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Rule Based Control for Mission Execution
for an Autonomous Underwater Vehicle

Yuh-jeng Lee
Paul Wilkinson

Computer Science Department
Naval Postgraduate School

Monterey CA 93943

Abstract
This paper describes a rule based system that has been designed to oversee the

maneuvering of the autonomous underwater vehicle, AUV II, that has been con-
structed at the Naval Postgraduate School. The system will monitor the progress
from the AUV launch point to a goal area and back to the origin. It is able to make
informed decisions about the mission, taking into account the navigational path,
the vehicle subsystems health, the sea environment, and the specific mission profile
which is downloaded from an offboard mission planner. Heuristics for maneuvering,
avoidance of uncharted obstacles, waypoint navigation, and reaction to emergen-
cies - essentially the expert knowledge of a submarine captain - have been coded
using the expert system shell CLIPS. The design of a high level control software
architecture for AUV II and the development of the domain specific knowledge for
AUV operation are discussed in detail. Simulation results showed that the system
is capable of reacting to various adverse situations in a timely manner.

1 Introduction

For decades, the development of autonomous underwater vehicles (AUV's) has been an

ambition for industries and the government alike. Only recently, however, have practical

AUV's appeared to be reality. Several marine autonomous and remotely-piloted vehicles

are currently in use for such diverse functions as underwater inspection [91, offshore oil

exploitation [4], and hydrography [13]. The practical advantage of low-risk to human

operators coupled with the potential ability to operate at over-the-horizon distances

make autonomous underwater vehicles highly desirable for many subsea activities and

operations.

The Naval Postgraduate School has been investigating AUV technologies involving

vehicle dynamics and control, artificial intelligence, robotics, and computer architec-

tures. An experimental testbed, AU-V II, has been designed, fabricated, and successfully



launched on site [7]. As noted in [15], the technologies that axe essential to AUV success

include navigation, composite hull materials, guidance, energy source, propulsion, com-

munication links, and signal processing as well as the specific mission packages. To make

an AUV truly adaptive and survivable, however, an advanced decision making capability

is also needed. Our current efforts attempt to take the development of an intelligent

control system for AUV II into the next increment of evolution, beyond the primitive

closed-loop control. The project focuses on software modules in two different levels: the

intermediate level modules, such as pattern recognition and navigation, and high level

modules, such as mission planning/replanning and mission execution.

This paper describes the design and development results of a mission executor which is

responsible for high level control of AUV II. The purpose is to provide a control system

for the vehicle so that it will adequately emulate the human-machine interaction that

regularly takes place on manned submersibles.

1.1 The Need for a Mission Execution Expert System

One general software architecture for AT-V is a top-down flow of control ranging from

strategic level control through tactical level to hardware interface level. Higher levels of

abstraction perform some of the activities (some time-sensitive) which require measured

decision-making.

The control structure of AUV II has undergone an evolutionary development. Ini-

tially, it was essentially low level closed-loop control. Incremental enhancement- to the

ALTV functionalities necessitated the incorporation of an expert system to i-.- egrate and

coordinate intelligent activities such as system monitoring, waypoint folowing, and ob-

stacle avoidance. As the autonomous vehicle enters the real underwater environment, it

must perform independently all kinds of tasks required to complet',- its mission. Although

routine situations can be handled in an algorithmic manner, many incidental problems

need to be resolved relying on heuristics. This type of problem solving requires high

level reasoning and decision making, often in real-time, and in an environment of uncer-

tainty or incomplete knowledge. The primary go,1 of the Mission Executor was to design
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heuristics that make it possible for the system to deal with extensions of well-known

problems.

1.2 Requirements of a Mission Executor

The Mission Executor, in the broadest sense, must be able to safely control movement

between a mission starting point and a mission goal. In doing so, it must operate between

three models: that of the vehicle world, the environmental world, and the mission world.

To supervise the vehicle world implies that the Mission Executor must monitor and

control vehicle "health" such as battery state, internal system pressure, and temperature.

It must also be able to respond to a deteriorating condition of the vehicle sonar, navigation

system, or -uidance systems. The loss of a major onboard instrument, such as the sonar

or navigation system, would probably be catastrophic in many cases and would result

in a mission degradation in the least serious case. The Mission Executor must supervise

the subsystem recovery procedure or make decisions that can circumvent the problem.

Should that fail it must make a strategic level decision to abort the mission.

Control of the vehicle in the context of the environmental world means reaction

to topological features such as undersea terrain and obstacles (both moving and non-

moving), a significant change in atmospheric conditions, or any external threat which

would physically hinder the vehicle from making the transit to the goal point.

