 53. Without

loss of generality, it depicts an XY coordinate system which is centered with the

center of the reference dipole in the transmitting array. The reference dipole in the

transmitting array has a z coordinate of zero. The transmitting dipoles are aligned
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Figure 53: Transverse Dipole Array Coupling Geometry in Free Space

with ;i and the receiving dipole (the reference element of its array) is P3 oriented with

an arbitrary location (including a possible non-zero z coordinate).

Substituting the spectral domain solution for the electric field into Equation

(1.32), we get the following mutual impedance expression:

L

4Dz E J [Q2 + rpP3)(2+4D n=-ooL

+ (2rpp4 - Or~p5)(j -0)] . lesi(p) dp, (3.31)

where P1 through p5 are the integrals defined in Equations (3.13) through (3.17)

over the limits -Lt,'2 to Lt/2. Note that the variables Pd and dd for the integrals

are depicted in Figure 53. When the modes are spaced sufficiently far apart 1 , the

asymptotic expressions in Equations (3.20) through (3.24) may be used, along with a

numerical integration along the testing filament using very few Gaussian quadrature

'Sufficiently far apart is about 2.5A center-to-center spacing along the &i or j axes. For more

general locations, a spacing of about 5A is adequate.
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points. The testing current, Itest(p), is chosen for the receiving dipole, and is often of

the same form as the transmitting current for that mode (i.e., the "quasi-Galerkin"

method referred to in Chapter 1).

3.1.2 Spatial Domain Solution

When piecewise sinusoidal basis and testing functions are used, a practical spa-

tial domain solution for the dipole column-to-column coupling can be formed. It is

based on the closed form expressions for the fields (even in the near zone) radiated

by a single dipole with such a current. These expressions were first derived by Carter

[22] for a half wavelength dipole, and extended by Brown [23] for piecewise sinusoids

of arbitrary length. From Brown's solution, we can form the electric field from a

single piecewise sinusoidal as the sum of weighted spherical wave contributions from

the center and each endpoint of the dipole.

Consider the geometry depicted in Figure 54. It shows two single dipoles (no

arrays) from the view of the i axis. The transmitting dipole is centered on the

origin and is i-directed. The receiving dipole is arbitrarily located (including a

possible non-zero z coordinate) and aligned in a direction P which is some direction

perpendicular to i.

From Brown's solution, the electric field at any point (Z , y,z) from the trans-

mitting piecewise sinusoidal electric current has the components:

Ex 47 _ e-JPR, e-$jR2 2 L e-I R (3.32)

_y = 
Lt e-j#Rl

4r( 2 + z2)sin(_ft) 1 2 R1

+ Lt)e-jR2 _ x cs Lt - R (3.33)
2 R 2 c 2s-
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Ez = j27z [( Lt)e-joR
4 r(y 2 + z2) sin(-T) 2z- -- R

Lt e-j#R2 BLt e-joR+ (x + -2-) R2 2x cos( 2)- -- (3.34)

where the distances are defined by

R = V/ 2 +y2 + z 2  (3.35)

RI= / L) y2 z 2  (3.36)

R +L +)2 y 2 + z 2 . (3.37)

The electric field components in Equations (3.32) through (3.34) are in units of

volts/meter, with a hidden factor of 1 ampere accounting for the normalization of

the piecewise sinusoidal current. Although the i component of the electric field is

not needed for the impedance calculations with P L i, it is presented in the above

for completeness.

The mutual impedance between the two dipoles in Figure 54 is found by using

the field components in Equations (3.32) and (3.33) in Equation (1.32). This gives
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the following:

[_____ ) [e-1 RI e-j RR2 cs~Lt'e-i R1

Zd-d = ~l eOI. + e - 2 2cos--t-) (-iP)
- [4v'sin( A  R 1  R 2  2 Rj

j3?ly - Lt e- j PR + L(z e-jPR2

4w(y 2 + z2)sin(_ ) 1 2 Rl + 2 R- 2

2xco(Lt &jR 1 A sin[#( ' - IPI dp(3-38)
-

2 y) R I dpn- .)

Note that this expression is not in the form of a nine term expansion of sine and

cosine integrals as was used with slots in the spatial domain (ref. Equation (2.40)),

because the dipoles are not necessarily parallel to each other.

To get the mutual impedance between column modes of periodic dipoles with

inter-element spacings, D,, one merely spatially adds the contributions of the infinite

number of dipoles in the transmitting array to the same testing dipole (the reference

element) in the receiving array. Suppose the transmitting dipole in Figure 54 is

extended periodically in 1 with Dz spacing and a Floquet phasing factor governed

by a plane wave i component of sz (see Equation (2.4)). The mutual admittance

between column modes of the transverse dipoles in a homogeneous medium with

piecewise sinusoidal currents in the spatial domain is:

00 -jmDzz e j'7 e-3IORIm +e-jPR2m
Z 1rne Rim + R2mM=-0L f 4r si____o [ R---- ___-__t )

O Lt, e-jPRO ]17 OL
2'cos( 2 Rom J 47r[y 2 + (z - mDz)2Isin(_?)

Rtme-jRl Lte-jR 2 m -3Lj e-ROm ]

[(a- i +(a -, + - 2zcos(---- J( )

2 Rm2 R2m 2~ Rom J J
sin [f( L )

sin( ) dp, (3.39)

sin(2
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where

Rom = 2 + (z- mDz) 2  (3.40)

Rim = (a, 4 y 2 + (z - mDz) 2  (3.41)

R 2 m = + )2+y2+(z-mDz)2. (3.42)L 2

The spatial sum in Equation (3.39) tends to oscillate about the convergence

point as successive pairs of dipole terms (corresponding to m = + some value) are

added. The Fejer kernel, spiral average, and Shanks' transformations, which are

described in Appendix A, may be applied to accelerate the convergence.

It is desirable to compare the convergence characteristics of the spectral and

spatial domain solutions for the transverse dipole mode impedances derived in this

and the previous section. Unfortunately, numerical integrations are required for the

spectral domain solution and when P - i, for the spatial domain solution. Thus,

in addition to the single infinite sum, a numerical integration must be performed

at each sum index. This makes convergence a difficult quantity to define, since two

dimensions of addition are in effect. Therefore, it is impossible to define a minimal

"route" one can take in either domain until one reaches a desired accuracy, unlike

the one dimensional closed form sums explored with the slots in Figure 7.

Although a rigorous convergence comparison cannot be made, a reasonable com-

parison can be made, by accepting some reasonable standards of numerical integra-

tion at each index of the summations, which should be very accurate. This was

done for example arrays with dipole lengths of L = A/3, inter-element spacings of

Dz = A/3, dipole radii of L/40, and no z offset between the reference element of

the transmitting mode and the receiving element. The Floquet phase parameter, sz,

was also set to zero. The receiving element was aligned parallel to the transmitting

element, and two pattern cuts were examined. The first cut used a separation in the
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Figure 55: Comparison of Calculation Times by Four Solution Methods for Mutual
Impedance versus Separation Distance y - Piecewise Sinusoidal Transverse Dipole
Modes in Free Space with L = Dz = A/3, z = 0, s= 0

j direction. The CPU time to get "convergence" using the spectral domain solution

and spatial domain solution (assisted by each acceleration technique) is plotted in

Figure 55.

The sharp decrease in CPU time for the spectral domain beyond 2.5A reflects

the switch from the rigorous p integrals to the asymptotic closed form solution. It is

only when that solution is used when the spectral domain becomes faster than the

spatial domain. Note that the Shanks' transformation method is generally the best

for the spatial domain.

The experiment was repeated for a pattern cut along the i axis, using a wire

radius separation in y. The results are plotted in Figure 56. Note that the spatial
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Figure 56: Comparison of Calculation Times by Four Solution Methods for Mutual
Impedance versus Separation Distance x - Piecewise Sinusoidal Transverse Dipole
Modes in Free Space with L = Dz = A/3, z = 0, y = L/40, a, = 0

domain with Shanks' transformation is superior, although the data does not extend

to x = 2.5A, where the asymptotic form of the spectral domain becomes extremely

fast.

As a general rule of thumb, the spatial domain solution with the Shanks' trans-

form acceleration is superior for all mutual impedance calculations involving center-

to-center modal spacings of less than 2.5A, and the asymptotic form of the spectral

domain solution is superior for all other mutual impedance calculations in free space.

Next, we present the mutual impedance data associated with the observation

paths used to produce the CPU data in Figures 55 and 56. Although the data from
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Modes in Free Space along a j Axis Cut with L = Dz = A/3, z = 0, 9z = 0

each of the methods is almost indistinguishable, we present the data from the spatial

domain with Shanks' transformation. It is plotted in Figures 57 and 58. The data

in the j axis pattern cut tends to be sinusoidal with an amplitude which decays

approximately as 1/,/y. This is as one expects with the asymptotic spectral domain

solution predicting a single Hankel function dominance. The mutual reactance tends

to go to -oo as y goes to zero, as one expects with the dipole lengths being shorter

than that of primary resonance.

In Figure 58, we see the mutual impedance data (from the spatial-Shanks'

method) along the i axis pattern cut, with a wire radius (= L/40) of separation in

y. Note the complicated behavior of the mutual reactance in the near zone as the
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coupling changes from being highly capacitive to higly inductive. Beyond about

11\, the data becomes sinusoidal with approximately a 1/vfz decay. Although this

data appears insignificant on the scale used in Figure 58, it is actually on the order

of I ohm, which is not quite negligible for a good moment method solution.

To verify the accuracy of the methods used in this section, the self-impedance

of a scanning non-skewed doubly-infinite array of dipoles was computed by spatially

adding 101 column- to- column mutual impedances with a Floquet phasing factor and

the Fejer kernel. The PMM code [3) was used for a reference data source. Since PMM

is limited to use on planar arrays, the dipoles were all i-directed with the array in

the XZ plane. The dipole lengths and inter-element spacings in i were each A/3,
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Space - L = Dz = A/3, D = 0.4,, Wire Radius = L/40

the inter-column spacing was Dr = O.4A, and the wire radius was L/40. In Figure

59, we present the scan impedance data for this free space problem.

The data marked "Skinner Methods" in Figure 59 is computed by constructing

the planar scan from column-to-column mutual impedances with the Floquet phasing

factors and Fejer kernel. The column impedances are computed with the spatial

domain method with Shanks' transformation for column separations in i less than

2A. From 2A < r < 5,\, the spectral domain solution is used. Beyond 5A, the

asymptotic pattern functions are used in the spectral domain solution. This produces

scan impedance data which is very close to that predicted by PMM, except for a slight

linear shift in the reactive term. This shift is most likely caused by PMM's method
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of testing self-impedance, which places the testing filament exactly in the plane of

the array for the propagating plane wave mode. With the "Skinner Methods" data,

the testing filament was always placed a wire radius away from the plane of the

array.
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Figure 60: Geometry of Transverse Dipole Mode Coupling in the Vicinity of a Di-
electric Clad Ground Plane

3.2 DIPOLES NEAR A DIELECTRIC CLAD GROUND PLANE

In this section, we consider the self and mutual impedances between transverse

dipole modes which exist in the vicinity of a dielectric clad ground plane. The

geometry is shown in Figure 60. Although it only depicts two dielectric layers on

the ground plane, the number of such layers shall be considered arbitrary.

In Figure 60, the reference element of the transmitting array is centered at the

origin, while the receiving element is centered at the coordinate (x.,, y, zr). Free

space fills the half-space associated with y < d. Although not shown, the total

lengths of the dipoles in the transmitting array are Lt and the total length of the

receiving dipole is Lr.
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The mutual coupling between the modes may be solved in several ways. For

example, the Array Scanning Method (ASM) may be used, as it was in Chapter 2,

with T factors describing the stratified media for tb- complete coupling. However,

with both the dipole modes having arbitrary orientations (subject to Pj i), the

"artificial" doubly infinite arrays will be non-pianar, and this solution will require

nested double integrals, as noted by English [29]. Although Andre [30] developed an

elegant method to overcome the need to evaluate such nested integrals in free space,

his method cannot be applied with the dielectric clad ground plane.

To obviate the need to evaluate cumbersome nested integrals, the ASM may be

applied here to only the component of the mutual impedance which arises from the

reflections off the dielectric clad ground plane. That is, we can separate the mutual

impedance into a direct (free space) component and a component encompassing all

reflected energy. The techniques described in the previous sectirn can be used to

efficiently find the direct term (denoted Zdir), while the ASM can be used to get the

reflected term (denoted Zref).

By extension of Equation (B.9), the reflected term in the mutual impedance for

the transverse dipole arrays in Figure 60 is:

Zref J Zref, A ds, (3.43)
AO

where ZrefA is the reflected impedance term from an "artificially created" doubly-

infinite array of transmitting dipoles, as depicted in Figure 612 Note that the zero

subscript on A denotes that it is in free space. Also note that the outer dielectric
2Figure 61 depicts a portion of the receiving d.pole inside the planes containing the transmitting

dipoles. In general, the receiving dipole's position is completely arbitrary - it may be entirely on

either side of the transmitting array, or straddling the array, as shown.
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Figure 61: Geometry of "Artificially Created" Doubly-Infinite Array of Transverse
Dipoles Used for the ASM Calculation of the Reflected Impedance Component near
a Dielectric Clad Ground Plane

interface at y = d in Figure 61 is shown as a surface with an effective reflection

coefficient, which is denoted Ft t (for each polarization).

From the plane wave expansion of the fields from doubly-infinite array sources

[1, 2], we express the ASM integrand as:

00 0 e-j 2 dor0oe-j 3#0Rr'ro.,-

Zref,A = YoD

I t- r - tot t + r,- t~ot

[Pi P2' - + "11 , P 11 " (3.44)

Several parameters in Equation (3.44) need explanation. The variables ir/ and 30

refer to the intrinsic impedance and wavenumber of free space. The position vector

Rr refers to the coordinate of the center of the receive dipole, which is:

Rr = X4 + Y4 + Zr,.i (3.45)
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The unit vector 0,- represents the direction of the plane waves in free space after

they bounce off the outer dielectric surface, thus travelling with a component in the

- direction. This is given by

= a A0  nA0
k) - ry 0 + _Z? (3.46)

where ry, normalizes the unit vector, and is chosen with the positive root for real

values and the -j root for evanescent plane waves. A similar direction 0,+ is defined

by changing the sign on the component in Equation (3.46). The parameter a, is

the directional cosine which is used to steer the propagating plane waves, as noted

in Chapter 2 and Appendix B.

