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SCATTERING MECHANISMS FOR
SEMICONDUCTOR TRANSPORT
CALCULATIONS

J. Bude
Beckman Institute for Advanced Science and Technology and ECE
University of Nllinois at Urbana-Champaign, Nllinois 61801

Monte Carlo simulations for transport in semiconductors numerically
solve the Boltsmann equation while offering the physically intuitive pictuze
of free flights and carrier scatterings on a microscopic level. The aim of a
good Monte Carlo simulator is to give the most physically correct realisa-
tion of the scattering and free flight processes in an efficient manner. This
chapter treats the scattering mechanisms and their implementation in de-
tail. The basic scattering mechanisms treated in this chapter fall into the
categories of phonons, static impurities, and scattering due to the conlomb
potential of other carriers (carrier-cazrier interactions). Photon scattering
is important in specific cases (radiative recombination rates for instance),
but occurs on time scales much longer than the scattering processes men-
tioned above, and so is not usually a factor in determining basic transport
parameters.

In almost all approaches to electzon transport in crystals, the electrons
are decoupled from the ions, impurities, and from each other, and familiar
Bloch states are assumed for a complete basis set for the electrons. Then,
the effect of each of these interactions is reintroduced as a perturbation to
the simple, one-electron states forcing transitions between them, ie. scatter-
ing. In order to accomplish the decoupling, one makes use of the adiabatic
approximation (Born-Oppenheimer approximation) which is the topic of
the first section. However, the Boltsmann equation, which is the basis for
all Monte Carlo simulations, is a fully classical equation, originally derived
for transport of gasses whose constituents interact weakly. The generalise-
tion of this equation to the semiclassical regime in which collisions are seen
as localised events in space and time but calculated quantum mechanically
is & simple extension of the classical Boltsmann equation. The steps lead-
ing to this extension which aze relevant o the treatment of scattering are
discussed in the second section of this chapter. It is then easy to obtain the
proper form for the scatiering rates. Then, a short discussion of dielectric
screening (an important consideration for the calculation of scattering) is
given. The remainder of the chapter is devoted to the calculation of specific
scattering rates and their implementation in Monte Carlo simulations.




1 The Adiabatic Approximation

To begin our discussion of electron transport in semiconductors, we define
electrons to be in one of three classes: core electrons, which are tightly
bound to the nuclel, valence electrons, which are loosely bound and form
the covalent bonds between ions, and conduction elecirons. Valence electron
states lie beneath the band gap and are completely filled at sero temper-
ature. Electrons which occupy the excited states above the band gap are
termed conduction electrons. In the following discussion of the adiabatic
approximation, the crystal is decomposed into ions (the nuclei and the core
electrons treated as a unit moving rigidly together) and the outer electrons
which are either valence electrons or conduction electrons.

The effect of the lattice (ions) on electron transport is typically eval-
uated by making use of the adisbatic approzimation which separates the
electronic (outer electzons) and ionic motion so that their interaction may
be treated in perturbation theory. The erystal Hamiltonian in the adiabatic
approximation can be derived from the general Hamiltonian as follows. The

full Eamiltonian is [1],
Hiw = Tim({R}) + Uien({R}) + Tut({r}) + Uee({r}) + Uu({r}, {R}) (1)

where the ionic and electronic kinetic energies are Tion and T, and the
potential energies Ujon and Uye. (U, is the electron-electron interaction.)
U, is the electron-ion interaction, and the ion and electzon coordinates
are denoted by {R} and {r}. Because the ions are more massive than the
electrons, they will move much more slowly. The key step in formulating
the adiabatic approximation is the assumption that the electrons respond
adiabatically to the motion of the ions — the ion motion does not force
transitions between electronic states, but the electron eigen-states evolve
adiabatically as the ion positions change. Then, for s fixed set of jon cooz-
dinates { R}, there corresponds a full set of electronic eigen-fanctions:

(Ta({r}) + Uee({r}) (@)
+Ua({r}, {R)1$a({r} {R}) = Es({R}¥a({r}.{R}), (3)

and the eigen-fanction of the full Hamiltonian H;o® = Ei®, is given by,
&= ) xa({R)P.({r},{R}) (4)

[Tia({R}) + Uten({R}) + Ea] xn({R}) = wa xa({R}).  (5)

In (5) several small terms have been neglected which involve the action of
Tion o0 the electronic wave-function. This is a justifiable appraximation
since these terms have been shown to be of order (m/M)%? where m is
the electron mass and M is the ion mass (see [1]). The ionic wavefunctions
must be calculated self-consistently with the electronic wavefunctions as
shown in (8).

In order to untangle the electzon states from each other, the Hartree or




Hartree-Fock approximation can be employed which decouples the many-
electron state into simple, one electron states by the introduction of ex-
change and correlation energies. The electron-electron interaction U,, in-
troduces another effect which dresses the remaining coulomb interactions,
such as U, with a screening cloud zesulting in screened interactions (see
section 3). We shall designate this screened electron-ion interaction as Uy;.
Similarly, the electron-electzon polarisation screens other coulomb interac-
tions such as the interaction of conduction electrons (holes) with ionised
impurities, V;, and the electron-electron (carrier-carrier) interaction be-
tween conduction electrons or between conduction electrons and valence
electrons, V... V; and V,, are assumed weak and treated as the perturba-
tions responsible for ionized impurity scattering and impact ionisation (the
inverse Auger process) discussed in later sections of this chapter.

The many electron state is retrieved by placing electrons into the one
electron states obeying the Pauli exclusion principle. This is the essence of
the one-electron approximation for which,

[Tutr) + Oulri ARY) + Usx] a(r. {R) = EL({RDIu(m {RD) . (6)

where Upx is the exchange energy. .
The electzon mobilities are generally large in most semiconductors, and

it is appropriate to treat the electron-ion interaction U as a perturbation
(2). Purthermore, because ionic vibrations involved are relatively small, a
good choice for a perturbation approach to decouple the electrons from the
ions is an expansion in the displacements of the ions from their equilibrium
positions u®(R;). If these equilibrium positions are designated as {R}, the
solution of (6) for the one-eleciron wave-functions yields the familiar Bloch
wave-functions of band index n and wave-vector k:

[T,,(r) + ﬂ.((f. {Ra}) + st] $aa(r) = E-(k)!"-a(') (M
H '(')*ul(r) = E, (k)ﬁul (')n *nb(') = ﬁu(r)c“" .
Labeling the equilibrium lattice sites by RY for integers , the basis vectors
a, and keeping only the first two terms in the expansion of Uyi(r — Ri),
Oulr - R) = Oulr = B — ) + w*(R)-Valulr =R)], ..+ (8

the one electron crystal Hamiltonian in the adiabatic approximation be-
comes:

B = Ta+ Vc(f) + V’('i R) + Vi(') + Vu(ﬂ ") (9)
%(r) 3w (Ri)- VaOu(r — Ri - a)
la

Heze, V,(r) is the equilibrium periodic crystal potential, Ue(r, {R%}). V;(r)
zepresents the phonon scattering perturbation.
The ion eigen-states are, (to second order in the ion-iom interaction)




harmonic oscillator states or phonons. Specifically, the ion Hamiltonian
is disgonalised by appealing to the raising and lowering operators for the
normal modes of vibration, the phonon modes of the crystal. In the phonon
occupation aumber basis, (3]

B = 33 wiloylsle} (@) + of (es(a)) (10)
o

where a} () and ay(q) are the raising and lowering operators for the phonon
mode oi’ wavevector ¢ and branch j. In this notation, «*(R;) can be ex-
ptessed by an expansion over the normal modes of wavevector ¢ of the
lattice as [4)

¢
w(R) = %3[27:?.‘] Gl () +af (-l gy ()

where N is the number of primative cells in the lattice, mq is the mass of
the ion at basis Jocation a, and Q, is the phonon wavevector.

2 Scattering in the Semi-classical Boltzmann
Equation

To derive the expressions for scattering in the semi-classical Boltsmann
equation (SCBE), we start with the equation of motion for the density ma-
trix p for the adiabatic crystal. As discussed in section 1, the crystal system
can be separated into a carrier part (conduction electrons or holes) and a
phonon part. The phonons are considered to be a thermodynamic heat
bath in equilibrium at some temperature T'. Then, weakly coupled to it are
the carriers which we can enumerate with the Bloch wavevector and baad
index quantum numbers. Furthermore, the carriers are weakly coupled to
each other, V., and to impurities, V7. As noted above, these interactions
are weak, and we can approximate the full density matrix as & product of
the carrier density matrix and the equilibrium phonon deasity matrix at all
times. This derivation ignores V,, so that simple one-particle states can be
used; however, to include V,, to first order, two particle antisymmeterised
states can be chosen instead. For one-particle states, the carrier density
matrix is labeled only by the wavevector & 45..) (suppressing ») and the
phonon bath density matrix by pg = ¢~P%¥3, Here, 8 = 1/ksT, where
kjp is Boltsmann's constant, and Hy = Hj, the bath (jonic) Hamiltonian
given above. In general, the quantum analogue of the phase space distribu-
tion function is the Wigner distribution which is a transformation of p. To
demonstrate the form of the scattering kernel (“collision inf ") in the
SCBE, the field can be ignozed and it is permissible to identify the diag-
onal of pyys as the distribution function f(k) which occurs in the classical
Boltsmann equation.

