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A Sample-Size Optimal Bayesian Procedure

for Sequential Pharmaceutical Trials
by

Noel Cressie and Jonathan Biele

SUMMARY

Consider a pharmaceutical trial where the consequences of different decisions are ex-
pressed on a financial scale. The efficacy of the new drug under consideration has a prior
distribution obtained from the underlying biological process, animal experiments, clinical
experience, and so forth. In an important paper, Berry and Ho (1988) show how these com-
ponents are used to establish an optimal (Bayes) sequential procedure, assuming a known
constant sample size at each decision point. We show in this article how it is also possible
to optimize with respect to the sample-size rule. This last component of the design, which

is missing from most sequential procedures, has the potential to yield considerably larger

expected net gains.

Keywords: Backward induction; clinical trials; group-sequential procedure; optimal stop-
ping; predictive distribution; VPRT.
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1. Introduction.

Berry and Ho (1988) argue cogently for a Bavesian decision-theoretic approach to
the design and analysis of pharmaceutical trials. They (and we) address the questica of
when a drug development program should be stopped in the face of evidence that suggests
insufficient drug efficacy. The purpose of this article is not to enter into a debate about
Bayesian versus frequentist methods for the design and analysis of sequential clinical trials.
but rather to implement fully the Bayesian technology. Breslow ( 1990) and the discussion

following his article, contrasts the two methods.

In the pharmaceutical setting, it is often reasonable to assume that the consequences
related to the objectives of the trial can be converted to a financial scale. In decision-
theoretic terms (e.g., Raiffa and Schlaifer. 1961: DeGroot, 1970), we assume that the drug
company is able to construct a realistic gain (or loss) function. Such a function might
come from a cost-benefit analysis. What we are proposing in this paper is an optimal
way to conduct the clinical-trials part of the drug development program, but the same
ideas could be used in later parts of the program (where one must choose between several
possibilities, one of which is to put off the decision and obtain more data to help make a
decision at the next time point). In both circumstances, the Bayesian approach provides
the decision-maker with not only an optimal stopping and terminal-decision rule, but also
with an optimal sample-size rule.

Consider sequential decision procedures that allow sampling in other than a one-at-
a-time manner. Although group-sequential sampling was suggested by Wald (1947, pp.
101-104), it was not until much later that interest in these techhniques (with constant
group size) was initiated; see, for example, Ghosh (1970, p. 224), Pocock (1977), and
Gupta and Miescke (1984). In all these studies, at each decision point the sample size is
either assumed to be known in some way or is chosen in an ad hoc (perhaps stochastic)
manner. Here we focus attention on the optimal choice of sample sizes as a component
of a seQuential‘ decision procedure for pharmaceutical trials. In the related problem of
sequential hypothesis testing, Whittle (1965), Ehrenfeld (1972), and Spahn and Ehrenfeld
(1974) considered special cases; Cressie and Morgan (1988) gave a general formulation for
two simple hypotheses.

Section 2 defines the pharmaceutical trial under consideration in this article and es-
tablishes the necessary notation. In Section 3, the optimal (Bayes) sequential procedure of

Berry and Ho (1988) is re-established and then improved by further optimizing over sample
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sizes. Two illustrative examples are given in Section 4: in one, the benefits of sample-size

optimization are seen to be substantial. Section 3 contains concluding remarks.

2. Sequential Pharmaceutical Trial.

We now give a brief description of the problem considered by Berry and Ho (1988)
and show how our proposed sample-size optimization maximizes the expected net gain
(ENG) over all sequential procedures. The purpose of the sequential trial is to test an
experimental treatment compared to a control; at each time the same number of data is
collected from the treatment population as from the control population.

The data from the control population is assumed to be independent and identically
distributed (i.i.d.) Gau(gcy,o?/2) and that from the treatment population is assumed to
be i.i.d. Gau(per,0?/2), distribution with mean y and variance o>. (Here, Gau(a,b?)

denotes a Gaussian, or normal, distribution with mean a and variance 42.) Define
0 = pare — Heut - (2.1)
We wish to test sequentially the composite hypotheses
Hy:6<6ég versus Hy:6 > 6, (2.2)

where without loss of generality we take 6o = 0. Suppose that a sample of size n, is
requested at time t and obtained at time (¢ + 1), ior testing (2.2). Let Ziry¢ and Zcy.

denote the corresponding sample means. Then
we = -i'tn,t _fctl,t ~Ga.u(6,a"’/n,); t =0-1""1T— 1, (23)

where T denotes the truncation time by which a decision about Hy or H; .nust be made.

