O, 0N STATEMENT A |

AD;Aé49 323 DTIC

LTI SE,:;ECZS%D

C

Yale University
Department of Computer Science

Crystal Reference Manual
Version 3.0

Michel Jacquemin J. Allan Yang

YALEU/DCS/TR-840
March 1991

This work has been supported in part by the Office of Naval Research under Contract
No. N00014-90-J-1987 and the National Science Foundation under Contract No. 622A-
31-47097.

92- 09904

Approved for public release;
Distribution Unlimited

O W W\ WO

Statement A per telecon) -/

|

Dr. Richard Lau ONR/Code 1111 Aceeasioca Tor /

Arlington, VA 22217-5000 THTIS oRemD 7
. ;1

NWW 5/1/92 i Umnac :gc“ 8
Justifisatien.
ey

Crystal Reference Manual __Distribeyien/
Version 3.0 __ﬁ‘f?_i;.fﬂf}l{}!j:he
Avall amd/or
dist ' Bgpeeclal
Michel Jacquemin J. Allan Yang |

:9\'\ ’ l

Department of Computer Science : >
Yale University a T
New Haven, CT 06520-2158
jacquemin@cs.yale.edu, yang@cs.yale.edu .

January, 1991

Foreword

This manual describes the new syntax of Crystal, a strongly-typed lexically-scoped functional language
for programming massively parallel machines, and an implementation of a Crystal interpreter based
on T, a dialect of Scheme. It is a reference manual, intended to define the language for which the
interpreter is implemented. It is not intended as an introduction or a tutorial. The reader is expected
to have some basic knowledge about Crystal [1, 2].

1 Language Definition

In this section, we describe the syntactic structures and their associated meanings of Crystal. Examples
are given for illustration.

1.1 Notational Convention

We follow the conventions below in describing the syntax of Crystal.

[a] ais optional

{a} zero or more repetition of a

a| b choice between either a or b
actual text in the program

a
(a) grouping

This work has been supported in part by the Office of Naval Research under Contract No. N00014-90-J-1987 and the
Natinna] Science Foundation under Contract No. 622A-31-47097.

+ .-

2 1* Panguage Definition
L P ¥

1.2 P.rbgrams and Definitions

A Crystal program cqntains a set of possibly mutually recursive definitions and optional output expres-
sions, haying the syntax:

et phogrﬁm — (definition [doc] | ?ezpression) {definition [doc] | Tezpression}
: definition — identifier [: type-ezp] = ezpression
doc — doc{ anything except a right curly brace }

The optional type-e:i:;i in the definition specifies the type of the identifier. Each ?ezpression is an output
expression whose value will be printed out.

Example Below is an example of a simple Crystal program:

n =10

D = interval(i,n)

F = df (x):D {2 » x}
F

?D

1.3 Expressions

Expressions are the most basic construct in Crystal programs. It is used to express all the semantic
objects of Crystal. The basic semantic objects of Crystal consist of integers, floating point numbers,
booleans, and strings. The composite semantic objects of Crystal consists of tuples, tagged values, index
domains, data fields, lists, sets, and functions over these objects. Expressions have the following syntax:

ezpression — constant | identifier | tuple | tagged-exp | expression : type-ezp
| unary-op ezpression | ezpression binary-op ezpression
| conditional| function-abst | function-appl
| domain-ezp | dfield-ezp | list-ezp | set-ezp
| € expression) | ezpression where{{definition}}

The nonterminals constant and identifier will be defined in Section 1.11. The tuple and tagged-ezp
are tuples and tagged values, which will be defined in Section 1.5. The expression ezpression : type-exp
is a typed expression in which a type is explicitly specified for the expression; it will be defined in
Section 1.10. The unary-op is the family of unary prefix operators and the binary-op is the family of
binary infix operator; they will be defined in Section 1.11. The conditionalis the conditional expression,
which will be defined in Section 1.4. The function-abst and function-appl are function abstraction and
application, which will be defined in Section 1.6. The domain-ezp is for index domain expressions,
which will be defined in Section 1.7. The dfield-ezp is for data field expressions, which will be defined in
Section 1.8. The list-ezp is for list expressions and the set-ezp is for set expressions; they will be defined
in Section 1.9. The (...) is for grouping. The where{...} construct is for introducing local definitions
for identifiers occurring in the preceding expression.

