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1.0 INTRODUCTION

Engineering materials commonly used in metallic naval airframes have, before they are put in
service, been manufactured to meet and/or exceed design considerations. During the manufacturing
process, these materials are inevitably going to be non-homogeously deformed such that residual
stresses will be induced at the surface and the interior of the materials. In order to assure that the
design considerations will be met, a quantitative and accurate assessment of the surface and the
interior residual stress must be performed. Precisely knowing the residual stress level and
distribution is of paramount importance since residual stress will be added to the service stress.
Thus, a quantitative evaluation of residual stresses at the surface and in the interior of structures and
components using an ultrasonic technique was investigated in this Phase 1 Project.

There are currently several commercially available instruments capable of measuring residual
surface stresses based on x-ray diffraction or magnetic methods. The x-ray diffraction methods are
time consuming and difficult to apply in confined areas with associated limitations due to safety
considerations. The magnetic methods are only appropriately used in ferromagnetic materials.
This project illustrates the feasibility of an ultrasonic method devised to asses the effects of texture,
microstructure, acoustoelasticity, and residual stress in metals (ferrous and non-ferrous alloys).

Residual stresses in general vary throughout the thickness of a part, so it is important to have a
means of measuring surface and interior residual stress to assure that net stress levels within a part
when it is put in service or already in service will be in tolerable levels. The method proposed
herein is based on the Critically Refracted Longitudinal Wave (CRLW). Previous research on the
CRLW method showed that the depth of penetration of the longitudinal wave used in this method is
frequency dependent[ 1, 2]. Also, the CRLW wave propagates parallel to the surface of the part
under examination in a volume just below the surface, producing a truly subsurface wave. This
means that it should be possible to measure stress at the surface, as well as, as a function of depth
from the surface by characterizing the frequency components of the CRLW wave spectrum.

2.0 CRITICALLY REFRACTED LONGITUDINAL WAVE (CRLW) TECHNIQUE

2.1 Literature Survey

A literature survey was conducted to update the latest developments in residual stress measurements
techniques, as well as, instrumentation available for potential development in Phase IL The result of
this survey is listed in the bibliography and reference sections of this report. Some of the
instrumentation and methods that could be applied to the CRLW technique are the velocity
measurement method developed by Wormley et.al. [31 and the implementation of Electromagnetic
Acoustic Transducers (EMATS) to develop a non-contact technique. EMATs have been used for
stress measurement applications generating Shear Horizontal Waves (SHW) [4] and are likely to
be used to generate CRLW.

2.2 Wave Propagation Model

The model proposed for understanding the propagation characteristics of the CRLW was developed
using geophysics wave propagation algorithms. The model was scaled to produce results in the 0.5
MHz to 10 MHz range, and is based on the wave mechanics of head waves, lateral waves, and the
full range of inhomogeneous waves generated in layered material.

A. Numerical calculation of waveforms

In order to provide an improved understanding of the observed waveforms seen in the physical
experiments, the expected waveforms for uniform and varying distributions of elastic wave



velocities in plates have been calculated. The numerical technique used is caUed the reflectivity
method [5], which is a common technique used by seismologists in the calculation of synthetic
seismograms in flat layered media.

The reflectivity method is well-suited to representing the problem of elastic wave propagation in
more-or-less plate-like structures when the source and receiver are both on the same side of the
plate. The fundamental assumptions in the reflectivity method are:

1. Material properties vary only with depth (coordinate normal to plate)
2. The medium is overlain by a uniform halfspace.
3. The medium is underlain either by a uniform halfspace or by a rigid or free boundary.

The first assumption ensures that the equations of motion are separable. A Fourier decomposition
of the differential equations into the frequency-wavenumber domain. The second and third
assumptions ensure that the generalized reflection coefficient obeys a simple recursion formula. In
the acoustic case the reflectivity is a scalar function, but in elastic problems the reflectivity is a
matrix. For instance, in isotropic media, the propagation of coupled compressional waves and
.vertically polarized shear waves (called the P-SV problem in seismology) separates from the
propagation of horizontally polarized S waves (the SH problem). The SH problem then yields a
scalar reflectivity function, while the P-SV reflectivity is a 2x2 matrix containing four generalized
reflection coefficients: P-to-P, P-to-S, S-to-P, and S-to-S. The reflectivity is a 3x3 matrix in the
general anisotropic case. An isotropic medium has been assumed to perform these calculations.

