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A Sample-Size Optimal Bayesian Procedure

for Sequential Pharmaceutical Trials

by

Noel Cressie and Jonathan Biele

SUMMARY
/

Consider a pharmaceutical trial where the consequences of different decisions are ex-

pressed on a financial scale. The efficacy of the new drug under consideration has a prior

distribution obtained from the underlying biological process, animal experiments, clinical

experience, and so forth. In an important paper, Berry and Ho (1988) show how these com-

ponents are used to establish an optimal (Bayes) sequential procedure, assuming a known

constant sample size at each decision point. We show in this article how it is also possible

to optimize with respect to the sample-size rule. This last component of the design, which

is missing from most sequential procedures, has the potential to yield considerably larger

expected net gains.

Keywords: Backward induction; clinical trials; group-sequential procedure; optimal stop-

ping; predictive distribution; VPRT.
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1. Introduction.

Berry and Ho (1988) argue cogently for a Bayesian decision-theoretic approach to

the design and analysis of pharmaceutical trials. They (and we) address the questic of

when a drug development program should be stopped in the face of evidence that suggests

insufficient drug efficacy. The purpose of this article is not to enter into a debate about

Bayesian versus frequentist methods for the design and analysis of sequential clinical trials.

but rather to implement fully the Bayesian technology. Breslow (1990), and the discussion

following his article, contrasts the two methods.

In the pharmaceutical setting, it is often reasonable to assume that the consequences

related to the objectives of the trial can be converted to a financial scale. In decision-

theoretic terms (e.g., Raiffa and Schlaifer. 1961: DeGroot, 1970), we assume that the drug

company is able to construct a realistic gain (or loss) function. Such a function might

come from a cost-benefit analysis. What we are proposing in this paper is an optimal

way to conduct the clinical-trials part of the drug development program, but the same

ideas could be used in later parts of the program (where one must choose between several

possibilities, one of which is to put off the decision and obtain more data to help make a

decision at the next time point). In both circumstances, the Bayesian approach provides

the decision-maker with not only an optimal stopping and terminal-decision rule, but also

with an optimal sample-size rule.

Consider sequential decision procedures that allow sampling in other than a one-at-

a-time manner. Although group-sequential sampling was suggested by Wald (1947, pp.

101-104), it was not until much later that interest in these techhniques (with constant

group size) was initiated; see, for example, Ghosh (1970, p. 224), Pocock (1977), and

Gupta and Miescke (1984). In all these studies, at each decision point the sample size is

either assumed to be known in some way or is chosen in an ad hoc (perhaps stochastic)

manner. Here we focus attention on the optimal choice of sample sizes as a component

of a sequential decision procedure for pharmaceutical trials. In the related problem of

sequential hypothesis testing, Whittle (1965), Ehrenfeld (1972), and Spahn and Ehrenfeld

(1974) considered special cases: Cressie and Morgan (1988) gave a general formulation for

two simple hypotheses.

Section 2 defines the pharmaceutical trial under consideration in this article and es-

tablishes the necessary notation. In Section 3, the optimal (Bayes) sequential procedure cf

Berry and Ho (1988) is re-established and then improved by further optimizing over sample
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sizes. Two illustrative examples are given in Section 4: in one, the benefits of sample-size

optimization are seen to be substantial. Section 5 contains concluding remarks.

2. Sequential Pharmaceutical Trial.

We now give a brief description of the problem considered by Berry and Ho (1988)

and show how our proposed sample-size optimization maximizes the expected net gain

(ENG) over all sequential procedures. The purpose of the sequential trial is to test an

experimental treatment compared to a control; at each time the same number of data is

collected from the treatment population as from the control population.

The data from the control population is assumed to be independent and identically

distributed (i.i.d.) Gau(acti, a 2 /2) and that from the treatment population is assumed to

be i.i.d. Gau(ptrt, a 2 /2), distribution with mean M and variance a2. (Here, Gau(a, b2 )

denotes a Gaussian, or normal, distribution with mean a and variance b2 .) Define

6 - Ptrt - PctI • (2.1)

We wish to test sequentially the composite hypotheses

Ho:6<6 0  versus H 1 :6>6o, (2.2)

where without loss of generality we take 6o = 0. Suppose that a sample of size nt is

requested at time t and obtained at time (t + 1), ior testing (2.2). Let ±t,t.t and ±ctj.t

denote the corresponding sample means. Then

wt = Zrtit,t - icti,t - Gau(6,a 2 /nt); t = 0. 1,..- , T - 1 , (2.3)

where T denotes the truncation time by which a decision about H0 or H1 nu.t be made.

