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1. INTRODUCTION

The Modified Point Mass Trajectory Model (Lieske and Reiter 1966 and NATO Army

Armaments Group STANAG 4355, 1988) is the primary method of trajectory simulation

used in the preparation of Firing Tables. This model requires four types of input data: pro-

jectile mass properties, motor characteristics, aerodynamic coefficients, and the performance

parameters determined from experimental range testing. This report presents a method of

modeling the aerodynamic drag of base-burn projectiles with as much similarity as possible to

the approach used for rocket-assisted projectiles. HAWK Doppler radar data for the 155mm,

Dual Purpose Improved Conventional Munition (DPICM), M864 base-burn projectile have

been analyzed and used to verify the modeling approach for a variety of test conditions. The

word "deduced," as used in this report, me-ns a computed value based on an analysis of the

measured Doppler radar data; all symbols are defined in the List of Symbols.

2. PHYSICS OF BASE-BURN PROJECTILES

Theoretical discussions of the mechanism of base drag reduction for base-burn projectiles

are presented in the works of Gunners, Andersson and Hellgren, Chapter 16 (1988) and

Danberg (1990). In these works, it is assumed that mass injection into the near wake only

affects the pressure distribution on the projectile base and thus only affects the base drag.

Forebody pressure and viscous drag are unaffected. As a result, the drag coefficient of a

base-burn projectile can be considered to be equal to the drag coefficient of the non-burning

(inert) projectile, CD0 , minus the difference in the base drag component, ACDO., between

an inert and operating base-burn motor. The base drag component of a projectile, CDb, is

directly related to the average projectile base pressure, Pb, as follows:

1 Pb
Cob YM2_ (1)

2 db2

where:

db = base diameter of projectile in calibers

M = local flight Mach number

P = local atmospheric air pressure

Pb = average projectile base pressure

-y = ratio of specific heats



From this relationship, the theoretical difference in the base drag component for a projectile

with an inert base-burn motor (average base pressure, Pb.) and an operating base-burn motor

(average base pressure, Pb.) can be written as:

Pbb Pb,

A C'i P P (2)
M2

2 db2

The overall drag coefficient of a base-burn projectile with an operating base-burn motor is

then:

CD obb = CO - ACDObb (3)

In subsequent sections of this report, the difference in the average base pressure ratios

( Pb - f) will be designated ABP.

The nondimensional injection parameter I is defined as:

I - rril (4)
p v Ab

where ri! is the injected mass flow and p v Ab is the free-stream mass flow through an area

equal to the base of the projectile, Ab. Danberg (1990) has shown that ABP is linearly

related to I over a range of low rates of air injection (I less than 0.005 at M less than 2.5

and at 300 K temperature) as observed in a number of wind tunnel experiments:

ABP - I [ (Pbb/P)] ) (5)

The slope [S(Pbb/P)] in Equauion 5 was found to depend only on the free-streamI 5f1 1 =0

Mach number for the wind tunnel data; see Figure 1 which is from Danberg (1990). Us-

ing computational fluid dynamics (CFD), Nietubicz and Sahu (1988) confirmed the low-

temperature results (approximately 300 K) and extended them to more realistic tempera-
tures consistent with burning of a solid propellant. They numerically solved the Navier-
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Stokes equations for the flow around the M864 projectile, inciuding its domed base, for a
wide range of injection mass flows and gas temperatures. Figure 2 indicates the general form

of the average base pressure change with increasing injection parameter for Mach numbers

from 1.3 to 3.0. The data points are the computed CFD values corresponding to a stagnation

temperature of the injected gas of 1500 K. Note that these curves can also be represented by

a line through the origin with a slope that increases with Mach number for injection rates of

less than 0.002. This slope has been computed for a range of Mach numbers and iaject-d gas

temperatures and is shown in Figure 3 along with the low-temperature data from Figure 1.

The lines drawn through the data points are computed from an equation fitted to the CFD

data. The equation is a cubic polynomial in Mach number with coefficients that are linear

in the injected gas temperature, Tj. The data of Figure 3 are valid for injection rates of less
than 0.002.

At higher injection rates, the base pressure difference is no longer linear with respect

to I; Figure 2 illustrates this. However, ABP can be represented in terms of a new variable

made up of the product of the injection rate and the slope.