First, the standard quantum Liouville equation neglecting the electric




field is:

.o 3p
'hy = Hyup, (12)

where the hyper-operator notation
A*B=[A,B]|=AB-BA (13)

has been employed and A and B are operators. Hi, is the adiabstic Hamil-
tonian ss derived in section 1.

The projection operator method (see for example Kubo [§]) sepazates
the diagonal of the system density matrix so that an equation for the time
evolution of p§, = f(k) is obtained. Then, the two projection operators

e? '\’ irp

P = ;;-‘_—’-“-Qﬁ.',l (14)
Q = 1-pP (15)

with the properties PP = P, QQ = Q, and PQ = QP =0, can be used in
order to derive equations of motion for the diagonal and off-diagonal parts of
p in terms of each other. Here, trp is the many body trace over the phonon
bath states. The projection operator P projects the portion of p which
is diagonal in the carrier quantum numbers (containing the probability of
occupancy of the carrier stationary states) and leaves the phonon bath in
its equilibrium configuration. .

By substitution, we arrive at an equation for only the diagonal part in
the form,

#(p2E) = —Lp(a,)" /.‘ dt'e=$ATT Q) (Ppl¥))  (16)

where the density matrix has been assumed to be diagonal at ¢ = 0. Here,
all the perturbations discussed eazlier have been included in H,.
Then, noting the hyper-operator identity for operators 4 and B,

A" B = ¢ABe~4 (17

and that
edHedt=¢) — g (4, ¢) (18)

wheze U,(t,t') is the Schroedinger picture propagator for the full Hamilto- .
nian from f to t', we can write equation (16) in terms of these propagators

[I ll'
a h [+] ! ’ ! )

Since H), is considered weak, it can be neglected in the exponeatial of (18)
compared to Hp and Hg = T + V.. This allows an expression of U, in




terms of products of the free propagators for the bath and the carriers,
U.(‘. ‘l) a~ ‘-{l.(l-l') <« f'.(l—l‘)' (20)

If the matrix element for the electron phonon interaction given in (10)
is defined as,

(Vp)aae =<0k’ | Vy(r) | nk >, (21)
where the phonon operators in u*(R;) have produced to Ny, as discussed
above, and the matrix element for the non-phonon scattering terms is de-
fined as

(V)ase =< 0'¥’ | Vi(r) | nk > (22)
for the i*® perturbation, then the equation of motion for pf, = f(k) is given
by, )

2 19 = . (29)
23 | (e P [ 0K )04 ) ~ T M) 0+
Y] o

Il [ "0 8 B )8 ) - Ty (b, K5 €) (R, )

with
Ti(k, k) = e-((w(i)-u(h'))(t-t') (24)

Tt(ko.k') = (Na-a + l)e"("'("""(")'“l-t'X“") +
(Ng-yk-l(w(i)-u(l')w.-.:)(t-t') . (25)

with w(k) = E(k)/A. Ti(k, k') and Tp(k, k') are functions associated with
non-phonon and phonon scattering from k to &k’ respectively. Furthermore,
the trace over the phonons and the action of the raising and lowering opers-
tors in the electron-phonon perturbation have produced the factors Ny, +1
and Nj, for emission and absorption respectively with Njq being the Bose-
Einstein average occupation number for the phonon of wavevector ¢ and
phonon branch j: .

Nie = o1

If £(t) were outside of the time integrals, the integral over ¢ of the
T(k, k') becomes the familiar delta functions of energy conservation. For

example,

(26)

Jdm :«wm (Ti(k, K5¢)) — «AS(E(K) - E(R) . (27)

Since f(t) typically changes very little in the time it takes to establish
a delta function, f(t) can indeed be taken outside of the time integral.
The result is the standard Boltsmann equation with the scattering rate




S(k, k') from k to k' given by the familiaz Golden Rule expression for enezgy
conservation:

Sk K) = 3 (e PS(EG) - ER) (28)
for elastic scattering processes, and
SEE) = TN+ 3£ 3) | (B PHER) - EF)Fwg)  (29)

for phonon scattering processes where the upper sign is taken for emission
and the lower sign for absorption and ¢ = k —&’. Thus, the scattering rates
in the SCBE are simply given by the Fermi Golden Rule from quantum
mechanics.

However, the scattering events have been treated as if they happened
instantancously as a result of the approximation in (27). This approxima-
tion breaks down in three cases. The first case is obvious. If transients are
to be resclved on a time scale of the order of the time it takes to estab-
lish (27) and the scattering rates are high, f(k,t) cannot be palled out of
the time integral and the simple forms in (28) or (29) will not apply. If
the perturbations are sufficiently weak, then f(k,t) can still be removed
from the time integral, but (28 and (29) must be zeplaced with partially
completed delta functions, which relax energy conservation. This is just a
manifestation of the energy and time uncertainty principle.

Second, if scattering rates are high, the approximation of a weak intez-
action leading to equation (18) breaks down, and in the time it takes to
establish the delta function in (27), the original state can decay appreciably.
To sccount for the depletion of the initial state in the finite time it takes
for the collision to become “complete” the approximation in (18) must be
improved to include the effect of H, in U,(1,t'). One way to account for
H, is tc calculate the full propagato: U,(2,t') from field theory. This leads
to two additions to (23). First, the simple propagators in the scattering
terms are dressed by virtual transitions in the self-energy I(k, E) [6]. The
second addition unfortunately leads to the inclusion of terms which do not
tesemble the Boltsmann equation. Typically these terms are assumed small
and are ignored. At present, it is unclear what effect these terms have. Fol-
lowing the general approach that these terms are small, we can angment
the SCBE by including E(k, E) in equation (18).

Assuming that the self-enezgy can be calculated, (see for instance refer-
ence [7] for a self-consistent calculation of the self-energy for realistic band
structures) quantum field theory states that for ¢ > ¢’ [0),

O,(kit,¢) = - $(E@IHAMN-0),- HFOIN-6), (30)
with

A(k) = Re(E(k))
T(k) = Im(Z(k)) . (81)




Physically, A(k) corzesponds to a shift in the energy level (L), and I'(k)
corresponds 1o the finite lifetime of the state k. For example, the probability
that a particle which starts at time ¢’ in state k isin state h at time ¢ (1 > ¢')

is
| U (k;t,t") P = &= 2FON-6), (32)
The total scattering rate out of state k, Siu(k), can be identified as

Sulk) = 3TG), ()

by interpreting the lifetime of the state as the inverse of the total scattering
rate. (This can also be shown through application of the Optical Theorem of
quantum mechanics [8].) This clearly demonstrates the connection between
high scattering rates and the finite lifetime of the state.

- When (32) is substituted into (23), the limit in equation (27) becomes,

A(B,E)= (34)
tim Re [ dete- HEGIAR)-BOAY+ 8 IN-¢) - HEOHIAINe-¢)
$=o00 0 .

A I{(E}+ (5

TT(E+A(B)-F - AF) +(T(E)+TE)

Thezefore, one way to add the effects of high scattering rates to the SCBE
is to replace §(E — E') with A(E, E') which is the familiar Larentsian line
shape. The effect of broadening the delta function through high scattering
rate is termed collision broadening.

Lastly, if a lazge electric fleld is present, the carriers can be accelerated
appreciably during the time of the collision. This is referred to the intre-
collisional field effect. In gemeral, this effect can also broadea the emergy
conserving delta function, howevez, it is more difficult to deal with in &
compact way. The interested reader is referred to the following references
for a detailed treatment of this effect and collision broadening: {9]-[11).
Also, for an overview of attempts to include collision broadening and the
intracollisional feld effect in Monte Cazlo Simulations see: [12}-18].

8 Dielectric Screening

As discussed in section 1, the scattering potentials V,,, V; and V, are
self-consistent, sczeened potentials which result from bare perturbations.
Because in most cases the bare potentisls are simple Coulomb potentials,
v(g) = 1/(4xeoq?), the easiest way to calculate the self-consistent perturba-
tions is to screen the bare perturbations with the dielectric fanction which
connects the two.