In the simplest case, all sources and receivers are in the upper halfspace, as in the physical
experiments. The upper halfspace is a fluid with the elastic properties of air. The plate is bounded
on the bottom by an elastic halfspace that is also similar to air, but which has a very small rigidity.
The plate is represented by a single layer if it is uniform, or by many layers if its properties change
with depth. The algorithm requires that the medium be piecewise constant, but layered
representations of smooth velocity variations are accurate so long as the layers are unresolvably thin
at the fiequencies of interest.

The source is specified by a given bandwidth in temporal frequency and a range of phase
slownesses (reciprocal of phase velocity). Wavenumber is frequency times phase slowness, so that
the wavenumber range at each frequency is proportional to frequency. The use of slowness
dependence is computationally efficient, since the interface plane-wave reflection coefficients and
the layer propagation delays depend only on slowness and need not be recalculated when the

-frequency changes. The choice of a frequency-independent intrinsic attenuation makes this
simplicity possible. The response is recovered as a function of space and time by a double or triple
Fourier transform.

For point-source problems in isotropic or transversely isotropic media, the Fourier-Bessel
transform from the wavenumber to the distance domain with an asymptotic approximation to the
Hankel functions is used. The results in this report are for point sources and isotropic plates.

The synthetics show the vertical displacement response for an explosive source just P.bove the plate.
The response is given as a function of time and of distance from the source. A pulse that appears at
the same (reduced) time across the set of traces actually has a phase velocity equal to the reducing
velocity (6.3 mm/microsecond for aluminum). Arrivals that appear progressively earlier as distance
increases on this plot are faster than the reducing velocity. The large and very fast arrival near the
origin is a numerical artifact due to the truncation of the slowness (wavenumber) integrals. There
are also some very slow arrivals at large distances and small times. These are caused by the
temporal wraparound of the fast Fourier transform, and they are already suppressed as much as is
practical. The first real arrival is the headwave (CRLW). (see Figures 1, 2, & 3). It is centered at
reduced time = 0 (the acausal pulse is due to the zero-phase spectrum of the source), and it fades
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quickly with distance. The first prominent arrival is a P wave that has been reflected from the
bottom of the plate. This phase is denoted 2P to indicate that the raypath consists of two P ray
segments. The next large arrival is a combination of a P wave reflected as an S wave and an S wave
reflected as a P wave. This phase is denoted as 1P1S, meaning one P ray and one S ray.
Associated with this phase with nearly constant spacing in time are the arrivals 1P(2n+1)S, where
n = 0,1,2,... In general, this family contains ray systems with odd numbers of P rays and odd
numbers of S rays, but the multiple-P ray versions are very close in time to the 1-P versions, or they
are much weaker. After 1PiS but before 1P3S, there is another strong arrival denoted by 2P2S,
with the meaning of two P ray segments and two S ray segments. Interleaving the lP(2n+I)S
arrivals is the family 2P(2n)S. Note that the total number of reflected ray segments is always even,
since the total raypath must begin and end at the top of the plate.

The comparisons of the heterogeneous and uniform plate models show only the subtlest changes.
In the case of a simple linear increase of velocity from one face of the plate to the other, as might
arise from a flexed plate, the effects are essentially invisible. Interestingly, the case where the
velocity is higher or lower in the center than at the faces of the plate, as might arise in case-
hardening or other special tempering techniques, shows very visible changes in waveform
amplitudes, especially in the 2P phase. We note in passing that the Born approximation [6] for
scalar wave propagation grossly predicts these effects. In this approximation, a weak linear gradient
transverse to the direction of propagation has no first-order effect on traveltime or amplitude.
However, the same approximation predicts first-order effects if there is a quadratic variation. In
effect, the low or high velocity channels in the centerplane of the plate provide quadratic-like
variations that are detectable in acoustoelastic experiments.

