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Summary

This paper concerns methods to construct approximate confidence limits for a scalar

parameter 0 in the presence of nuisance parameters. The methods are based on Bayesian

procedures discussed by Peers (1965) and Stein (1985), in which the prior density is chosen

so that the posterior quantiles of i are approximate confidence limits with coverage error

of order O(n- 1 ) under repeated sampling. Multidimensional integration of the posterior

density is avoided by using approximations of marginal densities and distribution functions;

thus, adjustments are obtained that improve the standard normal approximation to the

distributions of signed roots of the profile and conditional likelihood ratio statistics for

b. The necessary prior densities are easy to specify when the nuisance parameters are

orthogonal to the parameter of interest, and this simplicity is exploited in developing the

methods. However, the need for explicit specification of an orthogonal parameterization

is alleviated by approximating the Jacobian of a transformation to orthogonality. The

methods are illustrated and compared with other procedures in some examples involving

exponential families.

Some key words: Asymptotic normality; Conditional profile likelihood; Confidence limit;

Exponential family; Gamma distribution; Marginal density approximation; Noninforma-

tive prior; Nuisance parameter; Orthogonal parameterization; Profile likelihood; Signed

root likelihood ratio statistic; Tail probability approximation.



1. Introduction

Consider observed random variables X1,..., X,, whose joint distribution depends on

a d-dimensional parameter 4 = (€1,..., 4)), and suppose that inference about a scalar

parameter 4 - 4'(O) is of interest. Assume that the log likelihood function 1(0) attains

its global maximum at = ( 1,..., d) and that the constrained maximum is attained at

(b) = (4I1,..., 'd) for fixed 4. Then the maximum likelihood estimator of 4 is 4 =

and =() - q. Expressed in terms of the profile likelihood function lp(O) = l{4 (4)}, the

likelihood ratio statistic for testing 4 = tk0 is W(Oo) = 2 {/p(4) - /p(t0o)}, and the signed

root of the likelihood ratio statistic is R(tko) = sgn(4 - ?0){W(0)} 1/2 . Under the null

hypothesis, the standard normal approximation to the conditional distribution of R(O0 )

typically has error of order O(n- 1/ 2 ), where the conditioning is on an exact or approximate

ancillary statistic (McCullagh (1984), Bardorff-Nielsen (1986)). Consequently, the value

of 4' that satisfies 4{R(V')} = a is an approximate upper 1 - a confidence limit having

coverage error of order 0(n-1 / 2 ), both conditionally and unconditionally. The primary

goal of this paper is to develop related methods for constructing approximate confidence

limits that attain higher coverage accuracy.

Bayesian procedures are available to construct improved confidence limits. Various

authors have considered how to choose a prior density 7r(4) so that, for each a, the posterior

1 - a quantile of 4 is an upper confidence limit for the parameter 4k with coverage 1 - a +

O(n-1) in the repeated sampling sense. When there are no nuisance parameters, Welch

and Peers (1963) showed that the prior density should be chosen proportional to the square

root of the expected information for 4. When nuisance parameters are present, there is

considerable arbitrariness in the choice of prior density, and Peers (1965) and Stein (1985)

developed differential equations for 7r(o) whose solutions yield limits having coverage error 0

of order 0(n - '). Unfortunately, two difficulties often arise in implementing the Bayesian

methods. Exact calculation of the posterior quantiles of 4 usually requires numerical

integration, which can be cumber'ome. Moreover, for a convenient parameterization €0 , C

K ... j - .""
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solutions of the Peers and Stein differential equations can be difficult to find.

For Bayesian inference using a prior density 7r(4) for 0, approximations to the pos-

terior density and distribution function of 0 have been developed that avoid numerical

integration. To describe these approximations, some additional notation is necessary. Let

l,() = 0l(4)/O0', ti,(0) = l(4)/O' , ,(4) = ao(4)/aoi ,() = a ( aa ,

(i, = 1,... , d), and assume the gradient of 0(o) is nonzero. A Lagrange-multiplier argu-

ment shows there exists a constant r(o) such that r(O) = li(4)/Oj(€) for all i satisfying

oi( ) 5 0. One value of the index i having this property always exists by assumption, and

hence r (k) = {?ki)}/{E ',(4)}. Set

/i,(tk) = -lij( 4 ) + r(¢)oij(0) (i,j = 1,... ,d).