The reflection coefficients Ftit are merely effective coefficients for the outer di-

electric interface, as seen from a plane wave incident on the free space side. They are

referenced to the electric field. The Fresnel forms of these coefficients, for reflection

(into region 1) at the junction of two infinite half-spaces, are:

F12_L =12ryl -7 1 ry2  (3.47)
772 ryI +771lry2

and
F1211 =72ry2 - 1iryl (3.48)

712ry2 + ilry,1

The Fresnel coefficient at the ground plane is -1 for each plane wave mode, angle,

and polarization. The effective coefficients Ft° t and Ftoi are then found by stepping

through the dielectric layers from the ground plane to the outer interface, using the

procedure defined by Equations (2.101) and (2.102).

The only remaining variables to explain in Equation (3.44) are the pattern

factors, which unlike the planar slot array cases in Chapter 2, include superscripts

designating + and - j directional components. The basic reason for the chosen

superscripts is that the reflected energy to be used in the computation comes from
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the transmitting array launching plane wave in the +j direction and the receiving

array sensing them from the -j direction. First, we define the total pattern factors,

pt,+ and P",-. They are:

L

pi,+ J I(pt)e+j OPth -fO,+ dpt (3.49)

L

and

pr,- f I(Pr)e-3fOP"P?.O,_ dp,, (3.50)

2

where I(pt) and I(Pr) are the chosen basis and testing currents, respectively. To

decompose these total pattern functions into polarization patterns, we use Equations

(2.58) through (2.61). Using piecewise sinusoidal currents, and noting the geometry

shown in Figure 60, we get:

Pt + =2 cos(O L Cos(* )p+0 sin(-t) 1 -at '

v.,_ = 2 cos(OO- a) _ Cos( F L35
2 L Q2(-2

- 0 sin(_Ir_) 1 r-a2  (

t+ rzo cos t .pt,+ (3.53)
Pi Vx2o +r 0 '

pr ,_ = rZO cos Or Pr,_, (3.54)
o + 

5o4
pit,+ (r2 + r2o) sinot - roro cos . pt,+

II -- Pt'+2  (3.55)
/o + o r

pr, = (rZ 0oro)Sinkr+rryoSer .pr,-, (3.56)
z/o + r.o

where we have defined

at = rzo cos Ot + ry sin qOt (3.57)
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and

Cr = rzo COS Or - ryo sin Or (3.58)

with rzo, ryo, and rzo being the i, j, and i components of the plane wave directions

in free space from Equation (3.46).

Unlike the case of slot-to-slot coupling, the dipole-to-dipole's reflection coupling

calculations between various mode combinations may not be similar since the dipoles

may be rotated with respect to each other and arbitrarily placed. With the slots,

modes are confined to exist along a plane, which makes many of the ASM compu-

tations similar enough that Fast Fourier Transforms can speed the overall solution

time. With the dipoles, there is no strong reason to use FFTs. Furthermore, as long

as no dipole is within about AO/4 of the outer dielectric interface, only the propagat-

ing terms and neighboring evanescent modes in the plane wave'expansion need to be

considered. An inter-column spacing of Dz = AO/2 may be chosen for the "artificial

array", as was done with the slot-to-slot applications. As long as Dz < 1X0 , this

makes only one propagating term. This means the ASM here is usually a simple

numerical integration of only the k = n = 0 and k = +1/n = 0 terms in Equation

(3.44), as it is substituted into Equation (3.43). For these terms, r 0 = 0, which

eliminates the perpendicular polarization pattern factors, and simplifies the parallel

factors to:

P = (rzo sin Ot - ryo cos O)pt,+ (3.59)

and

ii = -(ro sin 0, + ry cos kr)P' -. (3.60)

When evaluating the integrals in the ASM for the k = -1,0,1/n = 0 terms

(assuming Dz = AO/2), singularities will occur as ry0 approaches zero. Specifically,

the singularities occur at qz = ±1 for the k = n = 0 term, for s= = 1 for the
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k = -1/n = 0 term, and for 8. = -1 for the k = 1/n = 0 term. These singularities

are similar to those which occurred with slots in a homogeneous half-space, and are

not associated with any surface wave formations. As with the slot case (ref. Equa-

tions (2.87) through (2.89)), the singularities may be removed with an analytical

approximation for a small neighborhood around the points. This gives:

Zref 7 1 -A e ArzO z eJf6o (2d-,)ry° pt,+ pr,-Fot
2AoDz ry 0  1 1 /k=_ oda

1-A3
1-A 3  e-j1orzore-j30(2d-yr)ryo Pt, pr,_rtot

+- e iI ds2

i+ Ik=n=o

eI/~ tzZej 3 (2 d-1#t)IO pt,++ f ~Or~r__ r ra kl Ods=
+ I+A 4  ryo I 'I I Ik

+ [- sin-l(1 - A2 )]e-'/3 2?P '+)± Frjl°* k==,:=-1=
+ o sin-'(1 - A 2)]e3I 3 OTA12 +p -rt t

211 11 l k=-z -l/n 0s~

A2 t D j-r,- 1o
2I Ik=n=O,sz=l

" je-jO~x ln( + A, + 2 + 2)p t,+r -it k-1/n=O,sz=-1 .
je~o= ln(1 ± A4 + v/2A 4 + A411 +II *11 k1 /o 11(3.61)

The four As are small positive numbers which define the neighborhoods in which

the singularities are analytically removed. The remaining three integrals in Equation

(3.61) are usually well behaved and may be evaluated fairly quickly by numerical

methods. It should be noted that the product, P1pi -rtot is continuous across

the singularities and thus its evaluation is equal under k = -1/n = 0,Sz = 1

and k = n = 0, s. = - 1, and also equal (but not to the previous pair) under

k = 1/n = O,s = -1 and k=n=O,sz = 1.

Again, it should be recalled that the formulation of the ASM in Equation (3.61)

uses only one propagating term and two neighboring evanescent terms in the plane

wave expansion. Therefore, it is only applicable to cases with Dz < 1A0 (i.e., no
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other propagating modes - note that D. was chosen to be Ao/2) and d > AO/4.

These conditions are typically met, though, which makes Equation (3.61) useful for

most applications.

The reflected component of the self-impedance of a column of periodic transverse

dipoles was tested by using the ASM. For an initial verification, cases were run with

no dielectric coatings on the ground plane. In these cases, image theory can be used

along with the methods for computing coupling in a homogeneous space described

in the previous section as a check on the ASM computations.

The first case examined was that of the reflected term in the self-impedance

of an i-directed dipole array spaced an amount d from the ground plane. That is,

Ot = 0, = 0. The lengths and inter-element spacing (Di) of the array were A/3 and

piecewise sinusoidal currents were assumed. In Figure 62, the reflected impedance

term is plotted as a function of the spacing from the ground plane. Since some of

the data was computed extremely close to the ground plane, many more terms in kn

space were used than the three given in Equation (3.61). Note that with the dipoles

being :i-directed, the pattern factors become zero where ry0 tends to approach zero,

thus keeping the integrations in the ASM numerically stable without attempting to

analytically remove any singularities.

By image theory, the data in Figure 62 should be an inversion of the data in

Figure 57, with a compression of the horizontal axis by a factor of two, to account

for the two-way reflection path. Such is the case, as seen in the two figures, which

confirms that the ASM data for the reflection is accurate.

Another pattern using the ASM was computed for the reflected component of

mutual impedance between two transverse piecewise sinusoidal dipole modes with

Ot = 0, = 0 and a separation in i. Again, the dipole lengths and inter-element

spacings in i were each A/3, and yr = Zr = 0. The pattern was taken as a function of
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the separation distance, --, at a fixed distance from the bare ground plane d = 1A.

The results in Figure 63 are much stronger than the direct coupling component,

which is in Figure 58, except for some very strong reactive coupling in the near zone

for the direct case.

To test Equation (3.61), and in particular, the analytical removal of the sin-

gularities, the dipoles were rotated to Oki = Or= 300. In this case, the pattern

factors do not go to zero where the singularities occur, and Equation (3.61) is used

with the restriction that d > A/4. The ASM computed reflected component of the

self-impedance (assuming piecewise sinusoidal currents) is compared with a compu-

tation from image sources, using the spectral domain solution for a homogeneous
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Figure 64: Reflected Component of Self-Impedance with a Bare Ground Plane using
the ASM - L=D2 = A/3, O = r= 30',.9z = 0

space (ref. Equation (3.31)). Impedance data is shown in Figure 64 as a function of

spacing off the gro,,d bline. Again, the dpnle lengths and inter-element spacings

are A/3. Again, the agreement between the methods is excellent.

The integrands used in the three integrals in Equation (3.61) are now examined

for the 30' tilted dipole array example just computed. In Figure 65, the integrand

(multiplied by the leading 710/2A D2 coefficient) is plotted as a function of r. 0 ,

which is linearly related to s. Thus, the three integral regions are combined to

form a single integration over -3 < rz0 < 3. The three kn combination regions

are identified below the rz0 axis. For Figure 65, this integrand is shown as it exists

when d = A/4, which is the closest data point in Figure 64.
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Several features in Figure 65 are important to note. The locations of the two

singularities, which are at junctions of the three integral regions, are clearly evident.

As rr0 is "scanned" into the evanescent regions (k = ±1), the integrands become

purely imaginary and decay rapidly. Finally, note that the integrand in Figure 65 is

symmetric, which suggests that CPU time may easily be cut in half. This symmetry

is a result of the ASM being used in a self-impedance application, and since the

CPU time for the calculation is fairly fast (with only three terms in kn space),

taking advantage of this symmetry does not make a noticeable improvement in the

overall efficiency of a large moment method application.

A similar integrand plot at d = 2A, which is the furthest data point in Figure

64, is given in Figure 66.

In Figure 66, the integrand contributions in the evanescent regions are much

smaller than they were in Figure 65, which is expected with more propagation dis-

tance in j for the evanescent decay. The integrand within the propagating region

(k = n = 0) is much more oscillatory than it was when d was smaller, making the

numerical integration more difficult. In fact, as d increases, these oscillations be-

come worse until it an accurate numerical integration takes a large amount of CPU

time. However, one may take notice that the curves in Figure 66 are similar to

classical integrand curves on mathematical problems with stationary phase points.

This suggests that instead of numerically evaluating the integral for large d, one may

asymptotically find the reflected component of impedance by using the method of

stationary phase.

Using the method of stationary phase to evaluate the k = n = 0 integral, and

ignoring the remaining terms in Equation (3.61), the reflected impedance component

becomes:

Ztef ' e rljpi-j ,+prrioi (3.62)
2D XVo0 eI II Il Istat.pha..'.2
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where

p = a2 + (2d - Y.) 2 ,  (3.63)

and the stationary phase point is designated by the scanning parameter

= - (3.64)
P

with k = n = 0. This stationary phase evaluation has the physical interpretation of

a geometrical optics ray bounce off the outer dielectric interface, with the cylindrical

wavefront reflecting according to an effective propagating plane wave coefficient for

the incident ray angle. Note that p is the total bounce path (obeying the optical

law of reflection) between the centers of the modes. It is also interesting to note

that this stationary phase evaluation is equivalent to the homogeneous impedance

solution in the spectral domain (Equation (3.31) with the asymptotic pattern in-

tegral expressions (Equations (3.20) through (3.24)) and ignoring higher order 1/p

terms, and using an image source about the y = d plane and the effective reflection

coefficient. With this same expression derived in such different ways, each theory is

further confirmed.

To test the stationary phase solution, the reflected component of the self-

impedance of a tilted transverse dipole mode (piecewise sinusoidal currents) was

computed in the vicinity of a dielectric coated ground plane. For the example, a

single layer of dielectric was chosen with the dielectric constant at twice that of

free space and a thickness of one-fifth of a wavelength in the material. The dipoles

were tilted with Ot = Obr = 300, and again the lengths and inter-element spacings

were chosen to be A/3. Patterns of the reflected component of the self-impedance

were taken as a function of the distance from the outer dielectric interface, using the

numerically integrated solution of Equation (3.61) and the stationary phase point

evaluation in Equation (3.62). The data is shown in Figure 67. It indicates excellent
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agreement between the methods for separation distances of d> 2\. Since a typical

data point using Equation (3.61) takes about 0.5 CPU seconds and the single term

asymptotic solution takes less than one millisecond, there is a strong preference to

use the stationary phase solution for these larger separation distances.

It should be noted that the reflected impecau.ace component for the dielectric

coated ground plane (ref. Figure 67) is of the same order of magnitude as the

impedance from a bare ground plane (ref. Figure 64). This is not unexpected since

the lossless dielectric coating merely rotates the -1 reflection coefficient from the

ground plane for the propagating plane wave term. Although surface waves can

become excited in the dielectric, which would take energy away from the reflect.ion,
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they can only be excited by evanescent plane wave incidence from the free space

region 3 . As long as the radiating dipole mode is spaced at least A/4 from the outer

dielectric interface, the energy in these evanescent plane waves which encounter the

boundary will be insignificant.

To further verify the accuracy of the solutions developed in this section, we

use an example problem where the FMM code [3] can provide a reference solution.

The problem is to compute the reflected component of the scan impedance from

a non-skewed doubly-infinite array of dipoles in the vicinity of a dielectric coated

ground plane. For this example, the dipoles are all +-directed (i.e., 4 , t = 0,. = 0),

which is required for use of the PMM code. The dipoles have lengths of L = A0/3,

and spacings of Dz = A0/3 and Dr = 0.4, 0 . The wire radius is not important for

the reflected component of impedance, but is specified as L/40 for future use. Two

dielectric slabs coat the ground plane, with the e1 = 4c0, E2 = 2f0, dl = 0.2)I, and

d2 = 0.2A2 (see Figure 60). Finally, the dipole array is placed d = \ 0 /3 away from

the outer dielectric interface.

Column-to-column mutual impedances from 101 spatial terms are added spa-

tially with Floquet phasing factors and a Fejer kernel. These mutual impedances

are found by the Array Scanning Method using Equation (3.61) when x, < 5A0 and

the stationary phase solution in Equation (3.62) when r, > 5AO0 . Since the dipoles

are fairly close to the dielectrics, this stresses the accuracy of the stationary phase

solution. The above method is labelled the ASM solution in Figure 68, which is com-

pared with the reflected scan impedance data from the PMM code. The comparison

is very good until extremely high scan angles are reached.