In applying these results to flight test data, ABP is assumed to have the form:

AP=I B) (6)

bBP

where for low injection rates and a fixed gas temperature, -I approaches the limiting

slopes shown in Figure 3. For a specific propellant, the limit is expected to be only a
6BP

function of Mach number. For larger values of I, a decrease of bBP with I corresponds to a

nonlinear curve of base pressure change. The CFD data can be used to provide an estimate
SBP

of the decrease in - for fixed values of 1, as shown in Figure 4.

3. DETERMINATION OF AERODYNAMIC DRAG FROM DOPPLER

RADAR DATA (Lieske 1989)

Doppler radar is one of the most valuable tools in evaluating the aerodynamic drag

of projectiles from full-scale flight tests. The basis of the data reduction is the relationship

between the measured time rate of change of slant range and the projectile acceleration. The

3



technique is developed in a ground-fixed, orthonormal, right-handed Cartesian coordinate
system with unit vectors 1 , 2 and I ). The f axis is the intersection of the vertical plane
of fire and the horizontal plane and points in the direction of fire. The 2 axis is parallel
to the gravity vector, 4, and opposite in direction. The I axis completes the right-handed
coordinate system.

The slant range rate of change as measured by Doppler radar is recorded on magnetic
tape. The first step is to smooth the data and determine the time derivative. Least squares
fits (second-degree polynomials in time) to the data are determined for 0.56 second intervals
(fifteen point smoothing) along the trajectory. The slant range rate of change (÷) and time
derivative of the slant range rate of change (F) are obtained from the quadratic fit at the
midpoint of the fifteen-point interval.

An estimated trajectory for the base-burn projectile is generated separately using the
projectile mass properties, launch data, atmospheric conditions, estimated aerodynamic co-
efficients, and estimated drag reduction while the base-burn motor is operating. The tra-
jectory is adjusted, using factors on both the drag reduction during motor functioning and
lift, to match the observed impact data. A trajectory velocity (Ut) is calculated using the
Doppler radar smoothed slant range rate of change (÷) and the estimated trajectory slant
range rate cf change (it ) and velocity (t-) as follows:

U = ÷/ t, (7)

where:

it = ut cos (r,, ut) = . u ),

A trajectory acceleration (U".) was calculated using the time derivative of the Doppler
radar slant range rate of change (F) and the estimated trajectory time derivative of the slant

range rate of change (Ft) and acceleration (ut), utilizing the following two formulations:

.4 (÷ / ýt) 4; + [ (it Zt-÷) / ýt2 ] - 8

and

Ur =4 ) (9)



where:

t= {r [(,.rt.! ) + (•.t,)] - (,.,ti) ý,}/rt2

and

The mean of the results were similar for both of the ti. representations; however, the variation
(spread) of the results were significantly improved using Equation 9 and it was used for

determining the results presented.

Note: Subscript t refers to quantities determined from the estimated trajectory and those
with subscript r are obtained using both the Doppler radar data and the estimated

trajectory.

The mass of the projectile, atmospheric conditions, estimated trajectory data and the

Doppler slant range rate of change and its time derivative provide the necessary inputs to
determine the aerodynamic drag. The following inverse solution of the point-mass equations

of motion is then used to compute the aerodynamic drag (CD,).

CD,' = - [)- (, - - A()

This equation can be-used to experimentally determine the aerodynamic drag coefficient for

a projectile with either an inert or a functioning base-burn motor. The ABP for a particular

flight condition can then be determined from the difference in the drag coefficient for pro-
jectiles with inert and operating base-burn motors. Based on the known flight conditions of

projectile spin and atmospheric air pressure, the flight mass flow rate can be related to the

mass flow generated by the gas generator for a set of reference conditions. This relationship
will be discussed in sections 5 and 6. A deduced mass flow rate can be calculated using an

estimated change in nondimensional base pressure for a change in the injection parameter

based on the expected motor-ejected gas temperature and compared with the computed

flight mass flow rate. The results can than be analyzed to refine the estimated mass flow
rate and the change in nondimensional base pressure for a change in the injection parameter

due to the base-burn motor ejecting hot gas into the wake of the projectile.

5



4. MODELING THE BASE-BURN PROJECTILE DRAG

The trajectory of a base-burn projectile is simulated by expanding the drag term, Db, in
the Modified Point Mass Trajectory Model to include the change in drag due to the injection

of a hot gas flow into the projectile's wake.