Then Ii() = -ti(), since r(¢) = 0. Define

1 r(4)[ det{Ij(4)} 11/2

( (1),r(4 ) Q(?-)de I(0,)} (1)

where Q(O) -Ii=(0)0i( )oj( ), Iii(0)} is the d x d matrix inverse of {Ii(0)}, and

the standard summation convention is used. The Laplace approximation to the marginal

posterior density of k given by Tierney, Kass and Kadane (1989) is

fplx(i) = c T(O)T(k) exp{/p(¢) - lp(¢)}, (2)

where X = (X 1 ,... , X,,) and c is a normalizing constant. Approximations to the posterior

distribution function of ik that follow from DiCiccio and Martin (1991, 1992) are

1 - Fjx(¢) 4'(R) + W,(R)(R - - T), 1 - Fpx(¢) {R - R - log(RT)}, (3)

where R = R(0), T = T(0), and i and p are the standard normal distribution function

and density, respectively. For arguments k such that ?k- is Op(n - 1/2 ), the relative error

of approximation (2) is 0(n-3 /2 ), and the errors of approximations (3) are also O(n- 3/ 2 ).
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It follows that if a prior density of the Peers and Stein type is assumed, then the 1 - a

quantile of approximation (2) and the solutions of the equations

4Z(R) + (R)(R - ' - T) = a, 1{R - R-' log(RT)} = a, (4)

are upper confidence limits for the parameter 4' having coverage 1 - a + O(n-). In some

cases, there exists a prior density for which the posterior quantiles of V' are approximate

confidence limits with coverage error of order O(n- 3 / 2 ) or smaller. When such a prior

density is used, the confidence limits derived from approximations (2) and (3) have coverage

1 - a + O(n-3/2).

Note that in the important special case 4' -1,

det{lij( )} ef-i(}
(') -- l,(Q), 0)det{Iij()} = det{-/I,,()}'

where {-li,i,(0))} is the (d - 1) x (d - 1) submatrix of {-lij(0)} corresponding to the

nuisance parameters )2,... , Od. Generally, T = R - 1 + O,(n- 1/2) for values of 0 such that

4- is O,(n-'/ 2 ), so R - T and R -1 log(RT) are both 0,(n- 1 / 2 ) in (3) and (4).

Although the Peers and Stein differential equations can be difficult to solve in an arbi-

trary parameterization 4, the equations simplify considerably when orthogonal parameters

are used. Tibshirani (1989) noted that if the parameter of interest is 0(0) = 01 and the

nuisance parameters 02,... , O)d are orthogonal to 41 in the sense discussed by Cox and

Reid (1987), the Peers and Stein equations reduce to

1
1 2  ' log r(O) + _2 f{i 1 1 (0)} - 1/2 = 0,

which has solutions of the form

7r(O ) CX ji11(O)}1/2 g(02,. . . ,d),

where i11 (4)) = E{-1 11(0))} and g(0 2 ,..., 0d) is an arbitrary positive function of the nui-

sance parameters.
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A key property of orthogonal paramneterizations is that the differences "(&) '

(i' = 2,... ,d) between the constrained and overall maximum likelihood estimators of

the nuisance parameters are Op(n- 1 ) for values of €1 such that €0 _1 is O,(n- 1/2 ).

Consequently, for these values of i = €1,

= ~+op(n-, )

and

1 (~ [det{-4,()} ]11/2 1/12ii(bde{l1 (~}-
T(V) 7k ) =et * -)j~J()} J ~[() { +Op(n ) 6

The approximation in (6) is exact if the function g(, 2 ,..., #") is constant. When this

approximation is used in place of T, confidence limits obtained through (2) and (3) retain

coverage error of order O(n - 1). If there are no nuisance parameters are present and ? =,

then

T(O) = (1() { ( } {j_/(2)(,)}1/2,

where 1(k)( 4 ) = dkl(gk)/d4,k (k = 1,2) and i(O) = _1(2)(O)}.

DiCiccio and Martin (1992) considered use of approximation (6) in equations (4) to

construct confidence limits. By comparison of this method with related procedures of

Barndorff-Nielsen (1986,1991) that improve the standard normal approximation to the

conditional distribution of the signed root of the likelihood ratio statistic, they showed the

approximate confidence limits derived using the Peers and Stein priors have coverage error

of order 0(n - ') conditionally as well as unconditionally. Indeed, the limits obtained from

the Bayesian approach differ from Barndorff-Nielsen's limits by terms of order Op(n - 3 /2 ).

Although confidence limits produced by Barndorff-Nielsen's approximations have condi-

tional coverage error of order 0(n-3 /2 ), his procedures generally require specification of

statistics that are exactly or approximately ancillary. Ancillary statistics are not necessary

for approximation (6). However, an obstacle to the straightforward use of (6) is that it

requires orthogonal parameters, and orthogonal parameterizations are often inconvenient
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or difficult to find in practice, though they always exist. An approximation to T that does

not directly involve such special parameterizations is developed in Section 2 of the present

paper. The derivation of this approximation exploits the simple form of the solutions

to the Peers and Stein equations in the orthogonal case; however, the need for explicit

knowledge of an orthogonal parameterization is avoided by approximating the Jacobian of

a transformation to orthogonality.