Clearly, the statistics w;, w,, - - - are sufficient for inference on §.
Define
t t
z17:-0-15(ZTZ.'w.)/(Zn.'); t=01,---.T-1, (2.4)
i=0 i=0

which is the sample mean of all differenices between treniment and control up to time
(t+1). It will be seen that (2.4) is the basis of inferencr on § made at time (¢ + 1). Group-
sequential testing usually assumes n9 = n; = --- = nr-, = k, where k is a predetermined

sample size. Berry and Ho (1988) make this assumption. but in this article we demonstrate
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that considerable gains are possible by optimizing with respect to sample-size choice at
each time point.

We take a Bayesian approach to the sequential analysis of pharmaceutical trials. That
is, the consequences of right or wrong decisions about ¢ can be distilled into a gain function.
sampling has a cost associated with it, and we have a prior opinion about ¢ that is here
expressed as,

6 ~ Gau(vg,70) . (2.5)

In line with (2.4), define

@Wo =g . (26)

A Bayes procedure maximizes the expected gain net of sampling costs or expected net
gain (ENG). It is usually defined as a decision procedure that minimizes risk or expected
net loss; however, an ENG-maximizing procedure is easily seen to be Bayes by defining
the loss function to be the negative of the specified gain function.

The gain function ¢ for a sequential pharmaceutical trial is a function of the value of
6 and which of Hy (i.e., Ay = 0) or H; (i.e., A¢ = 1) is specified at time ¢. Potentially, the
function itself could also vary with ¢. In what is to follow, we use Berry and Ho’s (1988)

specification:
0, lf Ag = 0
K, if A¢=1 and 6>0,

where L and K are given positive constants. Berry and Ho (1988. p. 222) provide a
justification for this gain function (they actually specify a loss function) in the context of
pharmaceutical trials.

Sampling is costly; it is assumed that each observation in the sample costs one unit
so that at time ¢ the cost of the next treatment sample and control sample is 2n,. At
each time point t, we are faced with a decision whether to stop the trial or not. A well-
informed decision will weight up the gains of stopping versus the net gains to be expected
from continuing to sample (after debiting sampling costs). In the event that the trial is
continued to the time point (¢ + 1), how many observations should be sampled? We shall
show that there is an optimal number nj, of treatment and control samples. that depends
only on the posterior distribution of 6 and the exogeneous constants A and L of the gain
structure.

In general, a sequential procedure can be completely specified through a stopping rule
S ={S :t=0.1,---.T}, a terminal-decision rule A = {A, : ¢t = 0.1.---.T} and a
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sample-size rule n = {n, : t = 0.1,---,T}, all of which are functions of the data. (For the
problem we consider here, S¢, A, and n, will be functions of w, given by (2.4).) When
S¢ = 1. the procedure stops at time t: otherwise S; = 0. in which case sampling continues.
Suppose the procedure stops at time ¢: When A, = 0, the hypothesis Hy is chosen:
otherwise A, = 1, in which case H; is chosen. The function n, is nonnegative-integer
valued; should sampling continue at time ¢, it specifies the sample size to be taken between
time t and time (¢ 4+ 1). In much of the sequential-analysis literature, the sample-size rule
n is not mentioned, since it is usually assumed that one sample (or a specified constant
number of samples) is taken at each time point.

Now, since a decision must be made by (truncation) time T, ST = 1 and ny = 0. Berry
and Ho (1988) make further restrictions on their sequential procedure. They argue that
one should stop investigating an ineffective treatment, but obtain as much information
as possible on a good one. That is, their procedure is one-sided and the combination
S¢ = 1. Ay = 1 never happens for t = 0,1,---,T — 1. (In Section 5, we show that the
one-sided restriction can be relaxed.) Also, they assume n; = k, a prespecified integer, for
t=0,1,---,T — 1. For most of what is to follow, we retain all aspects of Berry and Ho’s
procedure ezcept for the restriction on the sample-size rule. We shall demonstrate that

there can be considerable benefits to be had from obtaining optimal sample sizes.

3. Bayes sequential procedures.

To simplify notation, we shall call the Bayes sequential procedure proposed by Berry
and Ho (1988) the B-procedure. Upon relaxing the sample-size restriction in the B-
procedure. the ENG-maximal (Bayes) sequential procedure can be obtained. which we call
the B*-procedure. By definition, since the B*-procedure is optimal over a less restrictive
set of procedures than the B-procedure, the former's ENG is larger than or equal to the
latter’s. We shall demonstrate in Section 4 that the increase in the B*-procedure’s ENG
can sometimes be substantial.