Suppose the potential, V,,(r, t) is intzoduced as & bare, external poten-
tial to the ceystal. The resulting (true) potential felt at time ¢’ and position
v is Vi (v, t') and the induced charge is pa(r,t). If V., is weak enough
that first order pertuzbation theory is adequate, thea we can calculate the




tedistzibution of chazge, pia(r,t) a3 a linear functional of the self-consistent
potential V;,(r,t). In general (18]

pia(nt) = / d' / dt'x(r,o'; ¢ = ¢')Wo0 (¢, ') (35)

where x(r, ;¢ = t'), the electronic susceptibility, is calculated from first or-
der perturbation theory in which V;, is the perturbation. A related quantity
called the dielectric function can similatly be defined:

Vee(nt) = / a*’ / dt'e(r, 't - ')V, (v, 0). (36)

The “inverse® of the dielectric function is the quantity we want siace it
expresses the true potential in terms of the bare (external) potential.
The Fourier transform p(g + G, w) of equation (35) can be written,

pin(g+Gw) = /v LA+ O+ Coo'+ T50) Vuold +G0) , (37)

where G is a reciprocal lattice vector, ¢ is s waverector in the first Brillouin
sone (BZ), and Vol is the crystal volume. Because x is lattice translation-
ally invariant, x(r,*') = x(r + Ry,#" + R';), and the integral in equation
(35) becomes & summation: {14]

Pa(g+G0) = ) x(g+G,q+G\0) Viulg +G'0) . (39)
c‘

A similar result bolds for (g + G, ¢ + G, w):

Veelg+Gw) = ) {4+ G,g+G'\w) Vilg + G'0) . (39)
Gl

Application of Poisson’s equation connects V;, with V,, [16] Fourier
transforming the Poisson’s equations for the total charge p = pra + 940 and
the external charge p,, we bave,

(2+G)*Ve(g + G,w)

—ip(q+c.w) (40)
(@46 Vualg+G0) = -%p..(qw.-)- (41)

Solving (40) and (41) for p;a and substituting this into (38) identifies the
dielectric function in (39) as:

g+G.q+G'\w) =bcq - 7 x(¢+G,q+G'\w). (42)

1
«w(g+GC

The random phase approximation (RPA), a type of first order perturbe-
tion calculation including the temperature through the distribution function




fa(k), defines x as:

. - Sa'(k +q) = fu(k)
x'(e+6,9+G\0) = Es.:(uq)-s.(&)n»

<nk|e 040y | 'k 4 g) S< n'(k+q) | 1+ | np 5 . (43)

This together with (42) expresses the effects of screening on a bare, external
potential. Then, the inverse of the mattix ¢(g + G, g + G*), where the rows
and columns aze labeled by G and G, expresses the true perturbations V..,
V: and V, in terms of the bare Coulomb potentials which give rise to the
perturbations. A plot of ¢(g, ¢) is shown in figure 1 as a function of w for
silicon at sero temperature calculated using equation (43).

Several simplifications of this result are applicable for scattering in semi-
conductors. First, the off-diagonal terms can usually be neglected for non-
phonon scattering since they are usually smaller than the diagonal. They
must be kept for phonon scattering since they are necessary to fulfill certain
sum rules ([2]). Furthermore, since there are usually many more electrons
in the valence bands than there are electrons (holes) in the conduction (va-
lence) bands, fo(k) s 1 for valence bands and f,(k) =5 0 for conduction
bands. This is the sero temperature approximation.

One simple way to include the effect of the free conduction band elec-
trons in the T = 0 model is to add the susceptibilities for the T = 0 case,
x° and the susceptibility for & free electron gas x* with density equal to
the density of conduction band electrons. Two expressions for x* are given
by the Thomas-Fermi screening theory and the Lindhatd screening theory
for a free electron gas [17). For example, in the Thomas-Fermi theory

xe) = - 2025 (44

where f; is an equilibrium Fermi distribution in the conduction bands, and
Ej is the Permi energy. Then, a natural screening length can be defined s

k;? = 5%5_.73;0_. (45)
s0 that N
eg) = 1+ &L (46)

¢

Having derived relations between the bare perturbing potentials and
the screened potentials which result, we can explicitly calculate important
scattering matrix elements for use in the SCBE of section 2.




REAL PART OF DIELECTRIC FUNCTION

Figure 1: Real and Imaginary parts of the frequency and wavevector de-
pendent dielectric function in silicon calculated using the random phase
approximation (RPA).




4 Phonon Scattering
4.1 Phonon Perturbation Potential

In this section, the phonon perturbation is rewritten in terms of the bare
potential and the dielectric function, and the matrix elements (V3),3. .4
from (21) are calculated. From section 1, the perturbing potential was

found to be
Vp(r) =) w*(R)- VR Ou(r - Ri -a) (47)
la

where Uu(r — Ry — a) is the self-consistent pseudopotential (effective po-
tential outside of the ion itself) felt by an electron at r due to the ion at
site R; and basis vector a, and Vg, - Usi(r — Ry) is the local gradient of
that pseudopotential taken with respect to the ionic location. Proceeding
as in Vogl (2], we Fourier transform V,(r):

V() = D avig+6), (48)
G

where, ¢ is & vector in the first Brillouin sone and G is a reciprocal lat-
tice vector. The summation above must contain all vectors of reciprocal
space because V,(r) depends on the displacements u*(R;) which are not in
general periodic in a primitive lattice translation. Since the displacements
are small, we assume that J,; is related to the unscreened ionic potential
va by the inverse dielectric fanction ¢~(r, 1) as described in section 3. In
this context the unscreened ionic psendopotential, va, is the potential of
the nucleus and the core electrons associated with the basis jon a. If the
crystal is monoatomic, v, is independent of a. v behaves like a Coulomb
potential at long distances, but has a repulsion for short distances due to
the core electrons (see [17]). A more exact expression for this potentiul is
given in the chapter by Fischetti and Higman.
In terms of the bare pseudopotential and the dielectric function,

Wa+G) = g [ dretierer LRy (@)

d*r'e(r,r)Vrva(r — Ri - a),
Vel
wheze Vol is the crystal volume. The resulting Fourier components, 8V (g+
G), of the screened perturbation are referred to as pseudopotential pertur-

bations.
From section 3 we can write equation (50) in reciprocal lattice space as,

aV(q-}a) = —i ) u(Ri)-
[

.

Y €N (g+Goa+G)(g + @)ttt (g + @) (50)
a'




The result of equation (80) comes from the recognisation that Vg, v.(r —
Ri—a) = =V,va(r - R — a), and an application of the shifting and
detivative properties of the Fourier transform. We do not need to consider
the frequency dependence in (50) since in the adiabatic approximation, the
fons are assumed to be stationary.

Substituting the expression in equation (11) for «*(R;) into equation
(50), we can write,

. i
W(g+G) = % E 2—&';::7"1 laj(¢') +af (') &g - (81)

aje'G’
(¢+G)e g+ G g+ C'valg + G')e (130 a T e’ -1~ Ry,
!

Concentrating on the sum over l, we can make several simplifications. First,
G'-Ryis always 2x, so the G’ in the first exponential can be ignored. Second,
if ¢ # g+ G" with G" being any reciprocal lattice vector, the sum vanishes

because ,
S = oo e
' -

Hence, we can considerably simplify equation (51) and write it as

. }
W(g+G) = -;% p [;ﬁ] [aj(0) +af (-0)) & -

a@’
(2+ ')} (g+ G, g+ G')valg + G')ee, (53)

where the fact that = Vol/N, the unit cell volume, has been used.
Equation (53) is substituted into equation (48) to give the full electron-
phonon perturbation V,(r) in terms of the bare ion pseudopotential and
the dielectric function. :

4.2 General Electron-Phonon Matrix Elements

To calculate the matrix elements of the electron-phonon interaction as re-
quired in the scattering kernel (see section 2, equation (29)), we need only
calculate the matrix element of ¢!(1+9)* between Bloch states. For exam-

Ple,
<n'¥ | V(r) Ink >= ) 8V(g+G) <n'k' | |nk > .  (54)
0

whete | nk > are the normalised Bloch states N "*s,..(r)e“" of band
index n and wave vector k. The phonon raising and lowering operators
in equation (53) have already acted on the phonon occupation states to
give N as in section 2, equation (26). The electronic part of the matrix




element provides conservation of the total crystal momentum as follows:
< 'k’ | 049 1 np 5=
L / Wopr (P uny(r) $' =20 (FiletOhegs, (55)
Nlva

= fraspe [wlalr)ea() SFOCTE (so)
a

Here, the integral in (55) was factored into a sum of integrals over the
primative cell. The result of (56) follows from the identity given in (52).
The G’ in the Kronecker delta refers to a general reciprocal lattice vec-
tor, not necessarily the particular G in the integral. When G’ # 0, the
scattering process is called an Umklapp process (assisted by a reciprocal
lattice vector). In the following sections, &y 14, always implies that Umk-
lapp processes are allowed (6219 — 55!_.*.*@:), although the G’ will be
suppressed in the notation. If an Umklapp process occurs, then an extra
term, ¢9’?, appears in each integral.

4.3 Phenomenological Phonon Scattering Processes

The form of the electron-phonon matrix element as given in (54), written
in terms of microscopic quantities is exact within the rigid-pseudo-ion ap-
proximation (see the chapter in this book by Fischetti and Higman) [19).
However, because it requires a detailed knowledge of both the dielectric ma-
trix and the bloch wavefunctions, it is very difficult to calculate. With some
approximations, simple forms for these interaction matrix elements which
correspond $o well known phenomenological scattering processes in semi-
conductors can be demonstrated (2]. In particulaz, the acoustic and optical
deformation potentials and the polar optic interactions can be extracted
from (54), and the approximations leading to these familiar processes can
be examined. '

From equation (53) it is apparent that V,(r) can contain both long
range and short range components. Long-range components vary negligibly
within the unit cell and produce ficlds, whose average over many cell lengths
does not vanish. The long-tange components are therefore responsible for
the macroscopic fields produced in the crystal, which have been identified
with the phenomenological polar optic interaction in polar materials, and
the piesoelectric interaction in both polar and nonpolar materials ([2]). In
contrast, the short-range components of the perturbing potential involve
rapid oscillations within the unit cell, and consequently, their average on
any macroscopic length scale vanishes. They do, however, contribute to
scattering through the phenomenological deformation potential interaction.