3These surface waves are signalled by a singularity in the effective reflection coefficient, rF'. Such

a singularity only occurs when evanescent plane waves exist in the free space region, since the

slabs have dielectric constants greater than that of free space.
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Finally, we present the total scan impedance for the previous example geometry,

which is the sum of the reflected component and a free space (direct) component,

which was computed for Figure 59. The data is in Figure 69, which verifies that the

methods used in this dissertation for computing column-to-column coupling work

well compared to results predicted with the PMM code.
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CHAPTER IV

DIPOLE-TO-SLOT COUPLING

In this chapter, we shall develop expressions for the voltage and current gains

used in the coupling matrix in Equation (1.23). Specifically, we shall solve Equation

(1.30) and (1.31) for transverse dipole and axial slot column modes, as they exist in

Region III of Figure 4.

The Lorentz reciprocity theorem [14] is used to show that voltage gain calcu-

lations are the negative of the corresponding current gain calculations. Specifically,

this theorem states that the fields radiated by an electric and magnetic current

source obey the following equation:

Jf(a. jb _ Ha.Mb )dv JJ (rbj aj - .M- 1a) dv (4.1)

where the common superscripts denote a specific source and the fields radiated by

that source. Assuming only the 1'a and ib sources exist, the reciprocity reduces to:

- / J J Ha .Mb dv = f !f Eb "a dv, (4.2)

which shows that the applications of Equations (1.30) and (1.31) give the same

answer except for a sign change when applied to the same dipole and slot modes, as

long as the basis and testing currents are of the same form. Thus, it is only necessary

to compute the coupling terms as either slot or dipole modes radiate to the other.

The reciprocity can also show that slot-to-slot coupling and dipole-to-dipole coupling

terms are symmetric without a sign change.
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This chapter is divided into two main sections, which concentrate on solutions

in a homogeneous space, and solutions for slot modes embedded in a near a dielectric

coated ground plane.

4.1 COUPLING IN FREE SPACE

The dipole-to-slot coupling in free space will be developed from the viewpoint

of a transverse electric current mode (dipole) radiating to an axial magnetic current

mode (slot) which is on a ground plane. This corresponds to Equation (1.30), which

is a current gain.

Using image theory, the ground plane may be removed and an image dipole

source is added, as shown in Figure 70. The only pertinent effect of the image

source for this application is to double the i component of the radiated magnetic

field. Without loss of generality, we define the center of the reference dipole to be

at z = 0 and the center of the receiving slot to be at an arbitrary z = zC. Although

not depicted, the total length of the slots (which are into the paper) is Lr.

By translating the magnetic field radiated by a transverse Hertzian electric

dipole mode (ref. Equation (3.4)), integrating over the finite dipole length, and in-

cluding a factor of two to account for the image source, we get the total i component

of the magnetic field radiated by dipoles to be:

L
jo 00 j -#zHz -_ 3 - e- Vrp f I(p')(sin,0d)H(')(0ropd)dP, (4.3)

2Dz n L

where the variables Pd and qSd are depicted in Figure 70 and rz and rp are defined

in Equations (2.12) and (2.13). The function I(p') is the chosen current shape for

the radiating dipoles.
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The current gain is found by substituting Equation (4.3) into Equation (1.30).

This yields:

L

G BC o 003 (44)V(22-z E=o r / I(pt)(sin 0d)H[2)(/Orppd)4P t  (4.4)

where pr is the receiving slot pattern factor, given by:

Zc + ,

pr = f I(z)e-j zz dz. (4.5)

Zcf- 
-

In the above pattern, the current I(z) is the chosen testing function for the slot.

Ihis receive pattern definition is exactly the same as that used in Equation (2.25),

which was for slot-to-slot coupling. Therefore, the closed form analytical evaluations

in Equations (2.31) through (2.35) apply for several common testing functions.

The remaining integral in Equation (4.4) is a transmitting pattern factor for

the dipoles. In general, it must be evaluated numerically. However, when the dipole

mode is spaced far away from the receiving slot (i.e., p is electrically large), an

asymptotic solution may be found, which simplifies the calculations. Using the large

argument approximation of the Hankel function from Equation (3.19), and applying

the far zone approximations that Pd ; p for amplitude purposes, Pd - P - p' cos q0

for phase purposes, and 'kd ;t 0 over the entire region of integration (see Figure 70),

we get the following approximation for the current gain:

GBC sin4 ir - t prGD y jrppi P r e-j rpP ,  (4.6)
~ p

where we have defined

L

P = f I1p)ej p'cos dp'. (4.7)
L
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This far zone transmitting pattern integral is the same as that defined in Equation

(3.27). For many common current shapes, it may be found in closed form. For

example, when a piecewise sinusoid is used for the transmitting dipole current, the

result in Equation (3.29) is valid.

Note that although the summation in Equation (4.6) extends from -oo to oo, it

only needs to be carried over the propagating modes for this far zone approximation,

which are distinguished by rp having real values.

The voltage gain from a slot mode radiating to a receiving dipole (Equation

(1.31)) is found from the above by reciprocity. In general, it is:

L
GCB -- (48

c _ Pt fJ I(p)(sin d)H 2)(3rpp)dpI (4.8)

where Pt is now the transmitting pattern factor for the slot mode (using Equation

(4.5) except changing the sign to + in the exponential) and I(p') is the testing current

on the dipole. Similarly, when the modes are spread far apart, the asymptotic voltage

gain is:

GCB O E (4.9)

where P' is found from Equation (4.7) with I(p') now being the testing current.fZ

Note that when the testing current form for any current mode is of the same

form as the radiating basis current, then the voltage gains are exactly the negative

of the corresponding current gains. This is the result of reciprocity applied with the

"quasi-Galerkin" form of testing in the moment method.

Now we wish to compare the rigorous solution for the current gain in Equation

(4.4) with the asymptotic solution in Equation (4.6). By examining the equations,

the contributing geometric factors include the distance between the modes and the

relative angle between the dipoles' orientation and their "view" of the slot. That is,
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Figure 71: Dipole-to-Slot Coupling in Free Space with Dipoles Parallel to the Ground
Plane - L, = Ld = O.4A, D, = 0.6A, zc = 0, az = 0

the dipoles' orientation with respect to the ground plane is of no consequence, as

long as the center-to-center spacing p and the angle 40 as depicted in Figure 70 are

the same. Thus, we can form conclusions of the dipole-to-slot coupling by looking

along a single observation path, which is along an axis perpendicular to the ground

plane. This was done for three cases. Each case used slot and dipole lengths of 0.4A,

and inter-element spacings of Dz = 0.6A with piecewise sinusoidal currents. The slot

center position was held at zc = 0. To differentiate the three cases, the dipoles were

first oriented parallel to the ground plane, then 450 away. and finally perpendicular

to the ground plane. The results are plotted in Figures 71, 72, and 73, respectively.
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In Figures 71 and 72, the asymptotic solution converges to the rigorous solution

when p > 1A. The error in the asymptotic solution at p = 1A in Figure 73 is fairly

large in a percentage sense, but since the numbers are so small, it is inconsequential.

Therefore, as a general rule of thumb, the asymptotic solution is acceptable whenever

p > 1A. Note that the coupling between the dipole and slot modes decreases as the

slot's position becomes closer to end-fire to the dipoles. This is not surprising from a

spatial domain perspective, with the pattern of the dipoles having a null at end-fire.

To test the accuracy of the rigorous and asymptotic solutions, a simulation

was devised for the scanning current gain between a transmitting doubly-infinite

array of dipoles and a receiving slot. Using the PMM code for a reference [3], the

doubly-infinite dipole array must be a planar array. That is, each dipole must be

oriented parallel to the ground plane. Piecewise sinusoidal currents were used on

dipoles and the slot, both of which having lengths of 0.4OA, and inter-element spacings

were chosen at Dx = Dz = 0.6A. The transverse components (i.e., x and z) of the

centers of the reference dipole in the "central" column corresponded with the same

components for the center of the slot. The dipole array plane was spaced at y = O.1JA

away from the ground plane containing the slot, which was chosen to be small to

stress the accuracy of the column-to-column current gain solutions.

The results of the scanning current gain are in Figure 74. The data marked

as the "Skinner" method comes from adding 101 column-to-column current gains

with a Floquet phasing factor and a Fejer kernel. The column-to-column data was

derived from Equation (4.4) when the spacing between the dipole column (center)

and slot was less than 1A, and from the asymptotic solution in Equation (4.6) for

larger spacings. The disagreements between this method and the PMM code data

are almost indistinguishable, giving great confidence in the solutions derived in this

section.
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Figure 75: Geometry of Slot-to-Dipole Coupling through a Stratified Medium

4.2 COUPLING THROUGH A STRATIFIED MEDIA

In this section, we consider the coupling between slot and dipole column modes

which exist between a set of infinite dielectric slabs. The solution will first be derived

in terms of the slot mode radiating to a receiving dipole, which is the voltage gain

in Equation (1.31). The geometry is shown in Figure 75. Although it depicts only

three dielectric layers with an infinite half-space of free space, the analysis will be

developed in terms of an arbitrary m number of slabs. The dipoles' orientation is in

some transverse direction (i.e., 3 ± i), with O5dip designating the orientation angle

with respect to i.

The mutual coupling between the modes will be found using the Array Scanning

Method (ASM). The derivation of the solution follows similarly to that of the Case
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B slot-to-slot coupling (i.e., on different ground pianes) through a stratified medium,

except the testing with the receiving dipole's current must now be done with the

electric field radiated by the slot mode.

As with other ASM applications in this dissertation, we begin by extending

Equation (B.9) to the problem at hand. For the voltage gain, we construct an

"artificial" doubly-infinite array of transmitting magnetic currents on the ground

plane, and integrate out the scan as follows:

GCB = X G d., (4.10)

where GC B is the voltage gain associatea with the full doubly-infinite array of slots

radiating to the receiving dipole. Again, choosing the inter-column spacing of D" =

AI/2 for the "artificial" array, we get:

1

GCB= G dsz. (4.11)
-1

The voltage gain between a doubly-infinite array of slots and a receiving dipole

has been derived by Henderson [31]. This derivation uses the fact that the pattern

factors for electric and magnetic fields from both slot and dipole sources are related

by ±71 factors, with the sign depending on the polarization and direction of propa-

gation. His result is easily extended to the geometry shown in Figure 75, in which

the receiving dipole is not necessarily oriented in some direction parallel to the XZ

plane. From this, we get:

10 00 o e joo0(Rdip- dtt).fO,+

GCB 1 yy . em
A 2 DD ry, OI2D ID k=-oo n=-oory

p tp r ,' -TIH E ry Pi pr,-THE] (4.12)
ryo
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In the above, we have defined

-Rdip = xi + yP + zi, (4.13)

which is a position vector to the center of the receiving dipole. The quantity dt0a

represents the sum of the thicknesses of all the dielectric slabs. The unit vector

fo,+ represents the direction of plane waves in free space after emerging from all

the dielectric layers into free space. It is found by first identifying the plane wave

directions in the dielectric slab nearest to the ground plane, which is:

(S' + )i + ry1 y + (Sz1 + (4.14)

where ry1 is chosen to normalize the vector with the positive root chosen for real

values and the -j root chosen for evanescent modes. This is the same ry1 which

is explicitly written twice in Equation (4.12). In the above, az1 is determined by a

parameter sz o from an excitation source, as discussed in Chapter 5. In the remainder

of this chapter, we shall assume s = 0.

To find 0,+, we step through the layers, applying the phase matching conditions

in Equations (2.76) and (2.77) to get the i and , components of the plane wave

directions in each material, then find the component by normalizing the unit

vectors with either the positive real root or the -j imaginary root for the + direction

convention (which is implied in the subscript in 0,+). The quantity 01m in Equation

(4.12) is the same total phase delay factor through the dielectrics which is defined

in Equation (2.106).

To complete the discussion of Equation (4.12), we must define the paltern anc.

T factors. The pattern factors for the transmitting slot are related to the magnetic

field that they radiate. They are the same as those defined by Equations (2.62)

through (2.64), with the evaluations of the basic pattern integral performed for the
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first dielectric slab's wavenumber, 01. With the possibility that piecewise sinusoidal

or cosinusoidal currents may be defined with effective dielectric constants for the

slots, the transmitting pattern factors (using the + exponential) in Equations (2.70)

and (2.71) are appropriate.

The receiving pattern factors for the dipole are designated with a negative

superscript to indicate that it applies to an incoming wave from the -j direction.

These patterns are referenced to the electric field that the dipole receives. They are

described by Equations (3.50), (3.54), and (3.56), with the simple replacement of

the negative of Odip from Figure 75 for the variable, 0,. Equation (3.52) may be

used for the basic receive pattern factor when a piecewise sinusoidal testing current

is assumed.

The T factors in Equation (4.12) carry the HE superscript to remind us that

they "transform" the magnetic field radiated by the slot source into an electric field

which is sensed by the dipole receiver. These T factors are:

m-1 11

2 rm,0 n [i + ri,i+ I
THE- i=. (4.15)

In the above,

rm,o - 1 + rm,o, (4.16)

which is a Fresnel transmission coefficient from the last dielectric slab to the free

space. It was separated from the other transmission coefficients in the numerator

product to avoid any confusion since the material index increases from 1 to m. then

goes to 0. Equation (4.15) applies to both the parallel and perpendicular polarization

terms used in Equation (4.12), with the common subscripts deleted from each coef-

ficient in Equation (4.15) for convenience. The re quantity in the denominator is an

effective reflection coefficient, which is found by successive applications of Equations
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(2.101) and (2.102), starting with the Fresnel coefficient Frm,o and working inward

to the 1, 2 interface. Finally, it must be noted that all coefficients in Equation (4.15)

are related to the electric field, thus the appropriate Fresnel reflection coefficients

are in Equations (3.47) and (3.48).

The terms indexed by the material i in the denominators of the T factors may

go to zero at certain scan directions. This is again an indication of the resonant ex-

citation of a surface wave in the ith medium. These singularities may be integrated

around numerically by introducing a slight loss in the j-directed propagation expo-

nential in the denominator of Equation (4.15). This is the same approach adopted

with multiple dielectric slabs for the Case B slot-to-slot coupling (i.e., slots on dif-

ferent ground planes), which we have dubbed the "numerically integrated version of

the ASM".

The implementation of the plane wave expansion for the integrand used in

the ASM may be truncated to including only the propagating plane wave modes

launched by the slot array in the first dielectric slab. Since El has to be greater

than or equal to the dielectric constant of free space, no propagating plane waves

will enter free space from evanescent modes launched by the slot array source. In

addition, any plane waves launched as evanescent modes should be of negligible

strength upon reaching the dipole, especially if the dipole is reasonably spaced from

the outer dielectric interface (i.e., at least about AO/4).