Monitoring of the mission world entails recognizing transition points between handling

normal transit and beginning a special mission profile. Possible speed and depth changes,

special requirements for inshore navigation, and deployment of any equipment must be

considered. Most important, the mission priority must be readjusted for vehicle survival

and reusability. Heuristics for this must be incorporated in the software.

1.3 Organization of the Paper 
r

Section 2 is a survey of related work on AUV control systems and related technology.

Section 3 describes information processing onboard the AUV II. It details the interactions

between various modules of the AU'V II software architecture. Section 4 presents the
'1 btf,-)dL%



design of the Mission Executor. Section 5 provides a description of the implementation

of the Mission Executor. Issues on the proper combination of rules and objects, the role of

uncertainty and truth maintenance are also discussed in the context of AUV operations.

Section 6 presents simulation results. Section 7 outlines contributions, conclusions, and

extensions for further work.

2 Related Work

Layered control architecture [31 is behavior-oriented, using the subsumption approach:

low-order behaviors are first installed and verified in the testbed, and when satisfactory

performance is achieved, the next level of complex behaviors is then added. The lower

level is subsumed by the higher level. Other studies that employ some form of the layered

architecture include: (1) state configured layered control [1] which addresses the issue

of mission specific behavior coordination; (2) the ARCS underwater vehicles [19], which

also incorporate rule based heuristics and learning through reflexive behaviors, logical

behaviors, and learned behaviors; (3) the TASC/NUSC architecture [17] which com-

bines aspects of real-time layering, functional decomposition and subsumption; and (4)

KB/EAVE [2], which is knowledge-based AUV software that accomplishes its functions

through functional layering.

In the hierarchical structure approach, the software is usually divided hierarchically

into interrelated levels of functional units such as the planner, navigator, pilot, and

actuator/controller [8]. Each level has its own separate sensor bank for perception, a

map for world model reasoning, and a reporter for intelligent control. The functional

unit itself has its own database, rule base, and evaluator. Software for Autonomous

Control of ROV90 [16] is also a hierarchical system in which a monitoring unit, the

Watchdog, supervises several lower level modules that perform the functions of mission

sequencing, navigation, vehicle control, and error checking.

The Exception Handling Model [14], constructed as a procedural expert system, func-

tions as a mission executor for an industrial robot. It attempts to achieve the planned

behavior and provides a series of prioritized strategies for recovery. The strategies are
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encoded in heuristics around the general functions of monitoring, diagnosis, and response

in a loose hierarchy.

3 Onboard Information Processing

While the AUV II software contains over a dozen modules [7], only four of them directly

interact with the Mission Executor. The interface between these modules and the Mission

Executor is depicted in Figure 1. Each of the modules and the data transmitted between

the modules are discussed in the following sections.

reptan Mission LogI
reques decisions'

mission

Fig'ure 1: The Interface

3.1 Downloading Mission Profile from the Mission Planner

Given mission requirements and relevant environment information, the offboard Mission

Planner provides AUJV II with initial instructions to carry out the mission. These include

the best three dimensional operation path to the goal, time requirements, and special
path constraints [11]. The Mission Executors most important functions in a normal

transit are to receive waypoints and command data (denoted as a path) from the Mission

Planner, to interpret the movements, to convert path postures to reference postures, and

to properly sequence and monitor the movements. The other important functions which



the Mission Executor carries out are generally exception-handling relative to normal

operations.

The Mission Executor's role in interacting with the Mission Planner should not be

categorized as simply a conversion unit serving a high-level planner. The Mission Execu-

tor must reason about waypoints and their associated speeds. If the original commanded

speed for a particular waypoint is not feasible due to an unplanned deviation from course,

then the Mission Executor must call the Navigation module for an updated speed to reach

the goal on time. It may also request the onboard Mission RePlanner to replan the mis-

sion should the original path be no longer valid.

3.2 Updating World Model with the Obstacle Checker

Conceptually, the Obstacle Checker has the responsibility of processing packaged sensor

data transmitted from the sonar module and relating it to specific obstacles. Both the

type of obstacles (moving or stationary) and the avoidance maneuver (decrease-speed,

increase-speed, dive, ascend, or stop) are determined and passed to the Mission Execu-

tor. The data passed include an obstacle alert-and-direction flag followed by a template

containing the following information: obstacle identification, relative distance, relative

orientation, time, movement, and parameters of movement.

The direction flag is sent merely to alert the Mission Executor for a real-time re-

port. Receipt of the template data allows the Executor to call the RePlanner with the

information. The Executor also flags Guidance to be ready for imminent receipt of re-

vised reference postures for the new path-to-goal referenced to the current geographical

position. A low-level reflexive response can also be passed directly to the guidance con-

troller, thereby bypassing the Mission Executor in the case of an unplanned obstacle close

aboard.