The use of equations (4) in the absence of nuisance parameters has also been considered

by Barndorff-Nielsen and Chamberlain (1992).

Section 3 concerns the construction of improved confidence limits by methods similar

to (3) that involve the signed root of the Cox and Reid (1987) conditional likelihood ratio

statistic. For certain situations, particularly when the number of nuisance parameters is

large, the standard normal approximation to the distribution of the signed root of the

profile likelihood ratio statistic can be extremely poor, and approximate confidence limits

obtained by solving equations (4) can have true coverage far from the nominal levels. In

these cases, the distribution of the signed root of the conditional likelihood ratio statistic

tends to be closer to the standard normal, and solving the equations analogous to (4)

that are derived in Section 3 tends to produce approximate confidence limits with more

accurate coverage. Although the methods developed in Section 3 offer better coverage

accuracy, they are also computationally more difficult to implement in general. Cox and

Reid (1987) defined their conditional likelihood ratio statistic in terms of a conditional

profile likelihood function that requires orthogonal parameters. Section 3 contains an

approximation to this function having error of order Op(n- 1 ) that can be computed in any

parameterization.

Some examples involving exponential families are considered in Section 4.

2. Approximation of T

Consider a reparameterization A(O) = (A1,..., Ad) such that A' = ii, is the scalar
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parameter of interest and the nuisance parameters A2,..., Ad are orthogonal to A1 . Sup-

pose that a prior density *(A) is assumed for the orthogonal parameterization A. The

corresponding prior density for the original parameterization 0 is

7r(o) = i{A(O)}I det{A?(O)}I = f{A(4)}I det[0'{A(O)}]1-',

where A(¢) = OAa(€)/40€ and ¢i(A) = Oqi(A)/0a6 (ai = 1,... ,d), so [0'{A(¢)}] is the

d x d matrix inverse of {Aq(O)}. With this prior density for €, expression (1) for T becomes

1 #i(A) r det{,i,(k)} 1/2det{(A)}
T(O) ) - )L(7T(¢)= (¢)- Q(O) det{fIii M}: det{¢i( )} '(7

since A - A(4) and A = A( ). Thus, to approximate T requires knowledge of the ratios

*(A)/*(A) and det{ (A)}/det{ 0'(A)}. Approximations to these ratios are given in for-

mulae (10) and (14), respectively. The approximation to *(A)/*(A) applies in the case

that f(A) is a solution to the Peers and Stein differential equations.

Denote the log likelihood function for A by I(A), let lab(A) = 82 [(A)/OAaOAb. and

define ii3 () = E = E{-1ab(A)}, (a,b,i,j = 1,... ,d). Differentiating the

identity l(A) = If{(A)} twice and taking expectations yields

b(A) = i ()a (a,b = 1,...,

and hence,

k= i"{t(A)A?{O(A)}A {O(A)} (a,b= 1,... ,d), (8)

where {ab(A)} and {i i(¢)} are the d x d matrix inverses of {t'b(A)} and {i (€)j, respec-

tively. In particular, for a = b = 1, (8) becomes

= i O(A)} {f(A)} 1 {4fAO }(9)

By definition, orthogonality of A2 ,..., Ad to A1 =p means that a'I (A) = ?I ,(A) = 0

(a' = 2,... ,d). Two important consequences of orthogonality are Ia',(A) - . a'(A) = 0

(a' = 2,... ,d) and P"(A) = {l(A)I- ,.
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Suppose that ,(A) is a prior of the Peers and Stein type. Since € = ¢(A) and 4 =

)(A), it follows from (5) and (9) that the ratio *(A)/*(A) can be approximated in the €

parameterization by

1/2 + O (n- )

1 ) + Op(n-1) 
(10)

for values of the parameter tk such that 0 - k is Op(n-1 2 ).

It follows from (8) that

= i(A){b(A) =I"J{(A)}A{4O(A)} (a,i= 1,...,d), (11)

and setting a = 1 in (11) gives

"(A)O'(A)= ij{fO(A)} bj{0(A)} (i = 1,... ,d). (12)

Combining (9) and (12) shows that for an orthogonal reparamterization A(O) with A'

the parameter of interest, O4(A) = 80'(A)/8A' = i{4)(\)} (i = 1,... ,d), where

The converse of this result also holds: if a reparameterization A(O) satisfies 0'(A) =

r i{€ ( ,\)} (i = 1,... ,d), then A,...,Ad are orthogonal to A' = 0. When 0 = 0' is

the scalar parameter of interest, FI(0) = ii"(€)/i (€) (i = 1,..., d). Then the conditions

