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two..types of broad band computer synthesized impulses. Subjects were exposed to 100
impulses at a rate of l-per-3-seconds. Each type of impulse was presented at 3 intemsities,
The third study used impulses generated by three different diameter shock tubes. Subjects
were exposed to 1, 10, or 100 impulses at one of three intensities. The results of the
second and third studies were interpreted using the weighting function derived from the
first study. The hearing loss from all three studies is a linear function of the weighted
SEL calculated using the weighting function, derived in the first study.




CHAPTER 30

An Experimental Basis for the
Estimation of Auditory System
Hazard Following Exposure to

Impulse Noise

JAMES H. PATTERSON, JR.
ROGER P. HAMERNIK

Thcre are a2 number of different suggested
standards for exposure to impulse/impact
noise (Coles et al, 1968; OSHA, Dept of Labor,
1974; Smoorenburg, 1982; Pfander et al,
1980). Although each of these criteria has its
proponents, none of them is in complete
agreement with existing data (Smoorenburg,
1987). What is needed is a2 new criterion. Un-
fortunately, there is an extremely limited em-
pirical database on which a new standard can
be built. The difficulties associated with gener-
ating such a daabase are compounded by the
extremely broad range of high-intensity noise
transients that exist in various industrial and
military environments. For example, in indus-
try, impacts with variable peak intensities and
a reverberant character often occur. At the
other cxtreme, the diverse military weapon
systems produce impulses that originate as the
result of a process of shock-wave formation
and propagation following an explosive re-
lease of energy. These waves, which can have
peak levels in excess of 180 dB, can be either
reverberant or nonrcverberant, depending on
the environment in which they are encoun-
tered. Trying to develop a single standard to
cover this broad range of “acoustic” signals is
a formidable task.

Existing or proposed exposure criteria
generally lack specific considerdtion of the fre-
quency domain representation of (e impuise.
This point has been raised frequ-asly by Price
(1979) and others. However, some deference
is given to the spectrum in these criteria, in an
indirect manner, through the handling of the
A and B duration variables.
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A more direct spectral approach to the
evaluation of impulses and impacts was pro-
posed by Kryter (1970). His suggestions, ai-
though based on sound reasoning, never
gained acceptance. The Kryter approach was
attractive in its ability to predict the amount
of temporary threshold shift measured 2 min-
utes after exposure (TTS;) to a noise tran-
sient. However, this approach was limited to
situations in which the TTS, was not exces-
sively large or, alternatively, the levels of the
transient in any given frequency band were
not excessive.

Price (1979, 1983, 1986) has built on and
extended the Kryter anproach by considering
the spectral transmission characteristics of the
peripherai auditory system. Pricz’s reasoning
led to the following conclusions: (1) There is’
a species-specific frequency, f,, at which the
cochlea is most vulnerable and that impulses
whose spectrum peaks at f, will be most dam-
aging. This would appear to be true, according
to Price, regardless of the distribution of en-
ergy above and below f, For man, the sug-
gested frequency is 3.0 kHz; and (2) Relative
to the threshold for damage at f,, the thresh-
old for damage should rise at 6 dB per octave
when f; is greater than £, and at 18 dB per oc-
tave when £ is less than £, where £, is spectral
peak of the impulse. Thus, a model for perma-
nent damage was developed that is ataenable
10 experimental testing, In subsequent studies,
Price (1983, 1486) has tried to relate, with
varying degrees of success, experimental data
obtaired from the cat to the predictions of
this model. More recently, Hamernik et al
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(1{990) and Patterson et al (1991) have re-
poricd oa an extensive series of parametric
s.udies in which the spectra of the impulses
were raried. 4 ceview of the literature indi-
cates that, except for the studies mentioned
above, there are few other published results
obtained from experiments specifically de-
signed to study the effects of the spectrum of
an impulse on hearing trauma.

This chapter presents an analysis of the
Patterson et al (1991) data from which a spec-
tral weighting function is derived. This
weighting function will then be applied to the
blast wave data of Hamermik et al (1990) and
to the synthetic impulses from Patterson et al
(1986) in order to develop a relation between
the permanent threshold shift (PTS) and the
sound exposure level (SEL). The intention
here is not to present a set of conclusive re.
sults, but rather to illustrate a new approach
to the analysis of this type of experimental
data. It is an approach that develops a direct
relation between frequency-specific measures
of PTS and the frequency domain representa-
tion of the impulse. The resuits of this ap-
prozch can be related directly to the Price
(1983) model and can be used to estimate the
permaaent effects of a traumaiic impulse noise
exposure in a manner similar to that approach
proposed by Kryter {1970} for estimating
temporary threshold shift (TTS) after an im-
pulse noise exposure.