3.3 Requesting Replanning

Tie RePlanner, a knowledge based path planner that uses an optimized real-time A*

search [10], attempts to plan a new path-to-goal based on knowledge of the goal state,

6



the current geographical location, and special path constraints passed by the Executor.

It operates in four dimensions: three standard cartesian dimensions and a fourth di-

mension of heading or azimuth [12]. The RePlanner receives periodic updates from the

environmental database, allowing it to replan the new route from any specified origin.

The RePlanner is alerted to the need to replan by a function call from the Executor.

A flag and the coordinates of the current location are transferred to the RePlanner. It

constructs a new plan in the same manner as the Planner does, using a priori knowledge

of the environment. A file of new waypoints is returned to the Mission Executor when

replanning is completed.

3.4 Guarding Vehicle Health with Systems Monitor

The vehicle's internal world is modeled as a set of sensor objects which measures the

subsystem components, including power sources such as an array of batteries for sub-

s, tem power and propulsion support, control system indicators for rudders. pianes and

propellers, sonar power status indicators for four onboard sonars, onboard computer

temperature sensors, navigation instrument fault sensors, and power sources for environ-

mental sensors. These have default guard-line and red-line ranges which, when violated,

cause an alarm to be sent to the decision making levels. An automated turn-key opera-

tion is first generated which attempts to recover from an equipment failure or impending

failure by bringing a redundant system on-line, if such redundancy is provided. If the

equipment is critical, it may degrade the vehicle condition or even abort the mission.

3.5 The Guidance Subsystem

The end results of the Mission Executor functions must be a series of -eference postures

nad commands to the Guidance subsystem. Guidance is an intermediate level function

which has an algorithmic reasoning system. It converts high level decisions and reference

postures to low level commanded postures for the Autopilot module. A function call

within the rules of the Mission Executor generates an alert to the Guidance module to

prepare for receipt of data and commands.



4 Design of the Mission Executor

This section describes the design of the Mission Executor, inteiface limitations, and

the software constructs used. This design is intended to cover most situations of AUV

operations.

4.1 Reasoning about Several Worlds

The Mission Executor attempts to serve the role of high level director while integrating

decisions on the basis of input from the vehicle internal systems, the external environ-

ment, and the mission plan. It continuously assesses whether a mission can be carried

out successfully, the ultimate goal. Decisions are modeled heuristically rather than in a

strictly algorithmic fashion, based primarily on the status of low level events. In other

words, low level events drive broader decisions. The requirement to model this lends

itself naturally to a hierarchical design, but one that is priority-situation b&ed.

Basic AUV guidance or control systems are closed-loop and are adequate to handle

routine maneuvering. The Mission Executor exists mainly to deal with exceptions to

normal maneuvering which cannot be processed in a strictly algorithmic manner. Its

reasoning results in interrupt commands to the Guidance subsystem (which in turn con-

trols the Autopilot). If there are no deviations from the track caused by any of the three

worlds that AL" must deal with, then the Mission Executor merely fulfills the role of

sequencer of data.

Although not all experiential knowledge may be encoded in rules, there is reason

to believe that AUV missions can be bounded. Some previous research has suggested

that ATJV behaviors can in fact be standardized. For example, typical situations in

which an AUV might find itself have been identified in [18] in which the "Generalized

Problem vs Contingency Alternatives Matrix" provides a set of possible problems and

alternative actions an AUV can take to overcome the problems. Problems are classified

into three categories: mission, environment, and internal failures. These have one-to-one

correspondence with the three worlds that the Mission Executor tries to model.
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This view of high level control as essentially handling exceptions to normal transit

and operations is embodied in the MVssion Executor. Some of the implications of the

matrix merit serious consideration while others are simply beyond the scope of current

technology. For example, vehicle self-repair is highly unlikely in a mechanical failure

situation unless this term refers only to equipment which has a redundant system or

power source available.

4.2 The Structure

The Mission Executor consists of a knowledge base of rules, facts, and objects. Figure 2

shows the overall structure and data flows of the Mission Executor. A set of rules exists

for the Mission Executive and for each functional (i.e., situational) area: maneuvering,

navigation, subsystem-monitoring, environmental hazard, and specialized mission. The

rules interact with the object base and cache of facts to produce guidance commands.

The Mission Executor was designed based on the overall state of the mission existing

in ore of three forms: continue-unrestricted, continue-with-restrictions, or abcrt-mission. If

no deviations occur during the course of the mission, the mission status remains at its

default status, continue-unrestricted. It views each functional area in two levels: critical

and failure. The critical level indicates that a functional area has suffered some sort

of restrictive, non-catastrophic loss of capability. This can be on the order of loss of

non-mission essential equipment or a temporary maneuvering restriction such as obstacle

avoidance which takes it away from its principal direction of travel. This results in the

mission status of continue.with-restrictions. The mission restriction category can later be

lifted if the vehicle recovers in ample time. If not, the mission restriction remains, or

the overall mission status worsens to abort-mission. The failure level indicates that th2

functional area has suffered a major loss of capability such as loss of mission-essential

equipmeat or inability to maneuver. This essentially results in the status of a bort-mission.