The separation of V,(r) into short and long-range components has been
shown by Vogl by considering the behavior of V(g + G) as ¢ — 0 [2]. We




quote only the result,

g4 K] ~t Gl
Vo(r), = et [I+GE#°¢‘° _e__‘_fq‘_(%ﬁl] V(q) (57)
Vo(r),, = 39 av(g+ ), (58)
g#0

where Vp(r),, and Vp(r),, are the long and short range components respec-
tively.

4.3.1 Phenomenological Deformation Potential

The electron-phonon matrix element for the short-range interaction is ob-
tained by combining equations (58), (53) and (55). The resulting matrix
element can be recast into the form of the deformation potential interac-
tion, and will be shown to involve, for small g, dilation for optical modes
and elastic strain for acoustic modes. For large ¢, the form of the phe-
nomenological intervalley scattering matrix element will be discussed.

We start by putting < 'k | Vj(r),, | nk > into & more manageable
form for a crystal with a basis of two (a = 1 and @ = 2). For a crystal
with a basis there are two phonon types, optical and acoustic, and they
behave quite differently. For acoustic modes, limy..o w(g) — 0, correspond-
ing to a rigid displacement of the entire lattice, whereas, for optic modes,
limg_.ow(g) = wep # 0 corresponding to rigid displacement of the two sub-
lattices. The latter case can cause transitions between the adiabatic Bloch
states leading to scattering, but the former case cannot lead to scattering
(20} For small ¢ it is possible to write the phonon polarisation vectors,
£, a8 Q, = Km;‘/’f“ and &, = £ Kma¥ /3, where &¢ is & unit vector,
K is s constant, and the plus (minus) sign is chosen for acoustic (opti-
cal) modes. Furthermore, in this limit, there are three acoustic and three
optical branches corresponding to two modes polarised transversely to the
direction of propagation and one poplarised longitudinally.

]
<n'k| Vo(v),, I nk> = (NJ'(T) + ;':k 51') [2727'] (59)
~ifipzg <a'¥ |eTVI(r) [k >

with V" given by comparison with (58) and (53). 4 can be chosen to be
the reduced mass. Since, the final form for (59) is phenomenological, the
constant can be chosen to accommodate the choice of u.

To compare (59) with the phenomenological forms for deformation po-
tential scattering, we expand ¢'** in a Taylor series in ¢ and look for the
higest order non-vanishing terms.

For small ¢, the exponential in equation (59) can be expanded as €'t
1+iq.r. For the acoustic phonon case, the highest order term in (89) which




does not vanish is the ¢ - r term, since as discussed above, the constant
term corresponds to a rigid displacement of the entire crystal which cannot
scatter [2]. For & particular mode 5, (59) thea becomes

" 1, 1\
<o’k | Vp(r),, | nk >¢ = N;,(T)+§i§

bwpre <K' | (gafe +ayry +0rs)Vie(r) Ink > &g (60)

Equation (60) can be put in the form of the familiar deformation po-
tential interaction as first expressed by Shockley, which for & given phonon
branch is [21]-[23],

<o’k | Vp(r),, | nk Dee = (61)

$
. [ﬁ] (Mutrr+ 3 3) L

The terms in (60) correspond to the following terms from (61):

Sa = <o | [V W+ (V0] [ nk> (62)
wheze (V/'7); is the I'* component of V'*, and
=1 =10 | Oy
s‘j = 2(&0 +CJ‘R) - 2 (08’ + 82‘) (63)

Since the displacement, s, is proportional to f,e"". Sq is the elastic strain
tensor [25). Thus, E; is the deformation potential tensor which couples
the local strain set up by the acoustic phonon to the scattering matrix
element as given in the phenomenological theories of scattering by acoustic
phonons. Equation (61) is valid for small ¢, which corresponds to intravalley
scattering for low energies and represents the anisotropy of the coupling
constant. For larger g, higher order terms in ig - r come into the integral
in (60), and hence the coupling to the phonon wavevector involves higher
rank tensors.

Now, returning to (59) for the case of optical phonons, the highest
order term which can be non-sero is the seto-order term. In contrast to
the acoustic mode case , the sero-order term can be nonsero because when
g — 0 for an optic mode, the two sublattices are rigidly displaced with
respect to one another, and this can scatter carriers. Thus, for the case of
optical phonons, we look to highest order at the sero-order term and write

- < "'k’ I V’(')" I nk >‘P = (64)

¢
(M4 323) s <A IGEO) k>

This is valid for small ¢ (intravalley scattering). Equation (64) can also be




written in terms of an optical deformation potential vector D,, as,

<a'k' | Vy(r),, | nk >, = (65)

N AL *D P
(d(ﬂ"';i"‘) m op + EejSreaty - v(66)

The form of the electron-phonon matrix element for small q and optical
modes involves a direct dilation of the local crystal structure as seen from
the dot product coupling Doy -§. Thus, 66 yiclds the phenomenological opti-
cal deformation potential matrix element ([25]). It has been shown that for
symmetry reasons the intravalley optical deformation potential scattering
vanishes for X and I'y valleys for the sero-order matrix element discussed
above [26)-{27]. In general, the higher order tensor coupling (acoustic-like)
can be non-sero.

While for small ¢ the phenomenological form of the deformation poten-
tial interaction for acoustic and optic modes is quite different, for lazge g,
the coupling contains many complicated higher order tensor modes. The
standard treatment for these situations assumes that, for a particular intez-
valley transition (for example, X-X, I' - X), ¢ is confined to a small cone of
allowed directions. Because the angular orientation is fairly constant within
this cone, the tensor coupling can change only a small amount for any scat-
tering into the cone. Then, it may be approximately correct to treat the
coupling for intervalley transitions by a constant. Usually the intervalley
deformation potential matrix element is written phenomendlogically as [24)

¥ }
< 0¥ | %(r),, |2k >0 = Dy [ﬁ,%;{] (Fom+323) Grase-
(67)

Both acoustic and optical modes have been shown to participate in
intervalley scattering with this type of scattering rate. It has been shown,
for instance, that to fit experimental values of conductivity in silicon, it is
necessary to include acoustic phonons in intervalley scattering [28]. It is
evident from the nature of the integral in (69) that the coupling is widely
determined by the orientation of the final valleys and the phonon branch.
Thus, for each phonon branch and each set of initial and final valleys, a new
intervalley coupling constant, D;,, must be chosen. Typically, the values
for D;, are selected to best fit experimental data for a givea Monte Carlo
simulation [29}-[31].

Finally, for the phenomenological deformation potential interaction, some
authors have factored out the overlap integral,

I, m8) = [ ' wslrhuiae), (68)

from the matrix elements. This is only valid for the long range interaction,
as discussed in the next section, and can readily be seen from (56) and (57).




4.3.2 The Phenomenological Polar Optical Interaction

In this section, the phenomenological polar optic phonon matrix element
will be derived from the long-range matrix elemeant in (57), using the equa-
tions of mactoscopic electrostatics (2]. The first step is to factor out of (57)
all terms proportional to the Coulomb potential v(g) o 1/¢* so that the
behavior of the matrix element for small ¢ is clear. These terms can be

factored out giving,
< 'k | Vp(r),, | nk >pe =iV (¢)I(n'¥', nk) (69)

N,
vele) = 525 g,

with,

3 L]
Nur() = (W) +323) [,—,é‘;] : (70)

The quantity 2% is the remainder of (57) after the singular 1/q terms
aze removed (see Vogl [2]). The whole matrix element is proportional to 1/¢
and so, acts quite differently than the deformation potential matrix element.
Here, €(9,9) = ¢(g), the macroscopic dielectric function. Equation (69)
is a fairly intractable formula, since the function Z3is generally difficult to
calculate. However, their exists a simple expression for Zf which can be
seen by using macroscopic electrostatics. This is only possible because of
the long-range nature of the perturbation discussed earlier.

The term containing the product {5 Neys(T), can be treated as the
effective phonon polarisation vector, . In addition, Viu(g) is the true
macroscopic potential perturbation set up by this phonon. As such, it can
be examined using macroscopic electrostatics and related to the polarisation
wave of the phonon.

