A s \W“ \\‘\“\‘;\\ \“\\ i

WL-TR-92-1022 | D T l C
FLFECTE
8 893

" APR2 51992

L C

A MODEL OF THE ADA
AVIONICS REAL-TIME SYSTEM:
An Example of the Benefits of the
Hardware/Software Codesign Approach
in Development of Real-Time Systems

Prepared by:

B. E. Clark

F. G. Gray

J. T. Morrison

T. S. White (¢

TRW Military Electronics and Avionics Division f e “d t
Dayton Engineering Laboratory
Beavercreek, Ohio

March 1992
Approved for public release; distribution is unlimited.

Prepared by:

Center for Digital Systems Research
Research Triangle Institute
Research Triangle Park, North Carolina 27709

and

Virginia Polytechnic Institute
Blacksburg, Virginia

-10176
AVIONICS DIRECTORATE \\\\9\\\\%‘\“\‘\\\\“\“\\\ m“\

WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

9 4 21 073

£

- Best
- Available
Copy

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report 1is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

?\ = Z,é;' s M 0;‘?/71
5‘ Y) — Oee——
JOSEPH S. WILGUS, Project Engineer DAVID A. ZANN, Chief

Advanced Integration Group System Integration Branch
System Avionics Division System Avionics Division
Avionics Directorate Avionics Directorate

V.

CHARLES H. KRUEGER, Chief
System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAS , WPAFB, OH 45433-6543 to help us maintain a current
mailing list.

Coples of this report should not be returned unless return is required by

security considerations, contractual obligations, or notice on a specific
document.

m oved
REPORT DOCUMENTATION PAGE o D oa 0188

[Durden for thi cOliecion Of (10/Mation « E1IIMATA] 10 Svetage | AOUr DEF 1E1DORIE, INKIVGING the LIMme 107 IEVIeWINg IMIructions, SEITChng Canting data LOWCes,
Oxlub:'::mﬁzumummg the data needed, and completing and reviewing the collection of information Send ding this burden ertimate or any other apect 0f they
collmtion of in10s Maton ncluding qumoom 100 1educing this Durden 10 Wathinglon Hesdquariers Servies. Duectorate fo information Operstiom and Reports. 1213 Jelferson
Davis teghway. Suite 1204, Artinglon, VA 12201 4302. and 10 the Ottue of Management and Budget. Paperwork Reduction Progect (0704-0188). Washungton, DC 20309

1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1992 Final Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Model of the Ada Avionics Real-Time System: An F33615-87-D-1452
Example of the Benefits of the Hardware/Software Codesign ,
Approach in Development of Real-Time Systems 11:?{ ggzg*F
. AUTHOR|
. 6. AUTHOR(S) TA 01
B.E. Clark, F.G. Gray, J.T. Morrison, and T.S. White WU 11
* 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Research Triangle Institute

Center for Digital Systems Research N/A
P.O. Box 12194
Research Triangle Park, NC 27709

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Joseph S. Wilgus (513) 255-4709 AGENCY REPORT NUMBER
Avionics Directorate (WL/AAAS) WL-TR-92-1022
Wright Laboratory

Wright-Patterson AFB, OH 45433-6543

11. SUPPLEMENTARY NOTES

Prepared under Subcontract No. FF9327VBOS
Prime Contract (USAF) F33615-87-D-1452 b~

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximuym 200 words)

The Ada Avionics Real-Time System (AARTS) Operating System (AOS) is the 0S5 and
management system under development for the PAVE PILLAR architecture.

The A0S, in its current version, was modeled in the Architectural Design and
Assessment Systems (ADAS) along with the hardware and applications being
exercised in the Avionics Directorate's Integrated test bed. The report
describes the model, the results of simulation executions, and methods for
expansion of the model to architectures larger than that of the integrated

test bed.
L]
14. SUBJECT TERMS 15. NUMBER OF PAGES
ADAS, Avionics, Modeling, PAVE PILLAR, Simulation, 134
VAMP, VHSIC Avionics Multiprocessor 16. PRICE CODE
17. SECURITY CLASSIFICATION]18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION] 20. IMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACY
Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 i Standard form 298 (Rev 2-89)

Prevcribed by ANSI 19 71918

b

Contents

List of Figures vi
List of Tables T
Symbols and Abbreviations L2}
1 Introduction 1
1.1 Background 2
1.2 ADAS Model Of AARTS: AnOverview 3
1.3 Acknowledgements 5
2 The ADAS Product 7
2.1 How the ADAS Tools Interact 7
2.2 Graph, Node, Arc and Port Attributes 9
3 Description: ADAS Model Of AARTS 19
3.1 Assumptions and Conventions 19
3.1.1 Assumptions. e 19
3.1.2 Node Name Conventions 20
3.1.3 Primitive Hardware Components 23
3.2 HardwareModel 23
3.3 Software Model 25
3.3.1 Startup Process 25
3.3.1.1 SUROM Execution and Active Loading 27

i

3.3.1.2 SMM Response During Active Load

3.3.1.3 SUROM and Passive Loadingof ASO

3.3.14 CPU Role During Passive Load

3.3.1.5 BTBIM Role During Passive Load

3.3.1.6 SMM Role During Passive Load

3.3.1.7 Arbitration Lo,

3.3.1.8 Loadingof LPUs

3.32 System Messages
3.3.3 Normal Operations
3.3.4 Failure and Reconfiguration
335 Shutdown
3.4 Resource Utilization
3.4.1 Data Transmission Delays
341.1 MessageSizes

3.4.1.2 Pl-bus Transmission Delays

3.4.1.3 High Speed Data Bus (HSDB) Transmission Delays .

342 CPUandSMMDelays
3.4.2.1 SUROM Processing and Checksum Delays
3.4.2.2 Message and File Services Delays
3.423 OtherDelays
3.5 FlowControl e
4 Results

5 Model Modification or Expansion

v

64
66

69

80

92

6 Conclusions o7

References 103

Arowsin.om FPor
A [Y
ey Ay
L e, g en
PTastileattun

ST T T e
! By . _. —— e

Tttt ien/

LoAvailaeility Codee
oo T TAvail amdfer

iDiat Speeial

»

List of Figures

A-1 The ADAS System Configuration A-1
A-2 Top-Level ADAS Hardware Graph A-2
A-3 ADAS Hardware Graph of Cluster 1 A-3
A-4 ADAS Hardware Graph of a CPUModule A-4
A-5 ADAS Hardware Graph of a Bus Interface Module. A-5
A-6 Top Level ADAS Software Graph A-6
A-7 Startup Graph A-7
A-8 BTBIM ActiveLoad A-8
A-9 BTBIM Read LPU_ATTRIBUTES File A-9
A-10SMM Load ASOinto BTBIMs A-10
A-11 SMM Load LPU_ATTRIBUTES Fileinto BTBIM A-11
A-12CPU Receive BOOT and ASO Load A-12
A-13 BTBIM Conduct Passive Load of Clients A-13
A-14BTBIM - Client Level A-14
A-1I5BTBIMto SMM e A-15
A- 16 BTBIMtoClient A-16
A-17 SMM Passive Loading of 8 Modules A-17
A-18 SMM Passive BOOT and ASO Loadtoa CPU A-18
A-19 Arbitration by the Winner of the System Supervisor Role A-19
~ A-20 System Supervisor Load LPUs A-20
A-21 PI-bus Transmission A-21
A-22CPU Load Two LPUs A-22

vi

A-23CPULoadon LPU A-23

A-24 BTBPASSTree LPUs A-24
A-25BTBPASSon LPUtoaCPU A-25
A-26 SMM Download LPUsto CPUs A-26
A-27SMM Downloadon LPU oL A-27
A-28 Configuration Request Placed on MAB A-28
A-29MAB Transmission oL A-29
A-30 MABIM Place Configuration Request on PI-bus A-30
A-31 System Messages Graph, A-31
A-32 Specialist System Messages. P A-32
A-33 Supervisor Module System Messages A-33
A-34 Cluster Supervisor AcknowledgePing A-34
A-35 System Supervisor Heartbeats A-35
A-36 Transmit Pingor Pulse A-36
A-37TPl-bus Broadcast A-37
A-38 PI-bus Transmission with Two Qutputs A-38
A-39 Dataflow of Demonstration 3. A-39
A-40Sensor Imput L L A-40
A-41 Normal Operations A-41
A-42 Cockpit Interface LPUin CPU21 A-42
A-43 Sensor Management LPUin CPU11 A-43
A-44 Sensor Management LPUin CPU12. A-44
A-45 Navigation LPUin CPUL1 A-45
A-46 Guidance LPUin CPU21. A-46

vil

A-47DGS Interface LPUin CPUL1 A-47
A-48 Detection and Reporting of Failed CPU A-48
A-49 Reconfiguration L A-49
A-50Loadon LPU A-30
A-51 Start on LPU and Transmit Configuration Report A-51
A-52 To-Level Graph of Shutdown Process A-52
A-53Cluster 2Shutdown L. A-53
A-54CPU Stop LPUso e A-54
A-55Stop LPU L A-55
A-56 Cluster 1 Shutdown A-56
A-57 Pass Cluster 1 Shutdown Message A-57
A-58 Graph of a Cluster ArbitrationNode A-58
A-59 Cluster Supervisor Load AS1 A-59
A-60 Hot Backup Arbitration A-60
A-61 Initiate the System Supervisor A-61
A-62 System Supervisor Arbitrationo oL, A-62
A-63 Top-Level Graph for 4 Clusters A-63
A-64 Startup Graph for 4 Clusters. A-64
A-65 Startup GraphofaCluster. A-65
A-66 Graph of suroMm and ActiveLoad A-66
A-67 Graph of ASO Passive Load A-67
A-68 System Messages with 4 Clusters A-68
A-69 System Messages: 1 Cluster A-69

viii

List of Tables

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

Display Attributes
Connectivity Attributes,
Simulation Attributes L L L L.
CSIM/AdaSIM Attributes
Information Attributes L.

Tool Qutput Attributes

LPU Loading During Startup
LPU Loading Following Reconfiguration
ADAS hwmodule Names
System Management Messages e
Messages Transmitted to and from LPUs
Files Services Message Lengths
Files Services File Sizes
Pl-bus Status Words
Pl-bus Firing Delay
HSDB Token Frame
HSDB Message Frame Overhead

HSDBTIMING i i

Time for Message I/O Services

...................

Time for Message and Files Services

Assumed Firing Delays

1X

3.17 Port Attributes - Graph of Node SUROMBTB2 69
3.18 Port Attributes - Graph of Nede READLPULOC 71
3.19 Port Attributes - Graph of Node SMMASOTOBTB 72
3.20 Port Attributes - Graph of Node RDLPULOCx 73
3.21 Port Attributes - Graph of Node BTBTOSMMASO 74
3.22 Port Attributes - Graph of Node BTBTOCPUASO 75
4.1 ADAS Model: Subprocess Timing 81
4.2 Startup with Assigned Delays 83
4.3 Failure and Reconfiguration with Assigned Delays 84
4.4 Shutdown with Assigned Delays 85
4.5 Resource Utilization (Standard Delays) 86
4.6 Time for Message and Files Services (QR5 Numbers) 88
4.7 Startupwith QR5Delays. 89
4.8 Failure and Reconfiguration with QRS Delays 89
4.9 Shutdown with QR5 Delays 90
4.10 Resource Utilization (QR5 Delays) 91
4.11 Resource Utilization During Normal Operations 91
6.1 Values for Pulse Timeout 101

Symbols and Abbreviations

AARTS
ABI
ADAS
AS

BIT
BIU
BTBIM
BTB
CCB
CPU
DA
DDA
DGS
DMA
ED
ESA
FC

FCS
FIFO
HCCB
HSDB
I/0
IMFKey
IRS
ISTC
LPU
MAB
MABIM
mips
MMKey
SA

SD
SMM
SUROM
TLCSC
TMT
TST
VAMP
VHSIC
VPI
wC
WEC

Ada Avionics Real Time System
Avionics Bus Interface

Architecture Design and Assessment System
Address States

Built-in Test

Bus Interface Unit

Block Transfer Bus Interface Modules
Block Transfer Bus

Communication Control Block
Central Processing Unit

Destination Address

Data Destination Address

Display Generation System

Direct Memory Access

Error Detecting (PI-Bus), End Delimiter (HSDB)
Execution Start Address

Frame Control

Frame Check Sequence

First In First Out

HSDB Communication Control Block
High Speed Data Bus

Input/Output

Integrated Multifunction Display Key
Interface Requirements Specification
Initialization Sequence Try Count
Loadable Program Unit

Mission Avionics Bus

Mission Avionics Bus Interface Module
Million Instructions per Second
Mission Mode Key

Source Address

Start Delimiter

System Mass Memory

Startup ROM

Top-Level Computer Software Components
Transmission Monitor Timer
Transmission Streaming Timer
VHSIC Avionics Multiprocessor

Very High Speed Integrated Circuit
Virginia Polytechnic Institute

Word Count

Westinghouse Electric Company

Xi

1. Introduction

This report describes the model developed by the Research Triangle Institute (RTI)
and Virginia Polytechnic Institute (VPIj under TRW subcontract Number FF9327VBOS.
The objective was to develop and demonstrate an executable model of configuration
and reconfguration of the Ada Avionics Real Time System (AARTS) . unning on the
Wright Laboratories VHSIC Avionics Multiprocessor (VAMP) demonstration hard-
ware. The model was developed, using the Architecture Design and Assessment Sys-
tem (ADAS) delivered and executed using GIPSIM simulation. This report describes
the model in detail and provides examples that show the usefulness of developing
an executable model in parallel with system design. The modeling etfort and model

execution serve to validate (or invalidate) design decisions as they are made.

The model was constructed from information contained in numerous AARTS devel-
opmental documents and internal documents and reference furnished by the TR'W
project manager. This was reinforced by regular technical exchange discussions be-
tween the RTI and TRW project managers. In addition to two formal demonstrations
of the model, a thorough review was conducted with the principle members of the
AARTS development team in January 1991. This review and the attendance of the
AARTS development team at the demonstrations served to verify, at each point, that

the ADAS model is a true representation of the design as it exists (or is visualized)

at that point.

This report is intended for users who want to employ the model for continuing analysis
of AARTS development and expansion and, possibly, as a point of departure for
follow-on developments. It is assunied that the reader is familiar with the basic
AARTS architecture and functioning, as well as that of the VAMPs. The report
focuses on the model - how functions are simulated, how resource utilization was
estimated, and how the execution is controlled. These subjects are addressed in
considerable detail to provide a reader, who is familiar with the ADAS tool set, with
sufficient understanding of the model so that he can make the necessary changes to
analyze the impact of changes in AARTS design, hardware capability, or function
resource requirements. It should also provide a background for expansion of the
model to a more extensive set of applications, a larger or more complex hardware

architecture, or both.

The final three sections provide examples of model outputs and analyses, an approach
for expanding the model, and the types of errors that can be detected early in the

design with an ADAS modeling effort.

1.1. Background

Under contract from the U.S. Air Force, TRW is developing the AARTS operating
system for Wright Laboratory. AARTS is the implementation of the PAVE PILLAR
Operating System and system management concept. The AARTS is targeted for the

laboratory VHSIC Avionic Modular Processors (VAMP) being developed by West-

inghouse Electric Company (WEC). The ADAS model developed in this effort is to
be calibrated with AARTS Demonstration 3 and then, in a second phase, expanded to
represent the entire PAVE PILLAR mission application architecture. GIPSIM sim-
ulation of the expanded model will provide an assessment of specific hardware and
software partitioning needs to meet the PAVE PILLAR specification. Of particular
interest is the Block Transfer Bus utilization and the total time it takes to com-

plete various processes associated with system startup and reconfiguration following

module failure.

The distributed architecture of PAVE PILLAR will provide for maximum utilization
of common hardware and software programs, as well as providing maximum reliability,
maintainability, and support for both air-to-air and air-to-ground missions. During
development this model has served to highlight issues or deficiencies in early design
decisions by addressing, in a system context, hardware/software interfaces. Once cali-
brated and validated against an implemented AARTS System it will provide the basis
for simulation and analysis of the PAVE PILLAR architecture with developmental

avionics processes integrated into an expanded suite of VAMP or VAMP-like clusters.

1.2. ADAS Model Of AARTS: An Overview

The Ada Avionics Real Time System (AARTS) is the evolving implementation of
the PAVE PILLAR operating system concept. The AARTS is divided into three

top-level computer software components (TLCSCs) called executives. The kernel ex-

ecutive TLCSC manages the resources of a single VHSIC module. It is the operating
system for the module. The Distributed Executive TLCSC provides the services for
communication between modules. Versions of the distributed executive for CPU,
high-speed databus interface, M1553B bus interface and mass memory modules dif-
fer. The difference is normally the presence of a component associated with a specific
interface (i.e., bus) or, in the case of CPU’s, the functionality needed to establish
message connections. The third major component of AARTS is the System Execu-
tive TLCSC. This component contains the software that manages the system. This
component can function as a cluster supervisor, managing a cluster of modules; as the
system supervisor; managing the system; or as a hot backup for the system supervi-
sor. The targeted VHSIC Avionic Modular Processor (VAMP) consists of five VHSIC
modules, each containing a 16-bit VI7T50A processor with 128 or 256K of memory.
The memory in each module has been divided into numbered address states (AS)(i.e.,
ASO, ASI, etc.). The lowest address State, ASO, is reserved for the basic operating
system. This consists of the kernel executive, the distributed executive and the kernel
unit of the system executive. This is referred to as the ASO Software throughout this
report. (Most of the lower level software components of the ASQ software contain an
I/0 interface unit that is resident in any address State that can call for the TLCSC

services).

Address states one and higher can contain any loadable program unit (LPU). The

system executive (less the kernel) is loaded in AS1 by cluster supervisors upon winning

arbitration. Assumption of the role of System Supervisor or hot backup only requires
enabling additional units. This Supervisory Software is referred to as the AS1 software

through the remainder of this report.

The AARTS development program includes several demonstrations. These demon-
strations progress from operating a single module through a several cluster effort with
dynamic LPU loading. Demonstration 3 was to be conducted on two VHSIC Avionic
Modular Processor (VAMP) clusters. The clusters are currently connected to a simu-
lated System Mass Memory and to one another via high-speed fiber optic data busses.
Each VAMP contains five processor modules that communicate with one another via
a PI-bus. The five modules consist of two CPU modules, two high-speed databus
interface modules and a M1553B bus interface module. Demonstration 3 was to start

the system, execute a guidance and navigation scenario consisting of five LPUs, and

demonstrate recovery from failure.

1.3. Acknowledgements

The development of this model was a team effort. RTI and its subcontractor. Vir-
ginia Polytechnic Institute and State University (VPI) produced the model. The
TRW Dayton Engineering Laboratory managed the RTI contract and provided data
descriptions of AARTS and Demonstration 3 without which the model could not have
been developed. Four individuals deserve particular recognition. Professor F. Gail

Gray, of the Department of Electrical Engineering at VPI, served as consultant to the

RTI principal investigator on methods for system abstraction and reviewed and cri-
tiqued the model at strategic points in the development. Dr. Tennis S. White, then at
VPI, currently with IBM Glendale Research Laboratory, produced the actual graphs.
Dr. White devised the control schemes to be described later in this report. Mr.
J.L. Stautberg, of TRW Dayton Engineering Laboratory, served as project monitor
and liaison between the modeling team and the AARTS development team. Finally,
Mr. Joseph Wilgus of Wright Laboratory provided oversight and coordination of the
entire effort, a task of much more significance and value than this simple statement

can convey.

2. The ADAS Product

ADAS is a set of computer-aided design tools for the synthesis and analysis of soft-
ware algorithms and their hardware implementations at the architectural level. ADAS
models hardware and software using directed graphs in which nodes represent individ-
ual software operations or hardware functional elements and arcs represent data and
control flow paths. Color-coded connection points called ports indicate the direction
of flows along arcs. Nodes and arcs are typed and have a number of attributes associ-
ated with them. Nodes can be expanded into subgraphs that represent the refinement
of a software operation or hardware component into a set of lower level operations
or components and their interconnections. Nodes with subgraphs are called internal

nodes; nodes without subgraphs are called leaf nodes.

Simulation is controlled on a graph or graph hierarchy by the movement of units
called tokens around the graphs. During simulation, nodes produce and consume

tokens and arcs act as FIFO queues of tokens.

Using this ADAS model, the user can test alternative algorithm and architecture

strategies measuring performances, latency, timing, resource utilization, etc.

2.1. How the ADAS Tools Interact

Data flows between the ADAS tools and the data base files which are illustrated in

Figure A-1. In this diagram, circles represent individual ADAS tools; directed lines

represent data flows between the tools and individual data base files, the contents
of which are described between paired horizontal lines; and boxes represent analysis

processes outputs. ADAS system.

The numbers on program circles in Figure A-1 represent the order in which the ADAS
tools would typically be executed during a single design cycle. The design process
typically consists of a number of iterations of the cycle. A design is analyzed and
its execution simulated, and the results are used to modify and refine the design.
This analysis/refinement process is repeated until the design’s performance meets
specification. Each circle in the diagram illustrates one or more phases of the design

process:

1. EDIGRAF The directed graph editor creates the initial template and
graph data base files for the hardware and software de-
sign graphs; it is also used to make modifications to the
templates, graph structure, and node and arc attributes
throughout the iterative design process.

2. CONCH The design graph consistency checker verifies that graph
data flows are consistent (e.g., that component types
match) and optionally checks graph attribute values
against template values.

3. GIPSIM The directed graph simulator performs initial verification
of software graphs; it verifies that nodes are firing in the
correct order, that token produce and consume values
are correct, and that firing frequencies are approximately
correct.

4. XPETRI = The performance analysis program generates petri net
models of software directed graphs for detailed analysis
of design performance. If the performance is not satisfac-
tory, the software can be modified with EDIGRAF, and
the design cycle repeated.