Generally, the synthetic studies show that:

1. Travel-time changes due to velocity effects from stresses are usually very small
2. Headwaves are very weak
3. Multiply-reflected waves are. identifiable and dominate the observations.
4. Waveform phase and amplitude changes may be helpful diagnostics of residual

stress.
5. Relative stability of later part of seismogram may be helpful in removing source and

receiver effects.
6. Broadband source and receiver arrays provide the most useful data

2.3 Expected Effects of Transducer Frequency and Size

In reference [2] it is theoretically shown that the refracted angle of the CRLW increases as the
product of the frequency x diameter (f • d) of the generating search unit increases. By increasing
the angle of refraction, the CRLW main lobe of pressure will move closer to the surface. This
effect can be achieved by maintaining the size of the generating transducer constant and varying the
transducer frequency, as shown in Figure 4. Lower frequencies will penetrate deeper inside the
material while higher frequencies will stay closer to the surface, creating a potential for measuring
material related changes as a function of depth. For example, to measure stress either applied or
residual as it changes through the thickness of a part or structure.

In the present case, two different experiments were designed to produce the following: (1) a state
of stress through the thickness of a plate that is uniform, and (2) a state of stress through the
thickness of a plate that is changing.

In order to achieve a uniform state of stress (1) a tension test was performed and a varying state of
stress, and (2) a four point bending test was performed.
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The expected results should establish if the CRLW is sensitive to stress changes as follows: In a
tension test where the state of stress through the thickness of a plate is uniform (see Figure 5), the
stress effect on the CRLW is expected to be the same regardless of the test frequency. It may,
however, produce a slight effect due to sampling volume of the bulk wave, i. e., larger sampling
volume for lower frequencies. In a four point bending test where the movement is uniform between
the middle supports (see Figure 5), the stress through the thickness reverses at the middle of the
thickness. The stress effect on the CRLW is expected to be more pronounced at the higher
frequencies and at a minimum at the lower frequencies.

If no significant relative phase shifts are obtained, this would suggest that the hypothesis that stress
changes in the interior of the specimen are reflected as phase shifts in the frequency components in
the received CRLW pulse should be rejected.

3.0- EXPERIMENTAL SETUP AND TESTS

Ultrasound is an ideal probing field for surface and interior stress measurement since it has the
required material penetration capability. The CRLW technique is based upon measuring the
velocity of longitudinal waves that travel parallel to the surface of test specimens to be evaluated for
residual stress.

The CRLW technique inveigaed may be able to measure residual surface and interior stress
incorporate frequency scanning of depth based on longitudinal waves that travel below and parallel
to the surface of the specimen. These waves, often called creeping waves, appear when the incident
angle of ultrasound on the surface of the test piece is set to the value of the first critical angle.

In a two media arrangement (upper and lower medium) the CRLW wave is excited in the lower
medium by having an ultrasonic beam in the upper medium impinging on the boundary at the first
critical angle in accordance with Snell's Law. The proposed CRLW technique uses an ultrasonic
probe consisting of three search units; one is used as a transmitter and two as receivers of
ultrasound: The search units are mounted on plastic wedges (upper medium) machined so as to
transmit and receive the CRLW wave that propagates near and parallel to the surface of the part
under test (lower medium). A special fixture is used to maintain a constant gauge length between
the receiving search units. An alternative to this arrangement is to use only one transmitter and one
receiver probe.

.Variation in ultrasound travel time with stress state is used as a measure of the component of stress
lying along the direction of the longitudinal axis of the probe. Sampling depth is adjusted by either
(1) changing the frequency of the injected ultrasound or (2) changing the size of the piezoelectric
element in the search units (I].

From references [1,7], it is known that CRLW ultrasound velocity varies linearly with the
component of stress lying in the propagation direction of the waves.