TABLE 30-1 Exposure Conditions
for the 20 Groups of
Animals Used for
Series | Exposures

CF(Hz) PEAKSPL(dB) TOTAL SEL (dB)

260 139 1325

260 146 1398

775 134 1248

775 139 129.4

775 144 1348
1025 129 1198
1025 134 1242
1025 139 129.1
1025 (44 1346
1350 129 119.8
1350 1 1242
1350 139 129.0
2450 128 120.6
2450 134 124.9
2450 139 129.6
2450 144 135.0
1550 124 113.0
3550 129 119.9
3550 134 124.2
3550 139 129.5

Liad

Methods

The noise-induced permanent thresaold
shift (NIPTS) data presented in this report
were acquired from 47¢ chinchillas exposed
to high levels of impuls: noise. Audiometric
data on each animal were obtained using ei-
ther a shock avoidancs procedure (Patterson
ct al, 1986) or measures of the auditory
evoked potential { Henderson et al, 1983). Per-
manent threshold shifts were computed from
the mean of three preexposurce audiograms
and at least three audiograms taken 30 days af-
ter exposure. The behaviorally trained animals
were tested at octave intervals from 0.125 kHz
through 8 kHz including the half-octave points
1.4, 2.8, and 5.7 kHz. Evoked potential thresh-
olds were measured at octave intervals from
0.5 to 16 kHz and at the 11.2-kHz point. For
cach animal, measurcs of compound threshold
shift, PTS, and quantitative histology (cochleo-
grams) were obtained. In the analysis that fol-
lows, only PTS data will be discussed.

Series | Exposures (N = 1i8)

Animals were exposed at a normal inci-
dence (i.e., the plane of the external canal was
paraliel to the speaker exit plane) to 100 im-
pulses presented at the rate of 1 every 3 sec-
onds. This series of exposures consisted of 20
groups of animals, with five w0 seven animals
per group. The stimuli were narrow-band im-
pulses produced by passing a digital impulse
through a four-pole Learner-type digital band-
pass filter (Gold and Rader, 1969). Following
analog conversion, the signal was transduced
through an Altex 515 B speaker in a model
815 enclosure. The filter bandwidth was inde-
pendent of center frequency, with steep atten-
uation outside the passband permitting the
synthesis of equal energy impulses at a variety
of center frequencies while assuring minimal
spread of energy to other frequencies. The
center frequencies of the six sets of impulses
varied from 260 to 3,350 Hz. The bandwidth
of the impulses was approximately 400 Hz.
Impulse peaks were varied from 124 to 146
dB. For each of the exposure conditions listed
in Table 30-1 the total SEL was computed as
follows (Young, 1970):

T pA(t)dt
SEL = 10log,, J'Qp_(%d_

where t, = 1 second, p, = 20 wPa Figure 30-1
illustrates an example of the pre:sure-time his-
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Figure 30-1 Examples of the 775-Hz (A) and 1,350-Hz (B) center frequency impulscs of the Series 1 exposures

along with their respective spectra.

TABLE 30-2 Exposure Conditions for the Seven Groups Used for

Series [1 Exposures

WAVYE TYPE PEAKSPL (dB) TOTALSEL (dB) TOTALP-SEL(dB) TOTAL P'-SEL (dB)

High Peak 147 1308
Low Peak 139 1303
High Peak 139 123.0
Low Peak 131 1224
High Peak 135 19,1
Low Peak 127 18,5
High Peak 131 115.1

127.6 133.4
127.2 1329
1199 125.6
1193 1250
1158 1216
1153 i21.0
Ly 7.5

tories of the 775-Hz and 1,350-Hz center fre-
quency impulses along with their respective
spectra.

Series Il Exposures (N = 42)

Animals were e¢xposed at a normal inci-
dence to 100 impulses presented at the rate of

1 every 3 seconds. There were seven different
cxposure conditions (Table 39-2) to which
seven groups of animals were exposed. Each
group contiined six animals. Two types (low
peak and high peak) of relatively broad-band
impulses with identically-shaped amplitude
spectra were synthesized digitally (Panterson
et al, 1986). The peak sound pressure level
(SPL) of the impulscs was varied from 127 to
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147 dB. Hearing threshold data were obtained
using the avoidance conditioning procedure.
Figure 30-2 illustrates the pressure-time histo-
rics of typical high- and low-peak impulses
along with their common spectrum.