Dr = rdi {CC -" fB [AB ABP + CD} 2 (Qae)2 v ()2 ( ) I Io°

wABP ] is used to represent the drag reduction due to the hot mass
whero BB -)o

flow (trni) of the base-burn motor. The difference in drag due to the functioning of a base-
burn motor is represented by a change in the projectile's base pressure (ABP) due to the
nondimensional mass flow rate, I, as discussed in section 2, and the quantity:

6BP-- -F(M, I) (12)

which can be deduced from the flight test data analysis. This assumes that the mass flow,
which is a critical element, can adequately be modeled as a function of projectile spin and

atmospheric air pressure as discussed in the next section. Finally, a factor fBB is included

for matching observed range firing data.

5. MODELING THE BASE-BURN MOTOR MASS FLOW RATE

The method used to determine the mass flow rate of the base-burn motor is an exten-
sion of the procedure used for rocket-assisted projectiles that is presented in NATO Army

Armaments Group STANAG 4355.

The mass flow rate of the motor fuel, ri;, as a function of pseudo-time-of-motor burning

(t') is determined for a reference set of conditions of motor temperature, projectile spin rate,

and atmospheric air pressure.

ro = "F(to) (13)
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A transformation from time-of-flight (t) to pseudo-time-of-motor burning t" is used to
determine the mass flow of the base-burn motor as a function of the currently predicted

burn-out time, tB(,,A,).

The effects of projectile spin rate and local atmospheric pressure conditions influence
the mass flow through an estimated burnout time. The estimated burnout time, tB(,+A,),

assumes that the mass flow remains constant at the instantaneous conditions until the fuel

is consumed. This burnout time is updated at each numerical integration time step and thus

approaches the actual burnout time as the fuel is exhausted. The simulated burnout time is
modeled by the following assumed formula:

tB(,+A") = [(tB) - t) (t"+At)fBTP( P(t+ At) )TP] + t (14)

where:

fBTP is a parameter used to represent the change in burning time of the mo-
tor due to projectile spin rate.

fBTe is a parameter used to represent the change in burning time of the
motor due to a change in local atmospheric pressure.

and

tL(+ ) ) + ,) At* = tý,) + At t - (15)
(tB(t+a,&) -- t

Finally the instantaneous mass flow rate of the fuel is:

"rif = (t;( + '-)t•' to )ni; (16)

6. ANALYSIS OF RESULTS

A sample of nine 155mm, DPICM, M864 projectiles fired at quadrant elevations of ap-

proximately 500, 750 and 1150 mils with propelling charges: M4A2, charge 7W; M119A2,
charge 7R; and M203E2, charge 8R were analysed. These projectiles were filed at Yuma

Proving Ground, AZ, during May 1987. Figure 5 shows the configuration of the M864 pro-

7



jectile design and presents its physical properties. Figures 6 and 7 show the M864 base-burn

motor, igniter, and grain. Figure 8 presents the aerodynamic drag for the M864 with an

inert base-burn motor that was determined from HAWK Doppler radar data, for projectiles

fired with inert base-burn motors as reported by Lieske (1989).

6.1 Modeled Mass Flow Rate of the Fuel. The mass flow rate for the M864 pro-

jectile is modeled using: (1) an estimated mass flow rate of the motor as a function of

pseudo-time-of-flight for the reference spin rate, time-of-motor ignition, and time-of-motor

burnout of 260 rev/s, 0.5 s, and 23.5 s, respectively; (2) the projectile spin burning rate fac-

tor, - 0.50, based on the experimentally measured time-to-burnout on a ground-mounted

spin fixture (Kayser, Kuzan and Vazquez 1987), Table 1; (3) the experimentally determined

strand pressure burning rate coefficient, converted to a burning time factor, - 0.6655, as re-

ported by Miller and Holmes (1987), Figure 9; and (4) the computed change in base pressure

for a change in injection parameter vs. Mach number, Figure 4.

Table 1. Experimental Spin Fixture Time-to-Burnout for the M864 Motor (Kayser,

Kuzan, and Vazquez 1987).

Run Spin Burn-Time
Number (rev/s) (a)

2 0 40.0
3 99 31.9
4 142 29.0
5 176 27.4
6 199 26.0
7 226 23.9
8 253 22.8

6.2 Change in Base Pressure. The change in nondimensional base pressure, ABP,
due to the functioning base-burn motor is computed from the difference in aerodynamic drag

between a projectile with an inert and a functioning base-burn motor as follows:

ABP = (CA, + [D 2  Q ) 2
] CD,}( M 2 ('2) (17)

8



6.3 Deduced Mass Flow Rate of the Fuel. The mass flow rate of the fuel, n 1 , is

deduced using:

a. the change in average base pressure due to the functioning motor;

b. the change in nondimensional base pressure for a change in the base-burn

motor injection parameter;

c. the projectile base area;

d. the projectile velocity; and

e. the local atmospheric air pressure.