Clearly, the statistics w 1 , w 2 ,.., are sufficient for inference on 6.

Define

t~vti nii ni(2.4)

which is the sample mean of all differences between trei cment and control up to time

(t + 1). It will be seen that (2.4) is the basis of inferencr on 6 made at time (t + 1). Group-

sequential testing usually assumes no = ni = "" = 7IT-1 = k, where k is a predetermined

sample size. Berry and Ho (1988) make this assumption, but in this article we demonstrate
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that considerable gains are possible by optimizing with respect to sample-size choice at

each time point.

We take a Bayesian approach to the sequential analysis of pharmaceutical trials. That

is, the consequences of right or wrong decisions about 6 can be distilled into a gain function.

sampling has a cost associated with it, and we have a prior opinion about 6 that is here

expressed as,

6 - Gau(vo, 7'). (2.5)

In line with (2.4), define

-0 - 0  . (2.6)

A Bayes procedure maximizes the expected gain net of sampling costs or expected net

gain (ENG). It is usually defined as a decision procedure that minimizes risk or expected

net loss; however, an ENG-maximizing procedure is easily seen to be Bayes by defining

the loss function to be the negative of the specified gain function.

The gain function g for a sequential pharmaceutical trial is a function of the value of

6 and which of H0 (i.e., At = 0) or H1 (i.e., At = 1) is specified at time t. Potentially, the

function itself could also vary with t. In what is to follow, we use Berry and Ho's (1988)

specification:
0, if At =0

g(6, At) -L, if At=1 and 6<0 (2.7)
K6, if At=l and 6>0,

where L and K are given positive constants. Berry and Ho (1988. p. 222) provide a

justification for this gain function (they actually specify a loss function) in the context of

pharmaceutical trials.

Sampling is costly; it is assumed that each observation in the sample costs one unit

so that at time t the cost of the next treatment sample and control sample is 2 nt. At

each time point t, we are faced with a decision whether to stop the trial or not. A well-

informed decision will weight up the gains of stopping versus the net gains to be expected

from continuing to sample (after debiting sampling costs). In the event that the trial is

continued to the time point (t + 1), how many observations should be sampled? We shall

show that there is an optimal number nt, of treatment and control samples. that depends

only on the posterior distribution of 6 and the exogeneous constants K and L of the gain

structure.

In general, a sequential procedure can be completely specified through a stopping rule

S = {SE : t = 0.1,-.T}, a terminal-decision rule A = {A : t = 0.1.-..T} and a
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sample-size rule n = {at : t = 0, 1,..., T}, all of which are functions of the data. (For the

problem we consider here, St, At, and nt will be functions of t3t given by (2.4).) When

St = 1. the procedure stops at time t: otherwise St = 0. in which case sampling continues.

Suppose the procedure stops at time t: When At = 0, the hypothesis Ho is chosen:

otherwise At = 1, in which case H 1 is chosen. The function nt is nonnegative-integer

valued; should sampling continue at time t, it specifies the sample size to be taken between

time t and time (t + 1). In much of the sequential-analysis literature, the sample-size rule

n is not mentioned, since it is usually assumed that one sample (or a specified constant

number of samples) is taken at each time point.

Now, since a decision must be made by (truncation) time T, ST = 1 and nT =_ 0. Berry

and Ho (1988) make further restrictions on their sequential procedure. They argue that

one should stop investigating an ineffective treatment, but obtain as much information

as possible on a good one. That is, their procedure is one-sided and the combination

St = 1. At = 1 never happens for t = 0, 1, .. . , T - 1. (In Section 5. we show that the

one-sided restriction can be relaxed.) Also, they assume nt = k, a prespecified integer, for

t = 0, 1,. ., T - 1. For most of what is to follow, we retain all aspects of Berry and Ho's

procedure ezcept for the restriction on the sample-size rule. We shall demonstrate that

there can be considerable benefits to be had from obtaining optimal sample sizes.

3. Bayes sequential procedures.

To simplify notation, we shall call the Bayes sequential procedure proposed by Berry

and Ho (1988) the B-procedure. Upon relaxing the sample-size restriction in the B-

procedure, the ENG-maximal (Bayes) sequential procedure can be obtained, which we call

the B*-procedure. By definition, since the B*-procedure is optimal over a less restrictive

set of procedures than the B-procedure, the former's ENG is larger than or equal to the

latter's. We shall demonstrate in Section 4 that the increase in the B*-procedure's ENG

can sometimes be substantial.