1.4 Conditional

The conditional expression has the form:
[16:01 March 24, 1991]

1.5 Tuples and Tagged Values 3

if ezpression then ezpression
{11 ezpression then ezpression}
[[11] else ezpression]

fi

The expressions before then are called guards and those after then are called consequences. Guards
should denote boolean values. The expression after else is called the default expression, which is
optional. The value of a conditional expression is the first consequence with a true guard. When there
is no true guard, the value of the conditional is the default expression if there is one, otherwise it is
undefined.

Example Below is a conditional expression that picks out the maximum among x, y, and z:

if x>y and x > z then x
Il y>ztheny

|| else z

fi

1.5 Tuples and Tagged Values

Tuples are used for expressing elements of product types or product domains (explained later). Tagged
values are used for expressing elements of summed types or summed domains (explained later). They
have the following syntax:

tuple — ([ezpression , ezpression {, ezpression}])
tagged-ezp — tag~tuple
tag — ezpression

There is no single-element tuple. They are considered to be equivalent as the element itself. In the
expression tag”tuple, the tag should denote a natural number, and the length of tuple (defined below)
should be the same as the number of constituent domains of the summed domain.

Let t and u be the values denoted by tag and tuple, respectively, and the product domain dp X ... X
dn-1 be the type of tuple. The meaning of tag™tuple is t(u(t)), where u(t) is the t-th element of the tuple
u and ¢ is the injection function from the domain d;,0 < t < n, to the summed domain dp + ... + dn—1.

The syntax for the tagged expression is somewhat unconventional, but it provides more information
for the analysis performed by the parallelizing compiler. It also makes expressions that depend on the
value of the tag more compact, as is shown in the defintion for £3 in the example in section 1.6.

Selectors and Operators for Tuples and Tagged Expressions

Let e,éeo,€1,€2,... be expressions. The following selectors and operators are defined for tuples and
tagged expressions:

(eg, €1, ..,en-1) (i) denotes the value of e;, where 0 < ¢ < n.

length(eg,€q,...,6,-1) denotes n.

tag-of (e“(ep, €1,...,en-1)) denotes the value of e.

value.of (e*(eg,€y,...,en—1)) denotes the value of (eg,€1,...,€n-1).

(16:01 March 24, 1991]

4 1 Language Definition

Example Below are examples of tuples and tagged values:

tup = (1,2,3)
tv = 1°tup

We will have the following: tup(0) is 1, length(tup) is 3, tag-of (tv) is 1, and value_of (tv) is (1,2,3).

1.6 Function Abstraction and Application
Function abstraction and application have the following syntax:

funciion-abst — fn formal : type-ezp [| filter] { ezpression }
function-appl — ezpression (ezpression) | expression tuple
formal — identifier | ([identifier {, identifier}]) | formal = formal

filter — ezpression

Function abstraction is used for expressing functions, which are first class objects. A filter is an expres-
sion denoting a boolean value. When there is a filter in the function abstraction, the actual argument is
checked against the filter. If it does not pass the filter then the returned value is undefined. The formal
can be of the form of a single identifier, a tuple of identifiers, or identifiers in a tagged expression form.
The actual argument will be destructured properly according to the form of the formal.