Each of the functional areas has a hierarchy among its rules. A functional assessor

exists at the top of each rule base to cache knowledge about the functional axea. The

9



Obstacle Mission Navigation Vehicle
Data Plans Data System

condition Manuevering Specialized

MISSION Rules I Mission Rules
EXECUTIVE

Navigation
recommended Rules! System Monitor
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Hazard Rules

Replan Commands Decisions
Request and

Postures

Figure 2: The structure of the Wission Executor

functional area information is then passed to the IMission Executive and causes top level

decision rules to be fired.

4.2.1 The Mission Executive

The Mfission Executive performs the highest level of reasoning in the Mission Execu-

tor and consists of three major components: MissionJnterpreter, Mission-Monitor, and

OverallMission_-Assessor. The MissionJnterpreter receives mission plans from the offboard

Mission Planner and provides instructions to carry out the mission. The Mission.Monitor

is in charge of routine background functions such as the sequencing of the mission timer

and the continuous loop that queries the environmental sensors and the internal vehicle

subsystems. The OveralLMission.Assessor is responsible mainly for tabulating the results

10



sent by the functional area assessors. It is insulated from details of the reports by the

functional area supervisors.

If the AUV enters the status of abort-mission, the Mission Executive will request

the vehicle path to be replanned for a pre-planned rendezvous point. It may be the

origin of the mission or an intermediate point which facilitates recovery bv the launching

platform. The status of continuewith -restrictions allows the vehicle to try to recover from

its maneuvering, navigation, or equipment restrictions.

The rules in the Mission Executive are given the highest priority for execution. It

is necessary to differentiate between a high-level, less frequent action and a lower-level,

frequently performed action. This is because a situation (pattern match) which may

cause an abort-mission or continue-with-restriction usually requires immediate or timely

reaction and certainly takes precedence over a routine action such as a normal turn

or depth-change. The emergency-action rule must be fired prior to other semantically

lower-priority rules on the agenda. This heuristically models a submarine commander's

"situational awareness" in an emergency. It might also be likened to the focus of attention

approach, such as that modeled in [2].

Last, but not least, the Mission Executive must send reference postures as well as

commands to the Guidance module. Many of the commands must initiate low level

actions with real-time constraints while the assessment of a particular functional area

status is in progress. The commands must be a series of well-understood actions which

will place the vehicle in a safe configuration when a casualty occurs. Table I shows the

commands currently implemented.

4.2.2 The Rule Base

The sequence of control in a rule-based system often contains a relatively high degree of

non-determinism because of its declarative nature. While there are certain tasks which

must be accomplished in procedural order, the Mission Executor is a system that reasons

about situations which are normally beyond a closed-loop control system. Below we

discuss the characteristics of major rules in each functional area.
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Table 1: Possible commands to the Guidance module

Basic Maneuver Order [ Target of Order

turn turn left rudder
turn turn right rudder

depth change ascend XX planes
depth change dive XX planes
depth change surface planes
speed change increase speed drive motors
speed change decrease speed drive motors
speed change stop drive motors

[ speed change hover hover thrusters

XX = depth in inches or an indicated safe depth variable

Maneuvering Rules Maneuvering rules cover several situations. First and foremost

is obstacle avoidance. The highest priority rules cover emergency situations such as

detection of an obstacle close aboard. Various orientations of the obstacle relative to the

AUV's heading will prompt a right or left turn, an ascent or a full stop (drive motors

stopped) or a combination of these. These are heuristic turning rules which can produce

an effective gross avoidance for the AT W so that the RePlanner can then be invoked for

further path refinement. Table 2, based on [5], shows the avoidance heuristics currently

employed.

Table 2: Obstacle avoidance heuristics

Alert Flag I Turn Depth Change

OXXO -

OXxI - ascend
1101 left ascend

1100 left
1011 right ascend

1010 right
I1 IX stop ascend

12



Alert Flag is a four-bit signal generated by the Obstacle Checker. They represent the

information collected from the four sonars (forward, right, left, and bottom) installed on

AT V II. For each bit, a 0 means that no obstacle is detected by that sonar, a 1 signals

detection, an X can be either 1 or 0 (meaning the value is not important in determining

maneuvering). For example, the alert flag 1010 (second line from bottom in the table)

indicates that obstacles are detected by the forward and left sonars; therefore, the AUWV

should make a right turn to avoid collision.