Series Il Exposures
(N = 315)

Animals were exposed at a npormal inci-
dence to either 1, 10, or 100 impulses, pre-
sented at the rate of or 1 every 10 seconds at
intensities of 150, 155, or 160 dB peak SPL. All
of the above combinations of number, repeti-
tion rate, and peak yielded 21 different expo-
surc groups with five animals per group. The
impulses were generated by a compressed-air-
driven shock tube. This set of 21 exposures
was repeated using waves generated by three
shock tubes of different diameters that pro-
duced biast waves whose spectrum peaked at

- three different locations of the audible spec-
trum. The pressure-time traces and spectral
analysis of these waveforms are shown in Fig-
ure 30-3. In addition, the A-weighted octave
band energies are shown in Figure 30-4 so
that comparisons could be made for each
wave from each source. Because of the high
levels of very-low-frequency energy in these
blast waves, the resolution at the high fre-
quencies is poor if unweighted energies are
plotted. For further details ree Hamernik and
Hsueh (1990). Table 30-3 summarizes the
conditions for the Series Il exposures. Qnly
the SELs for the 100Q-impulse conditions are
tabulated. Successive 10-dB adjustments need
to be made to obtain the 10-impulse and the
1-impulse SEL values. All animals in this series
were tested using the auditory evol'ed poten-
tizl procedures.

Resulits

The results of each series of exposures are
presented separately, and the methods used to
aalyze the NIPTS data from each series are
explained,

Serics | Exposures

For each of the 20 groups of animals that
were exposed to the narrow-band impulses. a
mean PTS evaluated at 1, 2, and 4 kHz (77, 5 4)
was compuied, and the groups were com-
pared on the basis of SEL. This data set is
shown in Figure 30-5. The group mean PTS
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from each set of the two to tour groups of an-
imals that make up an intensity series for a
specific characteristic frequency (CF) impulse
behaves in an orderly manner, with 7%, , 4 in-
creasing in an approximately linear fashion
with increasing SEL.

The relative susceptibility to NIPTS is
scen to be a function of the impulse center
frequency, with the lower-frequency impulses
producing relatively little NIPTS even at the
higher SELs. A relative frequency weighting
function can be derived from the data pre-
scated in Figure 30-5 by shifting cach fre-
quency-specific data set along the SEL axis the
amount that is necessary to collapse the data
into a single PTS/SEL function using one of the
exposures as a “zero” reference.

Such a data-shifting process was carried
out “by eye” to produce a best fit using the
1,350-Hz series of data as the reference point.
The amounts shifted were 260-Hz CF im-
pulses, —20 dB; 775-Hz CF impulses, —7.2 dB;
1,025-Hz CF impulses, —4 dB; 1,350-Hz CF
impulses, 0 dB; 2,450-Hz CF impulses, —4 dB;
and 3,550-Hz CF impulses, +4 dB. The re-
alignment of the data that such a shift pro-
duces is shown in Figure 30-6, and the weight-
ing function, thus obtained, is shown plotted
(solid line with symbols) in Figure 30-7,
where it is compared to the conventional
A-weighting function (solid line). The new
empirical weighting function is referred to as
P.weighting in the legends for these figures. A
linear regression through the shifted data set
showed a correlation coefficient of 0.89 with a
slope of 2.6 dB PTS per decibel P-weighted
SEL (P-SEL) and a threshold for the onset of
75, 2.4 Of 116 dB P-SEL The empirical function
derived from the narrow-band impulse data is
seen to differ from the A-weighting function
by as much as 10 dB at the low frequencies.
Also evident in this figure is the anomalous be-
havior of the data point produced by the ex-
posures to the 2,450-Hz, CF impulses.