5. ASH The task allocation tool assigns hardware graph compo-
nents to software graph operations.

6-7. CSIM/ADASIM A design graph functional simulator generation program
constructs a program, CSIM or ADASIM, to simulate ex-
ecution of the design from functional descriptions of the
individual design graph nodes in the C or Ada program-
ming language.

8. ISPGEN/HELIXGEN Finally, a hardware design language generator constructs
a program to simulate execution of the hardware design
from functional descriptions of the individual hardware
design graph nodes in the ISPS or HELIX language.

The individual files that form the ADAS common data base are shared by the tools
that comprise the ADAS system and form the basis of the tools’ integration into a
coherent system for software/hardware codesign. The data base includes template
data bases which contain representations of the basic building blocks that are used

to construct graph data bases. The latter contain the data that define the positions

and interconnections of nodes and arcs in software and hardware design graphs.

2.2. Graph, Node, Arc and Port Attributes

The behavior of the checking, mapping, and simulation tools is controlled by the
topology (connectivity) of the graphs and by attributes assigned to the graphs, the
nodes and their ports, and the arcs. The topology and attributes are assigned and/or
modified using the (EDIGRAF) graphics editor. Initially, attributes are inherited
from the default values contained in the template for the element. In this paragraph
the attributes associated with the graph objects are reviewed to provide background

for the discussion of the models in the remainder of the report.

For this discussion, attributes are divided into two major classes, those assigned by

the ADAS tools and not modifiable by the modeler and those assigned and modifiable

by the modeler. The latter category has been divided into six subcategories and will

be discussed first.

The first subcategory, display attributes, serve primarily to help make the graphs

readable and understandable. These attributes are listed in Table 2.1.

Table 2.1. Display Attributes

Graph Node Arc
graph_name node_name* arc_name™
node_color arc_color
node_height first_joint
node_width ...

node orientation fifth_joint
*Used by checking and simulation tools to identify output

Each graph, node, and arc has a name attribute. The graph name is optional text and
shows up as a banner at the top of the graph on the monitor. Any legal text entry can
be chosen for a graph name. Legal ADAS text is defined on pages 3-30 of the ADAS
User Manual [4]. The nodes and arcs are also named. These names must be unique
(the default name is the template name followed by a uﬁique number) since they are
used extensively to identify output statistics from the ADAS tools. Node and arc
names can be any unique legal ADAS label. Legal ADAS labels are defined on pages
3-30 of the ADAS User Manual! [4]. A color can be selected for each node and arc

from the ADAS 16 color palette. These colors are used to enhance understanding of

10

the graphs. The height and width of a node in grid units can be selected to improve
appearance. ADAS nodes are constructed with all input ports on one side and all
output ports on the opposite side. Node orientation representing the direction of flow
through the node can be selected as down (default), up, right, or left. An arc can be
drawn with a maximum of five joints (direction changes between the source outport

and sink inport). The coordinates of these joints, if any, are stored as arc attributes.

The second subcategory, connectivity attributes, are used primarily to support con-
version of a hierarchy of graphs into a single executable model. This model, consisting
of all of the connected leaf nodes, is referred to as the flattened graph or flattened
model. These attributes, shown in Table 2.2, are also used extensively by the checking

and validation routines.

Table 2.2. Connectivity Attributes

Node Node Port Arc
node_class inport._id token_data_type
subgraf filename outport.id arc_template
graph_port_number in_token_data_type
node_template out_token_data_type

The attribnte node_class indicates how the node functions in the model. It may have
value of leaf, a node which maps to a specific hardware model; internal, a node which
has a subgraph to be expanded within the executable model; or inport/outport, a
node that represents an inport/outport on the parent level graph node. If a node is

of node class internal it must have the file name for the subgraph in the attribute

11

subgraf file_name. Port attributes are actually a part of the node data. A set of
attributes for each input and output port is contained in each node database. Since
these port attributes carry information critical to simulation and since there can be
many ports on a given node, the port attributes have been placed in a separate
column in the tables presented in this section. The first port attribute of interest
is the infout)port_id. Inports and outports of a node are uniquely identified by a
number from zero to the number of in (out) ports minus one, clockwise for inports
and counterclockwise for outports (left to right when orientation is down). On a
subgraph of a node, there must be one graph port node for each inport and outport
on the parent node. The graph_port_number is the number of the associated port on
the parent node. Each in (out) port has an associated in(out)_token_data_type. This
data_type may be any legal ADAS identifier. Each arc has a token_data_type attribute.
This attribute must match the data_type attribute of both the source and sink ports
before a connection can be made. Finally, the checking tools will warn one if the node
or arch template identified in the attribute node_template or arc_template does not
match the node or arc. This usually occurs when attributes of a node, port, or arc
have been edited subsequent to creation and a new template has not been referenced

and/or developed.

The third subcategory is those attributes of the software model employed by the
simulation tools, particularly GIPSIM, which is the tool most applicable at this stage

to the AARTS Demonstration Model. These attributes are listed in Table 2.3.

12

Table 2.3. Simulation Attributes

Graph Node Node Port Arc
time_unit hardware_module firing_threshold queue.size
conversion factor execution.order token_produce_rate

firing_delay token_consume._rate
trace_flag initial_token_count
node_user_text

Two attributes of the graph relate to the time steps used in a simulation. The at-
tribute time_unit is a label documenting the units in which firing delays are calculated
for the nodes. The attribute conversion_factor is a floating point number that relates
the time unit for a subgraph to the time unit of the parent graph. The node attribute
hardware_module for a software node contains the name of the node in the hardware
model onto which the software node is mapped. This is a many to one mapping, i.e..
any number software nodes may be mapped to a single hardware node (resources)
but each software node may be mapped to only one hardware node. The software
node attribute ezecution_order is an integer establishing queuing priority for solving
hardware module contention during simulation. The node attribute firing_delay is the
number of time units the node waits once it has received its resource until the resource
is released. Alternatively, it is the tiine the node waits before firing (producing its
output tokens) after it is primed. The attribute trace.flag is a flag that when set gen-
erates a simulation output listing the schedule of all primings and firings of a node.
The attribute node_user_text may contain any text entered by the user. This attribute

may be accessed by CSIM or AdaSIM. If its value is set to “any,” all simulations treat

13

it as an OR-node (the node is enabled whenever any rather than all of its inports
has reached its firing threshold). The node input port attributes firing_threshold and
token_consume_rate, along with the output port attribute token_produce_rate, provide
the data necessary to control and synchronize execution of the GIPSIM simulation. A
node is enabled when each (any in the case of an OR-node) of its input arcs contains a
number of tokens in its queue greater than or equal to the inport firing_threshold. The
node then “contends” for its hardware resource (the attribute execution_order orders
any queue for the resource). When the resource is available the node becomes primed
and removes a number of tokens equal to the token_consume_rate from the arc queue
at each of its input ports. After a delay equal to the attribute firing.delay, the node
“fires” placing a number of tokens equal to the token_produce_rate on the arc queue at
each output port. At this point the next enabled node in the hardware model queue,
if any, can be primed. To initialize feedback loops or for other scheduling purposes,
it is often necessary to place one or more tokens in an arc queue at the start of the
simulation. This is accomplished with the input port attribute initial_token_count.
The arc attribute queue_size limits the number of tokens that may exist at any time
in the arc queue. If firing of a node would result in exceeding queue size on any arc
for which it is the source, the node is “blocked” and may not be primed until this

condition is removed.

Five attributes are employed by functional simulations, but not by GIPSIM. These

attributes are listed in Table 2.4

14

Table 2.4. CSIM/AdaSIM Attributes

Node Node Port Arc
package file name in_token_.data_type token.data_type
out_token_data_type token_units

The port and arc attributes identify “types.” The node attribute package_file_name
identifies the module source file to be used by CSIMGEN, AdaSIMGEN, HELIXGEN,

and ISPGEN for simulation generation.

Table 2.5 contains a list of attributes used primarily for storage of user information.
The functional simulations can be made to access these attributes as part of the
simulation. For each graph, node, and arc there are four attributes provided to store

a floating point number, an integer, text. o1 a file name.

Table 2.5. Infoiinaticn Attributes

Graph Node Arc
graph_user_float node_user_float arc_user_float
graph_user_text node_user_text arc_user_text
graph_user_integer node_user_integer arc_user_integer
graph_user_file_name node_user file_name arc_user_filename

Finally, one node attribute, module_class, assigns hardware and software nodes to
user labeled classes. This attribute specifies the hardware module class to which a

software node may be mapped by the automatic software to hardware mapping tool.

ASH.

The second category consists of those attributes written to the database by the simu-
lation tools. These att;ributes are updated by the simulation program. Node and arc
attributes indicating activity or activity level can be displayed by color coding (cold
to hot colors) on the graphic screen. The screen is constantly updated with these
color codes during a simulation run providing an animated picture of what is going

on. The program produced attributes are shown in Table 2.6.

Table 2.6. Tool Output Attributes

Node Arc
node_utilization current_token_count
module_utilization average_token_count
node_latency maximum_token_count
times fired token_arcess_count
when_next_available
simulation_status
status_message

The attribute node_utilization gives the percent of the time units during the sim-
ulation that the node was busy. The attribute module_utiiization is the same as
node_utilization for a hardware graph. For a software graph module_utilization is the
utilization of the hardware module to which the node is mapped. Node_latency is the
earliest time that a node can finish execution. The attribute times_fired is the number

of times a node fired during the simulation.

The attribute when_next_available is the time unit in the execution cycle during which

the hardware node (or the hardware module associated with a software node) becomes

16

available. A value of zero indicates the module was never used. A value less than
the current simulation time indicates the module is not in use and has been available
since the time indicated. A value greater than the current time indicates the module

is in use and will not become available until the time indicated.

The attribute simulation_status shows the node’s status at the end of the simulation.

This attribute may have a value of:

e INIT - node has not been blocked, primed or enabled yet.

e BLOCKED - node cannot fire (reason given by status_message attribute).

e PRIMED - node is primed.

¢ INACTIVE - node is set to non-firable by a user (by a procedure in CSIM or
AdaSIM).

e ENABLED - node is enabled.

The status_message attribute is a short text message describing why a blocked node

is blocked.

Four arc attributes are set by the simulation program. These four are the cur-
rent_token_count on the arc’s queue when the simulation ended; the average number
of tokens on the arc’s queue at any point during the simulation; the maximum number

of tokens in the arc’s queue at any point during the simulation; and the number of

17

times tokens were placed into or removed from the arc’s queue by its source and sink

nodes during the simulation.

18

3. Description: ADAS Model Of AARTS

The focus of the ADAS model was on the performance of the I/O and message
passing services of AARTS, rather than the run time system itself. A complete set of
design specifications was provided by TRW. Documentation was also provided for the
target hardware, the Block Transfer bus, the Pl-bus, and the VHSIC modules. From
this documentation and discussions with TRW engineers, RTI and VPI developed an

ADAS model representing the AARTS process.

This description of the ADAS model is organized into major processes before, during,
and after reconfiguration, namely, (i) the startup process, (ii) the system messages
component, (iii) normal operations, (iv) reconfiguration following failure of a CPU,

and (v) the shutdown process.

3.1. Assumptions and Conventions

3.1.1. Assumptions

The ADAS model assumes that the Block Transfer Bus Interface Modules (BT BIMs)
in each cluster will be actively loaded (loaded over the HSDB) with their entire
software load. Following this, each BTBIM will support passive loading (loading
over the Pl-bus) of the remaining modules in their cluster. The first modules to be
passively loaded are the Mission Avionic Bus Interface Modules (MABIMs). This

ensures that inter-cluster communication will exist before the arbitration process

19

commences and prevents the likelithood of two separate system supervisors being

established.

In the model, the sequence of loading AS0O into the CPU modules is controlled. This
predetermines the system supervisor (CPU22). This controlled sequencing also pre-
determines the system hot-backup, (CPU12). As presently configured, the model
assumes that the loading of ASO is sequential. That is, the entire file is loaded, check-

summed and started in one module before the load of the next module commences.

In the ADAS model an effort was made to balance, by size, the loading of LPUs into
the CPU modules. After CPU11 fails, the three LPUs originally loaded into CPU11
are distributed over the three remaining CPU modules during the reconfiguration
process. All modules, however, are loaded with AS0 (80K). Table 3.1 depicts the
allocation of LPUs at system startup while Table 3.2 depicts the allocation of LPUs

following system reconfiguration.

3.1.2. Node Name Conventions

The format for naming the nodes throughout the ADAS model is

NODE_NAME[instance_number]

where instance_number can range from 0 to the number of times that the node name

appears within a single graph minus 1. If a particular node name appears only once

20

Table 3.1. LPU Loading During Startup

Module [LPU Size [LPU Name LPU Designation
CPUIl |[13K Navigation LPU1
CPU11l |13K Sensor Management LPU2
CPUIl |[17K Display Generation LPU3

System (DGS) Interface

CPU12 |[80K AS1 Hot Backup
CPU21 |[21K Cockpit Interface LPU1
CPU21 17K Guidance LPU2
CPU22 |80K AS1 System Supervisor

Table 3.2. LPU Loading Following Reconfiguration

Module | LPU Size | LPU Name LPU Designation
CPUI2 [80K AS1 Hot Backup
CpPUI2 [13K Sensor Management LPU1
CpU21 |17K Guidance LPU1
CPU21 |[21K Cockpit Interface LPU2
CPU21 17K Display Generation LPU3

System (DGS) Interface
CpPU22 |80K AS1 System Supervisor
CPU22 [13K Navigation LPU1

21

within a single graph, then it will not have an instance_number appended to it.

Throughout the model all primitive procesies are consistently named to represent
the particular process they are intended to represent. For example, the node named
PIBUS represents the time and resources that were utilized during actual transmission
on a Pl-bus. Where possible, nodes have been color-coded to indicate the type of

resource they consume.

In some instances it is necessary to either (i) copy a single token to multiple sink
nodes - in this case a split node is used, (ii) merge multiple arcs into a single arc - in
which case a join node is used, or (iii) delay the token for a specific period of time -

in which case a delay node is inserted between the two primary nodes.

Since split and join nodes provide flow redirection only, they do not utilize resources.
The hw_module attributes for all split and join nodes are set to na, and their fir-

ing_delay is set to 0.0. They do not perturb the overall simulation timing.

The delay nodes receive a specified firing_delay equal to the delay between events for
each event repetition they represent. For example, a process that cycles at- 8Hz will
have a delay representing the 0.125 seconds between consecutive executions. It is
necessary that all delay nodes within the model have a resource available at the time
the delay commences. For this reason, all the delay nodes are assigned a dedicated
hw_module. These are named delay! ... delayn, where “n” is the number of delay

nodes that appears throughout the entire ADAS model. In the simulation report

22

(sim.out), all statistics gathered on the delay! ... delayn resources may be ignored.

3.1.3. Primitive Hardware Components

The ADAS model of the AARTS Demonstration-3 considers the modules listed in
Table 3.3 to be primitive hardware resources. Their utilization is considered in the
final simulation analysis. This might be called the degree of granularity or resolution
of the ADAS model. Since there are two clusters in the AARTS Demonstration
System, it is necessary to make a distinction between the two. Therefore, the names
of all hardware modules incorporate a cluster number as well as an optional instance

number, as follows:

hw_module[cluster_number][instance_number]

Table 3.3 describes what each of the hw_modules used in the ADAS model represents.

3.2. Hardware Model

The top-level ADAS hardware graph of the AARTS Demonstration System (refer to
Figure A-2) contains nodes representing the MAB, BTB, M1553B, Clusterl, Cluster2,

System Mass Memory, Pilot Input, Sensors and Display Generation Interface.

Both Cluster]l and Cluster2 are internal nodes and expand into subgraphs. Figure
A-3 is one of these subgraphs. This graph depicts the modular components of a

VAMP. The graph includes the five modules, the two Pl-busses, and the interfaces

23

Table 3.3. ADAS hw_module Names

Module Clusterf | ADAS H/W Name
CPU1 1 CPUIICPU
Pl-bus IU Cpu 1 1 CPU11PIBIU
CPU 2 1 CPU12CPU
Pl.bus IU Cpu 2 1 CPU12PIBIU
CPU 1 2 CPU21CPU
Pl-bus IU Cpu 1 2 CPU21PIBIU
CPU 2 2 CPU22CPU
Pl-bus IV Cpu 2 2 CPU22PIBIU
CPU in MABIM 1 MAB1CPU
Pl-bus 1V in MABIM 1 MABI1PIBIU
MABIU for MABIM 1 MABI1BIU
CPU in MABIM 2 MAB2CPU
Pl-bus 1U in MABIM 2 MAB2PIBIU
MABIU for MABIM 2 MAB2BIU
CPU in BTBIM 1 BTBI1CPU
Pl-bus IU BTBIM 1 BTB1PIBIU
BTB IU for BTBIM 1 BTB1BIU
CPU in BTBIM 2 BTB2CPU
Pl-bus 1U BTBIM 2 BTB2PIBIU
BTB IU for BTBIM 2 BTB2BIU
CPU in M1553B 1 M1553B1CPU
Pl.bus IU M1553B 1 M1553B1PIBIU
M1553B Bus 1U 1 M1353B1BIU
CPU in M1553B 2 M1353B2CPU
Pl-bus IU M1553B 2 M1553B2PIBIU
Mi1553B Bus IU 2 M1553B2BIU
System Mass Memory SMM

The Block Transfer Bus BTB

The Mission Avionics Bus MAB

The Pl-bus 1 Pl-bual

The Pl-bus 2 Pl-bus2

All split and join nodes
All delay nodes

na
delayl...delayn

24

to the M1553B, MAB, and BTB busses (represented by graph in and out ports).
Each module on this level expands into a subgraph. Figure A-4 and Figure A-5 show
a CPU and Bus interface module subgraph respectively. The components in these

graphs are the lowest level of resources used in the ADAS simulation.

3.3. Software Model

The basic structure of the software model is shown in the top-level ADAS software
graph of the AARTS Demonstration System (Figure A-6). It is comprised of five
major components: STARTUP, NORMALOPERATIONS, SYSTEMESSAGES, RECONFIGU-
RATION and sHUTDOWN. The simulated flow of operaiion of the ADAS model is
STARTUP, follo-.e¢ ' by NORMALOPERATIONS. Upon the simulated failure of CPU11,
RECONFICURATION is simulated while non-failed processes continue to function in
the NORMALOPERATIONS hierarchy. This is followed by a reconfigured NORMAL-
OPERATIONS. Finally, a Pilot mode change input triggers shutdown of the system.
SYSTEMESSAGES which simulates the messages associated with management of the
system commences as the AARTS software is loaded and continues for the entire

operation. Nodes SENSOR and PILOTINPUT are a part of NORMALOPERATIONS.

3.3.1. Startup Process

The startup graph, Figure A-7, is arranged in four columns of nodes representing

separate phases of the startup and configuration process. Each column contains a

25

node for each module involved in the particular phase. The middle row of nodes
represents the activity of the SMM during each phase with cluster 2 and cluster
1 activity being represented above and below this middle row, respectively. For
example, referring left to right in the middle row of Figure A-7, SMM will first load
the ASO (address state 0) software into the BTBs (node sMmMasoToBTB), then load
the ASO software into the other cluster modules, (sMMAsocPuUs). It then loads the
AS1 (address state 1) software into supervisory modules, (sMMAsicPuUs), and finally
loads the LPUs (loadable program units) into available CPUs, (sMMLPULOADS). One
would not normally represent this much detail on a single high-level graph. In this

case, the detail is included to facilitate model understanding and demonstration.

All nodes on the STARTUP graph have subgraphs except the graph inport and out-
port nodes, the power-on delay nodes, the suroM...x nodes for passively loaded mod-
ules, and the ENDSTARTUP node. The four phases of the startup process represented

by the columns from left to right are:

e Execution of SUROM (Startup ROM) and BIT and active loading (loading over

the BTB) of the BTBIM modules

¢ Passive loading (loading over the PI-bus) of the bootstrap loader and ASO soft-

ware into the remaining modules

e Arbitration for supervisory roles and loading of the ASI1 software into supervi-

sory modules

26

e Loading of the LPUs

Each of these phases is discussed in a separate section following this introduction.

3.3.1.1. SUROM Execution and Active Loading

The five modules per cluster each load and execute a startup ROM (SUROM) upon
power up. Upon completion of the built-in test (BIT) and sensing of the appropriate
discrete, each module, except the BTBIM’s, moves into the second column (Figure

A-T) where it transmits a ready message, while waiting to be loaded with their boot-
strap loader. For the BTBIMs, after SUROM is executed, the module actively loads
the ASO software and the Block Transfer Bus (BTB) driver software. They then
download the LPU attributes file. After completion of the download, the BTBIM

moves into the second column where it loads the other modules in the cluster.

This process for a Block Transfer Bus Interface Module (BTBIM) is represented by
nodes sUROMBTBx in the STARTUP graph. The nodes sUROMBTBx expand into

subgraphs, which contain 4 separate functional areas (Figure A-8):

e run SUROM, initialize BTB interface, wait for token, and signal SMM that the

BTBIM is ready for loading

e receive the 4-word response from SMM

e receive the ASO from SMM in 4K blocks and run a checksum on it once the

download has completed

e open, then read the LPU_ATTRIBUTES file from SMM

The ADAS graph in Figure A-8 shows that upon completion of SUROM tests (nodes
STARTSUROM, SETUPBTBDOWNLOAD and BTBBIU0), the BTBIM transmits a 2-word
message (nodes BTB, XMITREADY and BTBIU1) via the BTB to the the System Mass
Memory (SMM) at a 10Hz frequency (controlled by node detay). The BTBIM receives
(RCV4aWORD and BTBBIU2), a 4-word message indicating the destination address, size,
expected checksum, and execution start address of the BTB software that will follow
from the SMM. Following receipt of the 4-word message, the BTBIM begins to receive
the AS0 data in 4K word blocks (represented by nodes Rcvaso and BTBBIU3). These
nodes will execute 20 times, representing the receipt of twenty blocks of data. The
BTBIM runs a checksum once ASQ is loaded (node RUNCHECKsUM) and then proceeds

to activate the subgraph of node rREADLPULOC.