First, we shall describe the B-procedure, generalized slightly here to handle any pre-

specified sample-size rule n. Berry and Ho (1988) show it to be Bayes using backward

induction (e.g., DeGroot. 1970, Section 12.4). Assuming the ENG of the sequential proce-

dure at time (t+ 1) is known, an optimal procedure at time t can be obtained by comparing

the ENGs of stopping and choosing various hypotheses with the ENG of continuing to sam-

ple (which involves an average over the known ENG at time t + 1). The optimal stopping,

terminal-decision, and sample-size rules at time t are obtained by taking whatever action

5



achieves the maximum of all the competing ENGs.

From (2.5), the prior probability that Ho is true is

P0 = ¢(-v 0 /ro) , (3.11

where

'1(X) J (2r)-1 /2 exp(-s 2/2)ds . (3.2)

Let vt and rt2 be the posterior mean and variance respectively of b at time t. Then, it is

straightforward to show that

t-1 t-1

lt = {Voa2 + cot(Eni)r2}/{0 2 + (E ni)o2} (3.3)
i=0 i=0

t-1
r7 = a 272/10,2 +-(1:ni)_r02. (3.4)

i=0

Thus, the posterior probability that Ho is true is

Pt = '(st), (3.5)

where

St - -Vt/rt ; t = O,1,"',T. (3.6)

Since -( given by (3.2) is a one-to-one mapping, there is no loss of information from

considering the pair of posterior parameters Pt, rt (or st, 7t), rather than vt, t.

One further result that is needed, to obtain the Bayes procedure. is the preditive (or

marginal) distribution of wt+l given pt, 'rt. Upon integrating out the conditional density

of 5 given pt, rt, we obtain the predictive density qt+l of wt+i; that is.

wt+Ipt, rt - Gau(-I- (pt)rt, rt2 + (a 2 /n,)) ; t = 0,... .T- 1 . (3.7)

Following Berry and Ho (1988), the ENG for stopping at time t and choosing H1 is

(from (2.7)):

h(pe, rt) = -Lpt + E(K616 > O,pt, rt)(I - pt)

- Lpt+IKrt{(' (pt))+,V-l(pt)(1-pt)} t=0.1.....T. (3.8)

where

6(x) = V(x) = (2,)- 1/2 exp(-X2 /2). (3.9)
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Notice that the data and prior appear in (3.8) via the posterior parameters given by (3.3)

through (3.6). Similarly, from (2.7), the ENG of stopping at time t and choosing H0 is:

z(pt, r) 0; t -'O, 1,...,T . (3.10)

Let VT denote the expected net gain (ENG), at time t, of the Bayes procedure whose

truncation time is T. At t = T, Ho or H1 must be chosen. The optimal terminal-decision

rule is, from (3.8) and (3.10),

A =10, if h(pT, T)5 <Z(pf, rT) (3.11)
1, otherwise,

with ENG

VTr(PT, TT) = max{z(pT, rT), h(pT, rT)} (3.12)

At t = T - 1, the options are either stopping or continuing the trial by sampling

according to the sample-size rule rT-1.- Conditional on the posterior parameters pT-, rT-1

(and the sample size rule), the ENG of continuing is

gT-1(PT-1, TTI, nT-i) = EF .. 1 {VT(pT, 'T)IPTWi,"T_InT}-1 I - 2 T , (3.13)

where EF_, denotes expectation with respect to the predictive distribution of wT-1 given

by (3.7). Notice that the sampling cost 2 nT-1 is subtracted from the expected gain of

continuing to sample. Since V T is given by (3.12), the quantity (3.13) can be computed

and compared with the ENG of stopping at time t = T - 1.

More generally, at time t, the ENG of continuing the trial to time (t + 1) by sampling

according to nt is

gt(ptrt, nt) EF,{vt l(plt+,)Ipt, rt,ntI -2nt ; t=0.....T- 1, (3.14)

where EF, denotes expectation with respect to the predictive distribution of wt+l given

by (3.7). Thus, in order to complete the backward induction for the B-procedure, we need

formulas for {VTT.E(PT., rT-t) : f = 1,2,'.-T}. (The formula for 1,T is given by (3.12).)

Recall that, for the purposes of comparison to Berry and Ho's results, we have a

one-sided procedure for t = 0,.... T - 1. Thus. from (3.10) and (3.14), we obtain

'tT(p, rt)=max{z(pt,rt),gt(pt,rt.n)} : t = 0...T - 1. (3.15)
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so that VtT depends on (the expected value of) VT 1 . Since i is given by (3.12), the
backward induction can proceed to VT to V+U2, and so forth to Vr. In terms of

{(St, At, nt) : t = 0.... T - 1}, the B-procedure is given by

t 1, if gt(pt,rt,nt) < Z(pt,rt)
0, otherwise(

At = 0 ;(3.17)

and nt is prespecified (t = 0,... , T - 1). Recall that, for t = T, ST 1 and AT is given

by (3.11).