Example Below are examples of functions:

f1 = fn x:nat { x*2 }
£2 = fn (x,y) : prod_type(nat,nat) { x +y }
£3 = fn (" (u,v)) : sum type(bool,nat) { t~(
fac = fnn : int | n >= 0 {
it n =0 then 1
Il else n * fac(n-1)
fi }
We will have the following: £1(3) is 6, £2(2,3) is 5, £3(0~(true,nil)) is ¢;(false), where ¢; is the
injection function from bool to sum.type(bool,nat); and £3(1~(nil,3)) is ¢3(9), where ¢ is the
injection function from nat to sum type(bool,nat). The constant nil is used to express an undefined
value. The function fac is the usual factorial function, in which a filter is used to make sure the
argument is non-negative.

not u, v * 3) }

1.7 Index Domains

An inder domain is a set of points indexed in some way. Index domain expressions have the following
syntax:

domain-ezp — interval(ezpression,ezpression)
| dom{ ezpression {; erpression} }
| prod.dom(domain-ezp, domain-ezp {,domain-ezp})
| sum.dom(domain-ezp, domain-ezp {,domain-ezp})
| gon-prod_dom formal : domain-ezp [| filter] { domain-ezp }
| gon-sum_dom formal : domain-ezp [| filter] { domain-ezp }
| dom{ formal : domain-ezp | filter]

(16:01 March 24, 1991)

1.7 Index Domains 5

Let ¢, €2, ...,e, be expressions denoting integer values. An interval index domain is constructed by
interval(e;,e;), with e; being its lower bound and e; being its upper bound. It contains e; —e; 4+ 1
points indexed from e; to ez. If e3 < ey, then interval(e,,e;) is empty. An enumerated index domain
is constructed by dom{e;;ez;...;e,}. It contains n points indexed by the values of e;,..., e,. Having
duplicate elements is permitted and data fields defined over them will have only one value for the same
index. Note that there should be no space between dom and {.

Let dy, ...,d, be index domain expressions. The product domain and sum domain of dy,. .., d, are
denoted by the expressions prod_dom(dg,...,d,) and sum_ dom(dy,...,d,), respectively. Let z; be an
expression denoting an element in dg, and z, an element of d,,, the tuple (zg,...,z,) is an element
of prod_dom(dp,...,d,). The tagged expressions 0~ (zo,nil,...,nil),..., n~(nil,...,nil,z,) are
elements of sum.dom(dg,...,ds).

Let z be a formal, d be a domain expression, e be another domain expression with occurrences of z,
and f be a filter (i.e., a boolean expression) with occurrences of z. The gen_prod_dom and gen_sum_dom
are for constructing general product and sum domains. The expression gen_prod_dom z:d{e} denotes
the product domain of all domains produced by instantiating the formal z in e with every point in the
domain d. When there is a filter expression f, z is only instantiated with points in d that pass f (i.e.
f evaluates to true). Similarly for gen_sum.dom.

Let z,d, f be as described above. The expression dom[z:d| f] is a domain restriction denoting the
restricted domain that contains only points of d that pass the filter. Note that there should be no space
between dom and [.

Operators on Index Domains

Let d be a domain expression, and e be an expression denoting an domain element (i.e., an integer, a
tuple. or a tagged expression), the following functions are provided:

card(d) The cardinality of d.
contains?(d,e) True if d contains e as an element. False otherwise.

lower_bound(d), upper_bound(d) If d is an interval domain then they return the lower and upper
bounds of d. Otherwise they are undefined.

Example Below are examples of domain expressions.

dl = interval(1,2)

d2 = dom{4;6}

d3 = prod_dom(di1,d2)

d¢ = sum.dom(d1,d2)

d5 = gen_prod.dom (x,y):d3 | even?(x+y) {interval(x,y)}
d6 = gen.sum dom (x"y):d4|(x==1){interval(0,y(x))}

d7 = dom[(x,y):prod.dom(d1,d1)|(x <= y)]

The domain d1 contains points indexed by the set {1,2}. The domain d2 contains points indexed
by the set {4,6}. The domain 43 contains points indexed by the set {(1,4), (1,6), (2,4), (2,6)}.
The domain d4 contains points indexed by the set { 0°(1,nil), 0~(2,nil), 1*(nil,4), 1~(nil,6) }. The
domain d5 is equivalent to prod.dom(interval(2,4),interval(2,6)). The domain d6 is equivalent
to sum_dom(interval(0,4), interval(0,8)). The domain d7 contains points indexed by the set
{(1,1),(1,2),(2,2) }.