Node READLPULOC is an infernal node. The subgraph is shown in Figure A-9. This

graph contains four functional areas:

¢ BTBIM transmits open LPU_ATTRIBUTES file request to SMM (nodes oPENLPU-

LOC, WAIT4TOKENoO, BTB0 and XMITOPEN)

e BTBIM receives the SMM response, then transmits a read request to SMM

(nodes RCVRESPONSE, READLPULOC WAIT4TOKEN1, BTB1 and XMITREAD)

28

o BTBIM receives the LPU_ATTRIBUTES file (node RcvDATA)

o BTBIM receives the status of the transmission from SMM (node rcvsTaTUs)

3.3.1.2. SMM Response During Active Load

The node sMMAsoTOBTB in Figure A-7 expands "~ . the subgraph in Figure A-10.
This graph represents the SMM response to the B'i BIM’s transmissions. The SMM
first loads the BTBIM software into BTBIM2, the right half of the graph, and then
into BTBIMI, the left half of the graph. In Figure A-10, the node wA T4TOKEN?2 rep-
resents the token-wait time before SMM can transmit the 4-word message to BTBIM2.
The actual transmission of the 4-word message is represented by node XMITDATA1.
The loop consisting of nodes WAIT4TOKEN3, BTB1, split3 and delay represents the token-
wait time, utilization of bus resources, a split to send off tokens to different recipi-
ents, and an interblock delay respectively during the twenty consecutive 4-kilobyte
data transmissions of ASO to BTBIM2. Node warr4TOKEN delays while the token is
received from the preceding station on the ring. Since the guidance was to assume
serial loading of the BTBIMs, this delay represents the token passage around the ring
to the predecessor node. Following completion of the AS0 load to BTBIM2, the SMM
responds to the open and read LPU_ATTRIBUTES file requests from BTBIM2. This
response is simulated by the subgraph of node roLPULOCH, (Figure A-11). The two
principal areas of smm_rdlpuattribs.swg are: receive the open request and transmit a

response; receive a read request and transmit the LPU_ATTRIBUTES file. followed

29

by a read status.

After BTBIM2 receives the ASO download, the SMM comn.ences to load BTBIMI.
The arc connecting node split3 to WAl 'OKENo in Figure A-10 is used to signal the

completion of the BTBIM2 load and initiate the BT BIM1 load.

3.3.1.3. SUROM and Passive Loading of ASO

The non-BTBIM modules, upon completion of SUROM tests, each transmits a 2-word
message on the PI-bus at a 1Hz interval. This 2-word message contaius the address
and module type. It represents a repeating request to the BTBIM for a download of
its bootstrap loader. The SUROM nodes for non-BTBIM modules (Figure A-T) are
leafnodes and are assigned a firing_delay representing the entire SUROM processing.
The BTBIM receives the 2-word message on the Pl-bus. It then determines and
then transmits the correct 4-word message to the requesting module. This 4-word
message consists of word count, data destination address, execution start address,
and expected word count. The BTBIM will subsequently broker the download of
the bootstrap loader from the SMM (via the BTB) to the requesting module (via the

Pl-bus). Three separate ADAS graphs hierarchies are required to depict the followin:

o the requesting module’s activity during ASO load

e the dual communication maintained by the BTBIM - communicating with

SMM, via the BB, while simultaneously communicating with the requesting

30

module, via the Pl-bus

e the SMM role during the non-BTBIM module load of the bootstrap loader and

ASO

The loading of the bootstrap loader and ASO is the same for all non-BTBIM modules.

The loading of CPU22 by BTBIM2 will be discussed in detail.

3.3.1.4. CPU Role During Passive Load

Figure A-12 is the graph of node Asocpuzz on the startup graph (Figure A-7), which
represents the requesting CPU processes during the passive loading. This graph

simulates the following functions:

e Upon successful completion of BIT, the module commences periodic transmis-

sion of the 2-word message (left column)

e The module then receives the 4-word message and sets up for download (2nd

column)

o After receipt of the bootstrap loader, the module opens the ASO file (3rd col-

umn)

e Upon receipt of the open file response (node RCVAsSoRESP), a read request is

transmitted. This is followed by a data block, (node RcvasopaTA) and then a

31

read status message (again on node RCVASOoRESP) which initiates another read.

This continues until the last block of ASQ is received.

e Upon receipt of the last read status for the ASO file, a checksum is run, (node
CHECKSUMAS0). After a successful checksum the ASO software is started (the

outport starts appropriate system messages).

e After ASO is started, the module opens, reads, and checksums the LPU at-

tributes file and passes into the arbitration column of the parent graph.

3.3.1.5. BTBIM Role During Pnssive Load

Node AsoBTB2 in Figure A-7 is an internal node. Its subgraph (Figure A-13) con-
tains four internal nodes representing the other four modules in the cluster. All four
nodes have the same subgraph hierarchy. Each of these nodes expands into the sub-
graph shown in Figure A-14. At this level the two distinct communication channels
for BTBIM2 are represented by internal nodes BTBTosMMaAso (to the SMM), and

BTBTOCPUAS0 (to the CPU).

Figure A-15 is the expansion of node BTBTosMMAso. It represents the flow to the

SMM. There are three processes represented on this graph.

e On receipt of the two-word message from the CPU, the BTBIM builds the

appropriate 4-word response and transmits it to the CPU. Actually, the token

32

travels over the arc between the two nodes on the parent graph. Transmission

to the CPU module is represented in the graph discussed in the next paragraph.

e Along with transmission of the 4-word response, the BTBIM transmits an open
file message for the bootstrap loader to the SMM. Upon receipt of the open file
response from the SMM, the BTBIM transmits a read message to the SMM.
All subsequent responses from the SMM are acted on in the subgraph discussed

in the next section.

e Following receipt of the bootstrap loader, the CPU issues open and repeated
read commands to obtain its load. Forwarding of these commands to the SMM

is represented by the left-hand column of the graph.

The subgraph of node BrBTOCPUASH (Figure A-16) represents the following sequential

BTBIM processes.

e Once the correct 4-word message for the CPU has been determined, the BTBIM

transmits the message to the CPU (left column)

e After the read command has been issued for the bootstrap loader, the BTBIM
receives the file from the SMM and transmits it to the CPU via the Pl-bus
(nodes RCVBOOT, XMITDATA0, CCBEXECUTIONz2, PIBUS2 and BTBPIBIU2). This

is followed by a read status message (node RCVBOOTRESP)

e The column headed by node RCVFILERESP represents the passage of the open

33

file response and read status messages as the CPU reads the ASO software in
4-k blocks. The column headed by node rRcvasoe represents the passage of the
data blocks. These two columns alternate as tokens are received from memory

until ASO download is complete.

¢ When the SMM responds to an open LPU_ATTRIBUTES file request by CPU22,
the BTBIM transmits first the response (node RCVATTRIBRESP) then the
LPU_ATTRIBUTES file to the CPU (node rcvaTTRIB). Finally, the read status

is forwarded, again through node RCVATTRIBRESP.

3.3.1.6. SMM Role During Passive Load

Figure A-17 is the subgraph of node sMMAsocPuUs on the startup graph (Figure A-7).
The graph inports and outports represent tokens arriving from and passing to the
appropriate BTBIM. The internal arcs enforce the policy of sequential loading of the
modules. All nodes except the first and last on Figure A-17 expand into the same

subgraph which is shown in Figure A-18.

On Figure A-18, nodes inporto and outport1 are the connections to the preceding and
following nodes respectively of the parent graph (the internal arcs on that graph).
Nodes inport1 and outporto carry the tokens between the SMM and the BTBIM. This

graph contains six primary functions:

o The left column executes when the BTBIM requests opening of the bootstrap

34

loader file. It returns the open file response to the BTBIM.

Upon receipt of the read bootstrap loader message, the second column is exe-

cuted passing the file followed by a read status message.

The center column receives the open file requests for both the AS0O and for the
LPU attributes file and returns an open file response (it is a duplicate of the

first column).

The reads for each 4K block of ASO enter the fourth column and follow a path
over to and through the second column. This takes advantage of the fact that

the bootstrap loader is also a 4K block.

The remainder of the 4th column is inactive in the current simulation. It would
simulate transfer of the final short block of a file that does not divide exactly
into 4K blocks. The additional column would be needed to account for the
different bus and interface utilization of the shorter message. This column has
been included in the current model to provide flexibility and to demonstrate
how similar columns would be placed in the BTBIM and CPU portions of the

model to simulate loading a file of a different size.

The final column represents the transmission of the LPU_ATTRIBUTES file
followed by a read response. Again, it is a duplicate of other columns except

for the resource usage simulated.

35

3.3.1.7. Arbitrac..on

The arbitration process follows completion of ASO loading. CPU22 is the first CPU to
receive and execute the AS0 software, and it will (as the mcdel is currently configured)
become the system supervisor module. The subgraph of node ARBcPrU2z on the
startup graph (Figure A-T) is shown in Figure A-19. All four process nodes on this
graph have subgraphs. Some will not be described in detail. Figure A-19 depicts the

four stages of arbitration:

e Node ARBCLUSTER represents the issuance of five cluster supervisor heartbeats.

The feedback loop containing the delay controls the timing of the heartheat.

o After “winning” cluster supervisor arbitration node LoADAS1 is activated. The
subgraph of this node is similar to the one for loading ASO (with the 2- and 4-
word messages, the bootstrap loader, and the loading of the LPU_ATTRIBUTES

file deleted). This is supported by analogous BTBIM and SMM hierarchies.

e Upon starting the AS1 software, the hierarchy below node ARBHB commences
execution. The subgraph hierarchy of this node is similar to node ARBCLUSTER
except that heartbeats are transmitted on the MAB and provision is made to
stop the hot backup heartbeat upon assumption of the system supervisor role

(the feedback loop from node ASSUMESYSSUP).

e After 5 successful hot backup heartbeats, node ASSUMESYSSUP is activated and

five system supervisor heartbeats are issued. When this is completed, the hot

36

backup heartbeat is stopped, a token is passed to the system messages function
to commence the supervisory messages, and a token is passed to node LPUCPU22

on the startup graph.

CPU12, in the meantime, assumes the role of clusterl supervisor and once it detects
the absence of the hot-backup pulse, which ceased when CPU22 became system super-
visor, it (CPU12) assumes the role of hot-backup. The token passed on node tocpuiz

initiates hot-backup arbitration in CPU12.

3.3.1.8. Loading of LPUs

After completion of the arbitration process, the simulation proceeds to the loading of
the LPUs, the right hand column of the startup graph (Figure A-7). This is triggered
by the transmission of a CONFIG_REQUEST message by the system supervisor,
CPU22. The individual cluster supervisors relay the CONFIG_REQUEST to the
other CPUs within the cluster via the Pl-bus. The loading of individual LPUs follows
in a manner similar to the loading of ASO and AS1, with the BTBIM brokering all

transfers from SMM to the CPU.

Figure A-20 is the subgraph of node LPUCPU22, the system supervisor node. The left
two columns plus node RCVDATA at the top of column 3 simulate downloading the mis-
sion database file. The remainder of column 3 and lower portion of column 4 simulate

the generation and issuance of the configuration commands. Node CLUSTER1ACTIVE

37

is the connection to node cL1ACTIVE on the parent graph. This connection prevents
configuration from starting until all modules have loaded and started the ASO Soft-
ware. The upper portion of column 4 simulates receipt of the configuration reports

upon completion of the LPU loads.

Node PI-bus0 through PI-bus3 all have subgraphs that look like Figure A-21. One
graph like that in Figure A-21 has been prepared for each pair of modules that ex-
change PI-bus messages (the hardware modules on which the nodes are to be mapped)
and for each size of message exchanged (the amount of resource used). This graph is
referenced in the node attribute subgraph_filename for each exchange of a message of
that size between those two modules, and a copy is incorporated into the flattened
graph upon starting the GIPSIM simulator. This ability to share graphs in an ADAS
model helps control the size of the model database. This feature was seen earlier
in this report where the same hierarchy is used four times in the BTBIM portion of
the ASO load and the same graph used six times in the SMM portion. One could
employ a single graph file like Figurc A-21 for all message exchanges and use a script
file on startup of the simulation (GIPSIM, CSIM or AdaSIM) to assign the hardware

mapping and firing delay for the nodes in the various instances in the model.

Figure A-22 shows a CPUs response to the configuration request message. In this
case, two [LPUs are loaded and a status report is returned to the cluster supervisor.
The CPU portion of the loading of an LPU is represented by the subgraph of node

READ1PU1 shown in Figure A-23. This is similar to the loading of ASO shown in

38

Figure A-12 with the 2- and 4-word messages, the boot, and the LPU attributes file
deleted. The CPU issues an open file message, left colunm; receives a response and
issues a read (second column); and then alternates between node rcvbaTae and the
second column as the 4K blocks are received. The final short block executes node

RCVDATA1. Receipt of the final read status message initiates node RUNCHECKSUM.

Figure A-24 is the subgraph of node BTB2LPULOADS on the startup graph. It contains
an internal node for loading the mission database into the system supervisor and one
for each of the two LPUs to be loaded into CPU21. Figure A-25 is the subgraph of
node cp21READ1PU1. From left to right the columns pass on the CPU open and read
messages to the SMM, the SMM response messages to the CPU, the 4K data blocks

to the CPU, and the short data block to the CPU.

Figure A-26 is the subgraph of node SMMLPULOADS on the startup graph. It contains
an internal node for each LPU. For like size LPUs, a single subgraph file has been
used. Figure A-27 is the subgraph of node LPU1CPU21. From left to right the columns
respond to the open message, respond to the read requests for 4K blocks. and respond

to the read request for the short block.

Figure A-28 is the subgraph of node LPULDMAB2 on the startup graph. This graph
simulates the MABIM in cluster 2 receiving the configuration request message from
the system supervisor (bottom of third column in Figure A-20), and transmitting

it to the MABIM in cluster 1. The token entering this graph on node inport is the

39

token that was passed upon completion of the MABIMs loading of ASO (see arc
on Figure A-7. The token entering on node fromcP22 is the one passed from node
LPUCPU22 to node LPULPMAB2 on Figure A-7. Node MAB is an internal node. Its
subgraph, Figure A-29, is similar to and employed in the same way as the Pl-bus

subgraph (Figure A-21).

Figure A-30 is the subgraph of node LPULDMAB1 on the startup graph. It receives
wne token from node join in Figure A-29 and transmits it on the PI-bus to the cluster

supervisor in cluster 1 (CPU12). Node piBUs has a subgraph like that in Figure A-21.

3.3.2. System Messages

Returning to the top level graph (Figure A-6), node SYSTEMESSAGES contains the
graphs that simulate the establishment of connections for and passing of commands,
reports, and pings or pulses necessary to manage the system (except for the actual
passage of configuration or shutdown request and report messages which have been

modeled in these startup, reconfigure, and shutdown portions of the model).

Figure A-31 is the subgraph of node sysTEMESssAGEs. The eight nodes at the bottom
contain the activity of the eight specialist modules. These nodes are started upon
receipt of a token on the graph inports asostartedx and terminate with a token on graph
inport startreconfig (actually should be named “failure”) for node cpu11 and fromshut-
downx for the others. The two nodes at the top contain the activity of the supervisory

modules. The supervisory module nodes have an additional set of functions that start

40

upon loading of the AS1 software.

Figure A-32 is the subgraph of node cpui1 on the system messages graph. Upon
starting of the ASO software, various message receive and transmit connections are
made. This is shown on the upper portion of the graph. Upon completion of the
connection for the ping message, the module starts periodic transmission of the ping
(I’'m ready) on the PI-bus. This is simulated in the left hand loop with a hierarchy
below node xmITcLUsPING. When the ping is acknowledged by the cluster supervi-
sor inport fromCPU12, the ping is halted (a series of inport tokens from node split1
to node oRro “chokes” the loop) and the module pulse (heartbeat) is started. Inport
stop terminates the pulse on shutdown in the same way the ping is terminated. We
will describe the simulation of the transmission (nodes XMITCLUSPING and XMIT-
MODPULSE) in the description of the u/c transmission of supervisor heartbeats. One
additional feature of the model is shown by the two nodes below node xMITMOD-
PULSE on this graph. For messages that do not elicit a response, the entire process,
including receipt of the message by the addressee, is modeled in the subgraph of the

initiating process. This reduces the number of arcs on the higher level graphs.

Figure A-33 is the subgraph of node cPu2z in the system messages graph (Figure

A-31). The top portion is the establishment of message connections upon starting the
ASO software. The initial pings and pulses for the supervisory module are modeled
in arbitration graphs in the startup hierarchy. The bottom portion of the graph is

started when the AS1 software is started in the cluster supervisor. A series of connec-

4]

tions are made. These, since they are system-wide connections, require transmission
of the channel array to the MABIM (nodes or, XMITARRAY modules an MABUP-
DATEARRAY). Node XMITARRAY has a subgraph hierarchy similar to those shown in

Figure A-28 and A-29 with the transmission being on the Pl-bus rather ihan the

MAB.

Node cLPINGACK receives and acknowledges the pings from the other modules in the
cluster. Its subgraph is shown in Figure A-34. Once the connections are established
(top two nodes), each ping receives a response. This, it turns out, is immediate
for the CPU, MABIM and BTBIM modules since they are pinging before the AS1
software initial reading suggests ASO is started is started in the cluster supervisor.
The M1553B module receives a response to its first ping. It does not complete the
ASO load until after the AS1 software is started in the supervisor model. The four

nodes, PIBUS2x, each have a PI-bus transmission subgraph.

Figure A-35 is the subgraph of node cLPULSES on the System supervisor graph. This
figure combines the system supervisor (left column) and cluster supervisor heartbeats.
The loops are similar to those for the ping and pulse on the specialist node graph (Fig-
ure A-32) with the transmissions being stopped during shutdown by nodes inport1 and
splito. After the message connections have been established, the pulse transmission is

commenced.

I'igure A-36 is the subgraph of node xMITPIBCLPLS. This same graph (nodes mapped

42

on different hardware) is found below the xmit ping and xmit pulse nodes on the
specialist subgraphs. Node PIBUS, of course, has a transmission subgraph. In .his
case, since there are multiple addressees, it is different from the point-to-point one.
This graph is shown in Figure A-37. Node xMITHSDBCLPLS in Figure A-35 transmits
the pulse to the MABIM. xMITHSDBCLPLS has a subgraph like Figure A-36 with the
Pl-bus sub-subgraph shown in Figure A-38. This differs from Figure A-21 only in
having a second outport that feeds the loop for the repeated message. Node MAB2 on
Figure A-35 transmits the pulse to the MABIM in the other cluster. The hierarchy
below node MaB2 is the same (except for a single graph inport) as that shown for the
configuration request in Figures A-28 and A-29. Similarly, the hierarchy below node
MAB1 which transmits the message to CPU12 (the hot-backup) is equivalent to that

shown in Figure A-30 with a PI-bus transmission subgraph.

3.3.3. Normal Operations

During normal operations the system messages and LPUs are running with LPUs
receiving inputs from the pilot and the sensors. Figure A-39 is a data flow diagram
of the demonstration thi<e applications. Referring to the AARTS top-level graph
(Figure A-6) during norinal operations, nodes SYSTEMESSAGES, which comnenced
during startup; NORMALOPERATIONS, whose execution is triggered by completion of

startup; SENSORs; and PILOTINPUT are executing.

Figure A-40 is the graph of node seNnsors. The simulation mevely places the sens-

13

ings, AirData at 5 Hz and INSDATA at 32 Hz, on the MAB. It is pulled off at the
appropriate frequency by the appropriate subgraph of node NORMALOPERATIONS.
The graph port on the left starts the execution and that on the right terminates it
upon shutdown. The graph for node PILOTINPUT is structured like Figure A-40 with
the two columns representing the transmission of the MMKey (mission mode) and
the IMFKey (multifunction display). In addition, since each input solicits a response

from the cockpit interface LPU, a graph outport is included below each MmABx node.

Figure A-41 is an expansion of node NORMALOPERATIONS. The left half contains
the graph inports and nodes to distribute their tokens. The right half contains two
columns of internal nodes and the graph outports. Upon completion of startup, a
token is received on node starts and distributed by node spiit to the five internal
nodes in the left column. These tokens start simulated execution of the LPUs. Node
CPINTERFACE emits a token to node PILOTINPUT on the parent graph when it has
established connections and then receives inputs from PILOTINPUT through graph
ports MMKey and IMFKey. Similarly, node SENSORMGMTo turns on node SENSORS.
When the simulated failure occurs a token is received via node failure, and node
blockCPU11 emits tokens to stop the processing in nodes NAVIGATIONo, SENSORMGMTO,
and DGSINTERFACEo. After the failure is detected and the LPUs have been loaded
into their new CPUs, nodes NAVIGATION1, SENSORMGMT1, and DGSINTERFACE1 are
started (graph ports starto, 1, and 2). A MMKey input (mode change) into node

CPINTERFACE causes an output on graph port shutdown that triggers the shutdown

44

process. As LPUs are stopped in the shutdown process, tokens are received on nodes
shutdowno through shutdown3 stopping execution. The execution of node CPINTERFACE

is stopped by stopping node PILOTINPUT on the parent graph.