Series |l Exposures

The detiled his:ologic and audiometric
results of this series - f exposures have been
published by Patterson er al (1985, 1986).
The T, ; 4 data from this series of seven expo-
sures is shown plotted as a function of the SEL
and the P-SEL in Figure 30-8. The latter was
obtained by applying the empirical weighting
function (Fig. 30-7) to consecutive octave
bands of the spectrum of the Series I! expo-
sures. Also included in this figure are the
shifted (or P-weighted) data points from the
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Series I exposures. It is evident that the
P-weighting function does not have the de-
sired effect of increasing the deégree of congru-
ence between the Series I and 1 exposures.
Because the Series 11 exposurcs had substan-
tial energy in the 2-kHz region of the spec-
trum, it was apparent that the effect of apply-
ing the empirical weighting function to this
region of the spectrum would shift the Series
II data points in the wrong dircction. How-
ever, if the empirical P-weighting function is
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extrapolated as shown by the dotted portion
of the function in Figure 30-7, and then used
to weight the Series Il impulses, the agree-
ment between the Series [ and Series 11 data
becomes good, as scen in Figure 30-9. A linear
rzgression analysis (solid line) of the entire
data set from the Series I and Series II cxpo-
sures shows a correlation coefficient of 0.91, a
siope of 2.5, and an X-intercept of 116 dB.
This modified weighting function is referred
to as P'-weighting.
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TABLE 30-3 Exposure Conditions for the Nine Groups Used for

100-Impuise Series Il Exposures*
SOURCE PEAK SPL (dB) TOTAL SEL (dB) TOTAL P'-SEL (dB)

i 150 1403 129.2

1 155 1418 1336

§ 160 {46.4 1388

] 150 1314 130.3

H 155 1365 1353

L {60 1406 1386

L] 150 1290 1308

L 155 135.0 1362

L 160 139.1 1399
*Corresponding SEL and P'-SEL values for the 10-impulse and |-impuise conditions can be obtained by making the
appropriate 10-dB adjustments.

Figure 30-% The group mean
permanent threshold shift (PTS)
evaluated at 1, 2, and 4 kHz
(7, ;) as a function of the total
sound exposure level for the six
groups exposed to the Serics 1
narrow-band impulses.

Figure 30-6 The permanent
threshold shift at 1, 2, and 4 kHz
(75,.2.4) as a function of the

it -derived P-weighted
sound expasure level for all the
Series 1 exposures. The regression
line has a slope of 2.6 and an
X-intercept of 116 dB.
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Figure 30-7 The cmpirical P-weighting function derived from the Series | exposures along with the conventional
A-weighting function and the P'-weighting function inferred from the Series Il and Il experiments.

Figure 30-8 The permanent
threshold shift at 1, 2, and 4 kHz
(¥75, 2 4) from the Series 11
exposures shown as 2 function of
unweighted and P-weighted sound
exposze level compared to the
m, ;4 versus P-weighted sound
exposure level of the Series 1
€XpOsures.
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Series lIl Exposures

One problem that seems to characterize
the measurement of PTS following exposutc
to these high peak levels of impulse noise is
extreme intersubject variability. A number of
authors have commented on this problem in
the past, including Kryter and Garinther
(1965) and Henderson and Hamernik (1982).
Price (1983, 1986) also reported large inter-
subject variability when measuring threshold
shifts in cats that had been exposed to blast

140

waves that were similar to some of the im-
pulses in the Series III exposures. Another
problem is the cxcessive time necessary to
run an experimental animal through a com-
plete experimental paradigm of audiometric
and histologic protocols, thereby effectively
limiting the number of animals in each exper-
imental group and hence the statistical power.
On the %asis of a preliminary analysis of the
PTS data (using analysis of variance), it was
apparent that the effects on PTS of the differ-
ent impact presentation rates were, at best,
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marginal statistical effects. Thus, a decision
was made to evaluate all the PTS data without
regard for presentation rate. Also, because re-
lations between PTS and the increasing energy
of the stimulus were being sought, presenta-
tion rate did not affect the independent vari-
able. This effectively increased the number of
animals at each SEL to 15 except for the 1-im-
pulse exposure conditions. Total sound expo-
sure or exposure level is increased by increas-
ing the peak SPL o the number of impulse
presentations.