0'(A) = F{4)(A)} (i = 1,...,d) for orthogonality are equivalent to ii,jf{(A)}¢j(A) = 0

(i' = 2,.. .,d), or

d i ,, ,, {4(A)}4)'(A) = -i, 1 {4)()} (i' = 2, .. ,d.),

e 1=2

which are the orthogonality equations derived by Cox and Reid (1987).
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Now differentiation of the identities 0'(A) = r{k(A)} (i = 1,... ,d) with respect to

Aa produces the system of equations

o,,(A) = r;{4(A)},() (a,i = 1,...,

where r;()= 8()/Oqj . Theorem 7.3 of Coddington and Levinson (1955, p.28) shows

that the solutions q5(A) (a, i = 1, ... , d) to this system have the property

detlf 0'(,\I, A2,..., ")} = detl 0'(a,A2,....., \)} ex p  tr rFlsA..,d)Ids ,(13)

where a is an arbitrary constant and r() - {f(o)} is a d x d matrix. By choosing

A2 = 32(A1),..., A = Ad(AI) and a = A' the left-hand side of (13) is

det[i l',\ 2 (A'),. . d( ,A )}] = det{4 (A)},

while the factors on the right-hand side are

det[Oa fA1,A (Al),...,A (Al} detf 0a(A)} + Op(n - 1 ),

and

exp (J'\tr r[4{s, 2 (A'),..., 3(Al)}]ds) = exp tr r[{(s)}]ds + Op(n-')

=exp tr r{4 (s)}ds] + Op(n-1),
VI I

for values of A' such that A' ' is Op(n-' / 2 ). Therefore, the ratio detf{(A)}/ det {q(A)}

can be approximated in the 4 parameterization by

det {44(A)} exp[ trr+(s)}ds +Op(n-1), (14)
det{4 (A)} -

for values of the parameter k such that tk- is Op(n-'/2 ). Since the ratio is 1 + Op(n-/ 2 ).

other approximations having error of order Op(n - 1) are

exp{(0 - i) tr r()}, exp{(0 - k) tr()}.

8



The advantage of these approximations over (14) is computational simplicity.

In summary, the approximation to T(tk) that emerges from (7), (10) and (14) is

1 r 1/2 det{I,(4)} 11/2
T() = T(,0) ()( [Q(b)det{1Ij()}j

x exp[- tr r4(s)}ds + Op(n-1), (15)

and the same order of error holds if the integral is replaced by either (k - ¢ ) tr "(O) or -

¢) tr r( ). If approximation (15) is used for T, then the confidence limits obtained *hrough

(2) and (3) have coverage error of order O(n - 1 ), both conditionally and unconditionally.

When the parameterization 0 is orthogonal, tr F(o) = 0 and (15) reduces to approximation

(6).

An alternative formula for tr r(o) is now developed that may be useful in computing

(15). Differentiation of the identities ri(¢) = iij(b)Kj(€) (i = 1,..., d) with resp ect to 0'

yields

)= i"i(4){~,i(4) _ i ,i(.)rk(¢p)} (i,1 = 1,...,

where rj(4) = 1 (rk)/{iI()(()O1 ()}, icjz(k) = 0ic(€)/&0', ijk,1(0) = Oik(0)/O90

and the result i"(0) = -iik(O)im(,)ikm,l(0) is used, (i,j, k, I = 1, ... ,d). Thus,

tr r(o) = ii(){Kij(O) - iik,j(o)rk(0)}. (16j

When ?k = 0' is the scalar parameter of interest, ici(€) = 6 Jil a(€) (j " 1,... ,d), where

J is Kronecker's delta, and (16) yields

tr r(o) = iij,k()(O){il(4)ikl(k) - il(O)jk(O)}/{il1(o)} 2 . (17)

A desirable property of any procedure for inference about 0 is that it not depend on the

particular choice of underlying parameter 0. Confidence limits obtained from the standard

normal approximation for the signed root of the likelihood ratio statistic have this property.

since R(4k) is invariant under reparameterization. Furthermore, for fixed prior density
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ir(4O), the quantities T(O') and r(O,)T(1)) defined at (1) are invariant, and the approximate

posterior quantiles of 4' derived from (2) and (3) also do not depend on choice of underlying

parameter. When (2) and (3) are used to construct approximate confidence limits, with

T(O') given by (1) and 7r(4b) taken to be a solution to the Peers and Stein differential

equations, some arbitrariness can arise because the solutions to these equations are not

unique in general. However, the confidence limits obtained from using different solutions

agree at least to order Op(n - '), that is, they differ by at most Op(n - 3 /2 ). Approximation

(6) to T(O'), requiring an orthogonal parameterization, is not invariant since it depends on

the orthogonal parameterization used. This approximation is independent of the choice of

orthogonal parameters to error of order Op(n - 1 ), however, and when it is used in (2) and

(3) to construct approximate confidence limits, the resulting limits are parameterization

invariant to error of order Op(n- 3 /2 ). Similar comments apply to approximation (15). This

approximation to T(V') depends on the choice of parameterization 0 at order Op(7n- 1 ).

and it can be used in (2) and (3) to produce approximate confidence limits that are

parameterization dependent only at order Op(n-3/ 2 ).