Several experiments were performed using the ASM solution of Equation (4.11)

with the integrand being only the propagating modes in Equation (4.12). The first

experiment consisted of a slot in a ground plane coated by a thin layer of styrofoam.

The styrofoam was modelled with a relative dielectric constant of 1.05 and a thickness

of A0/30. The slot and dipole lengths were both 0.4A 0 and the inter-element spacing

was D = 0.6A0 . An effective dielectric constant of the free space constant was used
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for defining piecewise sinusoidal current shapes for both the slots and dipole. The

dipole was oriented along i, which corresponds to 4 dip = 0. In this and all examples

used in this chapter, the center of the dipole was always at z = 0. To create a

pattern, the total distance y from the dipole to the ground plane (not just to the

styrofoam) was varied.

This example case is similar to the case used in creating Figure 71, with the

exceptions that a thin layer of styrofoam is now present and the voltage gain is to

be determined instead of the current gain (from the dipole mode radiating to the

slot). However, intuition and experience suggest that the styrofoam should have

little effect, and with the "quasi-Galerkin" approach of having the same current

forms for transmitting and testing, the voltage gain should be the exact negative

of the current gain. Therefore, the rigorously integrated data from Figure 71 may

be inverted and compared with the ASM calculated data with the styrofoam slab

present. This was done, and the results are plotted in Figure 76.

The ASM computed data compares extremely well with the direct free space

calculations (using Equation (4.8)), confirming the validity of the ASM solution.

Only a slight discrepancy exists when the dipole is less than 1A0 from the ground

plane. This discrepancy is caused by a combination of the near zone effect of the

styrofoam and the neglecting of evanescent terms in the ASM calculations.

A second example was formed with the same styrofoam coated ground plane.

All parameters in this example remained the same as before, except the dipoles were

rotated 450 from the ground plane. This example is similar to the free space example

in Figure 72, so the "rigorous solution" data from this figure was inverted (to convert

current gain into voltage gain) and compared with ASM based calculations using

the styrofoam. The results are plotted in Figure 77. Again, the ASM data compares

favorably with the free space calculations.
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Figure 76: Slot-to-Dipole Coupling with the Dipole Parallel to a Styrofoam Coated
Ground Plane - Ls = Ld = O.4AO, D, = .6A0 , 8z = 0, dl = AO/30, El = 1.05(0
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The third example for the ASM uses two dielectric slabs on the ground plane.

The dielectric nearest the ground plane has a permittivity of 4 times that of free

space and the outer slab has a permittivity of 2 times that of free space. Both

slabs are one-fifth of a wavelength thick for their respective wavelengths. A single

column of slots are cut into the ground plane with lengths of \ 1/2 and inter-element

spacings of Dz = 3 1/ 4. An effective dielectric constant of 4e0 is used to define the

piecewise sinusoidal current shape used for the slots. The receiving dipole tests with

a piecewise sinusoidal current and is tilted to 450 from i and located at a distance

of y - dot, = 1A0 from the outer dielectric interface. To create a pattern, the =

position of the dipole relative to the slot was varied from -2A9 to +2A0 . The ASM

computed data is shown in Figure 78.

In addition to the real and imaginary components of the coupling being plotted

in Figure 78, the total magnitude of the complex voltage gain is also shown. This

magnitude is asymmetric about x, which is explained by the pattern factor of the

receiving dipole. By a simple geometrical optics argument with the known pattern

of a dipole, the maximum should occur in the neighborhood of x = -1A 0 , which is

where the dipole is fully "broadside" to the slot. Similarly, a minimum should occur

at about x = +1A0 , where the dipole is "end-fire" to the slot. The precise maximum

and minimum locations get distorted, though, by both a refraction effect and a

spatial decay factor. However, the data in Figure 78 closely supports the intuition

from geometrical optics, further confirming the validity of the ASM solution for the

coupling.

Next, we show what happens to the coupling when the dipoles remain parallel

to the double-slab coated ground plane (see insert in Figure 79). In this case, all

parameters are the same as the previous example, except now the dipole angle is

Odip = 0 and the dipoles are brought to only y-dtot = 0.2A0 from the outer dielectric
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Figure 79: Slot-to-Dipole Coupling with the Double Slab Example Geometry and
Dipoles Parallel to the Ground Plane, y - dtot = 0.2A0

interface. The ASM solution for the voltage gain between the column modes was

used as the x position of the dipole varied with respect to the slots. The results are

plotted in Figure 79.

Beyond x > 2A 0 , the data in Figure 79 appears as nearly a constant sinusoid

for both the real and imaginary components of gain. The period of this sinusoid is

shorter than a free space wavelength. This suggests a surface wave is dominating the

data at this point. Indeed, although any surface wave must be trapped inside the

dielectric slabs, their effects can dominate the voltage gain data as it is evanescently

coupled through the 0.2A0 layer of free space to the receiving dipole.
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Figure 80: Integrand for Previous ASM Solution at x = 0

The relatively strong surface wave phenomena is evident in Figure 80, which

depicts the integrand used in this ASM application for the position x = 0. At the

scan position of sx = ±0.5, a critical angle is established where no propagation can

emerge into the free space region. At about .9 = 0.73, the resonant excitation of a

strong surface wave is clearly evident. This surface wave is actually excited in the

first dielectric slab (nearest the ground plane), which can be seen be examining the

factors of the denominator of THE for each dielectric layer (ref. Equation (4.15)).

No surface wave is excited in the second dielectric layer for the full scan range in

the first material. Notc I at a loss tangent of 0.02 was used to eliminate the true

surface wave singularity for this plot.
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Figure 80 is essentially an inverse Fourier transform of the data in Figure 79.

In fact, for this example, the data in Figure 80 could have been run through a Fast

Fourier Transform algorithm to speed up the production of the data in Figure 79,

as is done with the slot-to-slot coupling with stratified media. However, for most

moment method problems, the geometry of the dipoles in relation to the slots will

not be a simple periodicity in x only with y and z held constant. Therefore, in

general, the application of an FFT for this coupling is not as beneficial as it is for

slot-to-slot coupling.

Since this surface wave coupling should become weaker as the dipole moves

further from the outer dielectric interface, an experiment was performed to see what

the coupling would be under the same conditions used to produce Figure 79, except

changing y- doj from 0.2A0 to 0.7AO. The ASM computed result is plotted in Figure

81. Note that the scales in this figure are the same as those in Figure 79, and that

the amplitudes of what may be surface waves is much smaller than before.

In Figure 82, we plot the ASM integrand used to produce Figure 811. The

scales are the same as those used in Figure 80. Note that the surface waves are

barely evident at a. _ ±0.73, and that the coupling before the critical angle is of

the same order of magnitude as with the closer spaced case in Figure 80.

Finally, we wish to validate the ASM produced slot-to-voltage coupling data

by spatially adding 101 column-to-column terms with a Floquet phasing factor and

Fejer kernel to simulate the scanning voltage gain between two doubly-infinite ar-

rays. This data may be compared with voltage gain data used by the PMM code

[3]. With the double slab geometry used in producing Figure 79 (along with the

same element lengths and directions, D. and current shapes - note that y - djoi =

0.2A 0 ), we simulate this scanning voltage gain for a column-to-column spacing of

'Again, loss tangents of 0.02 are used for each slab.
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Figure 81: Slot-to-Dipole Coupling with the Double Slab Example Geometry and
Dipoles Parallel to the Ground Plane, y - dt,,j = 0.7A0
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Figure 83: Scanning Voltage Gain between a Doubly-Infinite Array of Transmit-
ting Slots and a Receiving Dipole with the Double Slab Example Geometry -
y - d1ot = 0.2A0

Dz = 0.375A0 = 0.75A1 . The simulated scanning voltage gain from the ASM data

is plotted in Figure 83, along with the reference data from the PMM code. The

agreement between the curve- is excellent until very high scan angles are reached,

which is attributed to the Fejer kernel addition. This demonstrates that the data

in Figure 79 is probably accurate, even though the ASM implementation ignored all

evanescent wave excitations within the first dielectric slab 2.

Now consider what happens when the transmitting slot mode and receiving

dipole are spaced far apart. Using the previously described double '-b geometry,

2in this example, the only term used for the ASM integrand was the k = n = 0 term.
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Figure 84: Integrand for ASM Solution with the Double Slab Geometry and the
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we examine the integrand for the ASM when the dipole is centered at z = z = 0

and y = 5A0 . This integrand is plotted in Figure 84.

As seen in Figure 84, as the modes become widely spaced, the integrand becomes

very oscillatory and therefore more difficult to numerically integrate. However, a

stationary phase evaluation may be made, similar to that performed for the reflected

component of dipole-to-dipole impedance in Chapter 3.

The stationary phase point is identified by the 9z parameter which solves the

following equation:

z IF I

8, _173

= 1d1 1 I:I
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+ dm ( + (y)-(dta) (4.17)

where x and y are the coordinates of the center of the dipole and the slot is centered

at the origin. A quick numerical search may be made to find the value of a. which

solves Equation (4.17), which corresponds to the scanning direction which guides a

ray through the dielectrics (at the plane wave refracting angles) and into the free

space region from the slot mode to the center of the receiving dipole.

Once the stationary phase point is located, the stationary phase approximation

to the ASM integral is:

G _ _ p e OP pt prTHIE (4.18)
2Dl- pA0  1 ,.ta.pha.pt.'

where

p = 2 (y - d4to)2 .  (4.19)

To test the stationary phase evaluation, we compared it with the numerically

integrated ASM solution for the double slab example geometry with the same slot

and dipole mode types previously described. First, we kept the r coordinate of the

receiving dipole at zero and varied the y coordinate from just "above" the outer

dielectric interface until y = 3A0 . This comparison is shown in Figure 85. The data

shows that the stationary phase evaluation is surprisingly good at very low values

of y, and very accurate when y > 2A0 .

In Figure 86, we compare the numerically integrated ASM solution with the sta-

tionary phase solution with the same geometry except fixing y at 2A0 and varying

x. In this data, the stationary phase point drifts from a. = 0. Thus, the excellent

agreement in this figure demonstrates that the stationary phase point is being accu-

rately tracked. It also demonstrates that the stationary phase solution is generally

good as long as p > 2A0 .
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To conclude this chapter, we present the ASM formulation for the current gain

between a transmitting column of periodic dipoles and a receiving slot with a dielec-

tric coated ground plane. Applying the Lorentz reciprocity to Equations (4.10) and

(4.12), it is simply:

GB c  D 2D 1 0 e-jO(RdiP - jdatt) ' ,+
E E ry--O Dz k=-oo n=-o ro

OIM [pptrT'E r1pp'I E] HE] dat,, (4.20)

where all variables are defined the same as with the ASM solution for the voltage

gain with the geometry shown in Figure 75, except for the pattern factors. The

transmitting pattern factors in the above refer to the electric field emitted from the

dipoles. The basic transmitting pattern factor is:

PC,- = j I(p)e+"OPfO,- dp. (4.21)

The polarization components of this factor are found by applying Equations (3.54)

and (3.56) to p t ,-, with the substitution of the negative of Odip for Or.

The receiving pattern factors for the current gain apply to the magnetic field

sensed by the slots, and is the same as those defined in Equations (2.62) through

(2.64).

Finally, it should be noted that when the "quasi-Galerkin" approach of having

a testing current of the same form of the transmitting current for each mode, the

calculation of the current gain is not necessary, sense it will be the exact negative of

the corresponding voltage gain.
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CHAPTER V

EXCITATION SOURCES AND FAR ZONE FIELDS

In this chapter, we shall develop expressions for the excitation vecto, arid we

shall show how to obtain far zone scattered fields from the magnetic slot currents to

complete the moment method solution developed in the previous four chapters.

Two types of excitation sources may be considered. The first, and simplest, is a

direct excitation of some or all of the dipole modes by delta gap generators. Such an

excitation is discussed by Thiele [18], and is trivial to implement in the excitation

vector. This kind of excitation will be used when antenna radiation patterns are

to be generated. Since this excitation is relatively easy to use and understand, no

further discussion of it will be given in this dissertation.

The second excitation source to be considered is from an external plane wave.

With the constraint that such a plane wave exists only in Region I (ref. Figure 4),

this source only directly excites a set of currents for the slot modes on the ground

plane between Regions I and II (i.e., the "type A" slots). This excited current is

discussed in the first section of this chapter.

The last section of this chapter devotes itself to the solution of the far zone

scattered fields which are radiated by the equivalent scattering currents.
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5.1 INDUCED CURRENT IN A SLOT FROM AN EXTERNAL
PLANE WAVE SOURCE

This section develops solutions for the current which is excited in the slots of the

first ground plane in a scattering problem. This current, unlike the equivalent mag-

netic scattering currents for the slots I , has units of electric amperes. To eliminate

confusion, it is reasonable to think of this excited current as a "magnetic voltage".

Regardless of the nomenclature adopted, the excitation current from an external

source is defined by Equation (1.33). Recall that the integral in this equation is only

over the length of the reference slot for a particular mode.

Consider the geometry shown in Figure 87. It shows a view from the -i axis (i.e,

the "bottom view") of a magnetic testing current for a reference slot on a dielectric

coated ground plane. Note that the center of the i-directed slot current is arbitrarily

positioned with the constraint that it lies on the ground plane. Although only three

dielectric slabs are depicted on the ground plane, the number of slabs is arbitrary

with a material index running from 1 (nearest the ground plane) to m. The infinite

half space is free space.

The direction of incidence and a pair of orthogonal polarization states for the

propagating plane wave source are depicted in Figure 88.

In Figure 88, the direction of incidence (in medium "0") may be defined as:

io = 8zoi + Byoi + SzOi, (5.1)

where the directional components are:

Szo = - cos a sin 77 (5.2)

S = cos,7 (5.3)

'Recall that the equivalent magnetic currents, which have units of volts, are the unknowns in the

moment method problem.
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szo = - sin a sin 17, (5.4)

and the angle of incidence is such that 0 < a < 1800 and -90' < 1 < 90° . These a

and rq angles always refer to the incident propagation direction in free space.