Detection of an obstacle at the range of the sonar's limits is another function covered

by the maneuvering rules. Because of the relatively limited distance of the AUV sonar,

avoidance action must be taken early. An obstacle is initially checked for its potential to

hazard the AL-V, dependent on the obstacle's bearing drift and its relative bearing. This

is recorded and a collective obstacle heuristic is triggered to determine whether a propor-

tional amount of the obstacle will block the AUV to the left or right. A gross avoidance

maneuver is then commanded to bring the AUV awa: from the obstacle and allow the

RePlanner to plan the new avoidance path with appropriate mapping waypoints.

The procedures for creating an update to an obstacle are essentially the same. If the

obstacle is still a hazard, then further avoidance and replanning are necessar,. There is

a chance that this will result in a significant deviation from the path and, eventually,

a mission abort. On the other hand, if the obstacle is no longer a danger, then its

collision danger is recorded as such and thus it is not considered in the collective obstacle

assessment.

Other rules in the maneuvering functional area cover special depth-changing evolu-

tions such as diving, ascents, and surfacing. The control systems have an inherently

large influence on these special maneuvers. If a control system fails during one of these

situation, that results in an automatically commanded maneuver to the Guidance to

correct the altitude and level the vessel at a safe depth or change the speed at which the

maneuver is proceeding. An improper obstacle clearance can also precipitate changing

one of these special evolutions.
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Navigation Rules The lower level action attribute of the configuration actually is

instantiated within the Navigation rules upon the occasion of waypoint arrival. The

rule that plays a significant part in the navigational aspect of high level control is the

assessment of progress along the mission track. The rule makes a simple comparison of

overall distance along the track with current location. It then orders a replan of the

current track if the current speed and progress made are not compatible with reaching

the goal area on time. A very simple energy-consideration function checks whether there

is sufficient propulsive power to get to the goal.

Other navigation rules cover specially-monitored depths: both yellow-depth and red-

depth. If the depth sonar indicates that the AUV has encountered a yellow depth area,

the AUV calls the Navigator for a check of the required depth in that area. If the observed

depth does not match the required depth, the Guidance is ordered to reverse course and

the ReP!anner is called. If a red-depth violation is indicated, the Guidance is called to

reverse course.

System Monitor Rules Not only a large influence for its own functional area, the

overall equipment status exerts a notable influence in other areas. Separate rules exist for

each equipment area (sonar, control system, navigation instrument, environmental sensor,

and special mission equipment) and the respective power source. A continuous monitoring

rule polls each equipment area for equipments which are out of normal operating limits.

These limits are normally parameters of sustenance such as potential in volts or power

in watts. If a piece of mission essential equipment fails, it causes a failure in both the

equipment status area and in the area with which it is associated. For example, loss of

the diving-plane controls causes a maneuvering loss and a mission essential equipment

loss. If an auxiliary power source exists for the equipment, it can be used in the event

that the normal source fails. Similarly, equipment with redundancy has the capability to

have its functions shifted to the alternate should it fail.

The Equipment Status Assessor awaits the results of equipment polling. If a piece

of equipment fails, it will cause its classification rule to fire and the Equipment Status

14



Assessor will tabulate the results. If some mission-essential equipment or a sufficient

number of non-mission-essential equipment fails, the equipment status area will suffer a

major failure.

Environment Rules The Environment rules have a similar arrangement. The En-

vironmental Assessor tabulaies the number of sensors which have performance readings

outside the limits. If it is essential equipment such as a pressure transducer, the loss will

cause a functional area loss. If it is non-mission essential equipment, the loss will only

cause a minor degradation to the environment functional area.

Special Mission Rules While basic AUV maneuvering control and navigation wxill

be the primary focus for some time, incorporation of specialized missions will eventually

become important. Specialized Mission rules have a different influence than the previous

functional areas. Most of these rules do not take effect until the transition to a special

mission configuration at the conclusion of the transit. The exception to this is a special

mission area equipment failure. A functional mission area failure occurs if the special

mission equipment fails. It is desirable to have an alternative to undertake a secondary

mission if the primary mission cannot be fulfilled. The specialized rules are usually

mission-dependent. There are no special mission rules in the present version of the

Mission Executor.

5 Implementation

A prototype Mission Executor has been implemented using the expert system shell CLIPS

version 5.0 [6], chosen for its wide availability (can be obtained at minimal cost), high

portability (comes with source code written in C and can easily be modified), and flexi-

bility (can easily be integrated with other programming languages or external systems).

CLIPS was developed by NASA and has been used in the construction of both real-time

and non-real-time systems. It is a forward-chaining, rule based software tool that provides
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m,'uy desirable features including list processing, production system type of reasoning,

and object oriented computing.