Figure A-42 is the subgraph of node cPINTERFACE. Upon receipt of the “start” token
on node inporto, message connections are established (left column). Node outport1
initiates node PILOTINPUT on the top-level graph. The LPU then responds to inputs
from the pilot (nodes revmmp and rcvimfk) and waypoint changes (node inport1) from
node GUIDANCE on the parent graph. Changes in the variable “FLYTO” received or
derived from PILOTINPUT are output to node GUIDANCE on the parent graph (node
outport0). After an appropriate number of MMP inputs, a token is emitted on node
outport2 to initiate system shutdown. It can be seen from this figure, and those that
follow, that the focus of this model is on data transfer which is modeled in much

greater detail than the CPU processing.

Figure A-43 is the subgraph of node sENsORMGMTo. As with CPINTERFACE, connec-
tions are made first with establishment of appropriate connections enabling processing
of messages. Outputs are provided to the Guidance LPU in CPU21 over the MAB
and to the Display Generation System (DGS) Interface and the Navigation LPUs
internally. Figure A-44 is the subgraph of node sENsorMGMT1. After the failure,
this LPU is loaded into CPU12, Navigation has been reloaded into CPU22, and DGS
interface into CPU21. As can be seen, the changes from Figure A-43 are primarily the

path for the outports. The only other difference is the deletion of the graph outport

that turned the sensors on. Figures A-45 through A-47 are one version each of the

other three LPUs.

3.3.4. Failure and Reconfiguration

Figure A-48 is the subgraph of node DETECT on the top-level graph (Figure A-6).
This graph is initiated by expiration of the firing delay of node FAILURE (a leaf node)
on the top-level graph. Node DETECTMISNGPLSE delays for 10 pulse periods which is
the specified number (ref 11) for the cluster supervisor to take action. The remainder
of the graph represents the transmission of the configuration report (failure) message

from the cluster 1 supervisor to the system supervisor.

Figure A-49 is the subgraph of node RECONFIGURE on the top-level graph. The upper
portion consists of nodes associated with preparation and transmission of the configu-
ration requests messages necessary to load and start the failed LPUs in new modules.
The last two nodes, other than graph ports, in each column are internal nodes that
load and start the assigned LPU. Below each ...LOADLPU node is a subgraph with
three internal nodes representing the CPU, BTBIM, and SMM functioning in the
loading process, (Figure A-50). Below each node in Figure A-50 is a subgraph of the
form we have seen in Figures A-23, A-25, and A-27. In fact, where the module and
the size of the LPU is the same, the same graph is used. The nodes ...STARTLPU on
Figure A-49 have a subgraph that starts the LPU sending a token into the appro-

priate subgraph of NORMALOPS. They then transmit the configuration report to

46

the system supervisor. Figure A-51 is the subgraph of node cpuizsTarTLPU. This
configuration report must pass over the MAB to cluster 2. The other two subgraphs

have only the portion necessary to transmit the report internally.

3.3.5. Shutdown

After the reconfigured system has run for the desired length of time, Shutdown is
executed by passing a token from node xMITMISSMODE in Figure A-42 through the
graph outport into node sHuTPOWN on Figure A-6. Figure A-52 is the graph of node
sHUTDOWN. The timing can be controlled by adjusting the rate at which MMKey
tokens are passed to the LPU CPINTERFACE (currently set at 1Hz) and the firing

threshold attribute (currently set at 5) on node CPU22RcvShutDn in Figure A-52.

In order to simulate an orderly shutdown of the system, the model forces a sequence on
the shutdown process. The module containing the system supervisor is the last mod-
ule to shut down. The last module prior to the system supervisor is the MABIM mod-
ule in the cluster containing the system supervisor. For other clusters, the MABIM
module is the last and the cluster supervisor the next to last. If we had more than
two clusters we would have assured that the hot-backup was the last of the other
cluster supervisors. In Figure A-52 there are two principal internal nodes, one for the

shutdown of each cluster.

Figure A-53 is the subgraph of node Cluster2shutbn. Node CPU22Broadcast has a hier-

archy below it that passes the shutdown message token to each of the other modules

47

in the cluster. Node MABzPIBU has an inport that will prevent its execution un-
til the shutdown report is received from cluster 1. The system supervisor, CPU22,
shuts down after receiving the MAB shutdown report. Each column shows a module
first stopping and then unloading any LPUs. This is followed by transmission of a
shutdown report and finally stopping the module. As LPUs are stopped tokens are
output to stop their execution. Nodes outputo through 4 pass the tokens that stop
the appropriate sub hierarchy in SYSTEMESSAGES. As the model is currently con-
figured, the shutdown message to cluster 1 is transmitted after the three modules
other than MAB and system supervisor in cluster 2 have shut down. If we want
it to be done simultaneously, node XmitclishutDn (and the hierarchy below it that
transmits the message on the MAB) would be moved up to the parent graph. The
outports and arcs connecting the three shutdown report nodes with node join would
be deleted as would nodes join and ToCluster1. On the parent graph (Figure A-52) the
new node, XmitCliShutDn, would be placed on the graph and its inport connected to
an outport that would be added to node cPU22ComputeCntg. The outport connecting
node Cluster2ShutDn t0 node ClusteriShutDn would be deleted and a new arc connecting
the outport of node XmitChShutDn to that inport (of node Clusterishutbn) would be
added. The subgraph hierarchy would automatically follow with node XmitCliShutbn

by including the appropriate subgraph filename.

Figure A-54 is the subgraph of node cpu2istopLPU. It contains a node for each LPU.

Figure A-55 is the subgraph of one of these nodes. First, the LPU is stopped. This is

48

followed by a series of disconnects from the LPUs messages and finally an updating

of the LPU loaded and running arrays in ASO.

Figure A-56 is the subgraph of node Cluster1ShutDn on the shutdown graph (Figure

A-52). The shutdown message comes into node RCvClShutdown (Figure A-57) where
it is transmitted to all modules on the Pl-bus. This node also collects the tokens
signifying that the M1553BIM, BTBIM, and CPU have completed shutdown to trigger
shutdown of the MABIM. The remaining nodes function the same as those in cluster
2 shutdown. When all modules in cluster 1 have completed shutdown, node join passes
a token back to node ClusteriShutDn on the shutdown graph (Figure A-52) to trigger

execution of shutdown of the MABIM in that cluster followed by the CPU22.

3.4. Resource Utilization

The GIPSIM simulation tool simulates resource utilization through the node attribute
firing_delay assigned to the leaf nodes of the model. When a node is primed (all of
its input conditions (firing thresholds) are met and its resource module available and
assigned), the assigned resource module becomes unavailable for the duration of the
assigned firing delay (and that period is added to the “module utilization” collected
for output). Upon expiration of the firing delay, appropriate tokens are placed in the
outport arc queues and the resource module is released. Thus, all firing delays mmnst

be calculated in common units. In this case the unit selected was microseconds.

49

The objective of this modeling effort is to analyze data transfer during configuration
and reconfiguration. Those processes associated with data transfer are represented
with a high degree of resolution and their delays calculated using all available data af-
ter an exhaustive search. Other processes, such as LPU functioning and configuration
algorithms, were resolved only to the degree necessary to provide the appropriate pro-
file of data transfer resource demands. This aggregation serves to reduce the running

time required for analyses.

This section will describe the firing delays assigned in the model and how they were

calculated.

3.4.1. Data Transmission Delays

Data transmission delays depend upon the characteristics of the transmission system
and the amount of data transmitted. The following paragraphs address message sizes

and PI-bus and HSDB transmission.

3.4.1.1. Message Sizes

Data transmissions were addressed in four categories.

Those messages involved in system management (transmitted and received by the
AARTS Software) are described in the documentation of the system executive [11].

Table 3.4 contains a list of these messages, their origin and destination, and the

50

message length in words.

Table 3.4. System Management Messages

SYSTEM MESSAGES
(Reference 11)
Page Number
Sender Receiver Name Size Fig. Discussion Bus Comment
DE.Module Mgr “SE.Clus Mg Mod _Config Rpt 445]Tpu 7.8 2,26 PI
DE .Module Mgr SE.Clus Mgt Mod Status.Rpt 3 9 2,26 Pl
PVI SE.33 Msn Mode_Chg Feq | 1 11 10,42 HSDB | Ssmd AB____ |
SMM(file) SE.Men Ctrl Msn Control File 2000 14 13 HSDB BTB
SMM(file) SE.LPU_Atsr LPU_Attributes_File 42 15 13 HSDB BTB
SE.Kernel(ARB) SE.Kernel Cluster Pulse 2 20,25,26 FI Cluster Heartbeat
SE .Kernel SE.Clus. Mgt ClusterPing 2 80 20,25,26 PI
SE . Keinel SE.Clus Mgt Module Pulse 2 20,25,28 Pl
SE Clus Mgt SESS ClusterConBig_Rpt 20+45/Tpu | 1.8 aT,42 HSDE 55 incl BB
SE.Clus Mgt SE.Kernel Cluster Ping.Ack 2 61 37,20 Pl
SE.Clus Mgt SE.Kernel&S$S Cluster Pulse 2 37,20,42 P1&HSDB SS incl HB
SE.Clus. Mgt DE .Module Mgr | Cluster.Status_Req 2 [] 37,1,42 P1
SE.Clus Mgt SE.SS Cluster Status Rpt 9 57 a7 HSDB SS incl HB
SE.Clus. Mgt SE.SS System.Ping 2 60 37,42 HSDB SS incl HB
SE.Clus. Mgt DE Module Mgr | Cluster_Config_Req 341/lpu 4,5 38,1 Pl
SE.Clus.Mgt(HB) | otherClus Mgt HB_Heartbeat 2 56 38,26 HSDB
SE.Clus. Mgt(SS) SE.HB SS_Heartbeat 2 56 38 HSDB
SE.Clus Mgt(SS) otherClus Mgt SS.Ping 2 60 as HSDB
SE.SS PVI Msn Mode_Chg.Resp 1 12 48,10 HSDB
SE.SS SE.Clus Mgt System.Acknowledge 2 61 48,27 HSDB
SE.SS SE.Clus Mgt System.Config_Req 341/1pu 4,5 48,26 PI&HSDB
SE.SS SE.Clus. Mgt System.Status_Req 1 59 49,30 PI&HSDB Sys.Query
SE.SS SE.HB System Status.Rpt 348/cl 58 49 HSDB

Messages transmitted to and from the LPUs in the simulation were described in data

provided by the TRW project manager [24]. Table 3.5 describes these messages.

Messages associated with obtaining files services are documented in the IRS [8] [9]

and from data provided by the TRW project manager [23] . Those employed in the

model are listed in Table 3.6.

File sizes were obtained from the TRW project in reference 24 and through telephone

conversations. The file sizes used in the model are shown in Table 3.7.

51

Table 3.5. Messages Transmitted to and from LPUs

LPU MESSAGES

(Reference 24)

Sender Receiver Name Size (words) Bus
SENSORS SENSOR MGT | Air Data Sensor 4 MAB
SENSORS SENSOR MGT | INS Sensor 29 MAB
SENSOR MGT | DGS Interface | Air Data 20 MAB
SENSOR MGT | GUIDANCE Air Data 20 MAB
SENSOR MGT | DGS Interface | INS Data 46 MAB
SENSOR MGT | GUIDANCE INS Data 46 MAB
SENSOR MGT | NAVIGATION | INS Data 46 MAB
PILOT PVI IMFK Key 2 MAB
PILOT PVI MMP Key 2 MAB
PVl PILOT MMP Lamp 1 MAB
PVI PILOT Pilot Mission Mode 1 MAB
PVI GUIDANCE Fly To 1 MAB
PVI PILOT IMFK Command 32 MAB
NAVIGATION | GUIDANCE Sys Body Nav State 40 MAB
NAVIGATION | DGS Interface | Sys Body Nav State 40 MAB
NAVIGATION | GUIDANCE Nav State 17 MAB
NAVIGATION | DGS Interface | Nav State 17 MAB
GUIDANCE DGS Interface | Steering Control 18 MAB
GUIDANCE STORE Steering Control 18 BTB
GUIDANCE DGS Interface | Steer 18 MAB
GUIDANCE PVI Guidance Waypoint 1 MAB
DGS Interface | M1553B Master Mode Buffer.1 32 M1553B
DGS Interface | M1553B Master Mode Buffer.2 32 M1553B
DGS Interface | M1553B Miscellaneous Msg 4 M1553B

Table 3.6. Files Services Message Lengths

FILES SERVICES MESSAGES
(Reference 8,9, & 23)
Message
Service Size (words)
Open File 3
Response 2
Read File 6
Read Response 2

Table 3.7. Files Services File Sizes

FILE SIZES
(Reference 24 & Verbal)
ASO 80K words | 20 blocks
AS1 80K words | 20 blocks
Cockpit Interface 21K words | 5 blocks plus a short block
DGS Interface 17K words | 4 blocks plus a short block
Guidance 17K words | 4 blocks plus a short block
Sensor Management | 13K words | 3 blocks plus a short block
Navigation 13K words | 3 blocks plus a short block

Bootstrap Loader 4K words
Mission Control File | 2K words
LPU Attributes File | 42K words

53

3.4.1.2. PI-bus Transmission Delays

The following conditions and assumptions were used for determining PI-bus data

transmission rates for the ADAS model.

Pl-bus is a Type 16 ED Bus [1] (page B-16)
All modules will vie for PI-bus before every transmission
VIE sequence takes 8 bus cycles [1] (page B-30)

The HZ and DZ cycles have been included, implying non-transfer wait cycle

before the Header and Data Acknowledge cycles [1] (Table 5-17, page B-71)

Data will transfer from master to slave without interruption provided the amount

of data transferred is less than 65,536 words

There will be no passing of Tenure during message passing or AS0 loading for all

the modules, and that the absolute tenure limit of (22*+8) will not be necessary
No Parameter Write type messages were modeled

All data transmission on the PI-bus shall use the the Block Message-SH se-

quence [1] (page B-69)

The BTBIM has the highest priority (4095) of all modules connected to the

Pl-bus [1] (page B-110)

54

e The Pl-bus will have a transfer rate of 10 million words per second during the
DATA state, and assuming 16 bit words only, and one cycle only to transfer

each word, each cycle time is 100 ns, or 0.1 microseconds

o The Block Message-SH Sequence contains the status words listed in Table 3.8

for a total overhead of 8 words [1] (page B-35)

Table 3.8. PL-bus Status Words

Message Size (words)

HEADER (HO, HWA, HWC0, HWC1, HZ)
HEADER ACKNOWLEDGE
DATA ACKNOWLEDGE (DZ, DA0)

N = On

By including the necessary 8 VIE cycles and assuming 1 cycle/word, the total over-
head is 16 bus cycles per transmission. This coupled with the 0.1 microsecond per

word transmission rate results in the following formula:

Firing Delay = (#words + overhead) x rate microseconds

(#words + 16) x 0.1 microseconds

I'iring delays for common message sizes are shown in Table 3.9 These are the delays
placed on the leaf node names PIBIU & PIBUS in the transmission graphs. It was
determined during the modeling that the transfer rate between the Pl-bus interface

unit and the memory was slower than the bus traasfer rate. This could lead to loss

35

of portions of messages. The modeling team was instructed to assume a two-channel
transfer (2 words in parallel) between PIBIU and memory and a buffer in the PIBIU
that would receive words prior to transmission and collect them on the receiving end.
The initial read was modeled along with CCB execution in nodes CCBEXECUTION.
The final writes were modeled along with reaction to message labels in nodes Rcvxx

in the model.

3.4.1.3. High Speed Data Bus (HSDB) Transmission Delays

The following conditions and assumptions were used for the calculation of the High-

Speed Data Bus data transmission times.

The Avionics Bus Interface (ABI) component of the HSDBIM is in the ACTIVE

state following completion of its SUROM

o the HSDB-ABIs of both clusters remain in the network. Ring admittance is not

modeled

e Transmission Monitor Timer (TMT), Transmission Streaming Timer (TST),
Initialization Sequence Try Count (ISTC), Valid Message Transmitted Count,
Message Fcho Error Count and all “counts” listed on page 114, (2] arc ot

modeled

e The ABI is capable of transmitting/receiving on the HSDB while simultaneously

transmitting/receiving to the 1750 Module

56

Table 3.9. Pl-bus Firing Delay

Size Pl-bus
(words) | (microseconds)

1 1.70
2 1.80
3 1.90
4 2.00
6 2.20
8 2.40
9 2.50
17 3.30
18 3.40
20 3.60
22 3.80
23 3.90
28 4.40
29 4.5C
30 4.60
32 4.80
40 5.60
45 6.10
46 6.20
55 7.10
60 7.60
288 30.40
520 53.60
616 63.20
4096 411.20

-1

i |

-

The ABI can fully enqueue and validate any message received before transferring

it to the 1750 module

All transfer of data (HCCB’s, message data) between the ABI and the 1750

module is via DMA

All 3 Transmit Queues on the ABI can store up to 3839 16-bit words each (one

buffer for each priority level) [2] (page 103). Only priority 1 is simulated

The ABI Receive Queue (data from HSDB, enroute to 1750 module) can store

up to 8192 16-bit words [2] (page 104)
Block size is 256 words on the MAB and 4K words on the BTB

The Bus transfer rate is 50 million bits per second, or 0.02 microseconds per

bit [2] (page 59)

The token frame and preamble consists of 40 bits [2](page 78). See Table 3.10.
Message frame overhead is 88 bits [2](page 78). See Table 3.11.

An intertransmission gap of 280 nanoseconds, [2] (page 78), was used

When the 3us is idle, the token is equally likely to be at any point on the ring.

The assumption that the token is equally likely to be anywhere on the ring at any

time implies that on the average when station is ready to transmit, it will wait for

one token passage (the average of the token being 0, 1, or 2 stations away). For any

Table 3.10. HSDB Token Frame

Parameter #Bits
Preamble 16
Start Delimiter (SD) 4
Bit 4 1
Destination Address (DA) 7
Frame Check Sequence (FCS) 8
End Delimiter (ED) 4

Table 3.11. HSDB Message Frame Overhead

Parameter #Bits
Preamble 16
Start Delimiter (SD) 4
Frame Control (FC) 8
Source Address (SA) 8
Destination Address (DA) 16
Word Count (WC) 16
Frame Check Sequence (FCS) 16
End Delimiter (ED) 4

59

number of stations, n, on the ring, this number would be (n-1)/2. By not implicitly
modeling token passage, the output Bus utilization represents productive utilization.
With token passing, including it is always 100% busy. Using this assumption. the
delay assigned to nodes named WAIT4TOKEN was calculated as the time to pass a

token frame (and preamble) plus the intertransmission gap or

40 bits x 0.02 microsecond/bit + 0.28 microread = 1.08 microsecond

For the BIU, MAB, and BTB nodes with a message overhead of 88 bits, the calculation

1s

(N x 16 + 88) x 0.02 microsecond

where N is the number of words in the message. Table 3.12 provides the HSDB firing

delays for various message lengths.

3.4.2. CPU and SMM Delays

The firing delays assigned to nodes mapped: onto the CPU modules and onto the

System Mass Memory (SMM) were estimated in three different groups:

¢ SUROM processing and checksums

e Message and files services

60

Table 3.12. HSDB TIMING

Size HSDB
(words) | (microseconds)
1 2.08
2 2.40
3 2.72
4 3.04
6 3.68
8 4.32
9 4.64
17 7.20
18 7.52
20 8.16
22 8.80
23 9.12
28 10.72
29 10.93
30 11.36
32 12.00
40 14.56
45 16.16
46 16.48
55 19.36
60 20.96
288 93.92
520 168.16
616 198.88
1040 334.56
4096 1312.48

61

e Other

Most key parameters used for calculating these firing delays were provided by the
TRW project manager. Some of them changed radically during the course of the
modeling effort. Those that were originated with the modeling team were submitted

to and either confirmed or corrected by the TRW project manager.

3.4.2.1. SUROM Processing and Checksum Delays

The key parameters for these calculations were:

Memory access time 187.5 nanoseconds

SUROM size 10,000 words

Processor speed 2.0 mips

Checksum algorithm 10 instructions cycles/word
Memory test 4 accesses/word

Memory size M1553B BIM Module 128K words

Memory size - other Modules 256K words

ISA test and discrete checks equivalent to 256 K memory test

Using these estimates one obtains the delays shown in Table 3.13.

The checksum delays from Table 3.13 are used in the appropriate checksum nodes
throughout the model. Since the entire SUROM process up to transmission of the
ready message is performed by the CPU without contention from other processes,
this process is modeled in a single leaf node with a delay of 339,875 microseconds for

the M1553B nodes and 435,875 microseconds for all others.

62

Table 3.13. Time for SUROM and Checksum Events

FIRING DELAY FOR SUROM AND CHECKSUMS

Read RAM to ROM Assume 187.5 nanosecond
transfer and 10,000 word SUROM.

Checksum Assume 2.0 mips Processor &
10 instruction c¢ycles/word.

Memory test Assume 4 accesses/word &
256k memory

Mcmory test Assume 4 accesses/word &
128k memory

Remainder (ISA test, Assume equivalent to

other tests, Discretes) memory test

Checksums ASO 80,000 words
AS1 80,000 words
Interface 17,000 words
Cockpit Interface 21,000 words
Sensor Management 13,000 words
Guidance 17,000 words
Navigation 13,000 words
LPU Attributes File 42 words

63

1 ,875 microsec

50,000

192,000

96,000

192,000

400,000
400,000
85,000
105,000
65,000
85,000
65,000
210

microsec

microsec

microsec

microsec

microsec
microsec
microsec
microsec
microsec
microsec
microsec
microsec

3.4.2.2. Message and File Services Delays

RTI was furnished timing data from the fifth AARTS Quarterly Review (QR5) [22].
These data showed the times in microseconds for execution of certain message ser-
vices and the goals that had been specified for some of them. In accordance with
instructions from the project manager, we used the lessor of the measured time or
the midpoint between the measured time and the goal, whichever was less. These

times are displayed in Table 3.14.