The firing propellant charge gases are supplemented by an igniter to ignite the solid propel-
lant motor fuel; therefore, the igniter is considered part of the motor fuel.

p vAh ABP (18)
SEP

61

The differences between the deduced mass flow rate based on the HAWK Doppler radar
data and the modeled mass flow rate were determined for the M864 projectiles fired at

quadrant elevations of approximately 500, 750, and 1150 mils with propelling charges: M4A2,
charge 7W; M119A2, charge 7R; and M203E2, charge 8R. These differences were analyzed
with respect to pseudo-time-of-flight, Mach number, injection parameter, local atmospheric
pressure and time-of-flight. The analysis of the differences suggested a modification to the
change in base pressure for a change in injection parameter, and the reference mass flow
rate of the fuel. Therefore, an iterative procedure was used to simultaneously determine the
change in base pressure for a change in injection parameter as a function of Mach number
and injection parameter, and the reference mass flow rate of the fuel as a function of the

pseudo-time-of-flight that would minimize the differences. The change in base pressure for
a change in injection parameter as a function of Mach number and injection parameter, and
the reference mass flow rate of the motor fuel as a function of the pseudo-time-of-flight that
virtually minimized the differences are presented in Figures 10 and 11.

The results of this analysis indicated that the M864 base-burn motor requires a few
seconds to ignite and reach full performance and has a reference motor burn-time of 24.0
seconds. The ignition delay, tDI, of approximately 0.4 second has also been observed by
Kuzan and Oskay (1988) during transonic range testing and the motor burn-time is within

one second of the experimental ground-mounted time-to-burnout measurement by Kayser,

9



Kuzan and Vazquez (1987). The operating base-burn motor increases the maximum range

of the M864 by approximately 18 %. If the M864 motor igniter used to ignite the solid

propellant motor fuel could be enlarged, it could also provide the mass flow of hot gases

needed for drag reduction during the first few seconds and speed the ignition of the base-
burn motor propellant. In that case, an increase in maximum range of approximately 20 %

could be achieved.

Figures 12 through 20 present the deduced and modeled mass flow rates vs. time of flight
for projectiles fired with the three propelling charges at quadrant elevations of approximately

500, 750 and 1150 mils. The figures show an especially good correlation of the deduced with

the modeled mass flow rate with time-of-flight for the propellant charge and quadrant eleva-
tion combinations with the various projectile spin rates and local atmospheric air pressures.

One of the significant points to note is that the quality of agreement is about the same for
all the conditions; this is despite the fact that the total burning time at the high quadrant

elevations is more than twice that at the low quadrant elevations.

There is some irregularity in the results for the transonic velocity region (Mach numbers:
.95 to 1.05). This is especially evident on Figure 12 for 15 to 20 seconds time-of-flight. The

irregularity is probably due to the error in the transonic aerodynamic inputs and/or the

Mach number determined from the HAWK Doppler radar data.

The difference between the deduced and modeled mass flow rate for the nine M864 base-
burn test projectiles, shown in Figures 12 tLrough 20, is presented in Figures 21 through 26

as functions of pseudo-time-of-motor burning, Mach number, injection parameter, local at-

mospheric air pressure, projectile spin rate and time-of-flight. The modeling process, using

the experimentally determined inputs, provides a very good simulation of the exterior bal-

listic performance of the M864 based on the fact that the residuals show no systematic bias

as a function of pseudo-time-of-motor burning, Mach number, injection parameter, local

atmospheric air pressure, projectile spin rate and time-of-flight.

7. TRAJECTORY MODEL FOR. ROCKET-ASSISTED AND BASE-BURN

PROJECTILES

This section summarizes the equations that simulate the flight of rocket-assisted and

base-burn projectiles. Both technologies are described, combining the common features

of physical phenomena and providing a compact and flexible method for simulating these

projectiles.

10



7.1 Equations of Motion. The equations of motion for rocket-assisted and base-

burn projectiles are treated as a thrust and drag-reduction methodology, respectively. Thrust

is defined as a force that produces an increase in total velocity (an acceleration) due to the

functioning of a rocket motor; and drag-reduction is a reduction in drag (reduced decelera-

tion) due to the functioning of a device such as base-burn motor, tracer, etc.