5.1 Main Algorithm

The vehicle reasoning system is initialized upon the download of the mission plan. This

triggers the rule Mission-Timer, which continually binds the mission time to the current

central processing unit (cpu) time. A timer flag is continually asserted in this rule and

retracted in the timer manager rule. The timer manager continually asserts facts which

trigger other polling rules. The initial state of mission-status is conti n ue-u n restricted which

will remain the same through the duration of the mission as long as no functional area

becomes criticaI or experiences failure. Most of the rules in the Mission Executor are to

handle missions which cannot remain in the ideal state due to a casualty or discrepancy

in the mission, vehicle, or environmental worlds. The main algorithm can be described

as follows:

donload mission plan;
if vehiclestatus = operational, then

process mission-file;
set mission-status to continue-un:estricted;
initialize mission-timer;
initialize all system objects;

loop: do while mission-status not in
[missioncomplete, aborttorendezvous, abortjfor.recovery]

continuously update mission-time;
if the mission-time = time for some event, then

perform the event;
continuously feed waypoints to Guidance subsystem;
continuously monitor mission progress;
if an exception occurs, then

signal possible changes to Guidance, RePlanner;
access impact of changes;
reassign mission-status to different category if necessary;

end loop;

5.2 Object Representation

Input mission postures are first downloaded from the Mission Planner offboard the ve-

hicle. The input postures are given to the MissionJnterpreter which places a posture

into the proper object format and designates the high-level classification of the posture

configuration as a transit or specialized mission.
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Vehicle internal state is modeled as a set of objects which represents all onboard

equipment that need to be monitored. They include:

" Power source: battery-l and battery_2;

" Control system: rudders, planes, propellers;

* Sonars: forward, left, right, bottom;

" Onboard computers: the Gespac 68030 computer, 386 PC;

" Navigation instrument: gTros, GPS;

" Environment sensors for water temperature and pressure.

Each object representing a piece of equipment has a default guard-line and red-line ranges

which, when violated, cause an alarm to be sent to the decision making levels. The

gua.-d-line value exists to provide the equipment to degrade more gracefully, by initiating

the turn-key operation to energize redundant equipment or power source. The red-line

reading (either high or low) indicates the failure point or equipment shutdown limit

(naturally, not all equipment or power sources have both high and low limits). The

reading of object values is done by a polling rule, monitor-health-continuously which sends

for a message at regular intervals from the Mission Executor. If the value exceeds the

guard-line value, then the Mission Executor places the system being monitored in the

condition of critical. If the sensor red-line value is exceeded, the equipment is assumed

to have failed. In the case of a vehicle control system such as the rudder or diving planes,

there is also a message handler which checks the response of the system. This often

means positional response. For example, if the autopilot generates a command to turn

left and the rudder moves in a wrong direction, then the system is assumed to have

become critical.

Objects are used to model not only equipments, but also decisions which are main-

tained ° - the purposes of later retrieval in reconstructing the mission and in conducting

any possible machine learning for AUV II. Maintaining decisions is useful not only for

mission documentation, but also in resolving conflicts between states.
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5.3 Layering of Rules

The rules in the Mission Executor are layered in three levels of reasoning. The lowest-

level rules actually carry out the corrective action by ordering Guidance to turn, ascend

to safe depth. These rules are assumed to be competent operators or controllers. For

example, the maneuvering rule abnormal-dive is given the responsibility to order Guidance

to decrease the speed and ascend to the designated safe depth, bringing the vessel to a

safe configuration before it propagates this situation to the intermediate level assessment

nile.

The intermediate level consists of assessment rules from functional areas. For example,

the Maneuvering.StatusAssessment rule evaluates various types of maneuvering status

problems. and tabulates the number of deficiencies. Since the overall mission status is

dependent on rapid propagation of changes from the assessment rules, the assessment

rules are given a higher salience value to avoid being in conflict with lower level rules.

Assigning a higher salience value to the assessment rules gives them adequate priority.

At the highest level, the Overall-Mission.Assessor examines the current status of all

functional areas and makes a determination on the state of the vehicle mission. At that

point, the overall mission status is changed, if necessary, and the results propagated down

to the respective mission abort or mission restricted rules. All of the functional areas

have a similar structure. Maneuvering has the added feature of low level assessment rules

which examine the obstacle object base to see if the indicated obstacles pose a collision

danger.

5.4 Maintaining a Consistent Knowledge Base

.As important as sensing data and scheduling actions is the maintenance of consistency

in the knowledge base. In a rule-based system this becomes acutely important when the

generation of a new action through a control fact is based on some other events. If the

events that would cause the action are no longer valid, then it may be the case that the

generated control fact is no longer valid. In such a case it will be necessary to remove

the fact. This truth maintenance is an integral part of the Mission Executor, mostly in
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the highest levels. The vehicle's initial state (hence ideal state) rests upon a foundation

of all functional areas being operational (this does not mean that all functiona: areas

are devoid of any complications; it only means that the complications will not cause the

vehicle to become critical).