Two equations from macroscopic electrostatics directly apply: first,

V.D(r) = V-(eE(r) + P(r)) = 0 < E(q) = -P(g)/e (71)

in the absence of excess charge (charge neutrality is not necessary for the
proof but it is & convenient assumption), and P(g) is the polarisation.
Second,

V.V(r) = —eE(r) < iqV(q) = —eE(q)-§ (72)
where V(r) is the potential energy felt by an electron. Together these
equations give

igVm(q) = ef- Plg)/eo (73)
which can be substituted into (3.25) to give

I(n'¥',nk)d-eP(g)

<od (74)

< o'k | Vp(r),, | nk >pe =




g

Comparing 74 with 69 yields the polarisation P(q) in tezms of microscopic
quantities,

Fot small ¢, P(q) is the dipole polarisation set up by the optical phonon
mode in the crystal. Forlazger ¢ P(q) acquires higher order poles (quadrupole
polarisation, etc. ). We are only interested in the small ¢ limit for polar op-
tic phonon scattering, so for these purposes, P(q) = Pupote. Fortunately,
the dipole polarisation associated with a long wavelength mode is easily
calculated from a self-consistent, first order lattice dynamies theory. The
result is that (32}, ]

4 Pupa = B4, (15)
where e}, is the effective dipole charge associated with a longitudinal optical
phonon and u is the jonic displacement. Furthermore, an application of the
well known Lyddane-Sachs-Teller relation relates the effective charge, e7,
to the experimentally known quantities ¢,, € and the longitudinal optical
phonon frequency at sone centet wro [32):

() = feonlo (l -4). (7e)

€oo

This allows us to rewrite (69) for small ¢ in a more transparent form
involving experimentally known quantities:

<HH | G(r), | nk Spe= el (2:' CE 1wnat) (1)

or, in the familiaz Frohlich interaction form,
[< w'¥ | Vp(r)y, | nk Spelty = IP(n'k’,nk) (78)

1,1\ ehwgo (l l)
wase (Mot 23) ydm (3 - 2

Pure transverse modes do not scatter because for them, §-§5 = 0.
So, only longitudinal modes participate in polar optical phonon scattering.
Also, although not stated explicitly, the Frohlich interaction (78) vanishes
in non-pola.r crystals. The reason for this is obvious on physical grounds-
in a non-polar crystal, no dipole polarisation can arise from optlal mode
displacements. Mathematically,

Z::Z:, (:,:—("J (79)

30 the sum over a vanishes.

The lowest ordet (in ¢) long range acoustic mode process which doesn’t
vanish is the scattering due to quadrupole polarisation. Piesoelectric scat-
tering results from quadrupole polarisation and can be present in both polar
and non-polar erystals [25].




4.3.3 Phonon Scattering Rates

In the first part of this section the general electron-phonon matrix element,
and the standard phenomenological electron-phonon matrix elements have
been presented. To make use of these rates in 8 Monte Carlo simulation,
we need to calculate from these matrix elements, the total scattering rates
out of a particulas state, and the differential scattering probability between
a given final and initial state for use in the SCBE.

In section 2, it was stated that for weak perturbations and low electron
energies, the Permi Golden Rule (28) adequately described the scattering
rate into a particular set of final states from s given initial state. The
general form for the total scattering rate, Sic(nk), is the Golden Rule rate
summed over all final states:

Siee(nk) = Y038 [< 'K | Vy(r) | nk I 6(Ew(k) = Ea(k) o) . (80)

where wg; is the phonon associated with the particular scatterer in Vj(r).
This expression can be calculated exactly using the full electron-phoson ma-
trix element in (53) as discussed in the chapter by Fischetti and Higman.
However, it is standard practice for Monte Carlo simulations to take the -
much simpler soute and calculate the scattering rates for the phenomeno-
logical matrix elements of the previous sections.

In fact, in order to obtain closed form expressions for these scattering
rates, it is necessary to assume simple analytic forms for the band structure,
the most general of which is the non-parabolic, ellipsoidal band structure
describing the bands near the minimum of a “valley®. The analytic form

most often used is,

(81)
where &9 is the minimum of the valley. Accordingly, this description is only
valid near the minimum of a particular valley. In general, the band struc-
ture is very complicated [33], and in the case of hot electron transport, the
electrons are far these minima. One way to deal with this problem is to
calculate the matrix elements discussed above for & full band structure. An-
other, much simpler way is to calculate the various scattering mechanisms
valid near the minima and normalise the scattering rates to the density of
states for higher energies [30]. This is a reasonable approach since most
scattering rates are proportional to the density of states.

In this section the standard scattering rates valid near valley minima
are discussed. Since the derivations leading to the scattering rates from the
phenomenological matrix elements are well known and given in many texts
(see for instance [34) and [36]), we quote only the results here. Typical
values for the phenomenological parameters and material parameters for
silicon aze given in the appendix of this chapter.

However, as a prelimeninary, we list facts useful for deriving them. First,

v(E) = E(1+aE) = %:((*- ;.*2)’ + (ky;:;’)’ R (g,;:g):




to transform a summation over k' in (80) into a more managesble integral
over k' we use the transformation [34]

— o [ (82)

Note that spin is conserved in phonon collisions. Furthermore, if the m;
are equal, these integrals are normally done in spherical coordinates. Thea
the magnitude of k can be transformed into an integral over final energy
E; by use of the transformation,

{1+ 2a5;)m’ :"'ﬁ’)"" : (83)

If the masses are unequal, the Herring-Vogt transformation is useful because
it maps the problem into a “starred-space® which has & spherical E(k)

relation [36):
k — kyy/m . (84)
The problem is then solved in the “starred-space™ and then transformed

back to- the physical space. As far as total scattering rates are concerned,

this only has the effect of replacing m* in the result by mp = (mym,m, )V s
For intra-valley optical deformation potential scattering:

dk’' = dE,

3
Sgu(E) = s—:’%:-r; [Nu,' + ';-i %] Q(E + M”) . (85)
wheze g(E) is the density of states given by,
o(F) = P2X0 (1 4 2am)(EG + 0B L E>0 (a9)

and D,, is the optical deformation potential, p is the crystal density and

Wep is the relevant optical phonon energy. To determine the final state after

scattering, we only have to enforce energy conservation, E(k') = E(k)

% Nwey. Any state on this energy conserving surface is-equally probable.
For inter-valley deformation potential scattering:

.D’:z

s‘“(E) B 8”"’"
where Wiy is the intervalley phonon energy for a particular phonon branch,
and Z, is the number of equivalent final valleys. For instance, in Silicon,
there are six X-mimima, and two “different” types of intervalley scattering.
For scattering aczoss to the X-mimimum on the same axis (g-scattering),
Z, = 1; for scattering to one of the minima on the plane perpendicular to
the initial state axis (f-scattering), Z, = 4.

Ay, is the energy difference between the initial and finial state min-
ima. For X-X scattering in silicon, A;, = 0. For I'~L scattering in GaAs,
Ay 22 0.2¢V. As in the intra-valley optical deformation potential scattering

z, [N.,,, + -;-:l-. %] o(E+ Ao —Bs),  (87)




E < E, | Absorption 2pmia =4E; (E;'/? ~ EVM3)/KsT
Zmes = 4E;' N (B} + EV3) Ky T
mission None
E < E, | Absorplion zpmia =0
Zomae = 45 (B 4+ EV) /Ky T
Emission  Zmes = 4E; ' (E,/* — EV3)/KyT
Znin =0

rate, g(E) is the density of states in the final valley. The density of states
plays an important role in all scattering rate determination, but it is most
apparent in the expressions for the optical and intervalley deformation po-
tential cases. The final state is selected randomly from all states conserving
energy, and the final valley is picked randomly from the equivalent valleys.
A list of typical intervalley phonons for Si is given in the appendix to this
chapte:,

For intra-valley acoustic deformation potential scattering: Be-
cause of the complicated tensor form for acoustic coupling, there is an in-
trinsic anisotropy in the coupling. However, as shown by Conwell, the effect
of this anisotropy is small [24] and can be removed by a suitable averaging.
This amousts to defining an average sound velocity v, = (295 +v})/8 where
v} and v} are the velocity of sound propagated by tzansverse aad longita-
dinal modes respectively and an effective coupling strength 2. E is usually
chosen to fit experimental data. The acoustic phonon scattering rate is[36]:

=3 1/2 3

7Y (E) /.-“ &N*(z)(l +2aE¥2KsTsz) 2* .
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and the dimensionless limits of integration: where B} = }(mp+]) .