It is worthwhile to remark that the quantities ri(o) (i = 1, ... , d) have another inter-

pretation. A straightforward calculation involving Lagrange multipliers shows that

±~(, ~(' 4~4) (i = 1,... ,d).

In particular,

dik Jkl

and thus, for values of 4 such that 4' - 4 is Op(n-1/ 2),

d 
12=k =(o) + Q(n ) (i = 1,...,d).

10



3. Procedures based on conditional profile likelihood

Suppose, as in Section 2, that a prior density 1(A) is considered for an orthogonal

reparameterization A = A(O). Then T(O) is given by (7), and the Laplace approximation

(2) to the posterior density of 4 can be written as

f~bjx(4') = c\-) expjlc(V') - lc(i)1,(2)
f1(A)

where 1rQ(P) det I de(O¢)}l
IC()= lP() - lo [Q(4)det{Ii(4)1] - log [det{¢1 (A)}1

l(0) is maximized at 4, and c is a normalizing constant. Applying a tail probability

approximation of DiCiccio and Martin (1991) to (18) yields

1 - Fojx() s- 4(Rc) + (Rc)(Rj' - Tc), 1 - Fk, lx() - 4{Rc- R- 1 log(RTc)}, (19)

where Rc = Re(V)) = sgn(4 - ik)[2{l¢( ) - lc(O)}11/2,

TC{= T ) IA()} {lc)( )}1/2

and 1Ck)(0) = dkl (O)/d4'k, (k = 1, 2). Both approximations in (19) have errors of order

Op(n-3/2) for arguments 4 such that V, - is Op(n-'/2). It follows that if 1(A) is a

solution of the Peers and Stein differential equaticns, then the solutions of the equations

4(Rc) + (p(Rc)(R - - Tc) = a, 4'{Rc - R-1 log(RcTc)} = a, (20)

are approximate upper 1 - a confidence limits having coverage error of order O(n- ') con-

ditionally as well as unconditionally. If the prior density 1(A) produces posterior quantiles

for V' that are approximate confidence limits having coverage error of order O(n - 3/ 2 ) or

smaller, then the confidence limits obtained from equations (20) have coverage error of

order O(n - 3/2 ).
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The function 1,(0) is identical to the conditional profile likelihood function of Cox and

Reid (1987). In terms of an orthogonal parameterization A with log likelihood function

l(A), Cox and Reid have recommended replacing the objective function lp(lk) by

- 1 log detf l'A~ (21)/P(¢) ~ - det -lb,( )} I21I

where {--asb,(A)} is the (d - 1) x (d - 1) submatrix of {-ab(A)} corresponding to the

nuisance parameters A 2 ,...A, d. To demonstrate the equality of 1,(0) and (21), note that

det {-1a'b'(A)} = _P(A)det {-lab()}, (22)

where {--rTb(A)} is the d x d matrix inverse of {-lab(A)}. Differentiation of the identity

I(A) = Ifk(A)} gives

-Iab(A) = Ij(O)Oai()Ojb(), -l"(A) = P()A?(A)A (A) (a,b = 1,..d);

hence,

det{-ab(A)J = det{Iq(O)1[det{¢(A)1]2 , _P1 (A) = Q(4). (23)

Combining (22) and (23) gives

Edet{-l.,b,(A)} 1/2 Q(O) detfIi,(0)} 11/2 det{f0a

Idetf -i'b'(A)}J I Q(4) det{I 1 (¢)} J det{¢()}'

and it follows that 1,(0) and (21) are the same.

Calculation of 1,(0) requires knowledge of the orthogonal parameterization A. How-

ever, by using (14), 1,(0) can be approximated by a function that does not explicitly

involve orthogonal parameters. For values of 0 such that ?k - is Op(n-1/ 2 ),

4¢(0)=IPM log Q())det{Ii()} - trr{(s)}ds+Op(n-'. (24)

and the integral can be replaced by either (, - 0) trr(4) or (t - ¢) trr( ) without

changing the order of the error term. Similarly, when *(A) is a prior of the Peers and Stein

type, it follows from (9) that T,(k) can be approximated by

TI() = + Op(n-') (25)

12



where = . Since = i + O,(n-1), 2)() = '2)() + O,(1), and _/2)(,) =

{ Q() }-1, the computationally simpler approximation

T {O) i },/_ {Q()-2 + Op(n-') (26)

also holds. The solutions to equations (20) remain upper confidence limits with conditional

coverage 1 - a + O(n- 1 ) when either approximation (25) or (26) is used for Tc(i/') and

approximation (24) is used for 1,(0) in calculating 0, R,(O) and Tc(O).