Any failure of a particular functional area will cause the mission status to be changed.

The Mission Executor does this by retracting the mission status of continue-unrestricted

and asserting a new status of abort-mission. It results in vehicle recovery or an abort

transit to the designated rendezvous. The abort status is one that should remain in effect

until the vehicle is recovered. This is so since abort-mission should only take place when

all relevant options to continue the mission have been explored and found unexecutable.

However, in the interval between the status change and the actual vehicle recover'",

there is the possibility that a functional area becoming critical could later attempt to

cause the status of continue-with-restrictions. There is also the possibility that the func-

tional area recovery rules could cause the new state of continue-u.unrestricted. To counter

any possibility that either of these could happen, a truth maintenance feature of status

lock is incorporated. This causes the mission assessor rule to be removed. Thus. no

mission state change can occur and overall mission status becomes "frozen".

5.5 Managing Uncertainty

Uncertainty plays a significant role in the Mission Executor. In fact the primary reason

for using a forward-chaining rule based tool such as CLIPS is that there is a great deal of

uncertainty about the external environment. What is known about the environment can

best be classified in heuristics. A specific area of uncertainty that the Mission Executor

must reason about is the presence of obstacles. Reporting an obstacle at short range

automatically generates a command from the Mission Executor (an emergency situation)

but reporting an obstacle at the limit of the sonar is a different matter. The obstacle

is assigned a confidence factor which comes from the Sonar Processing Suite. If the

confidence factor is high to medium and the obstacle is within the 180 degree arc about

the bow of the AU', then the obstacle is considered to be a collision danger. This will
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cause the path to be replanned. The rationale is that the farther away an obstacle is

detected, the less radical a turn is necessary, often resulting in less deviation from the

original track, saving both mission time and energy consumption.

The confidence factor is checked whenever an obstacle alert flag is sent, be it an

update or a new obstacle. This feature helps to maintain the high level configuration

while still allowing for the necessary actions of avoiding obstacles and pe.-forming routine

navigation enroute to the mission origin or designated rendezvous.

5.6 Mission Documentation

Thcre is a vital need for documentation of AIV missions. Most AU'V projects have come

to rely on some data recorded onboard the AUV. The compilation of data is valuable for

several reasons:

" It ca. be analyzed by human researchers to update and refine the AU'V control

systems (both hardware and software).

* It can provide an idea of what works with rule-based systems and where failure in

reasoning occurs.

" It can be used as a persistent base of knowledge for "training" AUV's in situation

assessment.

Documentation already exists within the NPS ALV II baseline system in the form of

the Environmental Database which contains navigational data and data about obstacles

which might be encountered. A mission log is maintained by the Navigator module in

much the same way as a mission log is kept by a navigator of a maritime vessel. However,

in order to adequately study high level control, a mission log must also be kept of high

level decisions. It can be regarded as a form of captain's log which records the state of

the mission at the highest level and justifications for decisions made. At a standard time

interval or whenever the overall mission decision changes, an entry is made to the log.
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6 Simulation

A set of five simulation scenarios was designed to determine if the Mission Executor can

perform the high-level symbolic reasoning that generates the desired decisions for AUV

operation. We would also like to know whether the reasoning system could recognize

situations and try to approximate real-time constrained decision-making. Navigational

wavpoints used in the simulation were based on the model of the Naval Postgraduate

School pool. An average mission time of two to four minutes was used for each scenario.

The simulations were run on a Sun Sparcstation 1.

6.1 Scenarios and Results

Scenario one tested the most basic case, pre-planned mission execution monitoring (that
is, waypoint sequencing). The AUV II was given a set of waypoints, each with its

specified estimated time of arrival as a constraint. At the third wapoint, the vehi-

cle missed its time constraint by 47 seconds, longer than the predefined tolerance level

of 40 seconds, and enough to cause the WaypointDistanceTimeCheck rule to alert the

Navigation.Assessment rule. This resulted in a command to increase speed. but no

change in navigation status, since one violation of this kind is not considered critical

(the Navigation.Assessment rule employs a heuristic for replanning if four navigation

problems have occurred). In this scenario, it took 0.28 seconds for the Mission Ex-

ecutor to recognize the large navigational discrepancy in time (basically the work of

Waypoint-DistanceTimeCheck rule). It took the Navigation Assessment rule 0.16 seconds

to determine that there was no need to change the status. The overall elapsed mission

time was 3 minutes 21 seconds with 16936 rules fired.

Scenario two tested the ability of the Mission Executor to recognize an untenable

obstacle avoidance situation. Both short-range obstacles and long-range obstacles were

tested. The first recognition of an obstacle close aboard led to an ascent to safe-depth.