No matter what polarization is used in the incident wave, it may be decomposed

into the two depicted linear polarizations from Figure 88, such that

P~ = Lc.rj , (5.5)

where Cl and C_ are complex constants. The magnetic fields for these linear polar-

izations are in the directions i0= 4 and hL0 = -&, respectively. These directions

are given by:
f-L° = x iOI (5.6)

and

110 = InLo x SO (5.7)

Substituting Equation (5.1) into (5.6) and (5.7), we get:

_ -s8 0Z + 20 Z (5.8)fi-0=  /,zo +.9zo

and

-I-'520"=o YO + (Swo + a ) - Sp0 S-oZ (5.9)
,/zo +

As the incident plane wave enters the various dielectric slabs, its propagation

direction refracts and the polarization vectors change. The transverse propagation

direction components in the ith material are:

Oi SZoP- (5.10)

and

82 = - (5.11)
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The j component of the plane wave direction in the ith material is

ay i  8I 2i - 82i, (5.12)

with the positive real root taken2 .

The polarization directions in the ith material are found by using Equations

(5.8) and (5.9), with the substitution of *2i, ayi, and azi for -=0, ayo, and sz0,

respectively. Note that fi_l, = n±° for any material i, but in general, fill, hi[0"

In order to evaluate the excitation current, ve need to know the total magnetic

field at the testing element due only to the presence of the excitation plane wave.

This field is the "generalized incident" field used in Equation (1.33). Consider some

point :n the slot current at the ground plane, designated by the position vector

R = Xci + zi. (5.13)

Applying duality to electric field expressions derived by Munk [1, 2], the total mag-

netic field created by the incident plane wave may be found anywhere in the geometry

shown in Figure 87. At the position W, the generalized incident magnetic field is:

Ti'nc(R) = Omle-jIR"' [[WWQJ, -da,O) . E-] E¢

+ [ (O, -dtO) ' I l o] !O'E) fill,) I s] I (5.14)

The field WRnc(O -dot, 0) is the magnetic field of the incident plane wave evaluated

at a point on the outer dielectric interface "above" the origin. The function Oml

represents a phase delay from this point to the origin on the ground plane, which is

4b~l = II 4 = 1I e-j 3idisv, (5.15)
i--1 1=1

2Note that evanescent waves can never be formed inside the dielectric slabs from the propagating

wave in free space since e, _> eo.
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Finally, the THE functions give the effective transmission from the free space region

through the dielectric layers into the layer nearest the ground plane. These functions

are given in Equation (4.15), with electric field reflection coefficients used as they

were done in Chapter 4.

The expression for the generalized incident field in EquaticA (5.14) may now

be substituted into Equation (1.33) to get the excitation current. Noting that the

receiving slot is i oriented, this becomes:

ZcL

fA Omie-jlk' [[Hic(01 -dot 0 .i] IHE ~

L 1 11q,-u~.9)21 +.92f

- [7fnc(o ' - d t 0) "11I] THE 8YIitest(z)dz. (5.16)

In the above, Iteat(z) is the magnetic testing current associated with the slot mode.

This is the same testing current for this mode which is used in finding entries for

the coupling matrix.

The excitation current expression in Equation (5.16) may be simplified by adopt-

ing some pattern factor definitions which are similar to those used elsewhere in this

dissertation. The compact expression is:

iA = ,n,-JI1Rc"I [[rHnc(0, -dto, 0)-.] - ,i Ep=L 'j II _LI

+ [Hin(O, -4, 0) -kI TfE9Y- p ] (5.17)

where

Rc = zxc + zci, (5.18)

which is the position of the center of the slot, and

V1 - - ii.h1V T(5.19)
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11,1 = i " t,111 PT (5.20)

with the total pattern factor defined by
L
7

Pf = f lpes (z1)e-j161zazI dz'. (5.21)

L-T

In this basic pattern factor, the variable z1 = z - zc, which shifts the integration of

the slot current so that it is centered at the origin.

Two cases often occur where the expression in Equation (5.17) is furthered

simplified. The first is when the no dielectric slabs are placed on the ground plane,

so that the incident plane wave is only in free space. In this case, the excitation

current is:

,A JH- O , O) . ] I

+ [rnc(o, 0, 0) .io] Pp] (5.22)

where Pr and P' are defined by Equations (5.19) through (5.21) with the sub-

stitute of the zero subscript for the one subscript throughout.

The second frequently occurring case is when a = 0 (ref. Figure 88) and

the polarization is such that the magnetic field in the incident wave is purely i-

directed. By Harrington's convention [14], this polarization is denoted the TE,

case (meaning no electric field component in i). Referring to the axis of infinite

periodicity (i) as being vertical, this case can be called the horizontal polarization

(referenced to the electric field). In this case, the i component of the propagation

directions in any material (azi) is zero. Furthermore, the perpendicular polarization

state vector becomes fili = 2 and the parallel polarization state contains no i

• omponent. Therefor,., the excitation current expression in Equation (5.17) reduces

to:

JA(a = 0, TEz) = 0M, efflocsin H (0) THE pr (5.23)
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Using
-Hrinc(, y, z) = e-j 1 (W+jdtOt) '0  (5.24)

which is a phasor representation of the time harmonic incident magnetic field (sup-

pressing the eJit time convention), Equation (5.23) becomes:

IA(a = O, TEz) = 0,,ml ej#IzcsinT71TE Pr. (5.25)

Note that this expression corresponds to excitation from a plane wave source

with magnetic field strength of 1 ampere/meter (or electric field strength of 1207r

volts/meter).

Finally, when the plane wave source is directed with a = 0 and is TEz polar-

ized, and the ground plane is not coated with any dielectrics, the excitation current

reduces to:

IA(a = 0, TEz, freespace) = 2 ejfOzc sin 7Pi . (5.26)

Now some example calculations will be presented. The first example is for a

1 cm long slot in a ground plane with no dielectrics. Using a frequency of 10 GHz

(i.e., L = AO/3), and centering the slot at the origin, the excitation current using a

piecewise sinusoidal testing current is computed to be 0.011027 + jO amperes at all

,I angles 3 . This value is constant because the i-directed slot has a pattern which is

omni-directional in 7. Furthermore, it is interesting to note that the precise value is

nearly equal to the 1 Amp/meter plane wave source times the 0.01 meter slot length.

In fact, the ground plane doubles the incident field at the slot, but the assumed

testing current shape enters a factor for its average level, which for the piecewise

sinusoid is slightly over one half. Using a piecewise sinusoid at a lower frequency
3 This agrees with results given by the PMM code, when one multiplies the PMM result by 3.77.

This factor comes from PMM using a 100 volt/ meter plane wave source and this dissertation

using a 377 volt/meter source.
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should approximate a triangular current distribution, which has an average level of

exactly one half. Indeed, computing the 1 cm long slot's excited current at 1 GHz

produced a value of 0.010009 + jO amperes, which is much closer to the expected

value. Using a constant testing current shape, which has an average level of one,

the excited current for the 1 cm long slot becomes exactly 0.02 + jO amperes, at all

frequencies. Finally, all of the above examples were repeated for 10 cm long slots

at frequencies scaled down by factors of 10, and the results were simply that the

excited current values increased by factors of 10. Thus, the induced current for the

slot centered at the origin with no dielectrics is easily guessed by the assumed testing

current shape and the slot's length.

Now we examine what happens when the 1 cm long slot (at 10 GHz) is moved to

a value of xc = 5A0 onto the ground plane in free space. Using the same excitation

plane wave from Equation (5.24), the excited current has a magnitude of 0.011027

amperes as before, but is rotated in phase as the q/ angle varies. This is shown

in Figure 89, which shows the real and imaginary components of this current as a

function of 17. Thus, similar slots located at different positions on the ground plane

get excitation currents of the same magnitude, but different phases, as expected

from Floquet's theorem.

The next example contains two dielectric slabs over the ground plane. The

first slab (closest to the ground plane) has a relative dielectric constant of 4 and

a thickness of 0.2A1 . The second slab has a relative dielectric constant of 2 and a

thickness of 0.2A2 . Operating at 10 GHz, the slot is A1/2 long (= 0.75 cm) and

centered at the origin. Its testing current is defined by a piecewise sinusoid with an

effective dielectric constant of 4. The computed excitation current as a function of

17 is shown in Figure 90. Note that although the slot's pattern is omni-directional in

17, the T factor causes a variation in the induced current with the refraction effects.
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For a final example, we repeat the last example except we translate the slot to

a location of rc = 5A0 = 10Ai. The computed excitation current is plotted in Figure

91. Note that it contains the same magnitudes as the currents plotted in Figure 90,

but with a phase rotation similar to that shown in Figure 89.
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5.2 FAR ZONE SCATTERED FIELDS

In this section, we complete the overall moment method solution by deriving the

far zone scattered field expressions that the equivalent magnetic scattering currents

for the slots radiate into Region I (ref. Figure 4). This will be done for both a

slotted ground plane in free space and one with dielectric coatings.

Consider the scattering problem from an incident plane wave propagating in

the direction So, as depicted in Figures 88 and 92. This incident direction defines

a quantity sz0, from Equation (5.1). The sz0 parameter is then used to set up the

Floquet based phasing between the elements in each infinite column mode for the

slots and dipoles. In other words, sz0 is fixed by the chosen incident direction and

the resulting periodic basis functions and moment method solution is specific to that

value of sz 0 .

The scattered field expressions may only be evaluated with the same a, param-

eter which is used to define the periodic modes. Therefore, the far zone scattered

fields may only be evaluated for directions corresponding to:

scat =,scat - scat
-- Xz X y Y +±sz0 i, (5.27)

where ascat and s~cat are arbitrary, as long as they are real valued and satisfy the

normalization of iscat . The complete set of suitable .Scat directions forms a cone of

bistatic scattering 4 , as shown in Figure 92. This cone is analogous to the "Keller

Cone of Diffraction" from an infinite diffracting wedge [18]. This is not to say that

fields may not be evaluated at any point in space, but rather, in the asymptotic limit

'Other "grating lobe" bistatic cones are also possible, but usually not present when D: < I,,

and definitely not present when D, < AO/2. These grating lobes occur for values of -I < r: < I

where r, = s, + nAo/D 2 .
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of the extreme far zone, only the fields propagating in the directions found in this

cone are applicable.

The only true monostatic problem occurs when sz0 = 0, in which case it is

possible to choose Psc" = -i0. For non-zero values of sa0, the closest direction to

monostatic possible is to choose s4 cat = -azo and s;cat = -a&0 , which corresponds

to the one direction (other than the forward scatter direction) in the bistatic cone

which lies in the plane of incidence (ref. Figure 88). Using the a, 7 angle pair shown

in Figure 88, this occurs by having the scattering direction with the same a angle

as the incident direction, but with the opposite 1 angle.
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Now we shall find the far zone scattered field for a single periodic axial slot

mode on a ground plane with no dielectrics. Either the electric or magnetic field

may be obtained, but since we know in the far zone that they are orthogonal and

are related in magnitude by the free space intrinsic impedance, it is only necessary

to explicitly find one of the fields. The electric field is chosen for convenience since

its components are confined to the cylindrical 0 direction.

Suppose M slot modes exist on the outer ground plane with no dielectrics.

Assume the reference element for the mth slot mode is centered at

Rm = xmi + zmi (5.28)

and that the ground plane is at the XZ plane with the illumination region (i. e.,

Region I from Figure 4) is in the y < 0 half-space. By extension of Equation (2.19),

the electric field radiated by the mth slot mode (including image sources) is:

Em = - m0 e- '° PHI2 )(/3orppm), (5.29)E= = ,z =-oo "

where VA is the coefficient in the solution vector for the strength of the scattering

current (with units of volts assuming the magnetic current mode is unitless - see

Equation (1.23)). The pattern factor is the same as that defined in Equation (2.21),

which is found in closed form for many common current shapes. The rp and rZ

quantities define cylindrical wave directions, and are defined in Equations (2.12) and

(2.13). In Equation (5.29), a localized cylindrical coordinate system of (pm, 'kn, z)

is assumed which originates at the mth slot mode, which is possibly displaced from

the true origin.

In the far zone, km ; Z, the true cylindrical circumferential vector, and Pm - p

for amplitude purposes and pm ; p + zm cos c sin il for phase purposes (see Figure

88). Using the large argument approximation of the Hankel function from Equation
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(3.19), one gets:

Emfz VA pi e-j°zrz e- t(P+°m cosa sin q) (5.30)

.P3p0Ao

where the values of rz, rp, and pt are evaluated only for the sZ parameter from the

incident wave which defines the cone of scattering 5 . Note that using the cone of

scattering truncates the infinite sum in near zone expression in Equation (5.29) to

a single term - even when more than one propagating cylindrical wave mode exists

(ala grating lobes)!

Equation (5.30) may be written more compactly by using the scattering di-

rection definition from Equation (5.27) and the modal placement definition from

Equation (5.28). The compact form is:

Em -Z rp Pt e-jorPp ej0Rmscat (5.31)Dz r p p,, O

where now we are defining the pattern factor integral such that the i-directed current

is centered at the origin (i.e., the z displacement is now accounted in Rm in the

exponential). Note that in the above,

rp s 5 cat 2 + 88ca .  (5.32)

The total scattered field in the far zone from the direction scat is found by

simple addition of the fields from the M slot modes. The complex VA coefficients

(found jn the moment method) and the exponential involving Rm -. icat take care of

the necessary amplitude and phase factors between the field terms. Thus, the total

far zone field is:
* e-31 30rpp j p

Ef - VVpeO. (5.33)

5 0r the r. corresponding to a desired grating lobe direction in the far sone.
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The pattern factors may vary between the modes since all modes are not necessarily

of the same element length.

When a plane wave illuminates the slots, an often desirable quantity is the radar

echo width. It is found using the well known formula [32],

a= lim 2rp sca 12 (534)

Since the excitation vector entries in the previous section of this chapter were defined

from a plane wave source with magnetic field strength of 1 ampere/ meter, the

magnitude of the incident electric field is 1207r volts/meter. With the physical

dimensions in Equation (5.33) defined in meters, the resulting scattered electric

field is also in units of volts/meter. Therefore, the echo width is:

pi 1 'A pace e (5.35)
7200rrjD 2AO  1

which, despite appearances, results in dimensions of meters with the 7200T factor

containing a hidden dimension of volts squared per meter squared.

Now we consider the scattering from slot modes in a dielectric coated ground

plane. These fields may be found anywhere in space (including in the dielectrics)

using the Array Scanning Method (ASM). We desire only the far zone fields, though,

which exist only in the free space volume beyond the dielectric slabs.

For the dielectric coated ground plane, we use the geometry shown in Figure 87.