For polar optical scattering: The total scattering rate for polax optical
phonon scattering has been calculated by Boardman-Fawcett-Swain which
takes into account the overlap integrals in (78) [37]. These integrals can be
evaluated for k and A’ near the bottom of non-parabolic bands using k - p
perturbation theory. The result is:

m Ni(z) = (-——’— 413 1) (89)

I’(k’. k) = (ahal' + cpcyr cos O)’ (90)
ay = [(1+aE(})/(1+22E(R)'?
a = [aB(k)/(1+2ER)

(91)




where 8 is the angle between k and &’. Using this expression for the overlap
integral, the total scattering rate for polar optical phonon scattering can
be written:

) = Sgel LR (1 1) [y 4 ha]]

71(E) +1(E)
4 (5 u|EmtE g -©) - F2he 62

where
A = [4(1+aE)(1+aE)(1+2E)(1+2E)""
B = [3(1+aE)(1+aF’)+aly(E') +1(E)])?
C = 2ay3(E'W}(E)4(1 + aE)1 + aE’) + alr(E') + 1(E)]]

E = E-Mhygo

Because of the 1/¢? dependence of the matrix element and the angular
cependence of the overlap integrals, polar optical phonon scattering is a
anisotropic scattering mechanism. To choose the final state we can use the
von Neumann rejection method to pick the angle § between & and ¥’, which
is given by the probability density,

ayayr + cycy cosd 0 dé :
P(o)ds = (E')( B “2'1173253)7'1'7‘@«-: (49

The asimuthal angle is completely random since the scattering probability
density is independent of ¢. Thus, we can choose ¢ with a uniform random
number £ : r € [0,1) by ¢ = 2xr. The magnitude of the final state
wavevector, &', is selected by energy conservation for the given scattering
event (phonoa emission, or absorption), and thus, the final state vector is
completely determined.

5 Impact Ionization

The multiplication of carriers by impact ionisation is of central importance
in the theory of semiconductor devices both as a limiting mechanism and as
s basis of device functionality. Impact ionisation is & two electron process,
corresponding to the exact inverse of the Auger process: o highly uetgeﬁc
conduction band electzon collides with a valence band electron which is
ionised over the band gap, leaving two conduction electrons and a hole. The
process can also occur for holes, in whick a highly energetic hole creates
two holes and an electron. Impact ionisation for holes can be scen as a
“mirror image® of the impact ionisation for electrons, so we will treat only
the electron impact ionisation.

Asin section 1, the electron-electron interaction is designated as V,((r, ),
and following section 3, we screen the bare electron-electron interaction with
the dielectric screening function. We will neglect the off-diagonal texms of




¢"}(g + G,q + G';w) and allow g to take on all values in the reciprocal
lattice.

The bare electron-electron interaction is of course just the coulomb in-
teraction between two electrons. Figure 2 shows the impact ionisation pro-
cess schematically. States three and four are final conduction band electron
states. State one is the initial electron state, and state two is the initial
valence band electron state. The crystal momenta and band indices are
designated as k; and ny, with i € [1,4). Figure 2 shows the electron in
states 1 and 2 interacting via the screened Coulomb potential to generate
clectrons in states 3 and 4. The final hole state corresponds to the missing
valence electron in state two,

Nyks AR

LLY) nk,

Figure 2: Schematic Representation of the screened electron-electron in-
teraction corresponding to impact jonisation. Time is plotted vertically.
Notice that the interaction is retarded due do dynamic screening effects.

Since V,(r,7’) is a two particle interaction explicitly carrying two spa-
tial coordinates, its matrix elements are between two-particle states. Since
the electrons are fermions, the two-particle wave-fanctions must be anti-
symmetric linear combinations of two-particle states with the Pauli spin
matrices. We write these two-particle states as,

| mbyorinskyos >4 = —‘};.w.....(r.w.,..(r,)o.(:.)c,(u)- (94)
¥n.1,(73)¥n,0,(r1)o1(82)7a(81)) |

. where the o are the Pauli spin matrices, and s; and s; are the spin co-
ordinates. The coordinate wave-functions ¢ are normalised Bloch wave-
functions. Also, we write the subscript 4 to signify the anti-symmetrised




state.
In this language, the event shown in figure 2 corresponds to the matrix

element,
M(l2; 34) =< n;klcg;u,hcr, I‘ Vee ' nyksog; nekeoe >a . (95)

The matrix element contains four terms with different arrangem:snts of the
coordinates and the wavefunctions. For simplicity of notation we write the
simple product states as | 12 >= ¥, 3 (r1)¥n,2,(r3). Then, equation (95)
expands as
M(12;34) = (96)
1
3 (6o 0300c0s <34 | Vee | 12> =84,0,8010, <43 |Vee | 12> ~

S0s0i8030s < 34| Vee |21 > +80,0,80,0, <43 | Ve |21 )
(97)

For a given initial state spin oy, there aze three distinet physical situations,
with equal proability of occurence corresponding to the different configura-

tions of the remaining spis indices. They are: ..

l.op =03 = 03 = a4
2.0y # 03: 01 = 03,03 = 0y
.oy £ 03: 0y =04, 03 = 03

The rate for each configuration must be calculated separitely, and then
summed to give the total rate independent of spin. For instance, if we
define,

My =<43|V. |12>,
(98)

then the squares of matrix elements corresponding to the spin configurations
in the list above (the probabilities) can be written in terms of M; and M,

as:
1L | M- M|
2. M)
.| M.

The sum of these probabilites gives the square of the total effective matrix
element, summed over all internal spins for & given initial spin which we
designate as M2, and write as:

MY = 2iM P + 2 My P — (M;My + M3 M,). (99)




Thus, we need only to calculate M; and M; to find the total rate. Further-
mote, if we find an expression for My, M, is easily found by exchanging the
final state indices, so we only calculate M;.

The simplest way to include frequency dependent screening in calculat-
ing My above and the associated scattering rate S(12;34) is to calculate
the two-particle propagator from | 12 > to | 34 > in time ¢, square it to
obtain the probability, and take the time derivative for long times (time
rate of change of the proability of going from | 12 > to | 34 >):

S(12;34) = lim %k 34|V | 12> (100)

This is wholly equivalent to the expression in section 2. In figure 2, the
electron in state 1 feels the screened coulomb potential of state 2 at time
t’ and state 2 feels state 1 at time ¢”. The dielectric function retards the
effects of states 1 and 2 on each other; for instance, even if electron 2
has passed electron 1, the valence electrons may still be readjusting to its
passage and this can effect electron 1.

We write My = < 34| V. | 12 > by letting states 1 and 2 propagate
freely until times ¢ and t*, and then scatter into states 3 and 4 which
propogate until time ¢. The potential felt at éach time is weighted by
€}(r” — ¢';t" ~ 1'). Then we must integrate over all ¢’ and t". This is
basically a restatement of the Feynman rules for a first order, two-particle,
time-dependent interaction which give

1= [ & [ SRR T g R
' L}

(101)
with
$ . # ¢ L] L4 )
I'(t) E/ ale—lu,l’e-iu.(t-t)/ dite—twat” g=twe(t-t )‘-l(q‘(_‘n).
° ° (102)

In equation (101) we have written the Coulomb potential as a Fourier series
over vectors in the reciprocal lattice ¢. I,(t) is easily evaluated by making
a change of variables in the " integral to t' ~1". Then, )

I(t) = e~ wstwalt / ‘a'g-‘(ﬁ'a tur-vs-wt! aﬂ.‘(v:-u.)t",-l(,,g"),
(]

()
(103)
Since we need only the large ¢ limit, the inner integral becomes €~(g, w3 —
wg). In (101) we can evaluate the spatial coordinate integrals by using the
trick in equation (5§6) section 4.

1 ’
M, = ﬁ?‘i..l.-}-ﬂ-ans‘uh-ﬂﬂt /a d*r /n d*r (104)
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In the above equation, G, and G; are arbitrary reciprocal lattice vectors.
For a given set of kq, ¢ is determined up to a reciprocal lattice vector. We
have the following ctystal momentum conservation laws:

1L kg—=ky+q+GL =0
2. k;-k;-—q+6’, =0
S Ekithky—-ky—k¢ = Gy = G1 +G,

The 1ast equation, which follows from the first two, asserts the conservation
of crystal momentum for the entire process. Furthermore, we can write each
of the Bloch wavefunctions as sums over reciprocal lattice vectors (since
they are lattice translation invariant):

ta(r) = Z:,.;(G)e“"". (105)
aq
Then,
M‘=651+':.h+lc+°- z Ih-lr!-Ga-Go(‘) (106)
° 0;0;0.

21(G)23(Gs + G4 — G1 — Go)z3(Gs)23(G)
Vol |ky —ks +G1—-Ga !

(107)

This form is particularly well suited for numerical calculations since the
expansions in (105) can be calculated by pseuaopotential band structure
calculstions. To calculate the scattering rate given in (100), we must squarze
(106) and take the time derivative. The only time dependence in the mag-
nitude squared of I (t) is in the t’ integral in equation (103). The time
derivative of this gives the Golden rule rate expression as in equation (28).

Now, we can combine (106), (99) and (100) to obtain the total impact
ionisation scattering rate S(12; 34) summed over secondary particle spins:

. 2 ’
S(12;34) = {' | Mot '6(E1 + E3 — E3 — Eq)63, 43,8, 44,43,(108)
1
Mu = |M ] + | M P - (MM +M;10)

21(G)23(Gs + G4 = G1 — Go)23(Gs)25(Ga)
Vol gie(g,ws — we)

M =)

G\1G,G,
@t = kbh—-k+G -Gy
@ ky—k+ G~ Gy
Gy = kl+k,—k;—k4

This expression was first obtained by Kane [38].