(16:01 March 24, 1991}

6 1 Language Definition

1.8 Data Fields

A data field is a function over some index domain. It assigns each point in the index domain a value.
Therefore, a data field can be viewed as a set of values indexed by the underlying domain. Data field
expressions have the following syntax:

dfield-exp — df{ ezpression {(; | ;; | ;;;) ezpression} }
| df formal : domain-ezp [| filter] { ezpression }
| d£ [ezpression | formal : domain-ezp [| filter]]

Let ep, €1, ..., €,—1 be expressions, an enumerated one-dimensional data field is constructed by
df{eo; e;; ...; e,—1}. This data field is implicitly defined over the domain interval(0,n—1).
Let the identifier a be bound to such a one-dimensional data field, then a(i) denotes the value of
ei, where 0 < i < n. A two-dimensional enumerated data field of size m by n is expressed by
dom{eoo; ...} €0pn-133 «++33 €m=1,13 ...; €m-1n-1}. This data field is implicitly defined over
prod_dom(interval(0,m — 1) ,interval(0,n - 1)). Notice that each row must be of equal length.
Again, let a be bound to such a data field, then a(i,j) denotes the value of ¢; j, where 0 < i< m,0 <
J < n. Similarly, we use ;;; for three-dimensional data fields, where each page must be of equal size.
Note that there is no space between df and {.

Let z be a formal, d be a domain expression, e be an expression with occurrences of z, and f be
a boolean expression with occurrences of z. The expression df z:d { e } is a data field which assigns
every index point z in d with the value denoted by e. When there is a filter f, only index points passing
f are assigned a value. Values on index points failing f are undefined. The expression df [e|z:d] is just
another syntactic form for df z:d { e }. Note that there is no space between df and [.

Operators on Data Fields

Let a be an expression denoting a data field having values a;,a,,...,a,; g be an expression denoting a
binary associated function; and i be the identity element of g. The following functions are provided:
domain_of (a) It denotes the domain over which g is defined.
card(a) It denotes the cardinality of domain_of(a).

compact(a) It denotes the data field defined with the saxe values on a new, compacted domain with
undefined values and their associated index points purged.

reduce(g,i,a) It denotes the reduction of g over a. The value of the reduction is equivalent to
g(...9(g(i,a1),a2)...). When a is empty, the value of the reduction is defined to be i, the
identity element of g as mentioned above.

scan(g,i,a) It denotes the data field of scanning ¢ over a, where i is as defined above. If a is not
one-dimensional, its canonical linear ordering is assumed for the scan.

Example Below are examples of data field expressions.

a1l = d£{1; 2; 3} 't 1-d enumerated data field
a2 = df{1; 2;; 3; 4} '! 2-d enumerated data field
a3 = dt{1; 2;; 3; 4;;; 5:6;; 7;8) 1! 3-d enumerated data field

d = prod.dom(interval(0,2),interval(0,2))
a4 = df (i,j):d { if {4 == O then a1(j) else a4(i-1,j) fi }
ab = df [x*yl(41,5):4d]

[16:01 March 24, 1991]

1.9 Lists and Sets 7

The data field a1 is the set of values {1,2,3} indexed by the domain {0,1,2} and, for example, a1(0) is
1. The data field a2 is the set of values {1,2,3,4} indexed by the domain {(0,0),(0,1),(1,0),(1,1)} and,
for example, a2(1,1) is 4. The data field a3 is the set of values {1,2,...,8) indexed by the domain
{(0,0,0),(0,0,1),...,(1,1,1)} and, for example, a3(1,0,1) is 6. The data field a4 is the set of values
{1,2,3,1,2,3,1,2,3} indexed by the domain {(0,0),(0,1),...,(2,2)}; a4(0,1) is 2. The data field a5 is the
set of values {0,0,0,1,2,3,2,4,6 } indexed by the domain {(0,0),(0,1),...,(2,2)} and, for example, a5(1,2)
is 2.