The CRLW frequency scanning technique is executed in the following way. Broad-band search
units are used as a transmitter and a receiver of ultrasound. They are mounted accurately at a fixed
gauge length apart. Whenever the transmitter is excited with a sharp pulse, it produces a near delta-
function CRLW wave in the test piece. The Fourier transform of the resulting CRLW wave
contains a broad band of frequencies. The frequency content, together with phases and amplitudes,
are obtained by Fast Fourier Transform (FFT) computer methods. Phase shifts in the frequency
components ae related to corresponding velocity shifts due to stress variations with frequency and,
therefore, with penetration depth. An alternate technique utilizes sets of transducers of a known
central frequency and travel-time is measured by identifying the first positive zero crossing of the
first pulse arriving after the initial pulse. This arrival corresponds to the CRLW or headwave.
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3.1 CRLW Probe and Wave Form Characterization

Flat-plate materials used for this project had the following physical characteristics:

Table I. Test Plate Physical Characteristics

Material Plate Dimensions
Specification L (in) W(in) T(in)

Ti-6A1-4V 16 6 0.25
Al-6061-T651 16 6 0.50
4340 Steel 16 6 0.50

Sets of broad band search units with frequency centered at 1.0 MHz, 2.25 MHz, 5.0 MHz, and 10
MHz and a useful band of 500 KHz to 5 MHz were employed. This range of frequencies gives
rise to CRLW with penetration depths varying from near surface (5 MHz) to 0.45-inch (500 KHz)
depending on the velocity of the material.

A probe fixture for holding the search units at fixed distance was designed and built such that it was
adaptable for use in curved (cylindrical surfaces). Figure 6 shows the experimental setup using a
Austin Computer 386/33 MHz PC (personal computer), including an STR*8100 MHz analog to
digital board.

Amplitude of the CRLW ultrasound pulse as a function of depth and of frequency were measured
to confirm the effect of frequency on depth of penetration. The transmitter was located on the top
surface of a plate. The receiver, a small diameter unit,. was used to sample the CRLW ultrasound
present at an end face. Baseline or initial velocity measurements were performed in all the test
plates as a function of orientation with respect to the rolling direction (0 0) of each plate. It was
found that for the Aluminum 6061-T651 plate the CRLW attenuated considerably at 450
orientation, and at 10 MHz frequency. In addition, the longitudinal wave velocity was found to
decrease at approximately 450 orientation for the Aluminum 6061-T651 plate and the Ti-6A-4V
plate. For the 4340 steel, the longitudinal wave velocity was larger at 90° orientation and it
decreased gradually towards the 0* orientation.

3.2 Tensile Test

The loading arrangement is shown conceptually in Figure 7. The plates are fixed in a tensile testing
machine. Strain gauges are attached to them. The probe fixture is mounted on the plate under test,
aligning it sequentially along lengthwise (0") crosswise (90"), and 45" angle axes. In this test, a set
of one transmitter and two receivers are used to measure the CRLW velocity. The distance between
the second receiver is approximately 116 nn.

Broad-band pulses were injected into the plate using the transmitting search unit and the received
pulses were displayed and also stored. The received pulses were analyzed to obtain travel-time and
amplitude information. Then the plates ar loaded in tension, and the resulting received wave-forms
are recorded and subjected to analysis.

The relative travel-times of the frequency components should be independent of applied load since
the applied stress should be independent of depth in the plate for the loading method used.
However, there should be travel-time shifts of the frequency components proportional to load.
This would be a manifestation of the acoustic elastic effect. By measuring these travel-times as a
function of applied stress, the acoustic-elastic coefficient is obtained. This coefficient gives the
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(Right) Strain gauge rosettes
mounted on test plate measure
strain parallel (0r), perpendicular
(900), and 450 from applied load
axis. The ultrasonic probe is too
placed on opposite side of plate
(as shown below)

(Below) Technician holds ultrasonic tansducer module on test plate at 00 orientation
or parallel to applied force, during load tests at Texas A&M Engineering Laboratory

. ......

(Above) Ink marking on 16 inch long x 6 inch wide x 1/4 inch thick titanium test plate indicating the 0°, 450, and 900
orientations to position ultrasonic probe fixture.

Figure 7. Strain gauge and ultrasonic velovity instrumentation on test plates used to evaluate CRLW
ultrasonic stress measurement technique, December, 1991.



relation between stress and phase shift (travel-times) when the stress through the thickness of a

specimen is constant.