For each audiometric test frequency, the
individual ».;imal PIS at that frequency was
plotted a¢ a fu..ction of the total unweighted
SEL in tt> oct v+ band centered on that test
frequan “y. Twn examples of this analysis at 2
+Hz and 4 kB2 for Jource 11 are shown in Fig-
. 30-10. For impact Sources I, 1I, and III,
105 individual data points for each source at
each audiometric test frequency were plotted
over a range of SELs of approximately 30 dB.
The actual number of data points in each
panel of Figure 30-10 is less than 105, because
a number of animals had the same data coordi-
nate, Using data sets such as those shown in
Figure 30-10, the 90th percentile hearing loss
(PTSy,) was computed for each SEL at each oc-
tave frequency from 0.5 to 16 kHz. The PTSg, at
any frequency was computed as follows:

F[Sgo= X + st_lo

where x is the group mean PTS; t,, is the
value of t below which 90 percent of the PTS
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Figure 30-10 Two cxamples that illustrate the individ-
ual animal permanent threshold shift (PTS) values at 2
and 4 kHz following the Series IIl exposures to Source
i1. The solid symbols represent the 90th percentile val-
ues of the PTS at the varicus exposure energies.



PTS @ 1,2,4 kHz (dB)

3

PARAMETERS OF EXPOSURE

Y= - 223.54 + 1.9780x

RA*2 = 0.824 R«0.908
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data lies; s is the group standard deviation.
This procedure yields nine percentile points
for each test frequency, shown by the filled
symbwols in Figure 30-10, i.c,, three peak levels
for each of three numbers of impacts. This ex-
ercise was repeated for each of the six octave
test frequencies and for each of the three

Sources.

From this set of frequency-specific 90th

110

-
120

130

140

P'-Welighted Sound Exposure Level (dB)

150

Figure 30-11 The mean of the
90th percentile permanent
threshold shift (PTS) measured at
1, 2, and 4 kHz for all of the
groups exposed to the Series 111
impuises as 2 function of the
P'-weighted sound exposure
level. A linear regression analysis
(solid line) yields a slope of
approximately 2.0 and an
X-intercept of 113 dB.

Figure 30-12 The mean
permanent threshold shife (PTS)
produced by exposures to the
Series I, 11, and 1l impulses as 2
function of the P’.weignted sound
exposure level. The equation for
the linear regression line (solid
line) is also given.

percentile points, a 90th percentile 7, , ¢ was
computed for each exposure group and plot-
ted as a function of the P'-weighted SELs (P'-
SELs). These results are shown in Figure
30-11. The P'-weighting has the effect of col:
lapsing all the shock tube datz intn a2 reason-
ably cohesive pattern for which « linear re-

gression produces a relation between i, ;4

11

#nd P'-SEL whose correlation coefficient is
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0.91. A threshold for the onset of 7, ; 4 0f 113
dB SEL and a slope of approximately 2 dB
15, 2,4 for each decibel of P’-SEL describes the
equation of this regression line.

Figure 30-12 shows the entire data set
from the Series I, 11, and HI exposures plotted
as a function of the P'-SEL. As a first approxi-
mation the P’'-weighting function has the de-
sired effect of unifying the PTS/SEL relation
following a diverse series of impulse noise ex-
posures. The correlation coefficient between
the PTS and weighted SEL variables is approx-
imately 0.9.

Conclusion

We have presented a preliminary analysis
of a large experimental database obtained
from 475 chinchillas that were exposed to a
variery of impulse/blast wave noise transients.
This analysis, although encouraging in its abii-
ity to unify the PTS data, is considered prelim-
inary because only a portion of the data that
will eventually be available have been ana-
lyzed. In additicn to the results presented, the
following data sets will ultimately be entered
into the database for a final analysis: (1) non-
reverberant, high-frequency, Series HI-type
impulses (N = 105); (2) a more detailed ex-
ploration of the 1- to 8-kHz region of the em-
pirical weighting function using the Series [
narrow-band impulses (N = 50); (3) highly-
reverberant Scnes lll—-type iapulses (N =
300); and (4) all sensory cell loss data from
the above exposures.

The surprising order that is imposed on
the PTS data by the P'-weighting function is
encouraging and tends to lend some validity
tu the methods used in the analysis, i€, the
organization of group mean data averaged
ovel several frequencies and, in the Series 1H
exposures, the use of a 90th percentile PTS.
The analysis presented would indicate that de-
spite the problems and inconsistencies in
some of the datz obtained from high-level im-
pulse noise that have been described in the lit-
erature, the use of large samples and the sys-
tematic variation of exposure conditions can
yicld a database that reflects some underlying
order and can be useful in developing expo-
sure criteria. These data have shown that us-
ing clectroacoustic methods and narrovv-band
impulses, a weighting function appropriate for
high-level blast waves can be established. This
weighting function also may be appropriate
for use in the evaluation of industrial impact
noise data.