The numbers provided by QR5 were for calls from address states outside of address
state 0. They thus include in and out processing through an interface unit and a BEX
handler. Since some of the system messages and their connections originate within
address state 0, an estimate was needed for the amount of time to be ascribed to their
processing. In addition, estimates were needed for the files services (open, close, read,
write). A matrix of procedures, functions, etc., called by the measured and unknown
services was constructed. Table 3.15 contains this matrix at the top. Each row of
the matrix describes a service. Each column of the matrix describes a function that
induces a delay. An x is placed in the matrix if that function is required to perform the
service. The total delay for a service should equal the sum of the delays for the marked
functions. The left column of the key defines the column headings for the matrix.
The known (estimated) times were placed in the time column and the unknown ones
(marked by asterisks) were calculated using the algorithms and assumptions shown

in the lower right portion of the table. The resulting times for the services provided

64

Table 3.14. Time for Message 1/O Services

FIRST PASS FIRING DELAYS (Used min(QRS5,(QR5+Goal)/2)

Operation Goal QRS Use
Connect Receive 210 357 283
Redirect 75 215 145
Flush 75 190 132
Disconnect Receive 210 223 217
Connect Transmit 210 382 296
Transmit Nowait 1356 474 305
Transmit 1356 562 348
Disconnect Transmit 210 223 217
Event Create 193 193
Event Set 225 103 103
Event Clear 225 103 103
Event Toggle 225 120 120
Event Polarity_0f 75 104 90
Event Is_Created 101 101
Event Delete 185 185
Semaphore Create 191 191
Semaphore Acquire 105 104 104
Semaphore Release 195 116 116
Semaphore Delete 177 177
Critical Section Enter 135 96 96
Critical Section Leave 135 96 96
Calendar Seconds (Clock) 109 109
Simple Accept 321 321

65

within address state 0 were placed in the column headed “(AS0).” The remark at
the end of the connect and disconnect rows emphasizes that a transmission of the
channel array to the HSDBIM must be added to each HSDB connect and disconnect.

These are the delays used in the model.

3.4.2.3. Other Delays

Delays associated with AARTS algorithms such as processing the Mission Database,
computing a configuration, stopping a CPU, etc., were estimated jointly by TRW
and RTI personnel. The same was done for the LPU algorithms, the Bus Interface
Module Software, and for System Mass Memory processing. These estimates are
displayed in Table 3.16. The firing delays have all been entered into the model and
the script files for setting firing delays with a decimal point and two zeros. This
will facilitate locating them for change (in the script files) should better estimates or

actual measurements become available.

66

Table 3.15. Time for Message and Files Services

-3d/1 puv x3ad ybnoayy bureesooiad teutry 1
-bsW 3e9nbaa Aiinbuy azyrerjruUr @y
$2S = ST + €0 + 09T + ¥8 + L¥ + O + OV + §pT = uado **10309uu0d Aiewtad Ioj xo9ys b
;79D pue G = Y Puw ‘Qp = Zp ‘S = £O Sunssw ‘31em 3
68% = £¥ + 091 + 8 + ‘gD @3a1ag (G
Zv + ST + S¥T = @3TIm/peal 39b pue G = ¢p @unsesw ‘1eqe 2[qEsTg 9@
{81 = 0¢ - LIT = 9801D 0f = 6 3 ¢y = p/1° Sunsse ‘90D °3IN0IXI g
00T = T+ GT = Qq puw 0f = Z/T® oungse JI "800 @3e’1D I
GPT = 1T + Z/T2 + q + ®© 8aARIT 8TY] ‘1oqey I¥TqeRuUd T '@
091 =~ €9 1o
6 + Ta+ IP = €@ JTRMOU SURI} ¥ SURIJ UOD WOl 12qeT 23®d0TIV :EP
L9 = 1P 396 uayl ‘pIODal TauUURYO IZTTRIFTUT 9 IJWOOTIV :IP
O -~ O QIunsswe uOT309UUOD IZTTETITUT ¥ 23@O00TIV :IP ip
19 + $94 TO = T2 + TP + [O ©AT203I STP ¥ UOD wWoOIll
¥8 = 2T + 2L = 29 19b uayl cA37IN098/M UOTIVZTIOYINY XOIYD : €2
y9 -~ 19 sunsse -uado/ApPEax I0J PI0OAI TAUURYD/UOTIDBUUOD YOAYD :Z2
ZL = b + v = G2 8309UU0DSTP WOIJ ‘yoTjzeziIOy3NY X0IYd [0 -
ZT + b + T9 = g9 §309UU0D WOIJ
ZL = G@ guell UOOSTP % YSN[J WOIJ ‘pIOO?I TIUURYD/UOTIOSUUOD TINU 103 YO3Yyd :q
£y = 3 3TeMOuU 3 JlusSuRI} WOXJ ‘1aTpuey xd8 puw 3/1 ybnoiyy buregadoid [erlTUl W@
NOILVINIDIVO pich |
«(18) (8T8 X X X X X 28070
gasH suexl ppv (LT11) LT X X X X X 3lwguel] IS3UUODETQA
gasH suexl ppv (LIT) LT1Z X X X X X X BATIDVY ID3UU0081d
SPT/ZET X b 4 X X 3031TPaY/YenTa
»(68¢€) 68V X X X X x X X X X 3TIM
«(68€) 689 X X X X X X X X X peay
(soz) so¢ X X X X X JTemou JrmSURIL
(gvZ) 8¢ X X X X X X ITWsURI]
w(¥L¥) %G X X X X X X X X X X X uado
gasH/3 sueal ppv (96T) 967 X X X X X X jlwsuRvI} 3I0IUUOD
daasH/3 sueil ppv (¥8T) ¥8L X X X X X X X aAT209Y 302UU0D
(osv) aw13 T y b] Go 9 ¢ z@ T2 €Pp TP TP €2 2o 10 q v 30IAN3S

SADIA¥AS SITId ANV OI JAOYSSIW HOd SAVTIA ONI¥IA

67

Table 3.16. Assumed Firing Delays

TRANSMIT TWO WORD (XMIT) 100.00
STARTUP.ARBCPUL11 (or21).CALLCLUSTERARB 100.00
STARTUP.ARBCPU12 (0r22). ARBCLUSTER.CALLCLUSTERARB 50.00
All MONITORxxHB 50.00
xSMMx. XMITSTATUS 348.00
SMM send block 1000.00
HSDBIM process msg from PI to HSD Bus 200.00
HSDBIM process msg from HSDB 20.00
STARTUP.ARBCPU22.ASSUMESYSSUP.STARTSYSMGMT 400.00
STARTUP.ARBCPU22.ASSUMESYSSUP.STOPHOTHB 50.00
CPU Process Mission Database 200.00
Compute Configuration/Reconfiguration 600.00
MAB UPDATE ARRAY 200.00
All RCV system msg in CPU 50.00
DGS CALCULATE 300.00
CHANGE WAYPOINT 200.00
COMPUTE STEER 800.00
COMPUTE AIRDATA 600.00
COMPUTE INSDATA 1800.00
COMPUTE MMP 150.00
COMPUTE IMFK 400.00
COMPUTE WAYPOINT 500.00
COMPUTE shutdown, STOP CPU, STOP LPU 100.00
UNLOAD LPU or AS1 5000.00
UPDATE Structures 50.00

68

3.5. Flow Control

A GIPSIM simulation is controlled by the passage of tokens between nodes. This
control is effected by the assignment of values to the attributes token_consume_rate,
token_produce_rate, firing_threshold, and initial_token_count for node in and outports
and to the attribute queue_size for arcs. In most cases, these attributes are set to the
default value 0 for initial_token_count and 1 for the others. The following paragraphs
will describe how these attributes are manipulated to control the execution of the

model.

Figure A-8 is the graph of node suroMBTB2 on the startup graph. Values assigned

for the node in and outports in this graph are shown in Table 3.17.

Table 3.17. Port Attributes - Graph of Node SUROMBTB2

Node Port | Consume | Threshold | Initial | Produce
WAIT4TOKEN 0 1 1 1 inport
RUNCHECKSUM 0 20 20 0 inport
RUNCHECKSUM 0 | outport | n/a outport | O
join2 0 2 2 0 inport
splitl 0 25 25 24 inport
split2 0 1 1 20 inport
split2 1 1 2 inport
split2 0 | outport | outport n/a 0
SETUPBTBDOWNLOAD 0 [outport | ouiport n/a 2
all others all 1 1 0 inport
all others all | outport | outport n/a 1

The graph commences execution when a token is received at expiration of the power-

up delay (through node inporto) on the inport of node sTaARTSUROM. After node START-

69

suroMm’s firing delay has passed, a token is passed to node SETUPBTBDOWNLOAD
(inport 0). SETUPBTBDOWNLOAD is an “OR” node and so will execute upon receipt
of this token. Two tokens produced by outport 0 of node SETUPBTBDOWNLOAD.
These provide for two primes of inport! on node WAIT4TOKEN (consume and thresh-
old both 1). The single initial token on inport0 of node WAIT4TOKEN allows the node
to execute upon receipt of the tokens from node sETuPBTBDOWNLOAD. This use of
an initial token is the standard way to initialize cycles. After the first transmission of
the 2-word message, node delay waits for the assigned time and then outputs a token
to inport 0 of node WAIT4TOKEN providing for a second execution of the message cy-
cle. When node delay executes the second time, both tokens have been consumed on
inportl of node WAIT4TOKEN and the cycle of 2-word messages terminates. Node join2
connects to graph outport 1 that represents the arc from node suroMBTB1 to node
SMMASOTOBTB on the parent graph. Node join2 is an OR node; that is it will execute
whenever the token threshold is met on any, rather than all, of its inport queues.
The firing_threshold and token_consume_rate on inport0 of node join2 has bheen set for
execution after two message transmissions. Node split1 activates the receipt of the 4-
word message. It must execute upon receipt of the first token from the SMM and not
on any of the following. This is achieved by setting the token_consume_rate and fir-
ing_threshold to a number (in this case 25) greater than the total number of expected
incoming tokens (in this case 24) and setting the initial_token_count to one less. The
queue size on the arc must be set 25 or more or a full queue will block the predecessor

node. Node splitz activates the receipt of a 4K block of data from the SMM during

70

download of the ASO. The feedback arc from outporto (zero token_produce.rate) to
inporto (a token_consume_rate and firing_threshold of 1 and initial_token_count of 20)
ensures that this node will execute no more than 20 times. Since the sequence of 4K
blocks follows the receipt of the 4-word message, the firing_threshold on inport! has
been set to 2 with a token_consume_rate of 1 and no wnitial_token_count. This causes
node splitz to commence execution upon receipt of the second token from the mem-
ory and to continue to execute on each succeeding token until the 20 tok.ns initially
on inport0 are consumed. Again the queue sizes must accom:nodate the maximum
number of tokens. Node RUNCHECKSUM is set to execute after receipt of twenty 4K
blocks of data from the SMM. outport! of node RUNCHECKsSUM would, if it produced
a token, restart the entire process. Since the guidelines for the simulation was to

assume no failure of BIT or checksum, the token_produce_rate has been set to 0.

Node READLPULOC is an internal node. Therefore, the execution takes place in its sub-
graph (Figure A-9). The token_consume_rate, firing_threshold, and token_prod: ~e_rate

attribute values are shown in Table 3.18.

Table 3.18. Port Attributes - Graph of Node READLPULOC

Node Port | Consume | Threshold | Initial | Produce
RCVRESPONSE 0 3 3 2 ingort
RCVDATA 0 3 3 1 inport
RCVSTATUS 0 3 3 0 inport
split J 1 22 0 inport
all others all 1 1 0 inpor!
all others all | outport n/a | outpo. ! i

71

In this case, we want nothing to happen until after the 4-word message and ASO have
been received (21 messages). Thus, we put a threshold of 22 on node split which
receives the SMM inputs. The consume of 1 assures that it will execute on each
received message after the 21st. Three messages will be received from the SMM:
the open file response, the data, and the read status. By putting a threshold and
consume of 3 on the three corresponding nodes and initial token counts of 2, 1, and

0, we achieve the proper sequence of execution.

Figure A-10 is the graph of node sMMAsoTOBTB on the startup graph. The fo-
ken_consume_rate, firing_threshold, and token_produce_rate attribute values are shown

in Table 3.19.

Table 3.19. Port Attributes - Graph of Node SMMASOTOBTB

Node Port | Consume | Threshold | Initial | Produce
WAIT4TOKENO 0 3 3 2 inport
WAITATOKENO 1 20 20 0 inport
WAIT4TOKEN1 0 1 1 1 inport
WAIT4TOKEN2 0 0 0 0 inport
WAITATOKEN2 1 3 3 2 inport
WAIT4TOKEN3 0 1 1 1 inport
XMITDATAO 0 | outport outport n/a 20
XMITDATA1 0 | outport | outport n/a 20
splitl 2 | outport | outport n/a 0
all others all 1 1 0 inport
all others all | outport | outport n/a 1 ‘

In this graph we want the nodes WAIT4TOKENo and WAIT4TOKEN2 to execute on
receipt of the first message from the appropriate BTBIM with the 4-word message

followed by the 20 4K blocks of ASO. The next two messages are the open and

72

read for the LPU attributes file. They will trigger events in the subgraph of node
RDLPULOCx. Thus, we place a threshold and consume of three with an initial count
of two on inports 0 and 1 of nodes WAIT4TOKENo and WAIT4TOKEN2, respectively.
The consume and threshold of 0 on inport 0 of node wAIT4TOKEN2 allows the node
to execute on inputs to inport 1 only. The arc from node splita to node WAIT4TOKEN2
provides a means to allow simultaneous loading of the BTBIMs by putting a produce,
consume, and threshold of 1 on the parts associated with this arc and the arc from
node splita to node WAIT4TOKENo and an initial token in the inport of the node we
want to “fire.” First this graph can be made to transmit the 4K blocks alternately
to the BTBIMs. As currently configured, the consume and threshold of 20 on inport

1 of node WAIT4TOKENo prevents it from executing until the BTB2 load is complete.

Nodes RDLPULOCx are internal nodes with graphs as shown in Figure A-11. The to-

ken_consume_rate, firing_threshold, and token_produce_rate attribute values are shown

in Table 3.20.

Table 3.20. Port Attributes - Graph of Node RDLPULOCx

Node Port | Consume | Threshold | Initial | Produce
RCVOPENLPULOC 0 2 2 1 inport
RCVRDLPULOC 0 2 2 0 inport
split 0 1 2 0 inport
all other all 1 1 0 inport
ati other all | outport outport n/a 1

For this graph we have two trains of events, each initiated by an incoming token.

Execution must start with the second token received from the BTBIM (see discussion

[R]

of Figures A-8 and A-10). The threshold of 2 and consume of 1 on node split with
no initial token assures that it will execute on receipt of the second incoming token
and any subsequent ones. The threshold and consume of 2 with 1 initial token on
node RCVOPENLPULOC means it will execute on receipt of the first token from node
split (the open request) and not on the second. The threshold and consume of 2 with
no initial token on node RCVRDLPULOC means it will execute on the second token

recelved from node spiit.

Figure A-15 is the graph of the BT BIM receiving messages from a module and passing
them to the recipient during the loading of the bootstrap loader and ASO software.

Table 3.21 shows the port attributes assigned to nodes in this graph.

Table 3.21. Port Attributes - Graph of Node BTBTOSMMASH)

Node Port | Consume { Threshold | Initial | Produce
RCV2WORD 0 26 26 25 inport
RCVREADREQ 0 1 2 0 inport
RCVRESPONSE | 0 50 50 49 inport
All Other - 1 1 0 inport
All Other - outport outport n/a 1

We want node RcvzwORD to execute on the first token received from the module
and then to ignore any others. We thus set a consume and threshold greater than
the expected number of incoming tokens (26) and assigned one less to the initial
token attribute. Node RCVREADREQ must pass all subsequent tokens to the SMM.
Therefore, we put on it a consume of 1 and a threshold of 2 with no initial token.

Finally, when the memory responds to the open request for the bootstrap loader (this

74

request is initiated in this graph) this graph transmits a read request to the SMM.
We want this chain to execute on the response to the open file response and not to
any subsequent SMM responses. We achieve this with a threshold and consume of 50

and an initial token count of 49.

Figure A-16 is the graph of the BTBIM passing messages from the memory (and in one
case from the graph discussed in the preceding paragraph) to a module. Table 3.22

shows the port attributes assigned to nodes in this graph.

Table 3.22. Port Attributes - Graph of Node BTBTOCPUASO

Node Port | Consume | Threshold | Initial { Produce

Split 0 1 2 0 inport
RCVATTRIBRESP | 0 2 44 0 inport
RCVFILERESP 0 2 3 0 inport
RCVFILERESP 1 1 1 21 inport
RCVBOOTRESP 0 50 50 48 inport
RCVBOOT 0 50 50 49 inport
RCVASO 0 4 0 inport
RCVASO 1 1 1 20 inport
RCVATTRIB 0 45 45 0 inport
RCVFILERESP 1 outport outport n/a 0

RCVASO 1 outport outport n/a 0

All Other - 1 1 0 inport
All Other - outport outport n/a 1

The first token passed from the SMM hierarchy into this (BTBIM) hierarchy is the
response to the bootstrap loader open request. This triggers a read request in the
graph discussed in the preceding paragraph. The token consume of 1 and threshold
of 2 on node spiit in this graph assures that the first token from SMM will be ignored

in this graph while each succeeding token will cause an output. Commencing with

75

the second incoming token, node spiit places a single token on each of its outport
queues each time a token is received from memory. The first of these tokens represents
transmission of the bootstrap loader. This token causes node RcVBoot to execute. The
consume of threshold of 50 with an initial count of 49 causes this node to execute on
the first token received (and, were there to be that many, on the 51st). This is followed
by a read status message from the SMM to the BTBIM. Node RCVBOOTRESP, with a
consume and threshold of 50 and an initial token count of 48, executes on the second
token from node spiit. After the bootstrap loader has been received by the module, the
module transmits an open file request for the ASO software. This causes transmission
of a token representing the open file response from the SMM. Node RCVFILERESP has
two inports and two outports. Inport 0’s execution condition will be satisfied upon
receipt of the third token from node spiit and every second token thereafter. Inport 1
is assigned a consume and threshold of 1 with 21 initial tokens while outport 1 has a
produce of zero. This means that inport 1’s conditions will be satisfied 21 times and
then it will block further execution of the node. Node rRcvaso is similarly configured
to receive 20 blocks of the ASO software commencing with the fourth token from node
split. Thus, nodes RCVFILERESP and RCVASo alternate during the simulated download
of the 80K ASO file (open response followed by 20 blocks of data each followed by
a read status). Finally, nodes RCVATTRIBRESP and RCVATTRIB execute in a similar

manner on the 44th through 46th (final) token received from node spiit.

Other types of employment of port attributes for flow control can be seen in the arbi-

76

tration graphs. Figure A-12 is a graph of a module receiving its bootstrap loader and
ASQ software. For CPU 22 (and 12), the final node to execute, node CHECKSUMAT-
TRIB places 5 tokens on the outgoing arc (node outport1) that connects nodes Asocpuz2
and ARBCPU22 on the startup graph. Figure A-58 is a subgraph of node ArRBCPU22
where the tokens are received by inport 0 of node cALLCLUSTERARB. Inport 0 and
inport 1 of node CALLCLUSTERARB have a consume and threshold of 1 assigned. In
addition, inport 1 has an initial token to initiate the cycle through the delay node on
the parent graph (Figure A-19). This provides for five executions of this subgraph.
Each execution places a token on the arc connecting node ARBCLUSTER with node
LOADAS1 on the parent graph (Figure A-19). The receiving node in the graph of
node LoADAs1 (Figure A-59) is node oPENAs1. The inport of this node is assigned a
consume and threshold of 5 assuring that the graph will execute once after five cycles
through the ARBCLUSTER graph. Port attributes, similar to those assigned for the
loading of the ASO software, control the alternation between receiving responses (and
transmitting reads) and receiving data in the right-hand portion of this graph. After
execution, node RUNCHECKSUM places a token on the arc connecting node LOADAS!
to node ARBHB on the parent graph. This token causes a single execution of node
MONITORHB in the subgraph of node ARBHB, (Figure A-60). Node MONITORHB sends
a token to node oro, which executes upon receipt of a token on any of its inports.
Node oro produces a token that initiates the subgraph of node TRANsMITHB. This
subgraph places a token on the outport connecting to node delay, which initiates subse-

quent executions of the cycle, and on a graph port toassuMEssyssup, which connects

77

node ARBHB to node ASSUMESYSSUP on the parent graph. These tokens enter the
graph of node assuMEesyssup, Figure A-61, where they en-ter the subgraph of node
ARBSYSSUP, Figure A-62, through graph port start and into node MONITORSSHB. In-
port 0 of node MONITORSSHB has been assigned a threshold and consume of 7 with
an initial token count of 2. This causes the graph to initiate upon receipt of the
fifth token from the hot backup heartbeat, and not to initiate unless it receives seven
more. The module must issue five non-colliding system supervisor heartbeats before
assuming the role of system supervisor and terminating the hot backup heartbeat.
The nuinber 7 allows for six hot backup heartbeats to occur without reinitiating the
graph during this period. As it turns out, only 5 occur. Any larger number could
have been used. Upon execution, node MONITORSSHB places five tokens on the arc
to node TRANSMITSSHB which provides for five executions of the subgraph of that
node (there is an initial token on the arc from node delay). Each execution of this
subgraph, in addition to initializing the delay, places a token on each of the graph
outports. These tokens are passed to nodes STARTSYSMGT and STOPHOTHB on the
parent graph, Figure A-61. The inport for each of these nodes is assigned a consume
and threshold of 3; so, they will execute after five heartbeats. The four graph out-
ports connect to the system messages function where the supervisor role is initiated
(including continuation of the heartbeat); to node LPUCPU22 on the startup graph
to allow starting of LPU loading (the outport is misnamed “tonormalops™); to the
ARBHB node on the parent graph to stop the hot backup heartbeat; and to CPU12

to reinitiate arbitration for hot backup. Each of these nodes passes a single token

78

except the one to ARBHB which passes 40 (any large number would do). Referring to
Figure A-60, the 40 incoming tokens through graph inport stop cause node oRo to fire
repeatedly (firing delay of zero). This results in tokens simultaneously on all arcs of
the cycle through node delay. Since the queue size is 1 for each of these arcs, none of
the nodes can execute. There is no place for an output token. This stops the cycle.