Again, we assume the mth mode is centered at R m, which is defined in Equation

(5.28). By extension of Equation (B.9), the field radiated by the mth mode is:

T MRnyf m,A dsa1 , (5.36)

where the radiation from an artificially created doubly-infinite array of slots (with

inter-column spacing Dz) is -m,A" This integrand is found by the methods of Munk
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[1, 21. It is:

E = - e - j O(R -0 M0 +0 t° t) -

2DzDz k=-oon=-oo

[1 Tj_ n_±O - !P7~E~. (5.37)0 ry0 T1

This equation is almost drawn from inspection of Equation (4.12) with the elimina-

tion of the pattern factor for the testing dipole.

Several parameters in Equation (5.37) require explanation. The vector _R de-

scribes the position of the field observation point in free space. The coefficient A'

(in units of volts) is the scattering magnetic current coefficient which was solved in

the moment method. As before, dto is the total thickness of the dielectric layers.

The 01,m factor is the phase delay of propagation through the layers which is given

in Equation (2.106). Plane wave directions in the first dielectric slab are defined by

1 ,-- = (8 + -- );i - rV + (az + "---)i (5.38)

where ry, is formed to normalize the unit vector with the positive root chosen for

propagating waves and the -j root chosen for evanescent waves. Plane wave direc-

tions in the other layers and free space are of similar form to Equation (5.38), with

the refracted :i and i components following Equations (2.76) and (2.77). Finally,

the .9. parameter is determined from the az0 free space parameter using Equation

(2.77). The .. 0 parameter is set by the excitation source.

The pattern factors in Equation (5.37) are for the magnetic fields radiated by

the transmitting slots in the first dielectric blab. They are the same as those defined

by Equations (2.62) through (2.64). The T factors in Equation (5.37) are exactly

the same as those defined in Equation (4.15), with electric field reflection coefficients

used as done in the application in Chapter 4. Finally, the polarization state vectors
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are:

Iyx o,-
_-rz0 + r0i (5.39)

and

'il1o = X )o,-

- (r + r2=)j - ryor°z (5.40)

Equation (5.36) with the integrand given in Equation (5.37) can be used to find

the scattered electric field from the mth slot mode anywhere in the free space volume.

We are interested, though, in only finding the far zone fields. As a result, only modes

corresponding to plane wave propagation in free space from the doubly-infinite sum

in Equation (5.37) are important. Furthermore, only the particular plane waves with

rz0 equal to the incident s=0 of the excitation source6 is to be counted. Furthermore,

when D3 is chosen to be AI/2, no "azimuthal" grating lobes can exist in the free

space region, so the only relevant plane wave term is the k = n = 0 term in Equation

(5.37). Therefore, using this choice for Dz, the far zone field from the mth slot mode

is:

VE,z - 2A1Dz e0( ~dtot)f,

-I Ill

_ _ - ry I T 1 oJ 1., (5.41)

where all terms in the integrand are evaluated for the k = n = 0 condition only.

As mentioned in the section on the induced current on the slots, a common

form of excitation is from a plane wave with the direction angle a = 0 (see Figure

6 0r a single desired "elevation" grating lobe direction, if one exists.
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88). For the scattered fields in the direction with a = 0, the parameter sz = 0.

Therefore, fiL = i for each media and fill has no i component 7 . This makes PI = 0

and PI = Pt . Therefore, for this excitation, Equation (5.41) reduces to:

. IMAPI 1 eJ0o(-R-R.+9dt~t)'fO'-
-Emz(Q = 0) -0 D e OIm T11 E di:1 . (5.42)

Note that since pt is independent of sz, for the axial slots, it is pulled out of the

integiand in Equation (5.42).

Although Equation (5.42) expresses the ASM solution for the radiated electric

field from a slot mode in the a = 0 plane (i.e., the XY plane), it is difficult to

perform the numerical integration for observation points which are far away from

the slots. As an example, consider the double slab example geometry which was used

to produce the excitation current data in Figure 90. Keeping the same geometry

with the reference slot centered at the origin and choosing an inter-element spacing

of Dz = 0.75\I, the integrand for the ASM solution in Equation (5.42) is computed

for an observation point at B = -20A 0 j. This unitless integrand is plotted in Figure

93.

As seen by the plotted integrand in Figure 93, thousands of numerical samples

are required to accurately produce the numerical integral for Equation (5.42) at this

observation distance of just 20 wavelengths from the slot mode. As the observation

distance is brought further away, the sampling problem gets even worse. Clearly, for

the desired far zone field patterns, the numerical implementation of Equation (5.42)

is impractical.

To form a practical far zone field solution, an asymptotic evaluation of the

integral in Equation (5.42) may be made by the method of stationary phase. By

'In fact, fill,, = -r,,. - r,,= - at this condition.
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this method, Equation (5.42) becomes:

Emvpma 0) A P eis 3 °a j 30 -R'IOCalm THE .(5.43)2Dz eA e 4 'lin I Isaa.pha.pt.'

where

-: /Z (y + dtot) 2 .  (5.44)

The stationary phase condition may be defined by Equation (4.17), but since the

observation point will only be considered to be very far away, the following simple

approximation may be made:

sMI(stat.pha.pt.) -& 1 sin 77, (5.45)

,01

where 17 is the angle defined in Figure 88.

A numerical experiment was made to compare the results of Equations (5.42)

and (5.43) with the same example double slab geometry used to generate Figure 90.

For this case, the slots were centered at the origin with spacing Dz = 0.75A1 . A

"quasi-far zone" pattern was formed at a constant radius of 10A0 from the origin.

The radiating slot mode was excited with V4A = ivolt, and the resulting field patterns

are plotted in Figure 94.

The excellent comparison between the fields computed with Equations (5.42)

and (5.43) in Figure 94 indicate that the stationary phase evaluation has been imple-

mented correctly. The only place where the data is in disagreement is near 17= 900,

where a numerical problem in making the integration in Equation (5.42) causes a

problem8 .

Now consider the free space case, again. We note that when the dielectrics are

removed, 461m = 1 and THE = 2. Also, note that with a = 0, the rp parameter in

Equation (5.31) is equal to one. Therefore, for the free space case, Equations (5.43)

8 This numerical problem may be alleviated by sampling the integrand in finer increments.
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and (5.31) are in complete agreement, which is remarkable since they were derived

in vastly different ways. This provides further evidence to support both the ASM

solution set-up and the stationary phase evaluation.

To conclude this chapter, we present the radar echo width from a collection of

slot modes in a stratified media, whose voltages were determined by the moment

method procedure described in this dissertation. Adding the fields from M modes

using Equation (5.43), and substituting into Equation (5.34), we get:
101 THEI

= 0) = , -10 atat a.h.. Pt VA ej#O-m. cdt 2 (5.46)

288OOwD2A __ m

Again, the radar echo width in Equation (5.46) is in units of meters, with the 288007r

factor containing a hidden unit of volts squared per meter squared.
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CHAPTER VI

RESULTS

In this chapter, we present the total moment method solutions for "finite by

infinite" axial slot and transverse dipole geometries. Using the tools developed in

Chapt-rs 2 through 5, the moment method procedure described in Chapter 1 is

implemented.

Two major categories of geometries are considered in this chapter. The first is

that of a finite width radome, which is composed of a finite number of periodic slot

columns in two infinite parallel ground planes surrounded by infinite dielectric slabs

(e.g., see Figures 96 and 97). For this category, some of the most important results

to be computed are the transmitted fields through the finite periodic surface caused

by an incident plane wave.

The second major category is that of a phased array antenna in the presence

of a finite width radome. For this category, we will determine the radiated field

patterns through the radome and the input impedances of various elements in the

transmitting array.

All results shown in this chapter are for the a = 0 plane (see Figure 88).

Furthermore, only the TEz (electric field being "horizontal" with "i = vertical") is

considered. Piecewise sinusoidal basis and testing functions are used.

Finally, the reader should be cautioned that the main purpose of this disser-

tation has been to create and validate an analysis procedure for electromagnetic
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scattering from geometries of the type in Figure 1. The data presented in this chap-

ter is calculated to provide confidence in the moment method solutions and show the

usefulness of having such an analysis procedure. No major attempts have been made

to develop an optimized design for either the radome or radome/antenna examples

shown in this chapter.

6.1 RADOME EXAMPLES

A good radome design using periodic surfaces often requires a stabilized fre-

quency response for a wide range of angles of incidence. Such a design can be

found with the array coupling terms exhibiting "scan independence", which can be

achieved with a proper dielectric profile [27].

In this section, we shall present a radome design which approximates the "scan

independence" goal, but which is designed without any particular attention to ma-

terials with available dielectric constants or with the necessary mechanical and en-

vironmental properties required for many practical applications.

As noted in the discussion in Chapter 2 on Figure 35, scan independence in

the E-plane is approximated over a wide range of incidence angles for the "one

sided outer zone" scan admittance of a doubly-infinite (non-skewed) array of slots

embedded in a double slab geometry with the following parameters (see Figure 18):

l= 4 Eo, E2 = 2c0, fe = c, dl = 0.4A1 , d2 = 0.3A2 , Ls = 0.5AI, W = Lo/IO,

D = 0.45A1, and D. = 0.75, 1 . To simplify the radome design, this lattice and

dielectric profile geometry was selected for both Regions I and III (see Figure 4),

with the goal of keeping the entire radome design symmetric.

To complete the design, a dielectric profile for Region II needs to be found,

which is compatible with the chosen slot sizes and spacings, and for which the "one
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sided inner zone" self scan admittance and mutual scan admittance (between the

ground planes) are approximately scan independent. Using the PMM code [3], such

conditions were found with the following symmetric inner zone profile: i1 = 4C0,

E2 = 2c0, f3 = 4e0, dl = 0.0667A1 , d2 = 0.2357A2 , and d3 = 0.0667A3.

To demonstrate that the chosen radome profile and slot geometries are reason-

ably scan independent, calculations were run on the PMM code for doubly-infinite

arrays of the slots on each ground plane. In these calculations, a single piecewise

sinusoid mode (and testing function) was used for each doubly-infinite array. The

radome design was scaled for the above parameters at 10 GHz, with the goal that

the arrays should resonate and be transmissive at this frequency. Transmission of

the fields from three discrete incident plane wave directions in the a = 0 plane (see

Figure 88) were found over a band of frequencies, and the resulting data is plotted

in Figure 95. Indeed, the data dcmonstrates that the infinite radome is fairly trans-

parent at 10 GHz for normal through 600 incidence, with similar passbands for each

direction.

The doubly-infinite array examined by the PMM code was truncated so that

only 21 columns of periodic slots would exist on each ground plane. This corresponds

to an aperture of about 4.5 wavelengths in free space. The ground planes and

dielectrics, however, remained infinite in extent. The slots also remained infinitely

periodic in i. A view from the infinite axis (+i) of this geometry is shown in Figure

96. In this figure, asterisks are put on the ground plane to designate the locations

of the slots. The dimensions for this geometry are again scaled for the radome to

be transparent at 10 GHz. Note the thin layers of E, = 4 dielectric in between the

ground planes. A front view (i.e., normal to the radome) of the 21 columns is given

in Figure 97, which shows the lattice and shapes of the slots (drawn to scale), as

they !-,jst on each of the two ground planes.
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To verify the accuracy of the moment method procedure in this dissertation, the

the equivalent magnetic scattering currents for the geometry in Figures 96 and 97

were computed for the excitation of a plane wave at normal incidence with electric

field magnitude of 100 volts/meter at 10 GHz. These currents were calculated by the

present methods with one periodic piecewise sinusoidal mode for each slot column

and with piecewise sinusoidal testing currents. As a reference for comparison, the

PMM code was used to find the currents for the infinite radome using a single

piecewise sinusoidal mode for each ground plane of slots under similar excitation.

The resulting magnetic current coefficients are plotted in Figure 98.

The data from the present methods and the PMM code in Figure 98 is in general

agreement, except for a slight discrepancy on the levels of the current magnitudes

for the slots on "Ground Plane B" (i.e., modes 22 through 42). This encouraging

result demonstrates that the methods in this dissertation are generally good, though

some numerical errors are possibly occurring. The ripples in the currents for the

finite radome are expected, though, as edge effects cause the currents not the be

completely uniform across the aperture.

To compute the scattering current data for the 42 mode radome in Figure 98,

approximately 50 minutes of CPU time on a VAX 8550 machine was used. Over 99%

of this time was used to compute the coupling matrix for the basic geometry, which

is independent of the excitation source1 . Once this coupling matrix is computed,

though, it may easily be stored and quickly recalled for other calculations. This was

done, and the remaining data shown in this dissertation for the 21 column truncated

radome were calculated in just a few CPU seconds.

A backscatter pattern was calculated for the 21 column truncated hybrid

radome. It is shown in Figure 99. The results are given in dB compared to a

'As long as a. and the frequency remain the same. All results in this dissertation use s, = 0.
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meter. Note that the far sidelobes in this pattern are much higher than the drop-off

that a simple physical optics solution would predict.

One of the interesting qualities of a truncated radome is its transmission pattern.

In this dissertation, the "bistatic" transmission was computed for fixed directions of

plane wave incidence. A normalization of the resulting transmitted field data at a

certain far zone radius was performed by comparing the fields with those radiated by

physical optics currents for the physical aperture excited by the incident plane wave.

The physical aperture, in this case, is assumed to be the number of slot columns

times the inter-column spacing times cos 1i (for the angular projection) 2 .
2This physical aperture is therefore based on the "cell size", which goes 1/2 the inter-column

spacing beyond the last slots on each end.
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The normalized bistatic transmission patterns for the 21 column truncated hy-

brid radome were computed at 10 GHz for plane wave incidence at 11 = 0 (i.e.,

normal), v7 = 300, and l = 60'. These patterns are given in Figures 100, 101, and

102, respectively. Recall that the PMM predictions for the infinite hybrid radome

(Figure 95) were for almost perfect transparency at each of the angles of incidence.

Indeed, the main lobes transmitted in each pattern in Figures 100 through 102 are at

nearly 0 dB, normalized to the physical optics from the physical apertures. Actually,

the main lobe in Figure 100 comes up to +0.3 dB. This overshoot may be partially

due to some inaccuracy in assuming the effective aperture is the physical aperture.

Most of the discrepancy, however, is probably due to the minor inaccuracy of the

currents noted in Figure 98.