The empirical P'-weighting function pre-
sented in Figure 30-7 has a low-frequency scg-
ment (i.c., below 1.5 kHz) with a slope of ap-
proximately 10 dB per cctave, which is
greater than the low-frequency slope of either
the A-weighting function or the “relative sus-
ceptibility” curve presented by Price (1983).
This indicates a much smaller hazard from tire
lower-frequency components of the impulse
noise spectrum than previously belicved.
Above 1.5 kHz the A-weighting function is rel-
atively flat, whereas the Price snhsceptibility
curve rises monotonically at about 18 dB per
octave above 3 kHz. The P'-weighting curve
provides no evidence relevant to this part of
the spectrum. The unusual feature of the em-
pirical P'-weighting function is the 2,450-Hz
point. When the weighting indicated by this
point is applied to the 2-kHz octave band en-
ergy of the impulse of the Series II or Series 111
data, the effect is to decrease the correlation
coefficient between the S, 5 4 and the P-SEL.
(The actual weighting used at the 2-kHz oc-
tave band is the value obtained by linear intet-
polation between the 1,350-Hz and 2,450-Hz
data points.) Although the 2,450-Hz point ap-
pears to be inconsistent with the rest of the
P'-weighting function, it should be noted that
this point is the result of a consistent set of
data that was obtained from four different ex-
posure groups (N = 24). If, however, the P'-
weighting function is used—i.e,, an attenua-
tion factor of —5 dB is applied to the 2-kHz
octave band energy of the Series II and Series
Il impulses—the correlation coefficient be-
tween 7T, , 4 and the weighted exposure level
increases to more than 0.9 (sec Figures 30-9
and 30-11). This result seems to indicate that
the appropriate weighting function to be ap-
plied to an impulse spectrum is not a simple
monotonic function, as implied by A-weight-
ing or the Price susceptibility curve, but
rather a more complex function (at least in
the chinchilla) at frequencies above approxi-
mately 1 kHz. The data of von Bismarck
(1967) on the external ear transfer function
and the multifrequency impedance data of
Henderson (personal communication), along
with the intracochlear pressure measurements
of Patterson ct al (1988), would indicate that
such nonmonotonic behavior is to be ex-
pected.

In conclusion, if a suitable weighting func-
tion can be established empirically it could
then be applied to the spectrum of an impulse
to develop an energy-based approach to the
establishment of criteria for exposure to a
wide variety of noise transients.
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Bases Expérimentaies
Relatives a ’Estimation
des Risques de
I’Exposition aux Bruits
Impulsionnels

L'analyse des résultats de deux séries ex-
périmentales portant sur I'exposition 2 deux
types de bruits impulsionnels trés différents
est présentée. Les valeurs sont basées sur des
résultats obtenus sur plus de deux cents ani-
maux de laboratoire (chinchillas) chez
lesquels les pertes auditives (PTS) et les
pertes de cellules sensorielles (SCL) ont éwé
mesurées. Les premiéres séries d'expositions
furent réalisées en utilisant des impulsions ré-
alistes caractéristiques des tirs de trois armes
différentes (type Friedlander). Ces impulsions
sont produites en utilisant trois sources différ-
entes actionnées a l'air comprimé (tubes a
choc). Elles comportent une distribution spec-
trale d’énergie de large bande avec des pics de
bandes d’octave pondérés A situés a 0,25; 1,0;
et 2,0 kHz. Les niveaux de créte vont de 150 a
160 dB SPL. Les secondes séries d'impulsions
étaient synthétisées par ordinateur 3 partir de
bandes étroites (= 250 Hz) reproduites par
un haut-parleur de forte puissance, Ces impul-
sions, dont le niveau créte variait de 124 a
146 dB SPL avaient des fréquences centrales
de six valeurs différentes situées entre 0,15 et
3,50 kHz, A partir de chacun des deux
groupes de résultats, un niveau Iésionnel con-
stant, défini en termes de PTS et de SCL fut
mis en relation avec le spectre d'énergie et les
niveaux d'exposition globaux de chaque expo-
sition. Les différences et les similitudes trou-
vées parmi I'ensemble des refations de ce type
obtenues avec June et [lautre sources
d'impulsions ainsi que la valeur prédictive de
ces relations sont discutées.
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