7.1.1 Thrust. The acceleration due to thrust, T, of the rocket motor during burning

(tDI < t <_ ts) is added to the equation of motion of the center of mass of the projectile:

= [~f~i IsP + (Pr - P) A,] (V cosac + (19)

During rocket motor burning the aerodynamic zero-yaw drag coefficient is CDOT. The factor

fT is included for matching observed range firing data.

7.1.2 Drag Reduction. The base drag reduction due to a base-burn motor during

burning (tID t < tB) is added to the drag term (D) of the projectile:

7rdi CDo - pf& (-2 M2 + CD2V (20)

where fBB is used to represent the drag reduction due to the mass flow(-2) M2

(nif) of the base-burn motor. The factor fBB is included for matching observed range firing

data.

7.2 Mass Flow Rate. The mass flow is given by:

a. att = 0:

M = O

mh-0

b. fort <tDI:

S= mDI

tDI

11



c. fortDIot< tB:

tmB - t-

where:

t•t+At) --- tB ý,Zx) At + t
t~t~~) = tB( +At) - 3 t +t

where:

iS+At = [(tB() - PIt (+At) fBTp ( ) + t

and at t = tDI:

t~j) = GDI

tB) = Time-of-motor burnout for reference motor spin rate

P(t) = Reference axial spin rate for motor mass flow (PT)

P(t) = Standard atmospheric air pressure (P7 )

d. for t > tB:

m = - mDI -M

rh=0

7.3 Center of Mass. The location of the center of mass of the projectile is given by:

XCG = XCG° + [(XCG° - XCG.) (m - Min)] (21)
L M - MBJ

7.4 Axial Moment of Inertia. The axial moment of inertia of the projectile is given
by:

Ix = Ix0 + [(IxO - 1x) (m - to) (22)
I. MO - mB

12



7.5 Overturning Moment Coefficient. The overturning moment coefficient of the

projectile is given by:

0 - ~XCGO )(CDOT + CL) 23CM. = C. + [(XCG - d (23)

where: C~o is determined for the initial projectile configuration.

7.6 Fitting Factors for Motor Performance. To compensate for the approxima-

tions in the rocket-assisted and base-burn motor performance terms, certain fitting factors
contained in Table 2 are applied in order to create correspondence between the computed

and the observed range testing results.

Table 2. Fitting Factors for Rocket-Assisted and Base-Burn Motor Performance.

Fitting Function

Fitting Rocket-Assisted Base-Burn

Projectiles Projectiles

Change in
Radial Velocity fT fT = 0
During Motor A, A, = 0

Burning

Motor-burn fBT, lfBT,

Time fBTp = 0 fBTp

Range i i=1

BB 0 fBB

Optional

13



8. CONCLUSIONS

A methodology is presented to model the change in aerodynamic base-drag, based on
the change in base pressure due to a base-burn motor injecting hot gas into the wake of a
projectile. The procedure models the mass flow rate of the remaining fuel of the base-burn
motor as a function of the instantaneous projectile spin rate and atmospheric air pressure.
The modeling approach has been used to successfully simulate a variety of trajectories for
the 155mm, DPICM, M864 base-burn projectile, based on the experimentally determined
time-to-burnout and strand pressure burning rate results, and the HAWK Doppler radar
data for experimental range firings.

The results of this analysis indicate that the M864 base-burn motor requires a few seconds
to ignite and reach full performance. The maximum range of the M864 could be increased by
approximately two percent if the igniter used to ignite the solid propellant motor fuel could
also provide the mass flow of hot gases needed for drag reduction during the first few seconds
and speed the base-burn motor propellant ignition process. Therefore, it is recommended
that future base-burn motor designs consider this possibility.

The experimental results certainly support the proposed addition to the Modified Point
Mass Trajectory Model for Rocket-Assisted Projectiles for the exterior ballistic simulation

of the M864 base-burn projectile.
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Projectile Sketch

Projectile Dimensions

Length of Projectile calibers 5.79

Nose Length calibers 3.42

Cylinder Length calibers 1.86

Boattail Length calibers .50

Boattail Angle degrees 3.00

Projectile Mass Properties

Mass kgs 46.95

(lbs) 103.5

Mass of Fuel kgs 1.21

(lbs) 2.67

Center of Gravity cm from nose 58.8
(inches from nose) 23.16

Moments of Inertia

Axial kg-mr2  .158

(lb-ft 2 ) 3.75

Transverse kg-m2  1.657

(lb-ft 2 ) 39.32

Figure 5. Physical Characteristics of the 155mm, DPICM, M864 Projectile.
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LIST OF SYMBOLS