1.9 Lists and Sets

Lists and sets are available in Crystal and have the following syntax:

list-ezp — 1ist{ [ezpression {; ezpression}]}
set-ezp — set{ [ezpression {; erpression}] }
| set formal : domain-ezp [| filter] { ezpression }

Let ey,...,e, be expressions. The expression 1ist{ ej,...,e,} denotes a list with enumerated elements
€1,...,en. Similarly for the expression set{ e;,...,e,}.

Let z be a formal, d be a domain expression, e be an expression with occurrences of z, and f be
a boolean expression with occurrences of z. The expression set z:d { e } denotes the set containing
the values denoted by instantiating e with every index point z in d. When there is a filter f, only the
values of those index points passing f are contained in the set.

Operators on Lists and Sets

Let ,11,13 be expressions denoting lists, e be a general expression, and f be an expression denoting a
function. The following operators are defined.

null? () True if | is null, false otherwise.

contains?(e,!) True if / contains e as an element, false otherwise.

length(/) The number of elements in I.

head(!) The first element of [.

tail(l) The rest of | excluding the first element.

cons(e,!) The list with e being its head and being its tail.

append(ly,l;) Append I; to l;. This is the same as “l; :: I,".

map(f,l) The list of applying f to every element of /.
Let s, 31,52 be expr;ssions denoting sets, e and f be as described above. The following operators are
defined.

empty?(s) True if s is null, false otherwise.

contains?(e,!) True if s contains e as an element, false otherwise.

card(s) It denotes the number of elements in s.

union(sy, s2) The union of 3; and s,.

inter(s;, s2) The intersection of s; and s;.

[16:01 March 24, 1991)

8 1 Language Definition

diff (s, s2) The difference of s; and s,.
product(s;, s3) The product of sy and s;.
map(f,s) The set of applying f to every element of s.

Example Below are examples of list and set expressions.

1 = list{1; 2; 3}
si = set{1; 2; 3}
82 = set x : interval(1,10) | even?(x) { x + 3}

The list 1 and the set s1 contain elements 1,2, and 3. The set 82 is {5,7,9,11,13}.

1.10 Type Expressions

Type expressions provide extra information for static type checking, which catches static type errors
at compile time and reduces the chance of hitting a runtime error during program execution. Though
specifying the type of expressions is optional in most cases, programmers are encouraged to provide
type information whenever possible. Type expressions have the following syntax:

type-ezp — constant-type | domain-ezp | 1ist_of (type-ezp) | set_of (type-ezp)
| sum_type(type-ezp, type-ezp{ , type-ezp})
| prod_type(type-ezp, type-ezp{ , type-ezp})
| fun_type(type-ezp, type-ezp)
| dfield_type(domain-ezp, type-ezp)
constant-type — bool | nat | int | float | string | char | domain | type

The reserved words bool, nat, int, float, string, and char denote the constant types of boolean,
natural numbers, integers, floating point numbers, character strings, and characters, respectively. The
reserve words domain denotes the type of domains, and type denotes the universal type. Let t,¢;,...,1,
be expressions denoting some type, and d be a domain expression. The type expression 1ist-of (t)
denotes the type of all lists with elements of type t. Similarly for set-of(t). The type expression
prod_type(t;,...,t;) denotes the product type of ¢;,...,t,. Similarly for sum type(t;,...,t;). The
expression dfield_type(d,t) denotes the type of data fields defined over d with values of type t, and
fun_type(t;,t;) denotes the function type from t; to t;.

1.11 Basic Lexical Definitions

Here we describe the syntax of identifiers, boolean, integers, floating point numbers, and strings. We
also describe the unary prefix and binary infix operators for them.

unary-op — not | -

binary-op — + |~ |* |/ |** [mod |div |[<|> | <= |>= | == | <>
and Jor |:: |@

constant — nil | boolean | numeric | character | string

boolean — true | false

numeric — integer| float

integer — [-]digit{digit}

float — ([-]digit{digit} . {digit}) | ([-]{digit} . digit{digit})

[16:01 March 24, 1991]

1.12 Built-in Numeric Functions 9

digit - 0}1]...]9

identifier — alpha{alpha | digit | special}
alpha — a|A|b|B]|...|2]|Z
special — _|7|%|8| &}l

character — # any character

string — " anything but double quote "