The same approach is used to stop heartbeats and LPUs on simulated failure and on

shutdown.

In the discussion of the ASO load, we encountered the feedback arc from an outport
to an inport of the same node with a 0 token produce and initial tokens sufficient to
provide the required number (and no more) of executions. This method is employed
on the top-level graph (Figure A-T) to restrict nodes POWERUP and FAILURE to a
single execution. The loop on node POWERUP appears redundant given those on the
nodes pwrondlyx on the startup graph (Figure A-7). When the entire model is running,
either approach would be sufficient. However, if one wants to run the startup graph
as a model itself, the loops on that graph are required. If one wants to delete the
processing time associated with simulating startup in order to investigate or debug
later portions of the model, he can change the attribute node_class of node sTARTUP
on the top-level graph to leaf. Then the loop on node POWERUP is required. A similar
loop can be found on node: COMPUTENEWCONFIG in the reconfigure graph (Figure A-
49) and on node CPU22RcvShutDn in the shutdown graph (Figure A-52). These allow

running these portions of the model independently.

79

4. Results

In this section we discuss model validation and provide some simulation outputs
that show how the ADAS model can be used to assess timing, performance, resource

utilization and the sensitivity of these measures to input parameters.

The original purpose of this model was to calibrate the abstraction against measure-
ments of the AARTS demonstration 3 prior to expansion of the model for analysis
of a full PAVE PILLAR mission applications system. The AARTS demonstration
3 has been delayed so calibration has not been conducted. The representation of
the modeled AARTS and LPU functions has been validated through continuous in-
terchange of model and AARTS design concepts throughout the project. In fact,
much of the effort in constructing the model was devoted *o model changes reflecting
design changes in the ongoing AARTS development. Many of these design changes
were initiated by the discovery, in the modeling effort, of future problems should the
design contiaue in its current direction at that time. While the functionality of the
model is verified, most of the numbers assigned for resource utilization still rest upon
tenuous estimates. Before expanding the model, these estimates should be replaced
by better estimates or by measured values. Following this, performance outputs such
as those in the following tables can then be compared with actual performance and

any necessary changes made to the model architecture.

In the remainder of this section, several tables are displayed and discussed. These ta-

80

bles show resource utilization and timing of events in simulations run with the model.
They are discussed in the context of how design characteristics input parameters or
modeling assumptions impact the various processes. All of the results are extracted
from ADAS outputs. Table 4.1 shows the commencement and completion times of

major stages of the basic model.

Table 4.1. ADAS Model: Subprocess Timing

Sub-Process Simulation time Simulation time Comments

Name Commencement (us) | Completion (us)

Startup 5177719 Up through loading of LPUs
Normalops_1 OPS | 5174636 6650000 Until CPU11 fails
Reconfiguration 6650000 8017927 Reallocation of LPUs
Normalops_2 8017927 9183419 CPU11 now off-line
Shutdown 9183419 9296302 CPU22 last to shut down

Table 4.2 displays the completion time of key events during system startup. This (ta-
ble) focuses upon the loading of the ASO software into modules, the loading of AS1
software into supervisory modules, and the loading of LPUs into the CPUs. These
activities terminate with the completion of the checksum on the download. The
current model configuration requires completion of the download of the bootstrap
loader, the ASO software (including checksum), and the LPU attributes file into one
module before loading of the next module commences. The AS1 software is loaded
into supervisory modules when they are ready without such a restriction. The only
constraint in the loading of ASI software is contention with ongoing ASO loads for

shared resources. LPU loading (including the mission database file into supervisory

81

Table 4.2. Startup with Assigned Delays

TIME HARDWARE EVENT

(microsec) | MODULE
1449514 | MAB2CPU STARTUP:ASOMAB2:CHECKSUMASO
1936773 | MABICPU STARTUP:ASOMAB1:CHECKSUMASO
2424031 | CPU22CPU | STARTUP:ASOCPU22:CHECKSUMASO
2911896 | CPU12CPU | STARTUP:ASOCPU12:CHECKSUMASO
3419078 | CPU21CPU | STARTUP:ASOCPU21:CHECKSUMASO
3449520 | CPU22CPU | STARTUP:ARBCPU22:LOADAS1:RUNCHECKSUM
3931165 | CPUL1ICPU | STARTUP:ASOCPU11:CHECKSUMASO
3948036 | CPU12CPU | STARTUP:ARBCPU12:LOADAS1:RUNCHECKSUM
4418746 | M1553B2CPU | STARTUP:AS01553B2: CHECKSUMASO
4908187 | M1553B1CPU | STARTUP:AS01553B1: CHECKSUMASO
5017493 | CPUL11CPU | STARTUP:LPUCPUl1l:readlpul:RUNCHECKSUM
5039873 | CPU21CPU | STARTUP:LPUCPU2I:readipul: RUNCHECKSUM
5097436 { CPU11CPU | STARTUP:LPUCPU11:readlpu2: RUNCHECKSUM
5142472 | CPU21CPU | STARTUP:LPUCPU21:readlpu2: RUNCHECKSUM
5176190 | CPU11CPU | STARTUP:LPUCPU11:readlpu3:RUNCHECKSUM
5177719 | na STARTUP:ENDSTARTUP

modules) commences only after all modules have completed the ASO download. The

LPUs are loaded sequentially in an individual CPU. Separate CPUs contend for re-

sources during LPU loading. It can be seen from Table 4.2 that the ASO download

for a module takes 0.49 seconds (rounded), with those conducted concurrent with

AS1 downloads (CPU21 and CPU11) taking 0.51 seconds due to resource contention.

The delay for checksum of the 80k file is 0.4 seconds and the bus transfer time for

82k words is 0.036 seconds. This means that 0.054 seconds of delay are attributed

to the functioning of the BTBIM, 5.1M, CPU (open and read command, etc.). and

read status reporting. The remainder of the table shows the interleaving of the LPU

reads.

82

Table 4.3. Failure and Reconfiguration with Assigned Delays

TIME | HARDWARE EVENT
(microsec) | MODULE
6650000 | failure FAILURE
7900000 | detect DETECT:DETECTMISNGPLSE

7901450 | CPU22CPU | RECONFIGURE:COMPUTNEWCONFIG

7997302 | CPU12CPU | CP12LOADLPU:CPU12LOADLPU:RUNCHECKSUM
7997679 | CPU22CPU | CP22LOADLPU:CP22LOADLPU:RUNCHECKSUM
8017927 | CPU21CPU | CP21LOADLPU:CPU21LOADLPU:RUNCHECKSUM

Table 4.3 shows similar data for the period from the simulated failure of CPU11
through the reloading of the LPUs into other CPU modules. As can be seen, the
time to react to a failure is dominated by the time to detect the failure (10 missed
pulses at 8Hz = 1.25 seconds). From detection of the failure through reloading and

checksum of all three LPUs took 0.12 seconds.

Table 4.4 shows the sequence of events during shntdown. The events, STOPx, are
the final stopping of the indicated module. The shutdown process took just over 0.11
seconds. Alsc shown are the time f completion of each LPU unload. The model, as

currently configured, assumes that all LPUs are stopped before unloading commences.

Table 4.5 shows resource utilizatiou during selected time periods. The utilization of
bus interface units and the MI553B module was much smaller than that of the modules
displayed in Table 4.5 and is not shown in order to reduce the size of the table. This
table shows that startup through arbitration utilizes the specialist and MAB CPUs

19%. The BTBCPUs have a slightly higher utilization as they broker the downloads,

Table 4.4. Shutdown with Assigned Delays

TIME HARDWARE EVENT

(microsec) | MODULE
9183419 Token received to start shutdown
9184235 | M1553B2CPU | Cluster2ShutDn:STOP0
9184237 | BTB2CPU Cluster2ShutDn:STOP1
9215986 | CPU21CPU Cluster2ShutDn:CPU21Unload LPU:Unload LPU1
9221086 | CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:UnloadLPU2
9226086 | CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:UnloadLPU3
9226700 | CPU21CPU Cluster2ShutDn:STOP2
9228205 | M1553B1CPU | Cluster1ShutDn:STOPO
9228207 | BTR1CPU Cluster1ShutDn:STOP1
9255165 | CPU12CPU Cluster1ShutDn:CPU12Unload LPU:Unload LPU1
9260165 | CPU12CPU Cluster1ShutDn:CPU12UnloadLPU:Unload AS1
9260979 | CPU12CPU Cluster1ShutDn:STOP2
9261865 | MAB1CPU Cluster1ShutDn:STOP3
9262532 | MAB2CPU Cluster2ShutDn:STOP3
9291252 | CPU22CPU Cluster2ShutDn:CPU22Unload LPU:Unload LPU1
9296252 | CPU22CPU Cluster2ShutDn:CPU22Unload LPU:UnloadAS1
9296302 | CPU22CPU Cluster2Sh»tDn:STOP4

84

Table 4.5. Resource Utilization (Standard Delays)

Start Thru LPU LPU
Arbitration | Loading Loading
Initial | Reconfigure

Time Increment | 4.451177 | 0.723211 | 0.115461
BTB1CPU 21% 3% 3%
BTB2CPU 21% 1% 6%
CPU11CPU 19% 31% 0%
CPU12CPU 28% 2% 64%
CPU21CPU 19% 27% 8%
CPU22CPU 28% 3% 62%
MAB1CPU 19% 1% 2%
MAB2CPU 19% 2% 2%
BTB % % 12%
MAB 0% 0% 0%
PIBUS1 1% 1% 1%
PIBUS2 1% 1% 3%
SMM 11% 11% 16%

The supervisory modules, CPU12 and CPU22, show the highest CPU utilization since
they must download the AS1 software. The utilization of the buses is small. During
the LPU loading, CPU11 (3 LPUs) and CPU21 (2 LPUs) are significantly busy. The
low utilization of the BTBCPUs and the BTB reflect the fact that as many as 3 LPUs
are serially loaded into a single CPU with a large checksum delay between them. The
final column shows the utilization during the reconfiguration. LPU21 has two LPUs
continuing to operate during this period. A higher BTBCPU and BTB utilization is
achieved since loads and checksums can be achieved in parallel (1 LPU was loaded

into each of the three remaining CPU modules).

As stated before, the only “measured” data specific to AARTS that was available was

85

the simulation results for message 10 functions presented in quarterly review number
5 (QR5). For the model, we used the mid-point between these numbers and the goals
specified for these services. We ran a simulation using the actual QR5 numbers for
comparison. The method for estimating numbers for unknown message I0 and files
services used for this effort was the same as used for the basic model. Table 4.6,
a duplicate of Table 3.15 except for the numbers, shows the new calculations and
results. Tables 4.7, 4.8, and 4.9 show the timing with these numbers for the same
events as those shown in Tables 4.2, 4.3, and 4.4. We see that a large increase
in the CPU times required for files services had only a small effect on the startup
times, about a 3% increase. Startup time is dominated by the checksums. The effect
during reconfiguration was about twice as large (6%), while that during shutdown
(mostly message oriented) was 8%. Table 4.10 shows resource utilization using the
QR5 delays. This table can be compared with Table 4.5. As can be seen, the larger

messages and files services times had little effect on resource utilization.

Finally, runs were conducted using the two sets of firing delays during a period of
normal operations. Each period commenced with the completion of the startup and
configuration processes. Each was run for an identical simulated time period. All LPU
outputs fired the same number of times during the time period for each set of firing
delays. Table 4.11 shows the utilization of the CPUs during this time period. The
impact of the increased message passing time, while small, is more pronounced during

normal operations than during the file loading periods where checksums dominate.

86

Table 4.6. Time for Message and Files Services (QR5 Numbers)

*3/1 puw x34 ybnoiya buyesasosoad 1eury :1
‘bew 3sanbaz Axynbur szyrei3zTUl Yy
T6L = 0f + BB + 9LT + 85 + ST + 08 + GZ + 007 = uado ©+-10303uuoo Axewmyid 10} xoayp :b
1336 puv o = Y puv ‘Qg = TP ‘GL = €O IuUNEEV ITem 3
(99 = 88 + 9. + 8BS + "800 ¥ajareQ 6
ST + 0€ + 007 = @37Im/pear 196 puw gf = ¢p Junsge ‘19qRY 2IqesTad ¢
G0Z = m.ﬁ - MNN - UGOHU 8T = m 9 G = Q\HO aunese ‘422 IaNoaxy B x
OIT = T+@ Of = q puw Q9 = z/1o sungge JT ‘€00 RS9I 7@
Q07 = T + T/19 + q + ® gaauRay 81U ‘19quy I1qeud :13 i
9% = €2 10
LTIT + Co+ IP = €@ 3TeMOU SURI] ¥ SURIY UOD WOIJ 19QqUT 23W00TIVY :EP
vET = TP 196 uayy ‘PI0OD2I [IUURYD IZTTRTITUT ¥ 93IWOOTIV :ZP
Zo ~ 1o aunsse uoT3IOAUUCO FZTTRTITUT 3 IJLOOTIVY : TP 'p
YET + P9+ 2O = 19 + [P + [O ©AT209X WP ¥ UOD WOIJ
8G = GZ + EE = Z9 19b uaya *A311no98/m uOTIRZTIOYINY X0YD :§O
$2 ~ 1o sunsse -uado/Apwal 10} PIOOWI [IUURYD/UOTIDIUUOD XO8YD :7D
€€ = b + p9 = GO 8309UUOOSTP WOIJ *uOTIVZTIOYINY NOBYD ([0 H
ST + B + 19 = 70 9309UUOD WOXJ
€€ = 69 Suwvi] UCOSTP % yenrTj wWOIj 'P10031 TIUURYD/UOT3O3UUOD TTNU X03 Xo3YD :q
88 = 3 JIRMOU 3 JTWEURI] WOX]Y ‘I9Tpuevy Xdd pue 3/1 ybnoiyj buyeeaocoid terjzjur @
NOILVINDTIVO pich |
»{G6) 50T+ X X X X X 98010
dasH suell ppv (£11) €£2Z X X X X X 3TwWsuRIl 309UU0D8TA
gasH sueil ppv (¢TT1) £2T X X X X X X 241209y 03uUU00E Y]
STT/061 X X X X 30911paY/yentd
»(266) £99s X X X X X X X X X 9ITIM
»(LGG) £99s X X X X X X X X X peay
(yog) vev X X X X X ITEMOU JTWSURIL
(zge) T9s X X X b ¢ X X IymsuRil
«(zB9) T6L» X X X X x X X X X X X uado
gdsH/3 sueil ppv (z.r) zeg X X X X X X JTRgURI] JOSUUOD
gasH/3 sueal ppv (L9Z) LS¢€ X X X X X X X “AT209Y 302UU0D
(osv) swrty T 4 b 3 S $2 €3 TP T@ tp TP TP €2 O 10 q e " JOIA¥IS
(sxaqunu ¢yd butsn)
SADIA¥AS SIATI3 ANV Ol JOVSSAW MOd SAVIIA ONINIJ
- t]

87

Table 4.7. Startup with QR5 Delays

TIME HARDWARE EVENT
(microsec) | MODULE
1466686 | MAB2CPU STARTUP:ASOMAB2:CHECKSUMASO
1972272 { MABICPU STARTUP:ASOMAB1:CHECKSUMASO
2477519 | CPU22CPU STARTUP:ASOCPU22:CHECKSUMASO
2982934 | CPU12CPU STARTUP:ASOCPU12:CHECKSUMASO
3509585 | CPU21CPU STARTUP:ASOCPU21:CHECKSUMASO
3532701 | CPU22CPU STARTUP:ARBCPU22:LOADAS1I:RUNCHECKSUM
4034098 | CPU11CPU STARTUP:ASOCPU11:CHECKSUMASO
4036766 | CPU12CPU STARTUP:ARBCPU12:LOADASI:RUNCHECKSUM
4539370 | M1553B2CPU | STARTUP:AS01553B2: CHECKSUMASO
5045518 | M1553B1CPU | STARTUP:AS01553B1: CHECKSUMASO
5167280 | CPU11CPU STARTUP:LPUCPU11:readipul:RUNCHECKSUM
5185394 | CPU21CPU STARTUP:LPUCPU21:readlpul:RUNCHECKSUM
5249141 | CPU11CPU STARTUP:LPUCPUl11l:readlpu2: RUNCHECKSUM
5291346 | CPU21CPU STARTUP:LPUCPU2!:readlpu2: RUNCHECKSUM
5330662 | CPU11CPU STARTUP:LPUCPU11:readlpu3:RUNCHECKSUM
5332659 | na STARTUP:ENDSTARTUP
Table 4.8. Failure and Reconfiguration with QRS5 Delays
TIME | HARDWARE EVENT
(microsec) | MODULE
6650000 | failure FAILURE
7900000 | detect DETECT:DETECTMISNGPLSE
7901450 | CPU22CPU | RECONFIGURE:COMPUTNEWCONFIG
7993796 | CPU12CPU | CP12LOADLPU:CPU12LOADLPU:RUNCHECKSUM
7999823 | CPU22CPU | CP22LOADLPU:CP22LOADLPU:RUNCHECKSUM
8023243 | CPU21CPU | CP21LOADLPU:CPU21LOADLPU:RUNCHECKSUM

88

Table 4.9. Shutdown with QRS Delays

TIME HARDWARE EVENT

(microsec) | MODULE
9339641 Token received to start shutdown
9340458 | M1553B2CPU | Cluster2ShutDn:STOPO
9340460 | BTB2CPU Cluster2ShutDn:STOP1
9374756 | CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:UnloadLPU1
9379756 | CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:Unload LPU2
9384756 | CPU21CPU Cluster2ShutDn:CPU21UnloadLPU:Unload LPU3
9385721 | CPU21CPU Cluster2ShutDn:STOP2
9387507 | M1553B1CPU | Cluster1ShutDn:STOPO
9387509 | BTB1CPU Cluster1ShutDn:STOP1
9414417 | CPU12CPU Cluster1ShutDn:CPU12UnloadLPU:UnloadLPU1
9419417 | CPU12CPU Cluster1ShutDn:CPU12UnloadLPU:Unload AS1
9420081 | CPU12CPU Cluster1ShutDn:STOP2
9420968 | MAB1CPU Cluster1ShutDn:STOP3
9421635 | MAB2CPU Cluster2ShutDn:STOP3
9450354 | CPU22CPU Cluster2ShutDn:CPU22Unload LPU:UnloadLPU1
9455354 | CPU22CPU Cluster2ShutDn:CPU22UnloadLPU:Unload AS1
9455404 | CPU22CPU Cluster2ShutDn:STOP4

89

Table 4.10. Resource Utilizaticn (QR5 Delays)

Start Thru LPU LPU
Arbitration | Loading Loading
Initial | Reconfigure

Time Increment | 4.509041 | 0.792022 [0.116594
BTB1CPU 21% 4% 5%
BTB2CPU 21% 2% %
CPU11CPU 19% 30% 0%
CPU12CPU 28% 3% 66%
CPU21CPU 19% 2% 9%
CPU22CPU 28% 4% 63%
MABICPU 19% 1% 2%
MAB2CPU 19% 2% 2%
BTB 6% 7% 12%
MAB 0% 0% 0%
PIBUS1 1% 1% 1%
PIBUS2 1% - 1% 3%
SMM 11% 11% 16%

Table 4.11. Resource Utilization During Normal Operations

Module Standard | QRS

Delay | Delay

CPU11CPU (3 LPUs) 16% 19%
CPUI12CPU (Hot Backup) 1% | 2%
CPU21CPU (2 LPUs) 9% 12%
CPU22CPU (Sys Supervisor) 2% 2%

90

5. Model Modification or Expansion

The details presented in Sections 3.3, 3.4, and 3.5 are intended to provide the user
with sufficient understanding of the model and modeling assumptions to be able to
modify the model to accommodate different assumptions or expand it for a broader

scenario. Some modifications might include any or all of:

— Expansion to more or larger clusters

— Expansion to a larger number of LPUs

~ Larger and/or more complex LPUs

— Different file access routes, i.e., memory modules in clusters

— Difterent failure patterns

This section presents further elaboration on model expansion and modification.

Figure A-63 is a top-level graph for a 4 cluster configuration. No change has been
made in the LPU, failure and reconfigure portions from the graph in Figure A-6. The
only changes on this graph are an increased number of arcs from nodes sTARTUP and
SHUTDOWN to node SYSTEMESSAGES and a reduction in the number of arcs from

node POWERUP to node STARTUP.

Earlier, in the discussion of the startup graph, (Figure A-T7) we stated that the graph
contained more detail than is normal. For this 4-cluster model we incorporate the

same functionality into a hierarchical expansion. Figure A-64 is a first-level startup

91

graph for the 4-cluster model. As can be seen, this graph shows each cluster receiving
a “powerup” input and outputting the tokens to initiate the system messages for the
cluster modules. The node ENDSTARTUP, as in the bhasic model, receives a token from
each cluster indicating completion of configuration and outputs a token to initiate
normal operations. This node has 0 delay and consumes no resources. In addition,
each cluster not containing the system supervisor transmits a token to the system
supervisor cluster, node CLUSTER3, to signify completion of arbitration and ready for

configuration.