This also tested a rule recognizing possible shoaling or grounding of the vessel. The

emergency avoidance maneuver rule began its time check of the avoidance maneuver.

An obstacle detected at long range led to assessment of the obstacle as threatening to
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the AUV. The overall maneuvering status was changed to continue-withrestrictions. At

one point enough obstacles had accumulated to cause the CollectiveObstacleAssessment

rulle to characterize the situation as involving a critical number of obstacles (the criterion

is four separate encounters). Later the same rule determined that the critical point

had been breached by the accumulation of too many obstacles along the track (the

heuristic is based on the reasoning that too many obstacles will cause too many time-

consuming avoidance maneuvers). The ManeuveringStatusAssessment rule determined

that this was a functional area failure, resulting in _n abort-mission situation. From

recognition of the critical point at 50.45 seconds into the mission, it took approximately

6.55 seconds to recognize the undesirable situation. The change in the maneuvering

status and subsequent overall assessment of the mission resulted in a time of propagation

of 0.14 seconds. The overall elapsed mission time was 1 minute 57 seconds with 8610

rules fired.

Scenario three involved a vehicle control s:.'stem failure. After passing several way-

points, the AUV experienced an electrical failure of diving planes which triggered the

rule ManeuveringEquipmentFailure first. The Control-SystemFailure rule fired shortly

after that, leading to the overall mission assessment that this was an abort situation.

From the instantiation of the triggering event until the time it was recognized as an

abort situation was an interval of 0.24 seconds. Propagation of the maneuvering status

or equipment status to the OverallMission_-Assessor was difficult to absolutely determine

because of the fact that both maneuvering assessment and equipment status assessment

fired. Either one could have caused the overall mission status to change. Because of the

high salience of both rules, activation of the OverallMission.Assessor occurred only 0.17

seconds after the EquipmentStatus.Assessment rule fired. The overall elapsed mission

time was 41 seconds with 2500 rules fired.

Scenario four evaluated both obst.cle avoidance and environmental phenomena. Only

two obstacle encounters were realized, resulting in only minor deviations to the planned

navigational track. A significant environmental phenomenon was simulated by having

readings in all three environmental sensors exceeding allowable limits. This res'ilted in a
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mission abort. After the time of the triggering event, it took the OverallMissionAssessor

0.56 seconds to recognize that it was an abort situation. The overall elapsed mission time

was 2 minutes 11 seconds with 11200 rules fired.

Scenario five tested multiple equipment failures. The AUV passed through several

waypoints missing only one time constraint. A sonar failure (forward sonar) led to a

reduction in the overall mission status to continu ._.with-restrictions as the sonar went to

a critical state. A second sonar (right port sonar) led to a reinforcement of that state.

Failure of the rudder finally led to the AUV surfacing and energizing its transponder.

From the triggering event until the decision to abort, 0.47 seconds elapsed. The overall

elapsed mission time was 1 minute 15 seconds with 5456 rules fired.

6.2 Evaluation

Comparison of the results reveals that propagation of status from the functional area

assessors to the OverailMission-Assessor will probably meet real-time constraints in the

relatively slow-moving environment of the AUV in its testing facility. The trae time

dependency does appear to be in the low-level action or assessment rules. Situation

recognition depends on good heuristics.

The use of a layered situation-based reasoning system appears to be sound. By using

an intermediate level assessment rule, the desired rapid reaction can be taken at the low-

level and the assessment of functional state can proceed at the same time. Thus, there

need not be a salience assigned to every level. Refinement of heuristics will certainly be

necessary to further optimize the rule base.

7 Conclusions

We have designed and developed a prototype Mission Executor for the AUV II, the au-
tonomous underwater vehicle that has been fabricated at the Naval Postgraduate School.

This not only provides a high level, intelligent software control for the AU" II, but also

allows for the encoding of domain specific heuristics into a rule base. We believe that the

essence of the expert knowledge of a submarine captain regarding maneuvering, avoid-
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ance of uncharted obstacles, waypoint navigation, and reaction to emergencies has been

adequately captured and implemented in our prototype system. We have also identified

the major data flows between the AU-V II software components and defined the interrupt

commands for the Guidance subsystem.

'While it is impossible to test all possible scenarios, the testing and debugging of the

.Vission Executor, implemented in CLIPS version 5.0, illustrates its rapid prototyping

capabilities and the great utility of objects to represent the onboard systems and deci-

sions. Rules for newly-envisioned situations can be added with relative ease. Thus, the

prototype is easily extensible. This also means that current rules can be further refined

with more test runs in submarine maneuvering.

Through simulations, we have demonstrated that the Mission Executor is able to

react to adverse situations in a timely manner and to make informed decisions for AUV

maneuvering. Ve plan to install it onto the AUV II when the current development of

other software modules is completed.
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