The function lc(o) depends on the choice of orthogonal parameterization; however,

for arguments ? such that 0 - 4 is Op(n-1/ 2 ), the values of lc(b) obtained under different

orthogonal parameterizations vary by at most Op(n- 1 ). The same property holds for the

function Tc(O'), when the prior density is completely specified. Approximate confidence

limits obtained by solving the equations in (20) depend on both the orthogonal parame-

terization and the solution to the Peers and Stein equations used. However, all the limits

thus derived agree up to order O(n-'); that is, they differ from one another by ternms

of order O,(n-3 / 2). Similar comments apply for approximations (24), (25) and (26). Ap-

proximation (24) to l,(tk) depends on the underlying parameterization 0 at order Op(n - 1 )

for values of ip such that ik - is Op(n- 1/ 2 ). When (24) is used in (25) or (26) to approxi-

mate Tc(4'), the resulting approximation is also parameterization invariant to error of order

Op(n-'). Using these approximations for 1,(tk) and T,(O) in (20) produces approximate

confidence limits that depend on the parameterization 0 only at order Op(n - 3/ 2 ).

4. Examples

The methods of Section 2 and 3 are now illustrated in some simple situations where or-

thogonal parameterizations are readily available, so that comparisons with other available

procedures are possible.

Consider a sample X1,..., X. from a d-dimensional exponential family. Assume the

log likelihood function for the canonical parameter 4 = (01,..., 4d) is 1(0)) = n{ VX -
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fl(0)}, where X - (= - ,..,-d) = n- EX,, and let fl(O) = ,1 (o) =

a2 03(O)/OiO (ij = 1,...,d). Then E(X') = fl(O) (i = 1,...,d), and in the nota-

tion of Section 2, -4i,(O) = i =i(¢) = n/3i,(O) and j(¢) = n-flj((P) (i,j = 1,....d).

where {i(0)} is the d x d matrix inverse of {fij(0)}.

Example 1. Suppose that the scalar parameter of interest is g, = 01. Cox and

Reid (1987) have noted that \ = (\Il,...,Ad) = {1,32(4),... ,Id(€)} is an orthog-

onal parameterization, and T(O) can be calculated from (7) using this parameteriza-

tion. By orthogonality and (9), the Peers and Stein prior densities are of the form

*(A) Oc [#11{¢(A)}j-'/ 2g(A,. .. ,Ad). If the function g(A 2 ,...,Ad) is chosen to be con-

stant, then i()/r(A) = {/311(4)/f311(4)}l/2. Now define B(O) = {flij(¢)} and B1 (€)=

{/I'j'(0)} (i',j' = 2,...,d), so that B 1 (0) is the (d - 1) x (d - 1) submatrix of B(¢)

corresponding to the nuisance parameters 42,... , Od. Since det{A(¢)} = B1 (O), it fol-

lows that det{f (A)}/det{4,0(A)} = det Bi(4)/ det B1 (4). Direct calculation shows that

r(O) = 11(q) = n{31(4) - fli(4)}, det{Iij(O)} = nddetB( ), and Q(t,) = n-l 31(O).

Hence, (7) gives

T(k)1 det B() /2(27)
n,/2{fl(4) - f1(0)} I det B1 (0) 1

For other choices of g(\ 2 ,... ,Ad) in the prior density *(A), (10) ensures that (27) is an

approximation to (7) having error of order Op(n - 1) for values of ¢ such that V - ' is

Op(n- 1 /2).

Approximation (15) to T(O), which does not require knowledge of orthogonal parain-

eters, coincides with (27), because approximation (14) is exact in this case. The identity

VP det B (4,)
exp tr rI,(S)ds= - (2S)

det B1 ( 4)

follows from expression (17). Since iij,k(O) = ijk(0) (i,j, k = 1,... ,d), where d3,k(O) =

0 3 O(O)/aia 4 , )a 4 k, and since dO,(O)/dO = u1(€)/B11(€) (i = 1,...,d), (17) yields

14



=-tr [Bl( )-' B,
Idd

- - log det B,{(k)}. (29)

For this choice of orthogonal parameters, the conditional profile likelihood function is

l(O) = lp(O) + log det B, 1)

which was derived by Barndorff-Nielsen and Cox (1979). It follows from (28) that approx-

imation (24) to l(0) is exact. If the prior density is ir(A) oc [031 1 {(A)}]/ 2 , then