The unary prefix operator not is the boolean negation and - is the numeric minus sign. The binary
infix operators +, -, #, /, and *# are the numeric additio., subtraction, multiplication, division, and
exponentiation; mod and div are the integer modulo and integer division; <, >, <=, >=, == and <
are the numeric comparison operators for less than, greater than, less or equal to, greater or equal to,
equality testing, and inequality testing; and and or are the boolean and and or; : : is for string and list
concatenation (i.e., appending); @ is the function composition operator. All binary infix operators are
left associative and their relative precedences are defined in a way similar to the language C. Users are
encouraged to use parentheses to disambiguate an expression whenever in doubt.

A string consists of all the characters appearing between 2 double quotes ("), taken as such, with
the exception of the backslash character (\), which serves as an escape. The following escapes are
defined: \b (backspace), \f (form feed), \n (newline), \r (carriage return), \t (horizontal tabulate), \v
(vertical tabulate), \\ (backslash), \" (double quote), \00O to \255 (character whose ASCII code is the
decimal number appearing after the backslash (3 digits are required), \“¢ (character corresponding to
control-c (where cis any character that can be "controlled”)), \ ...\ (all the characters (only formatting
characters are allowed) between the two backslashs are ignored (as well as the backslashs off course).
Examples of formatting characters are: space, newline, tab). For non alphanumeric character that
don’t appear in the above list, the backslash doesn’t change anything. This convention for string
representation is taken from Standard ML.

Characters are represented by prepending a # in front of the representation of the character in a
string. For example, #a is the character a, #\b is the backspace character, #\255 is the character whose
ASCII code is 255 in decimal. Note that ## represents the character #.

1.12 Built-in Numeric Functions

Let z,z,,23,...,2, be expressions den~ting numeric values, and i,1,,1z,...,i, be expressions denoting
integers. The following numeric functions are built-in:

Predicates: even?(i), odd?(i) (predicates for integers testing even and odd).

Arithmetics Functions: add(z,,...,z,), subtract(z;,z;), multiply(z;,...,z,), divide(z;, z2),
negate(z), remainder(i;,i;), abs(z), ged(i;,i3), min(z,,...,z,), max(zy,...,z,), round(z)
(round to nearest integer), floor(z), and ceiling(z).

Transcendental Functions: exp(z) (exponential function e*), log(z) (base 2 logarithm), 1n(z)
(natural logarithm), sin(z), cos(z), tan(z), asin(z), acos(z), and atan(z).

Bitwise Logical Operators: logand(i;,i;) (bitwise logical and of i; and i;), logior (i, ;) (bitwise
logical inclusive or of #; and i3), Logxor(iy,i2) (bitwise logical exclusive or of i; and {3), lognot (i)
(bitwise logical not of 7).

[16:01 March 24, 1991]

10 2 Using the Crystal Interpreter

2 Using the Crystal Interpreter

An interpreter based on T 3.1 has been implemented for the language defined in the previous section.
It is available for anonymous ftp from /pub/Crystal/crystal-int-3.0.tar.Z on cs.yale.edu. This section
describes how to use the interpreter and reminds you some potential problems in using it.

2.1 Invoking the Interpreter

Please follow the steps below to invoke the interpreter.

¢ Set up your shell environment variable CRYSTAL to the directory containing the T object codes of
the Crystal interpreter. If you are at Yale CS Department and have access to the /cs/homes tree,
then do the following:
setenv CRYSTAL /cs/homes/systems/ayang/crystal/obj

¢ Invoke T (either from csh or from Emacs).
¢ Issue (load ’(crystal crint)) to load in the Crystal interpreter.
o Issue (cr:repl) to enter the read-eval-print-loop of the Crystal interpreter.

2.2 Interpreter Environment

The read-eval-print loop of the interpreter provides users with an interactive environment. Users can
enter definitions, output expressions, or both, after the prompt znd the result of the output expressions
will be printed out. The following commands are also recognized by the read-eval-print-loop of the
Crystal interpreter:

load("filename") Load in the definitions in the Crystal program in file filename
and evaluate all the output expressions.
exit and quit Leave the loop and get back to T.
help Print a short message about the interpreter and about how to enter

multiline input.