First, we shall describe the B-procedure, generalized slightly here to handle any pre-
specified sample-size rule n. Berry and Ho (1988) show it to be Bayes using backward
induction (e.g., DeGroot. 1970, Section 12.4). Assuming the ENG of the sequential proce-
dure at time (¢+1) is known, an optimal procedure at time ¢ can be obtained by comparing
the ENGs of stopping and choosing various hypotheses with the ENG of continuing to sam-
ple (which involves an average over the known ENG at time ¢t +1). The optimal stopping,

terminal-decision, and sample-size rules at time t are obtained by taking whatever action
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achieves the maximum of all the competing ENGs.

From (2.5). the prior probability that Hy is true is

po = ®(—w /7o), (3.1)
where .
®(z) = / (21) 12 exp(~s/2)ds . (3.2)

Let v, and 72 be the posterior mean and variance respectively of § at time ¢. Then, it is

straightforward to show that

t-1 t—1
ve = {vo0” +@(Y_ni)rd}/{o® +(D_ni)rg) (3.3)
i=0 =0
t—1
2 =o'l /{d% + (Z nire} . (3.4)
=0

Thus, the posterior probability that Hy is true is

pe = ®(se), (3.5)
where
se = —wfry; t=0,1,---,T. (3.6)

Since ¢ given by (3.2) is a one-to-one mapping, there is no loss of information from
considering the pair of posterior parameters p,, ; (or s, 1), rather than vy, 7.

One further result that is needed, to obtain the Baves procedure. is the preditive (or
marginal) distribution of w4 given p¢, 7¢. Upon integrating out the conditional density

of 6 given p,, T:, we obtain the predictive density q;+1 of wy41; that is.
Wea1|pe, 7o ~ Gau(—®~Hpe)re, 72 + (62 /ne)); t=0,---.T—1. (3.7)

Following Berry and Ho (1988), the ENG for stopping at time t and choosing H; is
(from (2.7)):

h(pt, 1) = —Lpe+ E(K6|6 > 0,p¢, 7 )(1 — pt)

=~Lp+ Kr{d(® (p)) + @ (p)(1 =p)}: t=0.1.---.T. (3.8

where

olz) = ®'(z) = (27)" 2 exp(—2%/2) . (3.9)
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Notice that the data and prior appear in (3.8) via the posterior parameters given by (3.3)

through (3.6). Similarly, from (2.7), the ENG of stopping at time ¢ and choosing Hj is:
2(pe,7)=0; t=0,1,---.T. (3.10)

Let V[T denote the expected net gain (ENG), at time t, of the Bayes procedure whose
truncation time is T'. At t =T, Hp or H, must be chosen. The optimal terminal-decision
rule is, from (3.8) and (3.10),

_fo, if A(pr,rr) < z(pr,TT)
Ar = { 1,  otherwise, (3.11)
with ENG
V£ (pr,7r) = max{z(pr, 77), h(pr, 1)} - (3.12)

At t = T — 1, the options are either stopping or continuing the trial by sampling
according to the sample-size rule n—;. Conditional on the posterior parameters pr—;, 771

(and the sample size rule), the ENG of continuing is

gr-1(pT=1,77=1,77-1) = Epp_ {VF (PT, 71)|PT=1, TT=1,2T=1} — 2071,  (3.13)

where Ef,_, denotes expectation with respect to the predictive distribution of wr_; given
by (3.7). Notice that the sampling cost 2nr_; is subtracted from the expected gain of
continuing to sample. Since V¥ is given by (3.12), the quantity (3.13) can be computed
and compared with the ENG of stopping at time ¢t = T — 1.

More generally, at time ¢, the ENG of continuing the trial to time (¢t + 1) by sampling

according to ny is
9e(pes 1, 70) = Er V51 (Pesr, Ter1)IPe T ne} = 20 t=0.-- T -1, (3.14)

where EF, denotes expectation with respect to the predictive distribution of w4 given
by (3.7). Thus, in order to complete the backward induction for the B-procedure, we need
formulas for {V;_l(p’['_[, rr—t): € =1,2,--- . T}. (The formula for Vqr is given by (3.12).)

Recall that, for the purposes of comparison to Berry and Ho's results. we have a

one-sided procedure for ¢t = 0.---.T — 1. Thus. from (3.10) and (3.14), we obtain

VI (p.70) = max{z(pe, )y gulpe )} s # =00 T = 1. (3.15)

7




so that 1;T depends on (the expected value of) V,E,. Since VI is given by (3.12). the
backward induction can proceed to V'II"-I to VIT-z’ and so forth. to VOT. In terms of

{(S¢.&¢,ny):t =0.---.T — 1}, the B-procedure is given by

_ 1, lf gt(PhTt»nl) S :(Pe,Tt)
Se = {0, otherwise : (9:10)
A =0, (3.17)

and n, is prespecified (¢t = 0,---,T — 1). Recall that, fort =T, St =1 and A7 is given
by (3.11).