Figure A-65 shows the subgraph of node cLusTER3. Here we see the 4 primary
phases of startup represented separately. Nodes SUROM, LOADAS0, ARBITRATION,
and CONFIGURE represent the cluster functioning during the respective phases. Each
“phase” node is connected to a node representing the memory functions during that
phase (nodes LOADASOTOBTB, LOADASOTOMODULES, LOADASITOCPU, LOADLPUS).
Each of the memory function nodes would contain one-half of the hierarchy below
the equivalent memory function node on the basic startup graph. For instance. node
LOADAS0TOMODULES would have a subgraph that consists of one row of internal nodes
and their inport and outport nodes from Figure A-17. The subgraph for the internal

nodes of these “half graphs” would be the same graph used in the basic model.

For the current PAVE PILLAR concept, all memory functions are mapped onto a
central system mass memory. For a concept with a memory module in each cluster,

the memory function nodes would be mapped onto the separate memory module

92

in the cluster and the arcs between cluster functions and memory functions would
represent Pl-bus instead of HSDB transfers. In this case, if the cluster memory is
volatile, we would need a graph inport to a memory node coming from the SMM
(which would be represented on the parent or a higher level graph) for loading the
cluster modules. Looking again at Figure A-65 as a whole, we can see that the BTB
actively loads the ASO software in the sUrRoM node and outputs a token to initiate its
system messages. All modules output tokens to initiate the ASO passive loads. Passive
loading, node LOADASO, outputs tokens as modules start the AS0 software to initiate
the appropriate system messages. In addition, the CPUs output initiation tokens
to the arbitration process and the MAB signifies “ready” for configuration. Upon
completion of arbitration, the system supervisor (or Hotbackup or cluster supervisor)
outputs a token to initiate supervisory messages and the CPUs signify “ready” for
configuration. In the other clusters, the cluster supervisor signifies “ready” to cluster
3. These are the three external inputs to node coNFIGURE. When the configuration

is completed a token is output to node ENDSTARTUP on the parent graph.

Two nodes on Figure A-65 have been expanded to show the connection to the graphs
in the basic model. Figure A-66 is the subgraph of node suroM on Figure A-65. It
is readily seen that this graph is the upper left corner of the original startup graph
(Figure A-7). Outports have been added for the connection to the memory function
and to the load ASO function. From this point downward, the graphs from the original

model are used. Figure A-67 is the subgraph of node LoADASso in Figure A-65. This

93

graph is cut from the upper portion of the second column of Figure A-7. Graph in
and outports have been added for the connections to preceding and following columns
on Figure A-7. Again, the hierarchy below the nodes on this graph is that of the basic

model.

The remainder of startup would be modeled in the same way.

Figure A-68 is the new subgraph of node sYSTEMESSAGES on the top-level graph,
(Figure A-63). This graph is divided into four sections, each representing a cluster
with its initiation inputs from startup and its termination inputs from failure or
shutdown. A cycle between the cluster supervisors of clusters 0, 1, and 2 and the
system supervisor in cluster 3 handles the ping and ping acknowledge. One node,
CLUSTER3, has been expanded in Figure A-69. This graph is basically one half of
the system messages graph in the basic model. The other clusters would differ only
in having only one inport and one outport to another cluster (CLUSTER3) instead of
three for the ping and ping acknowledge. The hierarchy below these graphs is the

same as for the basic model.

Referring again to Figure A-63, changes similar to these just discussed would be
needed for the other portions of the model. An expanded set of LPUs would expand
the grap..: of nodes NORMALOPERATIONS, SENSORS, and PILOTINPUT. This might
well require a grouping of related processes in the first level with the detail pushed

down further as we showed for STARTUP and SYSTEMESSAGES. One might also con-

94

sider moving the failed and restarted LPUs, or just the restarted ones, into a separate
node. If LPUs that access files into system or cluster memory were included in an
expanded model, addition of hierarchies to represent the BTBIM memory functions
similar to those in startup and reconfigure would need to be incorporated. If more
than one failure is desired, one would either expand or duplicate the failure through
reconfiguration chain. Shutdown would be expanded in a manner similar to that done

for startup and system messages.

Finally, if one determines through a combination of calibration and simulation rui..
on an expanded model (as is the case using the demonstration 3 scenario) that the
Pl-bus interface units do not have a significant impact on performance or timing of
events the simulation time can be reduced by essentially “shorting out” all of the
diamond shape mes=age graphs, (see Figure A-21). This would be accomplished by
changing the node_class attribute of the parent node (on Figure A-20) to “leaf.”
ensuring the parent node is mapped onto the proper Pl-bus, and setting its firing
delay to that used in the subgraph. This can be done throughout the model. The
result is that for each of these changes, the simulation software has only one node
to track and schedule rather than five. If for some other analysis the user wishes to
reincorporate the detailed subgraphs, all he needs to do is change the parent node’s
node_class attribute back to “internal.” The subgraph will then be expanded and all

other attributes of the parent node ignored.

95

6. Conclusions

In Paragraph 1.1 it was stated that this modeling effort was the first phase of a
two-phase effort. Development of this model was to be followed by validation (or cal-
ibration) against actual measurements of performance of the AARTS demonstration
3. Validation was to be followed by expansion of the model to a full PAVE PILLAR
mission applications architecture to be used to investigate data transfer functions.
The delay of demonstration 3 (and completion of AARTS development) prevents val-
idation of the model against measurements of the actual system. (The system does
not yet exist). However, the model has been continuously validated during construc-
tion through briefings, technical interchange and demonstrations with the A.\RTS
developer. The principle measure of a model of a system still under design is how
well (at any given time) the model represents what the designers visualize as their
finished product. Since design decisions continue to be made or revised, this presents
a “moving target” that requires frequent, if not continuous, interchange between the
modeler and the developer. That interchange was achieved in this effort with the
graphical presentation of the ADAS model facilitating communication. The results
of the modeling effort have highlighted the value of developing an executable sim-
ulation of a system as the design and development progresses. In order to develop
a model that can be executed, it is necessary to pursue the implications of design
decisions beyond the boundaries of the specific development effort (interface with

other systems, hardware etc.). This broader view of the system provides insights into

96

potential clashes or mismatches across these inter{faces that can lead to expensive
and time consuming corrective action if not discovered until late in the development
cycle. These insights often lead to design changes that “invalidate” the model version
that predicted the need for the change. This requires alteration of the model and
revalidation in the context of the modified design. This was the course followed in

developing the basic model as delivered.

The following are some examples of the benefits obtained from this modeling effort,
beyond that of producing a model to serve as a basis for further expansion and
analysis of Advanced Systems Architectures. These examples highlight the value of
simulation of a component (AARTS) during design of that component in a system

(AARTS, LPUs, plus VAMPs) context.

Early in the modeling effort ADAS graphs were developed for the initial loading
of modules that were very much like the current model of passive loading of AS0O
software. The modeling was based on appendix G to reference 17, which is the
description of SUROM Processing developed by Westinghouse Electric Corporation,
the developer of the VAMP hardware. Following this document the ADAS graphs
assumed that after completion of BIT a module repeatedly places a two-word “ready”
message onto the PI-bus at regular intervals. The loader (in this case the BTBIM),
when ready to load the module, responds with a four-word message (word count,
1750A Data Destination Address (DDA), 1750A Execution Start Address (ESA).

and Expected Checksum). Upon receipt of this message, the SUROM software sets

97

up the PI-bus interface unit to point to the DDA, receives the bootstrap loader,
checksums the load, and transfers control to the ESA. Then the bootstrap loader
proceeds to download the AARTS software. When our approach was communicated
to the AARTS development team we were informed that the AARTS design would
not include a bootstrap loader. The design approach was to load the ASO software
directly following the four-word message. We challenged this approach, pointing out
that the reference limits the maximum word count in the four-word message (and
presumably the download) to 52K. After also recognizing that the one word (16-bit)
word count would not accommodate the AARTS file size, we were informed during
“final” demonstration of the startup model that the bootstrap loader was, in fact,
necessary. The ADAS graphs were redone. This example highlights the fact that
the modeling effort itself benefits and supports the design process. Modeling with an
architecture tool such as ADAS can identify problems at the interface of the system
being designed early in the design phase (had this modeling effort started earlier, this
problem would ha;ve been discovered earlier) rather than, as is too often the case, not

until integration testing.

During the effort to calculate firing delays for the model it was found that the PI-bus
data transfer rate we were instructed to use was five times faster than the assumed
memory access rate. We could find no indication of a buffer in the PIBIU and this
was confirmed. The model, as it now stands, includes a small buffer in the PIBIU, a

faster memory access rate, a lower Pl-bus transfer rate, and double-word access (32

98

bit) between PIBIU and memory. This is a problem, we are informed, that is to be

corrected in this manner by WEC, the hardware developer.

Both of the preceding examples can be summed up in a single observation: Devel-
opment of an executable ADAS model of an ongoing design brings to the designers
an increased awareness of constraints imposed by hardware or interfacing software

systems.

Finally, some insights into the AARTS design have been derived from the model-
ing effort and the results of simulation runs. Two have already been mentioned in
Chapter 4. These are the dominance of checksum times in software loading and of
“detection of failure” in reconfiguration. Both of these may be the result of high
estimates of the time consumed by processes that can be speeded up. The checksum
time is the result of a simple estimate, 10 instruction cycles per word, and can be
refined. In the case of the failure detection, it may be no more than a bad choice of a
single parameter, Pulse_Timeout. Table 6.1 shows the value cited for this parameter
in five different parts of Reference 11. Three of these are found in a subparagraph
titled “Limitations” and two in the discussion of unit processing. They vary from
three pulse periods (.375 seconds) to ten pulse periods (1.125 seconds). The latter
is used in the model. This can be changed by simply changing the value of the at-
tribute firing_delay on node DETECTMISNGPLSE in the subgraph of node DETECT in

the AARTS graph. Finally, some concerns have been raised about the behavior of

the AARTS itself.

99

Table 6.1. Values for Pulse Timeout

(Source: Reference 11)

Software Unit Processing or Limitation | Page Number | Value
SE.Kernal limitations 24 5 pulses
SE.Cluster Management text 32 5 pulses
SE.Cluster Management limitations 37 10 pulses
SE.System Management limitations 48 10 pulses
SE.System DB Management text 51 3 pulses

The first concern is with startup sequencing. In the model, as delivered, sequencing
has been forced in the hierarchy below the node that represents the SMM functions in
the passive loading of the AS0 software. In order to accelerate startup, particularly in
a larger system than the one modeled here, one may want to allow loading of multiple
modules in parallel. In fact, the sequenced loading has never been confirmed to us
as a feature of the AARTS software. It was a “ground rule” we were given to work
with. In such a case, one must be sure that the MABIU in a cluster is loaded before
any CPU module commences hot backup arbitration. Otherwise one could end up

with more than one system supervisor.

A similar concern has to do with when the system supervisor commences configuration
(loading LPUs etc.). The model, as delivered, will not commence configuration until
all models have loaded and started AS0. If a module fails on startup in the model as
configured, configuration will not take place. Since we were instructed to consider no

BIT failures, this is not a problem with this scenario. However, some means should

100

be provided for the system supervisor to determine when to start configuration that
allows for failure of one or more modules in the startup process. The algorithm
must be such that it does not cause premature loading into a reduced hardware
configuration when the full configuration actually does become available. This is not
a problem in the demonstration 3 scenario since all of the LPUs could be run in a
single processor. The expanded ADAS model of phase II could produce performance

assessment of alternative approaches to this feature.

101

References

[1] Architecture Specification For PAVE PILLAR Avionics, Final Technical Report
for period Sept. 1985 - Oct. 1986, AFWAL-TR-87-1114, Wright-Patterson Air
Force Base, Ohio, January 1987.

[2] E. Schelling, L. McFawn, and D. Williams, Critical Item Development Specifica-
tion for the Avionics Bus Interface Module for the VAMP, SSTA10301, WEC,
Baltimore, MD, May 1990.

[3] Society of Automotive Engineers, Linear Token Passing Multiplezx Data Bus
User’s Handbook, AIR 4288, Draft Issue 2, Phoenix, AZ meeting of ASD, April
1990.

[4] Architecture Design and Assessment System (ADAS), USER Manual, Version
2.5, Research Triangle Institute, Research Triangle Park, NC, 1988.

[5] Listings of Demo-8 LPU Packages as of that Date, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, July 1989.

[6] Software TLDD For AARTS ATSD Subcontract (Boeing), Boeing Advanced Sys-
tems, Seattle, WA, December 1988.

[7] Software Detailed Design Document For AARTS ATSD Subcontract (Boeing),
Boeing Advanced Systems, Seattle, WA, December 1988.

[8] Interface Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, May 1988.

[9] Interface Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1990.

[10] Software Detailed Design Document for the AARTS (Without Section 3), TRW
Avionics & Surveillance Group, Dayton Engineering Laboratory, Beavercreek,
OH, September 1989.

(11] Software Detailed Design Document for the AARTS (Section 3), TRW Avion-
ics & Surveillance Group, Dayton Engineering Laboratory, Beavercreek, OH,
January 1991.

[12] Software Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1989.

[13] Software Requirements Specification for the AARTS, TRW Avionics & Surveil-
lance Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1990.

102

(14] System Segment Specification for the AARTS, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, September 1987.

(15] System Segment Specification for the AARTS, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, January 1990.

[16] System Segment Specification for the (PCS) for the VAMP, Westinghouse Elec-
tric Corporation, Baltimore, MD, October 1989.

[17] Functional/Interface Specification for the 1750A CPU, Westinghouse Electric
Corporation, Baltimore, MD, September 1987.

(18] Functional Interface Specification for 1558B, Westinghouse Electric Corpora-
tion, Baltimore, MD, September 1989.

[19] Slides from the AARTS CDR, TRW Avionics & Surveillance Group, Dayton
Engineering Laboratory, Beavercreek, OH, May 1988.

(20] Slides from the Second Quarterly Review, TRW Avionics & Surveillance Group,
Dayton Engineering Laboratory, Beavercreek, OH, August 1988.

[21] Slides from the Third Quarterly Review, TRW Avionics & Surveillance Group,
Dayton Engineering Laboratory, Beavercreek, OH, January 1989.

[22] Selected Slides from the Fifth Quarterly Review, TRW Avionics & Surveillance
Group, Dayton Engineering Laboratory, Beavercreek, OH, November 1990.

[23] T.R. Allen. TRW Interoffice Memorandum, Subject: SMM/AARTS Interface,
Dayton, OH, April 1990.

[24] J.W. Stautberg. FAX Subject: Summary of LPUs, January 1991.

103

Hardware
Node/Arc
Templates

1.
EDIGRAF
(Editor)

5

e GIPSIM
Configuration (Simulation

Files

Performanc

Analysis
Data

3.
ASH
Mapping

Software
Software Graph
Node/Arc Configuration
Templates Files
6.
CSIMGEN/\ CSIM/ADASIM
ADASIMGEN —* Simulation
Program
KEY
O Process C/Ada Module
— File Files

[0 Process Outputs

Figure A-1. The ADAS System Configuration

A-1

7. —_—
HDL
HDL _ _
Interface Simulation
Program
HDL
Module
Files
4.
XPETRI
(Analysis)
Petri Net
Analysis
Data
6. Function
CSIW Simulation
ADASIM Data

>
N/

CLUSTER1

SENSORS J

N

MASSMEMORY

e

CLUSTER2

A\

°

COCKPIT

MAB

.~

BTB

Figure A-2. Top-Level ADAS Hardware Graph

A-2

DISPGENIF L

M1553B

SN

\M BIN B N

MABIM1 CPU11 M1553B1 CPU12 BTBIM1

VAVEVAV:

[__ PIBUS1A 1 [PIBUS1B J
y {

Figure A-3. ADAS Hardware Graph of Cluster 1

A-3

CPUL2CPU

CPU12PIBIV

Figure A-4. ADAS Hardware Graph of a CPU Module

A-4

MAB1BIU

J

—

MAB1CPU

PI

PI1P

WAB1PIBIU

IR

Figure A-5. ADAS Hardware Graph of a Bus Interface Module

,;

[7 SENSORS |

—\ l

l PILOTINPUT]

Al

l SYSTEMESSAGES]

NORMALOPERATIONS

N /

L FAILURE I
I DETECT l
I RECONFIGURE I

l SHUTDOWN

|
\ S/

Figure A-6. Top Level ADAS Software Graph

A-6

T ey ST pagenss ;
—— oIS 2

fTB2LPULOAD]

pwr: ylo
1npOre2-
pw Y9
inp SUROMCEU33 AS0CPUIT kK ARBCPUZZ —
pv ¥8
inp UROMI5538 ASOT5538T k1 |
pw ¥7
inpm&—%{ SUROMMABYZ | /1_, ASOMABZ K il TPULDMABZ
pw yé
inpaEtiy S THoMBTE Tk ASOBTB3 TBZAS1LOADK

MMA SO TOBT| SMMASOCPUS SMMAS1CPUS ENDSTARTUP

pw Y \
inp SUROMBTB1 ASOBTBl N BYB1AS1LOARS &
outpgprt
pPWIY v4 N Y
inports
pw Y3
inports-) UROM15538 ASO1 Bl |
pw y2 N [555CF0TT /1 o r
inp SUROMCPU11 ASOCPU11 ARBCPU11 LPUCPU11

. pwronodyl
inpaf T SUROMCPU1 ARBCPU1 LPUCPU12

OJITIIITY 1 omnE:lB omm!n:mo Lozn:zn:mz

olifpary7 olXpatd9

Figure A-7. Startup Graph

A-7

l STARTSUROM l

WAIT4

wplitl

BTBBIUI

RUNCHECKSUM

e

Joind

o) oty ey

Figure A-8. BTBIM Active Load

A-8

I 1nporE I | Eromsmm |

split

| RCVRESPONSE I RCVDATA I RCVSTATUS I
| OPENLPULGC l ! READLPULOC I

WAIT4TOKEN™

WAIT4TOKENOQ

XMITREAD

L XMITOPEN J l BTB1 J

% ou I

Figure A-9. BTBIM Read LPU_ATTRIBUTES File

A-9

=]

~
==

| XMITDATAL F
WAIT4TOREN] I

]

£

Cd

I XMITDATAO
i WAIT4TORBN1 I

——

F

=]

Figure A-10. SMM Load ASO into BTBIMs

A-10

i split '
| RCVOPENLAULOC I
XHITSTATUSO XMITLPULOC
WAIT4TORENL

L BrRO] r TBBIVO] [Bre1] L reRIUL 1

-
o
-3
o
-

Figure A-11. SMM Load LPU_ATTRIBUTES File into BTBIM

XCVATT RIBRES! CVATTRIBDAFA

XMITIWORD RCV4WORD RCVBOOT
ARTBOOT

OPMNFILE

CBEXBCUTION

.