To get the total scattering rate we need only sum over the two inde-
pendent k vectors and the secondary particle band indices in in S(12; 34).
Given n; and &, the total impact ionisation scattering rate, Sy, from that




state is simply, i
Sulmb) = Y ) 5(12;34). (109)

LILYLYY FY 1Y

The wavevector sums (109) run over the first BZ. Gy is then the Umklapp
wavevector necessary to ensure that kj is in the fizst BZ for a given k.

To gain some qualitative insight into equation (109), we look at the
two conservation laws it implies—conservation of crystal momentum and
consetvation of energy. First, energy conservation tequires the initial elec-
tron to be at least E, (gap enetgy) above the bottom of the conduction
band in order to excite a valence electron across the gap and into some
conduction band state. Therefore, E, is 8 minimum energy for impact ion-
isation. Additionally, the conservation of crystal momentum further shifts
this minimum energy. The smallest energy necessary to initiate an im-
pact ionization eveat in a particular band structure is known as the impact
fonization threshold energy Eyy.

Some authors have defined a wavevector dependent Ey, by minimising
E; (the initial electron energy) for a given k; with the energy and momen-
tum conservation constraints. This minimisation procedure requires that
(39] '
) ViEj(k) = ViEs(k) = VaEq(k). (110)
We shall re-evaluate the usefulness of this result later. Now we will look at
the first attempt to evaluate the impact ionisation scattering rate known as
the Keldysh formula. The Keldysh formula makes two rather extreme ap-
proximations. The first is to approximate the matrix element as a constant,
and the second, to assume simple parabolic bands. Of these, the second is
very poor, yet the resulting formula, known as the Keldysh formula, has
received considerable aitention in the past. The result given by Keldysh
involving the two adjustable parameters P and B is [40):

? 4
S“(ulkl) = S,‘(Bé'&) (B;‘f'.) . (lll)

Typically, 1 < P <2 and S, is the total phonon scattering rate. Although

this phenomenological form is simple to use, the approximations leading to

it distegard the important features of the band structure, which at the

high energies involved in impact ionisation, has no resemblance to simple
- parabolic bands.

A much better solation for the impact ionisation rate in silicon was
given by E. O. Kane [38] in 1967. He numerically calculated the rate in
equation (109) using the expressions developed in equation (108). First he
calculated the pseudopotential band structure and wavefunctions (see the
chapter by Fischetti and Higman) and used them to calculate the dielectric
function in the RPA approximation (see equation (43)). The summations
in equation (109) were evaluated by employing a Monte Catlo integration
algorithm. The results of this calculation for S;;(F), (Si(k) averaged over
all k with E(k) = E) are shown in figure 3.

Figure 3 also plots the impact ionisation scattering rate in silicon calcu-
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Figure 3: Impact ionisation rates in s~! for silicon averaged over initial
electron energy measured from the bottom of the conduction band. Dashed
curve, Kane's result; solid curve, no collision broadening; dotted curve,

collision broadening.
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Figure 4: Secondaries produced by impact jonising electrons in silicon.
Solid curve, initial electron of 1.5 eV; dashed curve, 2.5¢V; dashed-dot,
3.5¢V; dotted, 4.5 eV. The two scts of curves correspond to holes for the
E < —Eg, and electrons, for E > 0.




lated to include the effects of collision broadening and the intra-collisional
field effect (sce section 2) [41). The effects of high fields aad high phonon
scattering rates on the impact ionisation process shift the threshold down
from that obtained by Kane. Figure 4 shows the distribution of secondaries
(two final conduction electrons and a hole) produced mmatmg electrons of
various energies. These distributions include collision broadening, which
has a large effect near threshold.

Figure 5 addresses the question of k-space anisotropy for the impact
ionization scattering rate. As discussed above, it is possible to calculate a
wave-vector dependent threshold which would seem to be relevant to the
anisotzopy of the scattering rate. It is, however, difficult to guess an ap-
ptopnate form for the scattering rate as a function of this threshold which
is consistent with the true physics in equation (109). For instance, the
wave-vector dependent scattering rate may not even be directly related to
these thresholds for energies greater than Eyp(k). Furthermore, if collision
broadening is included (an important effect for high energy electrons for
which the phonon scattering rate is high) the threshold condition is greatly
relaxed. Figure § shows the impact ionisation rate in silicon for electzons
on the equi-energy surfaces E(k) = 2.5¢V and E(k) = 3.0¢V for electrons
in the second conduction band in the k; = 0 plane [41]. As can be seen -
the scattering rate shows little anisotxopy. In addition this energy range is
important for impact ionization in transport calculations [42), so it is prob-
ably a good approximation to use the average, energy dependent scattenng
rates given in figure 3, for most Monte Carlo simulations.

Anisotropy of de Impact lontzation Scaniering Rae
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Figure 5: k-space anisotropy of the impact ionization scattering rate in
silicon for electrons with k, = 0 on the equi-energy surfaces £ = 2.5¢V
(solid Line) and E = 3.0¢V (dotted line). The angle is in units of x from
the &, axis.




6 Ionized Impurity Scattering

For even moderately doped semiconductors, ionised impurity scattering
plays an important role and can dominate the total scattering rate for high
doping concentrations. At 300K when doping densities reach levels above
10Tem?, scattering rates for ionised donors (scceptors) become comparable
to low energy phonon scattering rates, while at low temperatures ionised
impurity scattering becomes even more important since equilibrium phonon
populations disappear exponentially as T — 0. Thus, in cases of high
doping ot low temperatures, an accurate Monte Carlo model must include
ionised impurity scattering.

Ionised impurities are usually assumed to be simple Coulomb potentials
with a charge Ze (e the electron’s charge). Typically they are associated
with ionized acceptors or donors. At first glance one may propose that the
ionised impurity perturbation V;(r) is just this Coulomb potential, calcu-
late the scattering rate for one impurity and multiply by the total number
of ‘mpurities. Unfortunately, the calculation of ionised impurity scattering
rates in this way is complicated by the long range nature of the Coulomb
potential associated with the ions. Unscreened, the interaction of a single
carrier and an jon leads to a diverging scattering rate which is of course
an unphysical result. Therefore, the view of the ionised impurity interac-
tion as one electron interacting with a single Coulombic potential cannot
adequately describe the situation. Although there are many problems with
. this simplified model, the two most flagrant aze the neglect of mobile charge
screening, and the correlation of the other charges present. Each of these
limits the effective length of the Coulomb interaction and removes the sin-
gularity. The first is treated by the Brooks-Herring Model {43], and the
second by the Conwell-Weisskopf model [44). A third model proposed by
Ridley, called, Third Body Ezclusion, reconciles these two approaches [45].
We will treat each in turn.

6.1 The Brooks-Herring Model

The Brooks-Herring model assumes that the electron (or hole) interacts
solely with one ionised impurity site and deals with the many-body effects
by introducing mobile charge screening. If mobile charge densities are high,
it is necessary to include the effects of electronic sczeening, and these effects
will limit the scattering rate to finite values.

Because the Brook-Herring model assumes that a carrier sees each charge
one at a time, in & semiconductor sample with N} ionised donors and N
jonized acceptors we must add the scattering rate due to each separately
instead of using the net charge present. Thus, compensated ions can con-
tribute to the total scattering rate as well. For this model, we will assume
Nio total ionized impurities of charge Ze.

Next we turn to Thomas-Fermi screening theory of section 3, equation
(46). If the distribution function is Maxwellian, (46) reduces to the Debye-
Huckel screening formuls, introducing a screening length proportional to




the square root of the mobile cazrier density n:

e’n

B, = —— —.
TP = e (112)

The Fourier transform of the screened ionised impurity potential Vi(q) is:

Ze 1 Ze

G err@ - Geld 5 (113)

Vilg) =

For Kpr # 0 in equation {113) there is no divergence for small ¢, and
therefore, there is no problem with infinite scattering rates. For degener-
ately doped semiconductors, the situation is more complicated, however an
effective screening length can still be calculated from (46).

In real space, the Coulomb potential acquires an exponential tail as:

- Ze’ ,~hprir-R]
Vilr) = dxe,o|lr - R| (114)

where Ris the location of the ion. It should be emphasised that the screened
potential approximation is not necessary to limit the cross section to finite
values. In fact, at low mobile charge density, kpr may not be sufficient to
screen the potential and a model similaz to the Conwell-Weisskopf method
maust be used.

In this section we will assume simple plane wave states for the electrons
which is a good approximation for low enezgies. Ionised impurity scattering
is essentially important only for low energy electrons, because, the phonon
scattering rate dominates the impurity scattering rate for high electron
energies.