T(,)= ,( (30)

for other prior densities of the Peers and Stein type, (30) is an approximation to T,(L')

having error of order Op(n - 1 ) for values of ?k such that ip - t is Op(n - 1 /2 ). Approximation

(25) to To(b) agrees with (30), and approximation (26) is

n 1/2

TI(M) = +1/2 Op(n-1). (31)

It is of interest in the present context to compare the methods from Sections 2 and

3 with similar procedures that have appeared in the literature. For this example, if T(, t,)

and T,(ik) are replaced by

_O = 1 rdet(Bi (4) 1/2 1 (32)
U(,,) = ( B() , U(,)= 1 _ , V)11()/2

in equations (4) and (20), then the solutions to these equations are approximate upper

confidence limits with coverage 1 - a + O(n- 3 /2 ). This use of U(k) and U,(k) has been

discussed by Barndorff-Nielsen (1986), Skovgaard (1987), Davison (1988), DiCiccio and

Martin (1991), Fraser (1991), Fraser, Reid, and Wong (1991), and Pierce and Peters (1992).

For values of ? such that 0 - k is Op(n-'/ 2 ), T(O) and Tc(k) differ from U(k) and

Uc(k) by terms of order Op(n-). Note that U(?) is obtained from T(O) by replacing

1-(i( 1/ /2{l( )- fll( ){flll()} 112 with the asymptotically equivalent

15



quantity ($1 -1){l11( )}1/2 = nl12 (4b_¢){j31( )}-/2, and that U,(i') is obtained from

T.(4') by replacing 1l)(?p){i11()11/2 = n-l/21)(4){311(¢)}1/2 with (0-){- 2(1()} 1/2

in (31).

Example 2. Suppose the parameter of interest is ' - E(X 1 ) -/1(0). An orthogonal

parameterization is A - (A 1 ,..., Ad) - {t i(€), €2,..., cd}, and for a specified prior density

#(A), T(O) can be calculated from (7). The Peers and Stein prior densities have the

form f-(A) cx [/ 1 {,(A)}]-/ 2g(A 2 ,..., Ad), and if the function g(A 2 ,... ,Ad) is taken to be

constant, then r(A)/*(A) = {13u(k)//3ii (€)}1/2. It is easily seen that det{A?(O)} = 311 (o),

whence det{ 4 (A)}/det{O(A)} = /1,u(0)/fu(.0), and that 7-(O) = n{'-O}/3u(o), where

S= X1. Therefore, (7) yields

T(O') - flll( )} 1 /2  [ det{fIii (')} ]1/2 (3

with Ii(tk) = n{3ii($) + (4 - 4)3i,( )//1i($)} and Q(?P) =

Approximation (15) to T(O) does not coincide with (33) because (14) fails to be

exact in this case. Approximation (14) can be verified directly, since ri (0) = 6/ 311(0)

(i - 1,...,d) and d4i(4)/d - ri(4) + Op(n - 1/ 2 ) for values of 4' such that s - i

Op(n-1 /2 ) Thus,

trr_() = _( 1 - d~'(' O~12

d logfl 1 {(O)} +Op( 1 /2 ),

which yields

tr r{(s)}ds = log ( + Op(n-'),

and (14) follows.

For this case,

IY(¢) =,() - log[Q-) detfi(?) }  log{ #I

16



and
= fiu(4) 1/2 f{j(2)( )}1/2

when *(A) cc [f 11 {(A)}] 1/ 2. Approximation (24) to lc(p) is

C(Ob) =l (t')- !log [Q(?)det{Iji()}] + #I 1 ds +Op(nds)+
2 1°Q(4)det{Ij(P)} 4[j1i{4(s)}]2

and approximation (25) to Tc(k) coincides with (34).

Example 3. Consider a sample Xl,..., X,, from the gamma distribution having den-

sity f(x) = {(v/p),/1r(v)}xz - l exp{-(v/ p)x}, x < 0, with mean p and shape parameter

v. The parameters p and v are orthogonal. Let X = n - ZXi and X' = (l X,)/n.

Then i = X, and fi satisfies

X' d
p(f,) = log - p(V) - log r(v) - log v.

X' dv

Suppose the mean p is the parameter of interest. The constrained maximum likelihood

estimator fi(p) is given by

p(i) =log- - + log- + 1,
Xp 1

and the signed root of the likelihood ratio statistic is

R(p) = sgn(X - p)[2 n{ (f) - C(f)} 1 2 , (v) = vd log (v) - log - v.

The Peers and Stein prior densities are of the form 7r(p, v) oc g(v)/p, so

IA // g(f,) I P () ) / 2 ,

T~)=nl/2(XC - A) V~ g(i;') p(l)(fl)f

where p(')(v) = dp(v)/dv = d2 log r(v)/dv 2 _ 1 /.