Having given an optimal stopping rule and an optimal terminal-decision rule, let us
now turn our attention to the B*-procedure, which in addition incorporates an optimal

sample-size rule. Define the optimal sample size at time ¢ by the value of n, that maximizes
(3.14); specifically,

n; (P, 7e) = argmax,, 5o {g:(ps, T, 0e)}; t=0,--,T—1, (3.18)

where argmax,>q{---} denotes a value of the argument n that achieves the maximum
for the expression in braces. If there are several such values, choose the smallest. Upon
substitution of {ng : ¢t = 0,---,T — 1} in place of {n, : t = 0,---,T — 1} into {Sy : t =
0,---,T} and {At :t=0,---,T}, we obtain the B*-procedure. Likewise, from (3.15), its
ENG is
* V,T'(p,,rg) = max{z(pe, 71), ge(pt, 7e,n7)}; t=0,.-- T —1. (3.19)
By definition, V,7* > V,T. In the examples given in the next section, we show that the
B*-procedure can yield a substantially larger ENG. In order to compute the B-procedure
and B*-procedure from given gain constants K and L, prior parameters vy and ¢, and

model parameter o>

, various analytical results about h and g; are needed. These can be
found in Berry and Ho (1988) and guarantee the existence of break-even values by, - - - . br_;

such that (3.16) can be written as

— 1, if Pt < bg .
St= {0-, otherwise: t=0.---, T —1. (3.20)
Further. there exists a br such that (3.11) can be written as
_ 0, if pT < br )
Ar = { 1. otherwise . (3.21)
8




Finally, since g, given by (3.13) is bounded above as a function of n,, (3.18) is well defined

and hence the B*-procedure can also be given in terms of break-even values bg, - - . b%.

4. Examples.

This section presents numerical results for two different choices of K. L, 7¢, and o°.
(Notice that specification of the prior mean v of § is not needed for performance evalu-
ations, since the optimal sequential procedures can be given in terms of {p,} rather inhan
{w.}. To implement the procedures on data, vy has to be specified.) Using backward
induction to do the computations, means that the time taken to implement the procedure
is linear in T

We deliberately chose one example to be that considered by Berry and Ho (1988), in
order to validate our results. In this example, their choice of n, = 30 (¢t = 0,1,2 = T)
turns out to be close tc optimal. The second example was chosen to show that such an
ad hoc choice of sample size can be far from optimal and that the B*-procedure can offer

considerable improvement.

4.1. Example 1.

Consider the constants specified by Berry and Ho (1988), namely, K = 5000, L = 2000,
¢ =1, and 0% = 2. It is instructive to consider initially the case T = 1. Figure 1 shows a
contour plot of the ENG go(po, 1, n0), given by (3.14), as a function of py on the horizontal

axis and np on the vertical axis. The optimal ng, as a function of py, will follow a ridge,

but it is clear that the contour lines are essentially parallel and that Berry and Ho’s choice

of ng = 30 is as optimal as any sample size in the range (20, 50].
Figure 1 here

Another way to make the comparison is to superimpose gy as a function of pg, for several
chosen values of nq. Iigure 2 shows gg(e,1,n¢); no = 0,1, 30, and 100, on the same graph.
For most of po, ng = 30 has the largest ENG.

Figure 2 here

Figure 3 shows the optimal sample size n; as a function of pg for the cases T = 1,2,
and 3. As T increases, initial optimal sample sizes tend to decrease, which is sensible since
there are more times at which further samples could be taken. The break-even values are
b7 = 0.979.0.984, and 0.984, for T = 1,2, and 3, respectively.

Figure 3 here
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The ENG go(po, 1.n5(po)) is the largest possible ENG associated with the decision to
continue sampling; selected values for T = 1.2, and 3 are given in Table 1. For fixed po.
these values are increasing in T. Interestingly, the table shows that there is little to gain

by specifving a truncation time beyond T = 2.
Table 1 here

4.2. Example 2.

Consider the cunstants K = 100, L = 5000, 12 =1, 2nd 0% = 0.5. these values were
chosen from among several combinations because they illustrate clearly the advantage of
the B*-procedure over the B-procedure. To compare with Example 1. consider the case
T = 1. Figure 4 shows a contour plot of the ENG go(po, 1,n0) as a function of py and ng
(cf. Figure 1). The ridge that traces out the optimal value nj(po) as a function of pg is
rather pronounced and gives values of n} around 5. An ad hoc choice of ng = 30 is far
from optimal. To illustrate this point, Figure 5 shows the percentage increase of the ENG
go(po, 1,ng(po)) compared to the ENG go(po, 1,30). Substantial improvements in expected

net gain are possible using an optimal choice of sample size.
Figure 5 here

Figure 6 shows the optimal sample size n§ as a function of py for the cases T = 1,2,
and 3. The break-even values are b} = 0.737,0.754,0.754, for T = 1.2. and 3, respectively.