We write the perturbation matrix element between plane wave states
as My where k is the incident wave vector and &’ is the scattered wave
vector as

- _l_ ) v Ze J=hoplr=Rl id'e
M;y = v /c. 418,(0 I f—Rr e d'r (115)

(Vol, the volume of the crystal, enters because of normalisation). The
matrix element in equation (115) is found by taking the integral over into
spherical coordinates with the azimuthal axis being in the direction of ¢ =
k' — k. The result is:

iZe3 'R q

My = e,¢0q Val k}r + ¢ (116)

Finally, the scattering rate S(k, k') is given by the Fermi Golden Rule (see
equation (28)). From equation (116) we can calculate the total scatter-
ing rate Sio by integrating S(k, k') over all . Assuming spherical non-




parabolic bands,
x (Ze’)’ A? Vol
S... = == —_ 2r
A ede3Vol? (14 2aE;)m* 828

/1 i /°° k'dE,§(E, - E\) .
-1 Jo (B 4 7 - 20 + RL)

(117)

Here, u is the cosine of the angle between k and &’. Since the ion is strongly
coupled to the lattice and is much more massive than the electron, the
interaction can be treated as elastic, and we can take the term Ej equal to
the energy of the final electronic state with wave vector k' and E; equal to
the energy of the initial electronic state with wave vector &.

The total scattering rate is [43]

Np (Z e? ) 3
St = 118
7 s2eeme)t \eeo (118)

(1 + 2aE) [ 1 ]
PRE) |ere 2P + Gerr/2P)))

where Ny is the total density of impurities (N7 = Nyoe/Vel). It is important
to notice that we have simply summed the interaction of a plane wave and
a Coulombic center over all the centers present; we have not calculated
any many-body effect other than mobile charge screening-the calculation
is a two-body calculation. The probability of a scattering into angular
increment d§ about 8, (0 is the angle between k and k') P(6)d6 is

sin 649
(2k(1 — cos8) +kip)’
To relate P(6)d4 to a uniformly chosen random number, we need only find

the normalized probability that 8 lies between 0 and 8. The result of this
vormalization allows us to determine 8:

(119)

P(O)ds =

cosf = 1 — 1 +2ﬁ(:/'2n), . (120)

Thus, we can stochastically determine the final state with only two random
numbers, one for ¢ and one for 8. &’ must equal k because the scattering is
elastic and k is predetermined. If the bands are ellipsoidal, non-parabolic
bands, we can use the Herring-Vogt transformation mentioned in section 4
equation (84). We need only make two modifications. First, we replace m*
by mp in equation (118). To choose the final state we pick a k' using (120).
Then, we transform it back from the Herring-Vogt space (see equation (84)).

It should however, be emphasised that the screened potential is not
necessary to limit the scattering rate to finite values. In fact, for low mobile
charge density, kpr may not be sufficient to screen the potential and
model such as the Conwell-Weisskopf model may be more correct.




6.2 Conwell-Weisskopf Model

For comparison with the Brooks-Herring model, we compute the scattering
cross section for the Conwell- Weisskopf model which assumes screening by
other ions instead of screening by mobile charges. The Conwell-Weisskopf
model assumes that the electzon is faitly well localised instead of being
an infinite plane wave as assumed in the Brooks-Herring model. This as-
sumption remains useful up to moderate energies whete the electron is
considered a wave packet following a classically defined orbit. By localising
the electron, we can see that in certain positions (midway between ions),
the Coulomb forces from each tend to cancel and there is no interaction.
In this spirit, Conwell and Weisskopf limit the impact parameter b to half
of the mean distence between ions,

Iy (121)

bmcl =
2

where the impact parameter for classical Rutherford scattering is the closest
approach of the electron to the ion if its path weren't deflected by the
Coulombic force. Thus, this model effectively screens out the Coulomb
force to the aversge distance between ions, and the unscreened Coulomb
potential can be used to calculate the scattering rate classically with the
Rutherford scattering model [44). The scattering rate evaluated in this way

. Siot(k) = #N}" (122)

whete v(k) is the electron’s velocity. The electron equation of motion states
that v(k) = (1/K)VaE(k). For parabolic bands then, v(k) = (kk)/m°.
Not only is the Conwell-Weisskopf model more applicable for low doping
densities than the Brooks-Herring model, but it also behaves more reason-
ably for high doping densities than the Brooks-Herring model. If we plot
mobility versus Ny for both models, we see that the two agree very well for

N; < 107 em?.

8.3 Third Body Exculsion

Both models presented above imply two-body, nearest-scatlerer processes,
but don’t expressly prohibit scattering from more distant scattering centers.
Ridley argues that, for the sake of consistency, the differential cross-section
o(k, 8, $) must be weighted by the probability the the scattering is 8 nearest-
scatterer process. In doing so, he has found that the limiting cases of both
the Brooks-Herring and the Conwell-Weisskopf models can be obtained.
The method of weighting the cross-section in this manner is called third-
body exclusion. (Note: the classical scattering cross-section is related to
the scattering rate by S(k,¢,68) = N v(k)o(k,6,9)).

In order to determine the appropriate factor we again employ the classi-
cal notion of the impact parameter 8. Ridley has calculated the probability,
P(b), that no scattering center exists with impact parameter less than b




from the propability p = 2xNrabd db that such a center exists:
P(b) = e~*Nie¥® (123)

Here, a is the average distance between ions. Therefore, to prohibit third-
body processes, the probability of a scattering event occurring in the solid
angle d0?, must be multiplied by P(b). Thus, we need only calculate
corresponding to the cross-section o we wish to use. If we take o from the
Brooks-Herring model, we can obtain the limiting cases of both models, so
we follow Ridley and calculate the cortected differential cross-section for it
(45).

oc the corrected cross-section, can be calculated easily from the Brooks-

Herring cross-section cpg by the following:
oc = 2!/ d'gx(k,@)e""’“.dnada (124)
°
Roer and Widdershoven give the scattering rate S¢ = Nyv(k)oc as [46]
_ v(k) aSex
o s =R w (-] (125)

This scattering rate incorporates screening of both types (mobile and fixed
charges) because it contains both krp and an ionic screening cutoff from the
‘term in equation (123). Furthermore, it has the advantage that the total
scattering rates are ten to 8 hundred times lower than the peak values of
the Brooks-Herring and Conwell-Weisskopf models. This is quite important
for Monte Carlo simulations because the higher the scattering rate for all
mechanisms, the smaller the time step must be, forcing simulation runs to
take much longer times. Roer and Widdershoven also show that at least in
the case of GaAs, the low field impurity limited mobilities agtee well with
experimental results [46).

To find an expression for the angular distribution from the third-body
- exclusion model, we notice that the probability that an electzon has an
impact parameter b is pP(8) = 2xNjade=*M1¥'db, This is simply the
product of the probability that a scattering center exists at a distance b
and the probability that no other scattering center is closer. We can relate
P(3)db to a uniform random namber 7 : r € (0, 1] by the relation:

]:b'c"”'“"db' N e~TNie¥® _

(126)

r= !:-‘.b’e_'”'.bnw e-IN'I"... - 1

Since the relationship between r and b is transcendental, the Von-Neumann

tejection method must be used to select a value of b. Then the scattering
angle 8 can be determined from b by inverting the relation

b(0) = /' " oam(k,&)sin0'ds’ (127)




Then, the relation between & and b is

2,13 -1 )
cosh = 1 - — [(2" LM ! ) -l:"’] (128)

2 K? 4k + k3,

with
3 _ (Ze?)*(1 + 2aE)m°k

4xh?e2edv(k)

Although still a rather crude model, third-body exclusion is & com-
promise including screening of both types which limits scattering rates to
manageable levels and fits experimentally obtained low field mobilities fairly
well. At high fields, the Born approximation breaks down and other meth-
ods must be sought to include collision broadening effects.

K (129)
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Appendix

Table of Physical Constants

and Phonon Scattering Parameters for Silicon

The following table gives typical parameter values and material con-
stants for Si which occur in the formulas of section 4. Note that intervalley
phonon energies are given in degrees Kelvin (Aw = kgTpaonon). Also, the
models shown here are two-valley models- X and L valleys.

Units Tang {30] | Canali [47] | Sano [48] | Yoder [42
s A 5.43 5.43 5.43
P g/cm® 2.329 2.329 2.329 2.329
€ € 11.7 11.7
v 10* cm/s 9.04 9.037 9.04 9.04
Mgy mo 0.19 0.1905 0.19 0.19
myy mo 0.9163 0.9163 0.916 0.916
a, “eV 0.5 0.5 0.5 0.5
Xi, eV 9.5 9.0 9.0 9.5
my mg 0.12 0.12 0.12068
my mo 1.59 1.59 1.5942

X-X Intervalley Scattering
h K (10° eV/cm) | 220 (0.3) | 210 (0.15) | 210 (0.15) | 220 (0.3)
f 550 (2.0) | 600 (3.4) { 500 (3.4) | 550 (1.9)
s 685 (2.0) | 630 (4.0) | 630 (4.0) | 685(1.9)
(]} 140 (0.5) | 140 (0.5) | 140 (0.5) | 140 (0.5)
g3 215 (0.8) | 210(0.8) | 210(0.8) | 215(1.1)
g3 720 (11.0) | 700(3.0) | 700 (3.0) | 720 (4.3)
_ X-L Intervalley Scattering

1 K (10°eV/em) | 672 (2.0) 6732 (4.0) | 672 (1.8)
2 634 (2.0) 634 (4.0) | 634 (1.8)
3 480 (2.0) 480 (1.8) | 480 (1.8)
4 197 (2.0) 197 (1.8) | 197(1.8)
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