To further validate the accuracy of the code created for this dissertation, a less

transparent radome was examined. For this radome, the lattice spacing consisted

of D2 = 0.675cm and Dz = 2.0cm with no grid skewing. The axial slot elements

were 1.5cm long and 0.75mm wide. Twenty one columns of these slots existed on

each ground plane with a layer of 1cm of air between the planes. No dielectrics were

used, so that the transmissivity would change as a function of angle of incidence.

The poorer radome was examined at 8 GHz (which is below the first resonance

of the slots) for plane wave incidence at 'i = 0 (i.e., normal) and 7 = 600 in the

TEz polarization. By the PMM code, an infinite radome of such slots would have a

transmission of -12.3 dB at normal incidence and -5.8 dB at 60'. The normalized 3

transmission from the 21 column truncated radome at normal and 600 incidence are

shown in Figures 103 and 104.

The peak level of the main beam in Figure 103 is at -12.6 dB, which is only

0.3 dB lower than the PMM value. The peak level in Figure 104 is at -6.7 dB (0.9

3 By the physical optics level from the physical aperture
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dB off the PMM value), and is located at 17 = -55' . These discrepancies are most

likely due to the small physical aperture (only 1.8 free space wavelengths) at 600

incidence.

To conclude this section, we present a larger version of the truncated hybrid

radome, which was transparent at 10 GHz for a wide range of scan angles. The 21

column slot arrays embedded in the 7 dielectric layers were extended to a total of 41

columns for each ground plane. The same lattice spacings and element types were

used, as well as the same dielectrics, with the geometry scaled for the resonance at

10 GHz. The new 41 column wide aperture now extends to about 9 wavelengths of

aperture (at normal incidence) in free space.

The first data collected on the larger truncated hybrid radome was the magnetic

scattering current coefficients (using piecewise sinusoidal basis and testing functions)

for the modes, as excited by a 100 volt/meter plane wave source at 10 GHz and

normal incidence. These data, along with the PMM currents for the infinite radome,

are plotted in Figure 105.

Note that the magnitude of the ripples in the currents across the aperture are

smaller on the "first" ground plane (i.e., nearest the excitation plane wave) for

the 41 column case than the 21 column case (see Figure 98). The ripples on the

"back" ground plane currents exhibit the opposite trend with the growing aperture.

One might expect that some ripples in the currents would occur near the edges of

the aperture, but would die out in the center. This is clearly not happening, as the

ripples are of near equal amplitude (with respect to other ripples on the same ground

plane) across the entire aperture. One explanation for this phenomena is that these

ripples are primarily the product of the surface waves in the dielectrics, and that

the "net" result of the surface waves excited is smaller for the front ground plane

(and interestingly, larger for the back ground plane) as the number of slot columns
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grows 4 , and that this "net" surface wave exists without decay with respect to i

(i.e., across the transverse dimension of the aperture), causing ripples of constant

amplitude.

It may also be noted in Figure 105 that the currents for the back ground plane

in the truncated radome are not converging perfectly with the corresponding cal-

culation from the infinite radome. Again, this is an indication that the numerical

implementation of the moment method solution used in this dissertation may have

some minor errors, but that the general solution is fairly good.

The creation of the coupling matrix for the 41 column (total of 82 modes) trun-

cated hybrid radome took slightly over 3 hours of CPU time on a VAX 8550 machine.

This matrix was stored, though, and subsequent data runs for this geometry at 10

GHz were run in a matter of a few CPU seconds.

The next calculation performed on the 41 column truncated hybrid radome

was a backscatter pattern. It is shown in Figure 106. Although the main beam

is higher than that shown in Figure 99, the far sidelobes follow approximately the

same envelope, indicating that they may be dominated by edge scattering effects.

The transmission through the 41 column truncated hybrid radome was also

examined at 10 GHz for 71 = 0 (i.e., normal), q = 300, and q = 60' incidence. The

resulting bistatic field patterns were normalized to the field from physical optics

from an open physical aperture (in the main beam direction). The resulting data is

plotted in Figures 107 through 109. As with the 21 column case (see Figure 100), the

normal incidence transmission peaks at about +0.3 dB, which indicates the solution

currents for the slots are not absolutely perfect, as noted in the discussion of Figure

105. Also note that the main beam peak in Figure 109 is closer to 0 dB and more

4It may be hypothesized that the "net" surface wave excited in an infinite radome is exactly zero!
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Figure 107: Bistatic Transmission Pattern of 41 Column Truncated Hybrid Radome
at 10 GHz, TEz, Normal Incidence - Data Normalized to Physical Optics

accurately at q = -60' that the result plotted in Figure 102. This is simply the

result of the larger aperture.

Finally, to demonstrate the usefulness of the analysis developed in this research,

an attempt was made to lower the transmitted bistatic sidelobes through the 41

column truncated hybrid radome. This was done by loading the slots near the edges

of the radome with shunt admittances across the centers of the slots, which add

directly to the self admittances in the coupling matrix. With the stored coupling

matrix computed from the "untreated" radome, design analysis with different slot

loadings can be done very quickly, as long as the slot and dielectric geometries remain

unchanged.
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To lower the 41 column hybrid radome used in this section, the slots in the

first 8 columns nearest each edge in each ground plane were loaded in a symmetric

fashion 5 . Each slot in the first column (the edge - i.e., modes number 1, 41, 42,

and 82) were loaded with 100Q resistances. Heading inward, the slot columns were

loaded with 2000, 400Q, 8000l, 1600Q, 3200Q, 64000, and 128001 shunt resistances.

Such a loading was created to taper the currents around the edges of the aperture,

which should reduce the bistatic sidelobes transmitted through the radome. A front

view (normal to the radome) of the 41 column of slots, showing the lattice (drawn

to scale) and the shunt resistors, is given in Figure 110. Note that a similar set of

slots with the same edge loadings exists on each ground plane.

The edge loaded 41 column hybrid radome was illuminated at normal incidence

(10 GHz). The resulting normalized transmission pattern is given in Figure 111,

with the plot from the untreated radome shown for reference. The edge treatment

does significantly reduce the bistatic sidelobes, but also reduces the main beam of

transmission by 1.6 dB. Recall that roughly 40% of the aperture has some degree of

resistive loading, which undoubtedly was the reason for this high main beam loss.

It is suspected that a similar 8 column edge treatment would reduce the sidelobes

well on larger truncated radomes of the same lattice, but with much smaller losses

in the main beam.

5Note that this is merely a simple trial design, with no attempt of optimization.
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6.2 ANTENNA WITH RADOME EXAMPLES

Now consider the radiation and scattering from a phased array antenna com-

posed of a finite number of periodic transverse dipole elements in the presence of a

truncated radome (e.g., see Figure 113). T.- phased array is backed by a finite width

ground plane which is infinite in i. This ground plane needs to be modeled with

equivalent electric scattering currents, to be consistent with the Green's functions

used in the moment method solution in this dissertation.

A finite width ground plane may be simulated for the TE2 polarization at a given

frequency by a finite number of transverse dipole column arrays which are resonating

passive scatterers. A similar technique was successfully used by Strickler [11] for

modeling a finite width ground plane in the TM, polarization. The transverse dipole

columns are chosen as a truncated version of a doubly-infinite array of perfectly

reflecting resonant dipoles, which may be found with the PMM code [3].

In this section, we will show the effects of a phased array antenna in the presence

of the 21 column truncated hybrid radome, which was discussed in the previous

section. Recalling that this radome was designed to be transparent at 10 GHz,

we choose the radiating phased array antenna to operate at the same frequency.

Therefore, the finite width ground plane must be designed to reflect perfectly at 10

GHz, normal incidence, with the hope that it is also highly reflective at other angles

of incidence at the same frequency. The dipole elements in this ground plane must

be chosen at the same Dz (or a submultiple thereof) as the slots in radome, which

was 1.125cm.

We choose the dipole lengths in the simulated ground plane to be 1cm, the radii

to be 0.2mm, and an inter-column spacing of Dx = 1.35cm 6 . A non-skewed grid is

6The inter-column spacing is chosen to be less than An/2 at the resonant frequency to avoid any

grating lobe scattering.

228



selected and the inter-element spacing is Dz = 1.125cm. Using the PMM code, a

load of j161.80 (which is 2.575nH at 10 GHz) is needed at the dipole terminals to

bring a doubly-infinite array of such dipoles to resonance. With these loads inserted,

the PMM code was used to calculate the transmission through the doubly-infinite

array of passive dipoles near 10 GHz for normal incidence, 11 = 300, and YI = 60' (all

at a = 0). Single piecewise sinusoidal basis and testing functions were used for each

element. The results are plotted in Figure 112. A small picture of the normal view

of a section of the dipole array is also included. Noting that no loss mechanisms

exist, this doubly-infinite array does an excellent job of providing perfect reflection

at normal incidence and near perfect reflection at the other angles. Therefore, a

truncated version of this array should provide a good job of simulating a finite

width ground plane at 10 GHz.

Nine columns of periodic transverse dipoles with the inductive loads were se-

lected for the finite width ground plane simulation. A similar set of dipoles (except

being unloaded) were spaced 0.75cm off the "ground plane", which corresponds to

A /4 at the operating frequency. The finite width phased array antenna was placed

parallel to the radome and centered in the radome's aperture. The antenna face was

brought to 0.5875A0 from the outer dielectric interface. This combined antenna and

radome geometry is shown in Figure 113, with the view from the infinite (44) axis.

Note that the truncated hybrid radome is exactly the same as that shown in Figure

96.

The elements of the antenna face were uniformly excited (and in-phase for

normal direction beam steering) with one volt delta gap generators, and allowed

to radiate. The simulated ground plane elements and slot modes remained passive

scatterers. The resulting transmission through the radome is plotted in Figure 114,

along with a reference pattern for the antenna and ground plane dipoles without
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Figure 114: Transmission Patterns for the Antenna/Radome Geometry in Figure
113 and the Antenna in Free Space with Uniform In-Phase Excitation, 10 GHz,
TEz

the radome. The free space main beam provides a normalization for both patterns.

Note that the main beam of the antenna through the radome is about 4 dB lower

than the main beam in free space.

The apparent loss of 4 dB of transmission through the radome is puzzling,

expecially with the excellent transmission result (normalized to the fields expected

by physical optics) the same radome demonstrated in Figure 100. To see why it

occurred, some numerical experiments were created.
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Figure 115: Top View of Test Geometry with One Radiating Column of Transverse
Dipoles placed AO/4 from the 21 Column Truncated Hybrid Radome

The first experiment consisting of one column of radiating periodic transverse

dipoles7 placed AO/4 away from the outer dielectric surface of the 21 column trun-

cated hybrid radome, and centered in the radome's aperture. A top view of this

geometry is shown in Figure 115.

The resulting radiation of the dipole column from Figure 115, both through the

radome and without the radome, are plotted in Figure 116. Note that the apparent

loss through the radome is almost 4 dB. This loss is probably not solely due to

edge effects from the radome, since from the single dipole column's perspective, the

radome should appear very wide.

Another experiment was conducted by moving the single radiating dipole col-

umn further from the radome, with the hypothesis that some near zone effects were

7Again, with L = lcm, D. = 1.125cm, wire radius= 0.2mm, and unloaded.
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Figure 117: Top View of Test Geometry with One Radiating Column of Transverse
Dipoles placed 1.5875A0 from the 21 Column Truncated Hybrid Radome

making the radome incapable of perfect transmission in the previous cases. The new

distance between the dipoles and the outer dielectric surface was 1.5875A0 . A top

view of this geometry is shown in Figure 117.

The resulting transmission patterns for the dipole column from Figure 117 in

free space and through the radome are plotted in Figure 118. This time, the drop

in transmission through the radome at the normal direction is only 0.25 dB. This

provides some confirmation that a near zone problem may have appeared to make

the radome less transmissive than it is. Also note that the edges of the radome

create some rippling and shadow effects in the transmission pattern.

The apparent loss through the radome when radiating dipoles are placed close

to the radome may be caused by many effects. Two major effects were contemplated

by the researcher. The first is the simple fact that the dipoles radiating near the
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radome introduce cylindrical wavefronts, which cannot be approximated as a simple

plane wave8 However, any cylindrical wavefront may be decomposed into a bundle

of plane waves, and since the radome is supposed to be transmissive for most angles

of plane wave incidence, it seems highly unlikely that a cylindrical wavefront should

be reflected or attenuated by 4 dB.

A second theory is that the near zone presence of the dielectric coated radome

provides a de-tuning effect on the radiating dipoles. Recalling that the radome's

presence provides a reflected component in the self-impedance term, it is possible

that a large reflected component could change the input impedance of the dipoles

enough so that they radiate with much lower currents than they would in free space

under the same impressed one volt delta gap generators.

To test this theory, the input impedances for the antenna array columns from the

geometry in Figure 113 were calculated and plotted. These calculations were made

by dividing the one volt impressed sources on each column mode by the solution

current coefficients, found in the moment method. The input impedance data is

shown in Figure 119, along with similar input impedance data for the 9 column

phased array in free space.

The input impedances in Figure 119 for each column in free space is nearly

constant, and also very near the value of 87 - j1620 predicted for each column

in the PMM code (not plotted). The input impedances for the columns near the

radome, though, vary greatly, and are on the average much higher in magnitude than

their free space counterparts. This provides some confirmation that the antenna is

radiating less efficiently in this position very near the radome.

As a final test, the 9 column phased array antenna was moved back to a distance

of 2.5875A0 from the radome. This geometry is shown in Figure 120.

'Recall that the radome was designed to be perfectly transmissive for plane wave incidence.

237



400

Column #1 Column #9

V)

S 200
0

0 0 _____Re(w/Radome) ------ lm(w/Rodome)

--) - - - - Re(Free Space) ...... ..... im(Free Space)

E
S-200 -_

1 2 3 4 5 6 7 8 9

Phase Array Dipole Column

Figure 119: Input Impedances for Each Column in the Dipole Antenna Array in
Figure 113 along with Similar Input Impedances for the Antenna in Free Space, 10
GHz

238



I

Simulated Ground Plane Dipoles
E (j161.8 Ohm Loads)

0i - 7 2.5875 X.

> £ Phased Array Dipoles (Unloaded)

--------------------------------------------------------- ---------------

=m2

5-. o. . . 15. 20.

x (c m)

Figure 120: Top View of Finite Phased Array Antenna Near the 21 Column Trun-
cated Hybrid Radome - Antenna to Radome Space = 2.5875A0

239



100....

-3 0
0

Q)

S -0............................. ................. .... ..............
-o

1)

........ .... .. ... .. .. .. . .. .. .. . . ..... . . .