For the choice g(v) = vp()(v),

T(v) = n1/(X _ ) 1// } (35)

17



It follows from Barndorff-Nielsen (1986, 1987) that for this particular T(p) the solutions

to equations (4) have coverage error of order 0(n-3 /2 ). Thus, when the prior density

is 7r(p,v) oc vp(1)(v)/, the posterior quantiles of p are approximate confidence linit

having coverage 1 - a + O(n- '/ 2 ). A drawback of (35) is that it requires calculation of the

trigamma function. Note that the choice g(v) = {p( 1)(v)}'/ 2 produces

T( ) ',1/ (36)
T( )=ni/2(X _ P) fl I

which is computationally simpler than (35). Table 1 shows simulated coverage probabilities

for approximate confidence limits obtained from equations (4) with T given by (35) and

(36). Although (35) yields slightly better coverage accuracy than (36), both versions of T

perform well.

Apart from an additive constant, Ic(p) is given by

1
=cp 1z() log p(i)(:)

2

and Tc(is) is given by

= () {10)

For the choice g(v) = vp(1)(v), T,(p) becomes

T (Y ) = ' -Cpl( _ )( } /

and the approximate confidence limits obtained by solving equations (20) with this T'(,)

have coverage error of order O(n - 3 /2 ).

Now suppose the shape parameter v is of interest. Then ji(v) = X. and

R(v) = sgn(i - v)(2n[C(z') - ((v) - v{p(f') - p(V)}])1 / 2

The Peers and Stein prior densities are 7r(p, v) oc {p ()(v)}11 2 g(p ), and

T(v) = n_1 p(f - ( p(l)(V)}'/2
18p(V) V

18



It follows from (32) that if T(v) is replaced by

U(V) = n/(,- V)V

then the approximate confidence limits obtained from equations (4) have coverage 1 - a +

0(n31/2 ). Note that T(v) is independent of the choice of g(p), since j(v) = A. Hence it

is impossible to find a prior density of the Peers and Stein type so that T(v) and U(v)

agree, which suggests that confidence limits with coverage error of order O(n - /2 ) cannot

be constructed for v using the Bayesian approach.

For this case,

I(v) = n[C(v) + v{p(P) - p(v)}] - logV, T(v) -{-IV))1}//
Again, it follows from (32) that if Tc(v) is replaced by

1UC(V) = V-

then the confidence limits obtained from equations (20) have coverage 1 - a + O(n - 3 / 2 ).
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Table 1. Simulated coverage probabilities of approximate upper

1 - a confidence limits for gamma mean y

(p, v) = (5,0.25)

n=5 n =10

1 - a 0.01 0.05 0.95 0.99 0.01 0.05 0.95 0.99

A 4.070 12.706 95.496 98.802 2.349 9.070 95.907 99.106

B(35) 1.335 5.502 94.844 98.843 1 040 5.061 94.964 98.964

(36) 1.434 5.767 94.686 98.777 1.080 5.155 94.888 98.931

C(35) 1.365 5.669 94.866 98.869 1.055 5.102 94.969 98.967

(36) 1.460 5.912 94.707 98.804 1.091 5.200 94.893 98.934

(0,,v) = (1, 1)

n =5 n =10

1 - a 0.01 0.05 0.95 0.99 0.01 0.05 0.95 0.99

A 3.351 10.555 93.560 98.114 1.976 7.702 94.811 98.783

B(35) 1.378 5.646 94.549 98.688 1.055 5.128 94.737 98.954

(36) 1.459 5.903 94.347 98.616 1.099 5.260 94.831 98.912

C(35) 1.380 5.716 94.586 P8.738 1.054 5.141 94.943 98.963

(36) 1.457 5.952 94.385 98.667 1.098 5.270 94.836 98.921

(I, v) = (0.5, 10)

n=5 n =10

1 - a 0.01 0.05 0.95 0.99 0.01 0.05 0.95 0.99

A 3.039 9.391 91.990 97.508 1.738 6.890 93.896 98.488

B(35) 1.519 5.878 94.301 98.528 1.095 5.154 94.867 98.900

(36) 1.592 5.919 94.264 98.526 1.103 5.179 94.844 98.892

C(35) 1.541 5.881 94.330 98.578 1.081 5.149 94.877 98.916

(36) 1.551 5.924 94.291 98.567 1.089 5.173 94.854 98.907

A, B and C refer to limits obtained by solving the equations 4'(R) = o,

-IP(R) + W(R)(R - 1 - T) = c and 4'{R - R - ' log(RT)} = a, respectively.

Table entries are percentages based on 1,000,000 trials.
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