Having given an optimal stopping rule and an optimal terminal-decision rule, let us

now turn our attention to the B*-procedure, which in addition incorporates an optimal

sample-size rule. Define the optimal sample size at time t by the value of nt that maximizes

(3.14); specifically,

nt(Pt,rt) argmax,,>o{gt(pt,rt,nt)}; t = O,.. .,T- 1 (3.18)

where argmaxn> 0 {...} denotes a value of the argument n that achieves the maximum

for the expression in braces. If there are several such values, choose the smallest. Upon

substitution of {n :t = 0,...,T- 1} in place of {fnt : t = 0,-.., T- 1} into {St : t =

0,.-.,T} and {At : t = 0,... ,T}, we obtain the B*-procedure. Likewise, from (3.15), its

ENG is
V T*(pt-r,)-maX p ; t=,....T- 1. (3.19)

By definition, VtT* > VT In the examples given in the next section, we show that the

B*-procedure can yield a substantially larger ENG. In order to compute the B-procedure

and B*-procedure from given gain constants K and L, prior parameters v0 and r0, and

model parameter a2, various analytical results about h and gt are needed. These can be

found in Berry and Ho (1988) and guarantee the existence of break-even values b0 , bT-1

sLch that (3.16) can be written as

t= 1, if pt < bt (-0
0. otherwise: t=0....,T-1. (3.20)

Further. there exists a bT such that (3.11) can be written as

AT 0f , if PT < bT1, otherwise .
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Finally, since gt given by (3.13) is bounded above as a function of nf, (3.18) is well defined

and hence the B*-procedure can also be given in terms of break-even values b ,... .

4. Examples.

This section presents numerical results for two different choices of K. L, r 2 , and U2.

(Notice that specification of the prior mean v0 of 6 is not needed for performance evalu-

ations, since the optimal sequential procedures can be given in terms of {pt } rather than

{wt}. To implement the procedures on data, vo has to be specified.) Using backward

induction to do the computations, means that the time taken to implement the procedure

is linear in T.

We deliberately chose one example to be that considered by Berry and Ho (1988), in

order to validate our results. In this example, their choice of nt = 30 (t = 0, 1, 2 - T)

turns out to be close to optimal. The second example was chosen to show that such an

ad hoc choice of sample size can be far from optimal and that the B*-procedure can offer

considerable improvement.

4.1. Example 1.

Consider the constants specified by Berry and Ho (1988), namely, K = 5000, L = 2000,

r2 = 1, and a 2 = 2. It is instructive to consider initially the case T = 1. Figure 1 shows a

contour plot of the ENG go(po, 1, no), given by (3.14), as a function of p0 on the horizontal

axis and no on the vertical axis. The optimal no, as a function of p0, will follow a ridge,

but it is clear that the contour lines are essentially parallel and that Berry and Ho's choice

of no = 30 is as optimal as any sample size in the range [20, 501.

Figure 1 here

Another way to make the comparison is to superimpose go as a function of p0, for several

chosen values of no. -'igure 2 shows go(*, 1, no); no = 0, 1, 30, and 100, on the same graph.

For most of p0, no = 30 has the largest ENG.

Figure 2 here

Figure 3 shows the optimal sample size no as a function of p0 for the cases T = 1.2.

and 3. As T increases, initial optimal sample sizes tend to decrease, which is sensible since

there are more times at which further samples could be taken. The break-even values are

bT = 0.979.0.984, and 0.984. for T = 1, 2, and 3, respectively.

Figure 3 here
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The ENG go(po, 1. n*(po)) is the largest possible ENG associated with thc decision to
continue sampling; selected values for T = 1.2, and 3 are given in Table 1. For fixed Po,

these values are increasing in T. Interestingly, the table shows that there is little to gain

by specifying a truncation time beyond T = 2.

Table 1 here

4.2. Example 2.

Consider the constants K = 100, L = 5000, r02 = 1, -nd U2 = 0.5. these values were
chosen from among several combinations because they illustrate clearly the advantage of
the B*-procedure over the B-procedure. To compare with Example 1. consicier the case

T = 1. Figure 4 shows a contour plot of the ENG go(po, 1,no) as a function of po and no
(cf. Figure 1). The ridge that traces out the optimal value no(po) as a function of P0 is
rather pronounced and gives values of n* around 5. An ad hoc choice of no = 30 is far
from optimal. To illustrate this point, Figure 5 shows the percentage increase of the ENG

go(po, 1, no(po)) compared to the ENG go(po, 1, 30). Substantial improvements in expected
net gain are possible using an optimal choice of sample size.