-20

Re(w/Rodome) ----- m(w/Rodome)

-200 -Re(Free Spce) -.. m(Free Space)---

-300 ' '
1 2 3 4 5 6 7 8 9

Phase Array Dipole Column

Figure 121: Input Impedances for Each Column in the Antenna Array in Figure 120
along with Similar Input Impedances for the Antenna in Free Space, 10 GHz

The antenna was again excited uniformly with 1 volt delta gap generators (in-

phase) and allowed to radiate both in free space and through the radome. First,

however, the input impedances were calculated. They are plotted in Figure 121.

Note that the impedances with the radome are much better behaved, and nearer the

magnitudes of the free space input impedances than those shown in Figure 119.

Finally, the transmitted field patterns for the antenna shown in Figure 120 were

calculated and are shown in Figure 122. Note that now the apparent transmission

loss is only 1.4 dB, which may be largely due to the fact that the radome's aperture

is not large enough for this antenna at this distance from the radome.
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CHAPTER VII

CONCLUSIONS

This dissertation describes the development of a moment method based solution

for the electromagnetic radiation and scattering from geometries composed of a finite

collection of transverse dipole column arrays and a finite collection of axial slot

arrays, as possibly buried within a stratified medium, as shown in Figures 1 and 2.

These geometries form a subset of the general class of "finite by infinite" periodic

surfaces, which are of growing interest.

A coupling matrix for the geomet.ry is developed with 9 sub-blocks, representing

mutual admittances, mutual impedances, unitless voltage gains, and unitless current

gains. Efficient methods for calculating the entries of the coupling matrix were

developed, using both spatial and spectral domain methods in free space, and using

the Array Scanning Method (ASM) to circumvent the application of Sommerfeld

integrals with planar dielectric interfaces. Asymptotic approximations were also

explored, with convergence tests made to test the accuracy of such methods, as

compared to more rigorous solutions.

Throughout the dissertation, coupling matrix calculations were compared with

those from the PMM code [31, by spatially constructing doubly-infinite array cou-

pling with many column-to-column coupling terms. Excellent agreement with the

PMM solutions provides confidence in each "piece" of the moment method solution.
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Finally, the complete moment method procedure was applied to finite width

radome and radome/antenna geometries, with results in specular scattering direc-

tions coming very close to those predicted by a simple combination of using PMM

data and physical optics. Scattering from these geometries in non-specular direc-

tions, however, could not be accurately predicted by methods previous to this re-

search.

Future research may be made in extending the methods used in this disseration

for wire and slot elements of more general shapes and orientations. Truncations in

the dielectric sandwich in which the arrays are embedded may be approached with

diffraction methods. In addition, now that the analysis method has been developed

(though it may certainly be refined for better efficiency and accuracy), a new class

of antenna and radome designs may be explored, with treatments of edge scattering

effects better understood than from the experimental "trial and error" approach of

the past.
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APPENDIX A

CONVERGENCE ACCELERATION OF INFINITE SUMS

Many attempts have been made at accelerating the numerical evaluation of

infinite sums associated with the radiation of periodic sources [33, 34, 35]. Most

published efforts involve only the acceleration of a periodic Green's function, which

does not contain a pattern factor to assist the convergence.

Most acceleration attempts involve the Poisson sum formula [20] to convert

spatial domain expressions to spectral domain expressions (or vice versa). Some

attempts also use the Kummer's transformation [28] to split a single domain sum

into a cumbination of spectral and spatial domain sums. While there are isolated

cases where this is beneficial, they occur infrequently and thus the Kummer's trans-

formation is not used in this study.

Some acceleration techniques can be applied after the Poisson sum transfor-

mation to either spatial or spectral domain sums. These techniques can involve

windowing, as in the Fejer kernel. Weighted windowing can produce poor results

at high scan angles, but with s constrained to zero, this is not a concern for the

one-dimensional sums for this class of problems. In addition to windowing methods,

other "piggyback" forms of acceleration can be applied. They include the spiral

average method and the Shanks' transformation. These methods are described as

follows.
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Examples given in this appendix do not involve the pattern factors associated

with axial slots and trans'erse dipoles. The effect that these pattern factors make

on convergence is discussed in the main body of this dissertation.

A.1 THE FEJER KERNEL

The Fejer kernel is a simple triangular windowing function, which when. multi-

plied to certain series terms, enhances summation convergence (361. The implemen-

tation of the Fejer kernel is simply to make the following approximation:

00M

M= M

where the Fejer kernel weights given by

W(M) = 1 M1 (A.2)

When applying the Fejer kernel to a series, apriori knowledge of what integer Al

leads to good accuracy is usually not available. Therefore, the strategy for obtaining

convergence is to incrementally adjust M from 1 up to whatever is required, applying

the Ml dependent Fejer kernel at each iteration, and compare successive iterations

until very small changes in the sum are detected. Since the shape of the Fejer

kernel (or any windowing function) changes with each increment, an unavoidable

"overhead" in computation time is formed when a good value for M is not known

apriori.

The Fejer kernel is particularly effective for series of which successive partial

summations tend to oscillate about the convergent solution.
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A.2 THE SPIRAL AVERAGE METHOD

The spiral average method is a technique to enhance the convergence of singly

infinite spatial domain sums occurring from periodic sources. The method is based

on the fact that no matter where a field observation point is located (with respect to a

radiating column array) the difference in spatial slant distances between successive

sources and the observation point will asymptotically approach the inter-element

spacing (D.) as the spatial index is increased. That is, the series of slant distances,

which from the Pythagorean theorem is non-linear, asymptotically approaches a

linear condition.

When summing spatially on an index of -oo to oo, it is convenient to locate the

zero index source as near to the observation point as possible, then add pairs of terms

associated with + the next integer index. When successive pairs of spatial domain

quantities are added, whether they are fields, induced voltages, or impedances, they

tend to spiral about the convergence point in the complex plane.

To illustrate the spiral average method, the following example is used. Suppose

we wish to calculate the free space periodic Green's function from an array of simple

point sources, as depicted in Figure 123.

The Green's function is

G 0-O 3 Rm (A.3)

f 4irRm

Now suppose the inter-element spacing, D., is A/3. Then by the spiral average

method, exactly 3 pairs of successive partial sums should form one revolution in the

spiral. Therefore, we may truncate the sum at some value m = Al where M > 3 and

average the last three partial sums. The series of partial sums and the effect of the

spiral average is shown in Figure 124, which shows the calculation for an observation

point at p = 0.2\ and z = 0.1A.
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Figure 123: Array of Point Sources
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Re(G)

Figure 124: Spiral Average Method for Free Space Periodic Green's Function -

Dz = A/3, p = 0.2A, z = 0.1,\
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For the example chosen, the inter-element spacing of \/3 makes one revolution

in the spiral occur in exactly three successive terms. Thus, the spiral appears to be

approximately of the form of equilateral triangles. Had the inter-element spacing

been A/4, the spiral would look like a set of squares. For a spacing of D" = 2A/3,

three successive terms would be used in the spiral average, which would correspond

to two revolutions in the spiral. In general, the rule is that the number of terms in

one revolution is

N = A/Dz. (A.4)

Often, the inter-element spacing will be an irrational number which does not

lead to an exact number of revolutions to average. In this case, an error parameter

must be chosen and a search must be made until the number of terms in the spiral

is within the error percentage of an integral number of revolutions.

As with the Fejer kernel method, the spiral average method must be iterated

with increases in the maximum M until convergence is found. Unlike the Fejer

kernel method, though, the past history of computations may be saved in the spiral

average. For example, consider the case plotted in Figure 124. The present spiral

average computation involved averaging the partial sums at M = 8,9, and 10. To

reach the next prediction, add the pair of terms to get M = 11, then divide it by 3,

add this to the prediction, and subtract out the Al = 8 partial sum divided by 3.

This process takes much less time than the complete change of weights associated

with the Fejer kernel.

Had the observation distance, p, been far from the array axis, more terms would

have to be included to make the series approach a well behaved spiral. This is a

simple consequence of the non-linear phase change between terms in the series. As

a result, the spiral average method works quicker for closer observation points.
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A.3 SHANKS' TRANSFORMATION

Shanks' transformation is an algorithm which converts an infinite summation

into a "pyramid" of numbers, the cornerstone of which is a prediction of the infinite

sum. It is based on the assumption that the partial sums (i.e., summed from m =

-M to +M, as M increases) form a mathematical transient [37]. The transient for

the partial sums up to order N are assumed to behave according to a (N + 1)th

order finite difference equation. The Shanks' algorithm is used to predict the final

convergent sum, using all of the partial sums up to order N. Shanks' algorithm was

recently used by Singh [35] for electromagnetic applications involving infinite arrays.

The pyramid formed with Shanks' transformation are numbers denoted by the

function, em(Sn), where m designates the column of the entry and n represents the

row. Furthermore, Sn is the partial sum of order n. Thus, em is a function which

operates on the partial sums. The subscript m can range from zero to the highest

order of the partial sums used. To generate the pyramid, the algorithm is defined

by the following equations:

eo(Sn) = Sn, (A.5)

e1(Sn) = [e(Sn+j)-eo(Sn)]' (A.6)

em+l(Sn) = em-l(Sn+l) + [em(Sn+l) - em(Sn)]' (A.7)

where the last equation is valid for m = 1, 2, 3,...

A particularly powerful application of Shanks' transformation is on the Leibnitz

series for ir. The series is
7r=:0 4(- 1)n (A.8)Er y 2n+1'

n=O

With the help of Shanks' transformation, only the first 8 terms of the series are

needed to calculate 7r correctly to eight significant figures. Direct addition of the
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series requires approximately 40 million terms for the same accuracy! Truncating

the series at N = 4, the pyramid formed by Shanks' algorithm is as follows:

n eO = Sn el e2 e3 94

0 4.00000 -0.75 3.16667 -28.753 3.14235

1 2.66667 1.25 3.13334 82.284 --

2 3.46667 -1.75 3.14524 ....

3 2.89524 2.25 --

4 3.33968 ....

As seen in the above data, the predicted value of 7r using the Shanks' algorithm

on the first five partial sums is 3.14235, which is at the e4 (S0o) slot (the "corner-

stone"). The eodd columns are intermediary steps which must be filled to generate

the pyramid. The next best prediction requires two additional terms, which puts

the cornerstone at the e6 (SO) slot.

Shanks' transformation tends to work better on series which oscillate about the

convergence point. For the infinite array problems in electromagnetics, oscillations

(or in the complex plane, spiraling) occurs in spatial domain expressions, while spec-

tral domain sums approach the convergence point in a monotonic manner. Shanks'

algorithm may be used to decrease the number of spectral domain terms for a given

accuracy, but the overhead associated with building the pyramid of numbers makes

it no faster than just adding the raw spectral domain series. In the spatial domain,

however, Shanks' transformation can reduce computation time due to the dramatic

reduction in the number of terms required.
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APPENDIX B

THE ARRAY SCANNING METHOD FOR A SINGLE COLUMN OF
PERIODIC SOURCES

Consider a doubly infinite array of electric Hertzian dipoles on the XZ plane

in free space, as depicted in Figure 125. The elements are indexed spatially with

the subscripts qm, which denote the X and Z lattice positions, respectively. Note

that the reference element, denoted by q = m = 0, is located at the origin, and that

all dipoles are oriented in some common direction P. The magnetic vector potential

from a typical element at an observation point, (X, y, z), is [14]:
-- l#qmdl e-J Pm

dAqm 4 w 4 R m (B.1)

where the spatial distance is

Rqm = /(qDz - x) 2 + y2 + (mDz - z) 2 . (B.2)

Assume that the currents for the Hertzian array obey Floquet's theorem for some

propagation in the direction

= isz + isy + is,. (B.3)

By Floquet's theorem [19], the current on a typical element is of the form

Iqm = I e - j qDz z e-j~mDz sz. (B.4)

Now consider the total vector potential at the observation point, given by the su-

perposition of all of the sources as

4A = 1 P- e 47r E e (B.5)
2m=52 J
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z
' qm

7, 7 T

Figure 125: Doubly-Infinite Array of Hertzian Dipole Sources

The quantity in brackets in Equation (B.5) may be denoted by d-Aq. Now tihe total

vector potential may be written in the form of an exponential Fourier series, which

is

d-A _ dAqe3qw° t , (B.6)

where we have defined w~o = -/JD and t = sx. The quantities, d7Aq, are merely

coefficients in this series.

Now consider the meaning of dYq when q = 0. From Equation (B.5) it is clearly

seen that this central coefficient has the interpretation of the total vector potential

from the single infinite column of sources containing the reference element. One can

evaluate this column potential from Equation (B.5), but since it is also a coefficient
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in a Fourier series, one can use the Fourier method. That is, the coefficients can be

found by

1 T/2

d- q = T f (d-A)e-jqwot dt, (B.7)
-T/2

where the Fourier series period is

T- 27r = A(B.8)
IwolI Dz'

Thus comes the result that the vector potential from the single column of sources

including the reference element is

dAo D (d-) d s (B.9)
-A

Note that the integrand in Equation (B.9) represents the total vector potential

from the complete doubly infinite array of sources in Figure 125. Also note that the

variable s, is merely the sine of the scan direction (relative to the axis, as projected

in the XY plane) caused by the phasing of the elements. Thus, Equation (B.9) may

be interpreted as finding the weighted average of the total vector potential over some

range of scan angles. Thus, finding the vector potential from this equation is dubbed

the array scanning method (ASM).

The array scanning method in Equation (B.9) may easily be extended to find

the fields, induced voltages, or mutual impedances for columns of periodic elements

(dipoles or slots) of finite length and arbitrary shape. This extension comes from

spatial derivatives and integrals, and does not affect the integration on sz. Equation

(B.9) may also be extended to include any stratified media which is infinite in X" and

i. Such a media will not disturb the Floquet phasing between the currents in the

doubly infinite array, which is essential in the derivation of the ASM.
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The array scanning method suggests that if one desires the effect of a single

column of sour:es, one can "artificially" construct a doubly infinite array around

the single column, and apply the form of Equation (B.9). The user has freedom

over the inter-column spacing D. in this "artificial" array. If one chooses D, = A/2,

then the limits of integration go from -1 to +1, which corresponds to scanning over

the entire XY plane in real space. This is often the most convenient choice in that

it forces the occurrence of surfa-e wave singularities (for stratified media) to occur

only in the central term of the plane wave expansion.
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