3.3 Four Point Bending Test

A 4-point bending fixture was constructed. As shown in Figure 8, this means of stressing creates a
linear change in stress through the test plate (tension from compression). The fiber stress at any
depth will be constant along the length defined by the inner two bending points on the fixture.
Loading was applied with an hydraulic press. Surface strains are measured with the aid of strain
gages and internal stresses are computed from the measured strain values. The load applied was
measured with a load cell (10,000 lb capacity). The load was then applied by two rolls separated 14
inches apart in a downward motion. The maximum deflection at the middle of the plate was
measured as the load was applied.

Received ultrasonic wave forms (see Figure 9)were recorded and processed during the tensile test to
obtain travel-time versus frequency data. If the travel-time of the components are shifted relative to
each other as stress is applied, this would mean the different frequency components are "seeing"
stress changes as a function of depth. The probe arrangement used in this test consisted of one
transmitter and one receiver spaced 100 mm apart.

4.0 RESULTS AND ANALYSIS

4.1 Tensile Test

The acoustoelastic constants were obtained from the data collected from the tension test, the results
of which are listed in Table II. The data in Table II indicates that for the 0 * measurements (parallel
to the applied force), 4340 steel has the largest effect; aluminum 6061-T651 is smaller than 4340
steel but it is also larger than for Ti-6A1-4V which has the smallest effect. Figures 10 A-C show the
plots of the percent velocity change versus tensile strain at room temperature (60 0 F.) for each of
the frequencies used during the test, i.e., 1.0, 2.25, 5.00, and 10 MHz. The slope of each line
represents the acoustoelastic constant. The measured maximum tensile strain (shown in Figures 10
A-C) was produced by applying a tensile load of 50,000 pounds.

Figure 10 A (Ti-6AI-4V) shows the linearity of the acoustoelastic effect better than either aluminum
alloy 6061-T651 or 4340 steel. These deviations from linearity are probably caused by contact
problems encountered during the test when Ultragel H (registered trademark by ECHO Ultrasound)
couplant was used.

The 45 0 acoustoelastic constants for all the materials and frequencies had the tendency to be higher
except for 4340 steel at 1 MHz. For the 90 0 there was no measurable change detected in the 4340
steel, small effect detected in the Al 6061-T651 with no change detected by the 10 MHz frequency.
The 90 0 data collected for the Ti-6AI-4V shows dramatic to no changes, probably caused by the
highly attenuated signal found at this orientation causing an increase in instrument gain creating a
very noisy signal.

4.2 Four Point Bending Test

The 4-point bending test results are shown in Figures 11 A-C and Table I. The plots show the
longitudinal wave velocity change as a function of applied (measured) load. The data initially
collected using Ultragel II as couplant showed to have poor repeatability. After trying different
kinds of couplant, it was found that water helped enormously to improve repeatability. The plots
shown in Figures 11 A-C were obtained by placing the ultrasonic probe at 0 * orientation as seen in
Figure 8. No measurable changes were detected in any of the plates when the probe was oriented at
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A. Above, Overall view of four-point loading
facility and strain, load, and ultrasonic
velocity measurement instruments.

a. 386 PC computer based ultrasonic velocity
measurement system.

b. Digital load readout from load cell.
c. Strain gauge meters & interface.
d. Gated pulse-echo ultrasonic instrument.
e. 60,000 lb load test machine set-up for

four-point loading of steel, aluminum, and
titanium plates.

f. Test plate in four-point bending with strain
gauges and ultrasonic velocity
measurement module.

B. Above, Details of plate loading and ultrasonic velocity measurement module.

a. Arrows indicate direction of forces on plate.
b. Test plate.
c. Transmit ultrasonic transducer.
d. Receiver transducers.
e. Dial indicator showing deflection of plate (strain gauges are mounted on top of

plate).

Figure 8. Reinhart & Associates, Inc. strain measurement/load test facility, R&A laboratory, Austin, Texas.
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Table II. Acoustoelastic constants (AEC) obtained from tension tests.