Figﬁre 6 here

5. Discussion.

The Bayesian sequential approach relies heavily on the specification of a gain structure.
In medical trials where human lives are at stake, this will be a difficult (if not impossible)
task. However, the classical sequential trial (e.g., Whitehead, 1983) is once removed from
this type of specification.

In this article, we have demonstrated that the Bayesian approach to sequential sam-
pling can be extended to include an optimal sample-size rule, which is a function of the
posterior distribution. The rule can be calculated before any sampling takes place. It can
either be adhered to strictly throughout the sequential trial or can be used to obtain an
approximately optimal sample size for a group-sequential procedure.

For example, consider the case T = 1 in Section 4.1; ny = 20 vields an ENG that is

close to go(po, 1.ng(po)) over much of 0 < py < 1. Values of n} for larger T tend to be less

10




than for T = 1 and. for fixed T > 1. this is also true for n},---.n%_;. Thus. a conservative
specification of the total sample size needed for the B*-procedure is 20T. Alternatively.
a group-sequential B-procedure with ng = --- = ny_; = 20 would achieve ENGs close to
those of the B*-procedure. (Berry and Ho's choice of ng = -+ = nt—; = 30 would yield a
B-procedure with similar ENG properties. however it would need more samples. )

Similar reasoning applied to Section 4.2 yields a conservative specification of the B*-
procedure’s total sample size to be 5T. Or, a group-sequential B-procedure with no =

« = np_; = 5 would achieve ENGs close to those of the B*-procedure. However, a

B-procedure with ng = --- = np—; = 30 would not be appropriate at all.

Although Berry and Ho (1988) chose to carry out a one-sided sequential pharmaceu-
tical trial, it is easy to adapt their approach to handle the two-sided case. In that case,
(3.16) becomes

g 1L if  gu(pe, Te,ne) < max{z(pe, 7e), h(pe. 7o)} (6.1)
¢ 0, otherwise; t=0,---,T -1, )

(3.17) becomes

_Jo, if h(pe, 1) < z(p,,‘rt)
Be= { 1, otherwise: ¢ =20,---,T — 1. (6.2)

(3.15) becomes

VtT(Pthl) = ma-x{z(Pt,Tt)a h(pe, Tt ), 9e(pt, Ttant)} ; t=0,---,T~1, (6.3)

and ST, Ar, and V} remain unchanged. To optimize on sample size. again use (3.18) to
choose ny and substitute {n7} in place of {n,}.

Although the probability of type 1 error(a), power(w), and expected total sample
size are not considered by Bayes sequential procedures, there is evidence that a superior
performance can also be expected in terms of these criteria. In the case of a simple null
hypothesis versus a simple alternative hypothesis for testing Gaussian means. Cressie.
Biele. and Morgan (1991) demonstrate the B*-procedure’s small o and large 7 over much
of 0 < pg < 1. Moreover, Cressie and Morgan (1992) show that of all sequential procedures

with a given a and . the B*-procedure minimizes the expected total sample size.
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Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

FIGURE CAPTIONS

Contour plot of ENG gg¢(po, 1. n0) as a function of pg and ny. On the
horizontal axis, 0.1 < pg < 0.6. and on the vertical axis. ng ranges from

5 to 30 in steps of size 5. Constants are given in Section 4.1: T = 1.

Plot of ENG go(po, 1,n0) as a function of pg, for ng = 0,1, 30. and 100.
On the horizontal axis, 0.10 € pp < 1.00. Constants are given in
Section 4.1; T = 1.

Optimal sample sizes ng and associated continue sampling intervals

[0,b7) for T = 1,2, and 3. Constants are given in Section 4.1.

Same as for Figure 1 except ng ranges from 1 to 21 in steps of size 2

and constants are given in Section 4.2.

Percentage increase of ENG go(po, 1,n*(pg)) over ENG go(po, 1.30).

Constants are given in Section 4.2: T = 1.

Same as for Figure 3 except constants are given in Section 4.2.
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