Figure 5 here

Figure 6 shows the optimal sample size no as a function of p0 for the cases T = 1, 2,

and 3. The break-even values are b, = 0.737, 0.754, 0.754, for T = 1.2. and 3, respectively.

Figure 6 here

5. Discussion.

The Bayesian sequential approach relies heavily on the specification of a gain structure.

In medical trials where human lives are at stake, this will be a difficult (if not impossible)
task. However, the classical sequential trial (e.g., Whitehead, 1983) is once removed from

this type of specification.

In this article, we have demonstrated that the Bayesian approach to sequential sam-

pling can be extended to include an optimal sample-size rule, which is a function of the
posterior distribution. The rule can be calculated before any sampling takes place. It can
either be adhered to strictly throughout the sequential trial or can be used to obtain an

approximately optimal sample size for a group-sequential procedure.

For example, consider the case T = 1 in Section 4.1; no = 20 yields an ENG that is
close to go(po, 1, n*(po)) over much of 0 < po _< 1. Values of no for larger T tend to be less
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than for T = 1 and. for fixed T > 1. this is also true for ni,.. n.- 1. Thus, a conservative

specification of the total sample size needed for the B*-procedure is 20T. Alternatively.

a group-sequential B-procedure with no .- -1 = 20 would achieve ENGs close to

those of the B*-procedure. (Berry and Ho's choice of no = "" = nT-1 = 30 would yield a

B-procedure with similar ENG properties. however it would need more samples.)

Similar reasoning applied to Section 4.2 yields a conservative specification of the B*-

procedure's total sample size to be 5T. Or, a group-sequential B-procedure with no =

• = nT-1 = 5 would achieve ENGs close to those of the B*-procedure. However, a

B-procedure with no = ... = nT-1 = 30 would not be appropriate at all.

Although Berry and Ho (1988) chose to carry out a one-sided sequential pharmaceu-

tical trial, it is easy to adapt their approach to handle the two-sided case. In that case,

(3.16) becomes

Jt if gt(pt,rt,nt) <_ max{z(pt,r),h(pt,rt)} (6.1)
,0, otherwise; t=0,.--,T-1,

(3.17) becomes

At = 0, if h(pt,rt) _ z(p,rt) (6.2)
S1, otherwise: t = 0,.,T- 1.

(3.15) becomes

V T(pt, r,) =max{z(pt, rt), h(pt, rt), gt(p, rt, nt)}; t = 0,., T - 1 (6.3)

and ST, AT, and VT remain unchanged. To optimize on sample size. again use (3.18) to

choose n and substitute {n } in place of {fnt}.

Although the probability of type 1 error(a), power(7r), and expected total sample

size are not considered by Bayes sequential procedures, there is evidence that a superior

performance can also be expected in terms of these criteria. In the case of a simple null

hypothesis versus a simple alternative hypothesis for testing Gaussian means. Cressie.

Biele. and Morgan (1991) demonstrate the B-procedure's small a and large 7r over much

of 0 < P0 < 1. Moreover, Cressie and Morgan (1992) show that of all sequential procedures

with a given a and 7r. the B*-procedure minimizes the expected total sample size.
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FIGURE CAPTIONS

Figure 1: Contour plot of ENG go(po, 1. no) as a function of po and no. On the

horizontal axis, 0.1 < P0 < 0.6, and on the vertical axis. no ranges from

5 to 50 in steps of size 5. Constants are given in Section 4.1: T = 1.

Figure 2: Plot of ENG go(po, 1, no) as a function of p0, for no = 0, 1, 30, and 100.

On the horizontal axis, 0.10 < p0 < 1.00. Constants are given in

Section 4.1; T = 1.

Figure 3: Optimal sample sizes n* and associated continue sampling intervals

[0, b[) for T = 1,2, and 3. Constants are given in Section 4.1.

Figure 4: Same as for Figure 1 except no ranges from 1 to 21 in steps of size 2

and constants are given in Section 4.2.

Figure 5: Percentage increase of ENG go(po, 1, n*(po)) over ENG go(po, 1,30).

Constants are given in Section 4.2: T = 1.

Figure 6: Same as for Figure 3 except constants are given in Section 4.2.
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