Symbol Definiti•n

Ab Total area of the projectile base m 2

Ae Exit area of the motor jet m 2

CDo Zero-yaw drag force coefficient

CD0o Drag force coefficient during base-burn motor operation -

CDoT Zero-yaw drag coefficient during rocket motor burning -

CDj Base drag component

CD, Radar determined drag force coefficient

CDo2 (Qa6 )2 Yaw of repose drag term in the "Modified Point Mass -

Trajectory Model"

C'fo Overturning moment coefficient for initially fuzed
projectile

d Reference diameter of projectile m

db Diameter of projectile base caliber

fT Thrust factor

fBB Base-burn factor, used as a parameter for matching -

experimental range firing data

fD TP Base-burn motor spin rate burning-time factor -

fBTrp Base-burn motor atmospheric air pressure burning-time -
factor

SAcceleration due to gravity m/S2

i Form factor

I Base-burn motor fuel injection parameter

Isp Specific impulse of motor fuel N-s/kg

Ix Axial moment of inertia of the projectile kg-m2

1x0  Axial moment of inertia of the projectile, initially kg-mr2

IXB Axial moment of inertia of the projectile at motor kg-m2
burnout

rn Fuzed projectile mass at time t kg

M0 Fuzed projectile mass, initially kg
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Symbol DeUfin unit,

MB Fuzed projectile mass at motor burnout kg

mDI Mass of ignition delay element kg

mf Mass of motor fuel, including igniter kg

rmif Mass flow rate of the motor fuel kg/s

rnf Mass flow rate of the motor fuel as a function of pseudo- kg/s
time-of-flight

M Local Mach number

p Axial spin rate of projectile rad/s

Pr Reference axial spin rate for motor mass flow rad/s

P Local atmospheric air pressure pa

Pb Average base pressure pa

Pb6  Average base pressure for projectile with an operating base- pa
burn motor

Pb, Average base pressure for projectile with an inert base-burn pa
motor

P" Standard atmospheric air pressure at sea level pa
(101325 pa)

rt Trajectory estimated, slant range magnitude m

STrajectory estim ated, slant range m

÷ HAWK radar determined, rate of change of slant range M/s
with time

Time derivative of the HAWK radar determined, slant range rn/s 2

rate of change

it Trajectory estimated, rate of change of slant range with rn/a
time

7t Trajectory estianated, time derivative of the slant range mr/s2

range rate of change

t Time-of-flight a

t Pseudo-time-of-motor burning a

tE Time-of-motor burnout S

G Reference pseudo-time-of-motor burnout a
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Symbol Definition

tB + At) Local time-of-motor burnout; varies with time-of-flight a
due to the change in projectile spin rate and local
atmospheric air pressure

tDI Time-of-motor ignition delay 5

tD1  Reference pseudo-time-of-motor ignition delay a

T Acceleration due to motor thrust M/s 2

t Trajectory estimated, velocity of the projectile with- rn/s
respect-to the ground-fixed axes

Ut Trajectory estimated, acceleration of the projectile with- m/S 2

respect-to the ground-fixed axes

U, Velocity of the projectile with-respect-to the ground-fixed rn/s
axis, determined from HAWK radar data and estimated
trajectory

u, Acceleration of the projectile with-respect-to the ground rn/s 2

fixed axes, determined from HAWK radar data and
estimated trajectory

v Speed of projectile with-respect-to air m/s

SVelocity of the projectile w ith-respect-to air rn/s

W Velocity of the air with-respect-to the ground (wind rn/s
velocity)

X0 0  Distance of center of mass of the projectile from nose rn

XCGo Distance of center of mass of the projectile from nose, rn
initially

XCGB Distance of center of mass of the projectile from nose rn
at motor burnout

ABP Cha.ge in nondimensional base pressure due to the
functioning of a base-burn motor

ACDObb Difference between the zero-yaw drag force coefficient for a
projectile with an inert and an operating base-burn motor

Ani! Difference between deduced and modeled mass flow rate kg/s

At Numerical integration time step size a

At* Numerical integration time step size for t'
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Symbol Definition

-7 Ratio of specific heats of air, 1.4

S Acceleration due to Coriolis effect M/s 2

p Lac&I atmospheric air density (specific mass) kg/M 3

6BP Change in non-dimensional base pressure for a change in

b1
the base-burn motor injection parameter

Function of
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