Material Probe Frequency
Speification Orientation (deg) (MHz) AEC

TI-6AI-4V 00 01.00 -0.8780
02.25 -1.0042
05.00 -1.0406
10.00 -1.0696

450 01.00 -1.2416
02.25 -1.4104
05.00 -7.1784
10.00 -3.0618

900 01.00 -3.3368
02.25 -9.5385
05.00 -1.9194
10.00 Noisy Signal

AI-6061-T651 00 01.00 -2.7184
02.25 -2.6937
05.00 -2.9-19
10.00 -3.5185

450 01.00 -3.4785

02.25 -5.0599
05.00 -3.4300
10.00 -3.6917

900 01.00 -1.6523
02.25 -1.6371
05.00 -1.6330
10.00 No Change

4340 Steel 00 01.00 -3.0491
02.25 -3.1312
05.00 -3.0195
10.00 -3.0527

45" 01.00 -1.6552

0225 -3.3821
05.00 -6.8423
10.00 -4.8796

90 °  01.00 No Change
0225 No Change
05.00 No Change
10.00 No Change
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Table Ill. Load, deflection, and strain measured during the 4-point bending test.

Load (Ib) (P) Actual Measured Maximum Deflection (in)
(Measured) Load (Ib) (p/2) Ti-6AI-4V C* AI-6061 -T651 c* 4340 Steel _*

0 0 0.000 0 0.000 0 0.000 0

500 250 0.027 690 0.008 296 0.003

1,000 500 0.055 1,226 0.016 594 0.007 256

2,000 1,000 0.093 1,951 0.032 1,138 0.013 488

3,000 1,500 0.048 1,688 718

4,000 2,000 0.064 2,220 0.026 947

5,000 2,500 0.074 2,672 1,181

6,000 3,000 0.042 1,420

7,000 3,500 0.050

*= Strain (iLn/in)
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90 0; thus, the velocity (travel time) at 90 0 provided a reference that is independent of the applied
stress. This suggests that velocity ratios of 0 0 and 90 0 could be used to monitor absolute stress
changes in uniaxial bending.

Figure 11 A shows the data obtained from testing the Ti-6Al-4V plate. It essentially shows a
longitudinal wave velocity increase as the plate is bent. It is possible that this unexpected reversed
trend is caused by the interaction of the CRLW and 2P waves with the bottom part of the plate
where the stress is compressive. The reversed effect may be enhanced because this plate thickness
is only 0.25 inch.

Figure 11 B shows the data for the Aluminum 6061-T651 plate. It shows that for all the
frequencies except 1 MHZ, the longitudinal wave velocity decreases as the plate is bent. This
follows the expected trend since the CRLW is propagating close to the top surface wherein the
stress is tensile. The 1 MHz data deviates from the expected trend because it probably is interacting
more with the bottom part of the plate at very low frequency and long wavelength.

Figure 11 C displays the data obtained by bending the 4340 steel plate. It shows the expected trend
for-all of the frequencies, i.e., the higher the frequency, the larger the effect of the tensile stress
induc-d by bending of the top surface. The lower the frequency the less the effect, since ultrasound
tends to average the effect of the tensile and compressive stress present in the bent plate.

5.0 CONCLUSIONS AND RECOMMENDATIONS

After the ma," tmatical modeling and after two tests performed to establish how viable it is to

measure stress at the surface and interior of a plate, it was found that:

The use of water as couplant improve the repeatability of the four-point bending test.

The CRLW wave followed the expected trend of stress changes through the thickness of a 4340
steel plate and 6061-T651 aluminum plate of 0.50 inch thickness.

The expected trend measured in a Ti-6A-4V plate was reversed and a more detailed study needs to
be performed to fully characterize this material for thicker plates, i.e., > 0.25 inch.

There exists a possibility of using the 2P wave as a reference wave and the CRLW to monitor
material properties and/or stress, provided the propagating medium is a layer of finite thickness.

It is recommended for Phase II of this project to proposing using a set of material samples
containing residual stress to be studied using the CRLW technique and compare with the hole-
drilling techniques.
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