Figure A-12. CPU Receive BOOT and ASO Load

A-12

split

Trporte

AS021 AS022 ASOMAB2 ASOM1553B2

TRpores

Ilﬁﬁiiiﬁimill
Figure A-13. BTBIM Conduct Passive Load of Clients

A-13

l btbempl tbocﬁ_]

romsmm

L frocpu _]

BTBTOSMMASO

T

L

b
tosmm

]

Figure A-14. BTBIM - Client Level

A-14

BTBTOCPUASO

LB

Figure A-15. BTBIM to SMM

A-15

WAIT4TOKEN1

XMITREAD1

EIT WOR! XMITDATAG
ccREXECUTIONO cBEXECUTIONL
PI1BUSO BTBPIBI U() PIBUS BTBPIBIUL
[OR]
RRItCoC Y]

Figure A-16. BTBIM to Client

A-16

mablas0

1npor

mab2as0

N NN

cpul2as0 cpullas0 ml553blas0
mm:-
cpu22as0 cpu2las0 ml1553b2as0

b

Figure A-17. SMM Passive Loading of 8 Modules

I\'Al T4TOK HIOI

o~

WAITETOREN]] II—AXTITOIHCZI

| T | | erepzo | | erer | | srearon | | w2 | I sremiva |

BTBBIUI

joln0

join2

BTBBIUG

Figure A-18. SMM Passive BOOT and ASO Load to a CPU

_Xll TATTR]I 86|

[erae | [»reeivd

AIT 4 TOKEN 7|

|G | | I

ARBCLUSTER

LOADAS1

ARBHB

ASSUMESYSSUP

|

Figure A-19. Arbitration by the Winner of the System Supervisor Role

A-19

[npores]

split RCVCONFSTATS

UPDATESTATS

I OPENMISNDB] l RCVRESPONSE I RCVDATA

READMISNDB Inoctssursnnel c1u7® ive

| RECONFIGURE l

CCBEXECUTION3

ICCBEXECUTIONOI ICCBEXECUTIONII CCBEXECUTION2

PIBUSO PIBUS]1 PIBUS2 I PIBUS3

Figure A-20. System Supervisor Load LPUs

A-20

PIBIUO

| inport |

split

-

PIBUS2

PIBIU1

7

join

Figure A-21. PI-bus Transmission

A-21

]

l

-

1nporto0 1 | inportl
RCVCONFIGREQ
CALLLOADLPUS
I///,, o frombtb0 |
readlpul
o tobtb0
o frombtbl]
readlpu?2
T\ o Tobtbl
XMITCONFIGSTAT
CCBEXECUTION
PIBUS
| tonormalops | | toclussup |

Figure A-22. CPU Load Two LPUs

A-22

OPENLPU l

| EXECUTECCBO l

PIBUSO

L LODY

DDA

| split ?
[EE—
| RCVRESPONSE RCVDATAO | rcvdatail I

READLPU
RUNCHECKSUM

EXECUTECCB1

‘|

fl
£

PIBUS1

Camtares

Figure A-23. CPU Load on LPU

A-23

Tomcpu

romsmmu

cp22readmissndb

cp2lreadlpul

cp2lreadlpu2

Figure A-24. BTB PASS Tree LPUs

A-24

| inport I

I WAITATOKEN l

splitl

£ Xomsmm

o]

XMITDATAO I XMITDATA 1|

PIBUSO PIBUS1 l PiBUS2

[xndtrocp]
Figure A-25. BTB PASS on LPU to a CPU

A-25

fromcpu22

fromcpu210

missiondbcp22

fromcpulll

| tocpugz l

fromcpul2

lpulcpu2l

lpu2cpu2l

fromcpullo

| tocpu?!? l

fromcpulll

i

missiondbcpul2

lpulcpull

fromcpull2

lpudcpull

lpu3cpull

Figure A-26. SMM Download LPUs to CPUs

A-26

[inport]
split

)

O

XMITSTATUSOI

fﬁAIT4TOKENOf

IRCVREADLPU

I XMITDATAO i i AMITDATAL l

?WAIT‘TOKENI? fHAIT4TOKEN2r

BTBO | { seero | [mrer | { ®resru1 | | srB2 [_eresrvz_|

i joino0 i

RN

XMITSTATUS1
WAIT4TOKEN3

XMITSTATUS
WAIT4TOKEN4

BTB3 BTBBIU3 | BTB4 BTBBIU4
L I L . { 1 |

outpor

Figure A-27. SMM Download on LPU

A-27

| fromcp22 | inport

RCVREQMSG

T

XMITLPUMSG

>
WAIT4TOKEN

| mabtocpll |

Figure A-28. Configuration Request Placed on MAB

A-28

MAB1BIU

L inport

1

split

join

MAB2BIU

outpor

Figure A-29. MAB Transmission

[frommab | [inport |

RCVREQMSG

T

—a
XMITLPUMSG

|

CCBEXECUTION

|

PIBUS

r tocpul? J
Figure A-30. MABIM Place Configuration Request on Pl-bus

A-30

o CPU22

~1T 7 =7
h ol

=7
T e | T e

l CP‘Q—I___/ L BTB2 J

| o e || oo e
—— —=)
[o= | ;

Figure A-31. System Messages Graph

A-31

|asOstarted l

splito

ICNRCVSTATREQl I l CNXMITARRAY | | CNXMITCLPING I
I CNXHITHODCNFIGI l CNRCVSTATREQO I
| CNXMITMODSTAT l

AMITCLUSPING

I ToCPU12 I

| CNRCVPINGACK I
ICNXHITHODPULSEI

FromCPU12

XMITMODPULSE

| RCVMSG
I CPU12RCV l

Figure A-32. Specialist System Messages

A-32

l asOstarted I

I splito l

| CNXMITCLSTREQ I

I CNRCVMODPULSE I

]

|CNXHITARRAE]

ICNRCV'K)DSTATUSI

ICNRCVCLPINGI

FronMAB2 Fromii55 382 FrompTb2
[irport]

[\ N\

CNRCVCLCONFIG pseacireo | NRCVCLSTATU | svseive | | |carcvioTHEART] | crrursess |
wCPUL
|enxcrconFig) | crerncack | | “ssemnc | { sysacx]| | [cwxsvsconrren | ENXSYSTATRPY MSNMDERESP |
OR
[xamraar]
[1
[(mom] [

|HAWPDATﬂIMY I

Figure A-33. Supervisor Module System Messages

A-33

| ToCPU12 I

CNRCVCLPING
T\ joino
CNXMITACK
ou
PIBIU3 PIBIU2 PIBIV1 PIBIUO
RCVCPU21 RCVMAB2 RCV15538 RCVBTB
AMITACK XMITACKO XMITACK1 XMITACK2
CCBEXECUTIONG CCBEXECUTION1 CCBEXECUTION2 CCBEXECUTION3
PIBUS20 PIBUS21 PIBUS22 PIBUS23
PIBIU30 PIBIU20 PIBIU10 PIBIVOO
CP2IRCYV MAB2RCV M1553RCY BTBRCV
TofPd21 rfirp2 ToMf5}3B2 T2

A-34

Figure A-34. Cluster Supervisor Acknowledge Ping

@

il
1L

CONNECTXMIT

CNXMITHSDBCLPLS I

f
|

[lnportl]

.

splito

Bﬁ

—

]

o
£
(-4

E&
XMITHSDBCLPULSE I XMITPIBCLPLS

splitl

-]

|
I— mlxuo j [PIBIVL] L PIBIV2 j { vxnm:—l

J l |
[44’ CcP21RCY ___J [7 MABZRCV I [_7 M1553RCY 4‘_] I BTBIRCY I

u

Figure A-35. System Supervisor Heartbeats

A-35

inport

XMIT

8

CCBEXECUTION

PIBUS

outporto0

outportl

Figure A-36. Transmit Ping or Pulse

A-36

lput

AN~

PIBIUO PIBIUL PIBUS2 P1BIU2 PIBIU3 P1BIU4

Figure A-37. PI-bus Broadcast

A-37

split

—R

PIBIUO

PIBUS2

PIBIU1

join

Figure A-38. Pl-bus Transmission with Two Qutputs

A-38

SIEq IV jo5U0D 10HINCD
—Ered 6Nl ugesls ONIY33LlS
¢ £
o1e1g ABN
NOLLYDIAVN 3ONVQAIND jofuoy
Buneeg
]
Bupeeis
sebossey
os|W jos
HOLVINWIS
Bupdey
¢iNgna pouna SIS 310IH3A
v wiodAem
esuepiny
3OV4HILNI 1S
W31SAS
ejelg AB NOLLYHINED oL
st Apog weshg AVidsia ,
ue B8
v))
NI
1 Ad g
ANIWIOVNVIN 30V4HALNI
HOSN3S 3710IH3A
107d
sBujsyos sB\ysueg oPeW duk
SNI eley v :o_Li dN
SHOSNIS SNI SHOSN3S r||v— 1071d ,
viva uiv

Figure A-39. Datafk)_\ggof Demonstration 3

start

| 1nportI|

shutdown

ORO

AIRDATA

HZ32

INSDATA

——

MABO

MAB1

Figure A-40. Sensor Input

A-40

Failurg _——-l BlockCPUll]E--—-—

\ NAVIGATIONO

U tdow
[STarll
u OWi]
n

CPINTERFACE

o1 loU
[IMFKev]
\l SENSORMGMTO i — IS CTIS0Ns
Sfutdowia-
Rivaan]
=[]
Shutdow3-

Figure A-41. Normal Operations

A-41

%NRCVGUIDWAY P!!l

CNRCVMMPKEY I
CNRCVIMFKKEY !

CNXMITFLYTO

CNXMITPILOTMM

| XMITARRAY
l PIBUS20 l

PIBIU3

MABUPDTARRAY

Cxcvpme]

BIUO

PKEY

B

CCBEXECUTIONO

PIBUS21

'

o
(]

]
ATENODE |

2]
E
(=]
c
3
3
<]
x
[e]
o
(]

| mam2Biv) |

| rcvwaypoint 7]

| RrcviMekkey |

| xm1TIMFRCMDO |

CCBEXECUTION1

PIBUS22

'
00

PIBIUO

1
it

FKMSG

XMITMMPLAMP XMITIMFKCMD
XMITMISSMODE
l OR2 1 1 OR1 | | xmitrLyto |

| cCBECECUTION2 |

| CCBECECUTIONS |

| cceececuTioNd |

!

_ezeyszs |

%

| PIBIU2 |

| risius]

| epiBIva]

| MABO]

l MAB1 j|

A-42

e

Figure A-42. Cockpit Interface LPU in CPU21

5
%

i

E
C)

NRCVAIRDATASE!

lﬁ
BIUO I MAB1BIU2
l MAB1

i

CPUD

I
e

CNRCVINUSEN
CCBEXECUTIONO CCBEX!

2]
Q

5

B

CNXAIRDATA

PIBUS13 PIBUS14

CNXINSDATA

r~
w

1y

w

R
]

PIBIU4

RCVAIRSENSOR RCVINSSENSOR

ITARRAY I CMPAIRDATA
CCBEXECUTIONS6 I ITA

CMPINSDATA

L
B
HBE

-

RDATA XMITINSDATA

d il

PIBU splito

CCBEXECUTION3

s10 I
PIBIUC l CCBEXECUTIONZ2

H
i

Lil

I MABUPDTARRAY I

ke

CCBEXECUTION4

CCBEXECUT1ONS

Cmmwsic] [mavecwse)
[Pl ——
| cviprcvusGo] [DGsrRCVMSGo] | GuibrcvMsc | “DGsrvcMsGl]

Figure A-43. Sensor Management LPU in CPU11

C RCVAIRDATAS;N

[split2 |

ICNRCV NUSENI

//AéNXAIRDATAI
[eiBusiz_]
[CRXINSDATA |
PIBIU4
ORO
[RcvairsENsOR
XMITARRAY
[[cMPAIRDATA]
CBEXECUTION
[XMITAIRDATA]
[riBusio_]
CBEXECUTION
PIBUS11
[PiB1v0
[MABUPDTARRAY] Eﬁ_—j

.

fCBEXE,UTION
AT

I MAB1B1UO ! MAB1BIU2 !

ddi%bl

CVINSSENSORI

i
:

SDATA

XMITINSDATA

E

CBEXECUTION

PIBUS12

I MAB

I

PIBUS20 I l PIBUS21 I
| sEl ito I
PIBIU1 PIBIU2 PIBIU3
GUIDRCVMSGO DGSRCVMSGO GUIDRCVMSG1 DGSRCVMSG1 NAVRCVMSG

Figure A-44. Sensor Management LPU in CPU12

A-44

L_AnRertl | [_100OIT] 1

HZ16

I CNXMITNAVSTATE I

/—_/Y [COMPUTENAVST]
[CNRCVINSDAT l :

I AMITNAVSTATE |
[CNXMITSYNS] CCBEXECUTION1
l PIBUS11] L PIBUS12]

| 1
L ORO l I aplito] L splitl l

N]\
[e |

I MABO I
CCBEXECUTIONO CCBEXECUTION3 CCBEXECUTIONG

r
£
|

i

I PIBUS10O I PIBUS20 I PIBUS21 I
1 1
L PIBIUO _] L PIBIU1 1 I— PIBIU2 l [PIBIU3 | _] l P1BIUG X
1 l I 1 |
[MABUPDTARRAY l L GUIDRCVMSGO] [_ DGSRCVMSGO j L GUIDRCVMSGL] L DGSRCVKMSGL J

Figure A-45. Navigation LPU in CPU11

A-45

LCNRCRSTCNT —|

I CNRCVFLYTO]

[cnncvnvsrj

[CNRCVINSDAT |

r CNRCVAIRDAT |

[CNXSTEFRCNT |

[CNXMI

TSTER I

| exxmrTGUIDWAYENT |

| cnrevses |

——

| ORO]

]

I xurtarmav

| eimrve

bereeed

| PIBUS20 |

l

| PIBIUO]

|

| wasuepramreay |

| CHNGWAYPOINTO

| COMPUTSTEER

TApores
i
|
|
L CHNGWAYPOINT1]
L xm'rwupu'roj [XMITWAYPNT1 j

| xmirsTEERcNT

I

1 pxalnn]
[preusai |
| mlso |
1 praruo -
| sztlxsm]
l PIBIUI |
|
| pesrcwusco |

| xmrTsTeErmsc |

|
PIBIUS |
|
| pIBUsaz |

| MAB1

| PIBIU11

|

| rpiusn

l
| erua |

|
| pcsrcvmser |

I

A-46

|

Figure A-46. Guidance LPU in CPU21

PIBIU3]

PIBUS23 |

PIBIV4 |

CNRCRSTCNT

’

J

CNRCVSTEER

CNRCVNAVST I HZ16 I

CNRCVINSDAT
OR1

CNRCVAIRDAT
CALCULATE !

BUFO

f
i

I

J

1

e

s
B

I

CNSMI

XMITBUF1

—

CNXMITMISC

XMITARRAY I

| CCBEXECUTIONO | Ecnsxr:cunom | CCBEXECUTION2 |

:

!

PIBUS10 | [piBusii | | PiBusi2 |

| piBivo | { pmBru1 | | piBro2 |

| MABUPDTARRAY | | wmiss3Bio | | M1553B11 |

Figure A-47. DGS Interface LPU in CPU11

A-47

Anport]

DETECTMISNGPLSE

XMITCONFIGCHIG

CCBEXECUTIONO

PIBUS1

MAB1PIBIU

MAB1CPU

MAB

MAB2CPU

CCBEXECUTION

PIBUS2

CPU22PIBIU

SSRCVMSG

outpor

Figure A-48. Detection and Reporting of Failed CPU

A-48

COMPUTNEWCONFIG

XMITCL1CONFIG
_/
—
CCBEXECUTIONO
PIBUSO
PIBIUO
MAB2CPU XMITCL2CONFIG
MAB J///
MAB1CPU CP22LOADLPU CCBEXECUTION2
CCBEX 3CUTION1 PIBUS2
PIBUS1 PIBIU2
PIBIU1 CP21RCVCONFIG —l
CP1ZRCYMSG CP22STARTLPU CP21LOADLPU
CP12LCADLPU CP21STARTLPU
CP12STARTLPU
GEiaxTsenmgt] CSiaztpay) GIaridasitl

Figure A-49. Reconfiguration

A-49

| inport |

CP22LOADLPU

T~

BTBLOADLPU

| out‘éort |

SMMLOADLPU

Figure A-50. Load on LPU

A-50

[inport] .
j, ~

STARTLPU WAIT4TOKEN
MAB
| outport | l
.
XMITCONFIGRPT MAB2CPU
CCBEXECUTIONO CCBEXECUTION1
I

PIBUSO PIBUS1

PIBIUO PIBIUl

MAB1CPU CPU22CPU

Figure A-51. Start on LPU and Transmit Configuration Report

A-51

CPU22RcvShutDn

=

CPU22ComputeCnfg

~J

Cluster«ShutDn

L, ToPilotInput
I ToDGS

| ToNavigation
l ToGuidance

RtoSystemMsgs

ptoSystemMsgs(

fosystentsss]

gtoSystemMsgs/

ClusterlShutDn

ToSensors l

oSystemMsgs]

toSystemMsgsH

oSystemMsgs

1oSensorMgmt I

toSystemMsgsH

Figure A-52. To-Level Graph of Shutdown Process

(CREyShutdewn] [CXTIShutoh)

L CPU22Broadcast I

/\

[M15532P1IBIU J

|

rmss:zstopwu J

AmitShutDnRptoO J

\x__

r STOPO

]

l BTB2PIBIU I l CPU21PIBIU | I MAB2PIBIU |

| BTB2StopLPU I CPU21StopLPU MAB2StopLPU

P

[[TOUOCRPItIF)

pd

[TocuraEnce] | cro2ivnloadLPt | [TGDES)

| XmitShutDnRptl | XmitshutDnRpt2 | XmitShutDnRpt3l I
___ __.

S~

join I CPU22StopLPU l

| AmitClishutDn I [ToNavigarion] | CPU22UnloadLPU |

CrecTmTEr) sToP4

Figure A-53. Cluster 2 Shutdown

A-53

[' inport J

r——-q

StopLPUl

ToCockpitIF J

I

StopLPU2

\—__1 ToGuidance l
StopLPU3
L ToDGS |

[" 4‘T6Ug&oadf ‘]

Figure A-54. CPU Stop LPUs

A-54

ToGuidance

| piscnrcrsTeNT J:Iiblscnncvnno—lgl DISCNRCVNAVSLIT’ DISCNRCVINSDAT T DISCNRCVAIRDAT X—‘

—7iblscuncvsans‘|7| DISCNXMITWAYPNT 7 DISCNXMITSTER 7' DISCNXSTEERCNT | ——

{ uveoareareavs |

L T 1
L XMITARRAY j

l

L CCBEXECUTION |

|
[PIBUS |
|

| RCVARRAY]

I

| masueprageay |

Figure A-55. Stop LPU

A-55

RCVC1Shutdown
M15531PIBIU BTB1PIBIU CPU12PIBIU
M155318topLPU BTB18StopLPU CPU12StopLPU MAB1StopLPU
CPU12UnloadLPy [outporey]
XmitShutDnRpt0 XmitShutDnRptl XmitShutDnRpt2 XmitShutDnRpt3
STOPO STOP1 8STOP2 STOP3

Figure A-56. Cluster 1 Shutdown

Rpt ToCpu

A-56

| _inport] ["mI553stopped] [btblstopped]

[

cpullstoppef

CCBEXECUTION
join
PIBUS

Figure A-57. Pass Cluster 1 Shutdown Message

A-57

[fromdelay

CALLCLUSTERARB

=

MONITORCLHB

=

XMITCLHB

1

CCBEXECUTION

PIBIU PIBUS2

join

EoLOADA

Figure A-58. Graph of a Cluster Arbitration Node

A-58

I inEort |

OPENAS1

CCBEXECUTIONO

PIBUSO

RCVRESPONSE

I frombtbbiu |

split

RCVDATA

READAS1

CCBEXECUTION1

join

I tobtbbiu l

PIBUS1

RUNCHECKSUM

| outport l

Figure A-59. Cluster Supervisor Load AS1

A-59

start stop

i
MONITORHOTHB

ORO
. 2

J delay

[
TRANSMITHOTHB
_oASSUMESSYSSU?

Figure A-60. Hot Backup Arbitration

I Enport l

ARBSYSSUP

STARTSYSMGMT STOPHOTHB

TonBheartbeat tocpulz

Figure A-61. Initiate the System Supervisor

A-61

start

delay

MONITORSSHB
TRANSMITSSHB
toSTARTSYSMGMT
-
toSTOPHOTHB

Figure A-62. System Supervisor Arbitration

A-62

]

—_— POWERUP
: AN

SENSORS

—_— STARTUP
PILOTINPUT

4

NORMALOPERATIONS

N /

——

/

A

SYSTEMESSAGES

FAILURE

Y/

L STECT

RECONFIGURE

N
. o e '

Iigure A-63. Top-Level Graph for 4 Clusters

A-63

[Foverup]

CLUSTERO

[Poverupo]

CLUSTER1

ToBTBMsg0

ToCPU1Msg0

13

ToCPU2Msg0

ToMABMsg0 —

To1553Msg0 |—

ToHBMag —J

ToBTBMsgl
ToCPU1Msgl
ToCPU2Msgl |—

ToMABMsgl |}

To1553Msgl §—

ToCSMsg]

[Fowerupz]

CLUSTER2

I ToBTBMsg2 N

\

b

[Foverupr]

CLUSTER3

\

ToBTBMsg

ToCPU1Msg

ToCPU2Msg

lpl

ToMABMsg

Tol553Msg —

ToSSMsq

\

ENDSTARTUP

ToNormalOps

Figure A-64. Startup Graph for 4 Clusters

A-64

| Powerup l

hpmms O'IOHODULES‘]

TOBTBMsg

LOADASOTOBTB

ToCPUIMag

ToCPU2Msg
ToMABMsg LOADLPUS

Tol553Hag
ARBITRATION / FromClusterl

) !

FromCluster2

ToSSMsq

CONFIGURE

! LOADAS1TOCPU I

Figure A-65. Startup Graph of a Cluster

A-65

FromPowerUp

pwrondlyl

pwrondly

split

Figure A-66. Graph of suroM and Active Load

pwrondly0

pwrondly2 — L«

pwrondly3

A-66

SUROM1553B3 ToLoadAsOl

SUROMCPU31 ToloadAso
SUROMCPU32 Toloadas0o
SUROMBTB3

ToBTBMsg

To1553Msg]

FromSUROM AS01553B3 ‘(‘
/ ToCPU1Msg _]
FromSUROMO 1___ ASOCPU31 .1 ToArbitration0d]
/ ToCPUIMsg I
FromSUROM1 —l,___7{ ASOCPU32 K _____.{ ToArbitration —I
/ TossHes]
FromSUROM2 ‘I,_‘ + ASOMAB3 \ 4 ToConfigure I
ToSMM }_ 4 FromSUROM3 l
ToSMMO 1_ r{ FromSMM]
ﬂﬁ ASOBTB3 E .l FromsMM0 j
ToSMM1 1.__ __{ FromSMM1]
ToSMM2 _],__ .,! FromSMM2 —I

Figure A-67. Graph of AS0 Passive Load

A-67

CTroncPu20] [(EXomlSo30] [ExomShutdown¥] (EromfhuidownlU] [(FromFhvtdownlZ]
rom |F roﬂiﬂKBUI rom rom '] own o u own
| CLUSTERO |
CTombTED CFromcrivzl] [CFromlesil] CTriomraituze 1 [FromShutdownUl [FromShutdownl}
rom lF roﬁM'KB l | rom Trom u own rom. u own
l CLUSTER1 l
[FromBTEd CFromtPuzz] [Fromlse3zl [Fromshuidowns] [EromShuidownd] [FromShutdowni]
rome IF roxm1§§2| rom TOm u own I EromSEuanwnE l 1
!
]
| CLUSTER2]
[TzromCPUd] FromShutdownld) (Exemfhuidownll] [EromShuldownl7]
|
rom rom u own IE romSEuEEown IEI !
|
B
TER3

Figure A-68. System Messages with 4 Clusters

A-68

[FromClusterl 1 [_AS0Started |] | aslstartedl 1
{ FromCluster2 | | FromClustero] | Fromshutdown |
CPU2
| ToCluster2] | ToCluster0 |
I ToClusterl |
| Asostartedo | | Fromshutdown0 |
BTB
~
l ASOStartedl | | Fromshutdownl |
MAB
\
AS Starte Froms utdown
M1553B
\
|___AsOstarted3] |_Fromshutdown3 |

.

CPU1

TN

Figure A-69. System Messages: 1 Cluster

A-69 2U.S. Government Printing Office: 1992—848-127/62200