2.3 Caveats

Robustness: This interpreter is still immature in terms of error recovery and robustness. Syntax errors
are caught by the parser and the parsing will be halted immediately. The precise location of the
offending token is reported. Run time errors are left to T. When hitting a run time error, the
execution will break into T with little clue to help you to figure out what went wrong. Using
(backtrace) to inspect the call stack is the most effective way for finding out what had gone
wrong. Then use (reset) and then (cr:repl) to get back to the interpreter.

Size of Index Domains: Because of the way this interpreter implements index domains and data
fields, their sizes should not be too big (over 10K elements). Otherwise, your program executicn
probably will experience many garbage collection cycles.

Case of identiflers: Because the implementation is based on T, this interpreter inherits the limitation
of T that cases of identifiers are ignored.

[16:01 March 24, 1991)

o

11

Order of Definitions: Theoretically the order of the definitions in Crystal programs should not mat-
ter. However, because the way interpreter translates the definitions right now, non-function defi-
nitions should be given before they are used. This restriction is expected to go away in the near
future.

3 Example Crystal Programs

If you are at Yale CS Department, there are a collection of example Crystal programs available in
the directory /cs/homes/systems/ayang/crystal/examples. If you have any interesting Crystal pro-
grams that you would like to share with others, please copy them into the world-writable directory
/cs/homes/systems/ayang/crystal/contrib.

These programs are included in the distribution tar file mentioned in the previous section. If you
are not at Yale CS Department, please consult with the person who installed the interpreter at your
site about the location of these example programs.

Below are two programs pulled from the .../examples directory. The first one is a simple matrix
multiplication program using reduction on data fields. The second one is the bitoric sort program, also
works on data fields,

...

!1! Matrix Multiplication using reduction. LR
'*1 This program illustrates the use of domains, data fields, and !!!
' the reduction over data fields. et
A R R R R R R R RN RN NN NN NN
n=3

D = interval(0,n-1)
D2 = prod_dom(D,D)

A=df{1; 2; 3;; 4;5; 6;; 7;8;, 9 }
B=df{1; 0, 0;; 0;2; 0;; 0; 0; 3 }
C = df(i,j):D2 { reduce(add, 0, (df x:D {A(i,k)*B(k,j)})) }

It C should be df{ 1; 4; 9;; 4;10;18;; 7;16;27 }

?7C

{16:01 March 24, 1991]

12 References

...

x = d£{6;2;5;9;3;1;7;4}
n = card(x)
logn = ceiling(log(n))

d = interval(Oo,n - 1)
e = interval(0,logn - 1)

flip = fn (x,i) : prod_type(nat,nat) { logxor(x,2+*i) }
bit = fn (x,i) : prod_type(nat,nat) { logand(x,2#*i) <> 0 }
= fn (x,y) : prod_type(nat,nat) { (x or y) and not (x and y) }

bsort = df j : interval(0,logn -~ 1) {
df (i,k) : prod_dom(d,interval(0,j)) {
if xor(bit(i,j + 1),bit(i,j - X)) then max(a,b)
else min{a,b) fi
where{ jprev = if k==0 then j - 1 else j fi

kprev = if k==0 then j - 1 else k - 1 fi

a = if j>0 then bsort(jprev)(i,kprev) else x(i) fi
b = it j>0 then bsort(jprev)(flip(i,j ~ k),kprev)

else x(£1ip(i,0)) fi

df [bsort(logn - 1)(i,logn - 1) | i : d]

-~
]

References

{1] Marina Chen, Young-il Choo, and Jingke Li. Compiling parallel programs by optimizing perfor-

mance. The Journal of Supercomputing, 2(2):171-207, October 1988.

{2] Young-il Choo and Marina Chen. A theory of parallel-program optimization. Technical Report

YALEU/DCS/TR-608, Dept. of Computer Science, Yale University, July 1988.

[16:01 March 24, 1991]

