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D ABSTRACT

The light which reaches the eye, or any other sensor, is the product of the reflectance and the
illuminant. Therefore, in order to determine the surface reflectance of an object independent of the
illuminant, a system must use the spatiochromatic context of the image. We have developed a neural
network based on the anatomy and physiology of the visual projection from retina to V4. The network
combines color-opponent and contrast information to achieve a good degree of color constancy. This
network has been tested on simulated images corresponding to the stimuli used in well established
psychophysical experiments. Responses qualitatively match human responses to a variety of center-
surround and Mondrian test stimuli.

INTRODUCTION:

Color constancy is the ability to maintain an approximately constant color perception despite changes in
the incident illumination of the object. Color contrast, also referred to as chromatic induction or simultaneous
contrast, is the change in the (perceived) color of a surface due to the spectral composition of neighboring sur-
faces. Color perception in natural scenes depends upon both of these phenomena. Together, these two effects
demonstrate that color perception does not directly depend upon the wavelength of the light reflected from a
surface.

Many theories for color constancy and color contrast have been proposed previously (e.g. D'Zmura and
Lennie, 1986; Maloney and Wandell, 1986). However, they usually have required unrealistic assumptions about
images, had only loose connection to anatomy and physiology, or required that parameters be changed for each
image. The dependence of color constancy and color contrast on the spatiochromatic properties of a large portion
of the image (e.g. Walraven, 1976; Blackwell and Buchsbaum, 1988a,b; review by Jameson and Hurvich, 1989)
suggests that a distributed method of processing, such as that provided by neural networks, could be very useful in
solving this problem.

Several neural network models have been proposed. For example, Grossberg (1987) proposed a model in
which color information is obtained from the contrast at boundaries and then the color is filled into each segment
of the image. Dufort and Lumsden (1991) used double-opponent cells as a mechanism for color constancy. Usui,
Nakauchi, and Miyake (1990) developed a neural network which transformed color signals from cone signals to
the very narrowly tuned color responses which Zeki (1980, 1983) reported finding in V4. They trained this net-
work using back-propagation and found that the hidden units resembled the color opponent cells in the retina and
LGN.

One of the best known algorithms for color constancy, Land's retinex algorithm (Land 1964, 1986), cal-
culates the relative "lightness” of each area of a scene within three separate channels, each sensitive to a different
region of the visual spectrum. Moore, Allman, and Goodman (1991) implemented the retinex algorithm within a
network structure. One limitation of the retinex is that the interiors of large uniform regions become gray. Moore
et al. (1991) incorporated a modification in order to eliminate this washout problem by multiplying the surround
factor by the "edginess” of the area. Hurlbert and Poggio (1988) demonstrated that, using a number of different
"learning” methods, including least squares gradient descent and back propagation in ncural networks, a linear
operaior could be found which is similar to that proposed in the retinex algorithm.

One of the most fundamental problems with many of these networks is that because they record only
contrast, they require assumptions about the average to which that contrast refers. A common assumption made is
the "gray world” assumption, which states that the average chromaticity is constant for all images. This was
developed formally by Buchsbaum (1980) and has been used in many color constancy algorithms since. Other
assumptions include that the brightest spot in an image is white, or that the illumination varies slowly in space,
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while reflectances have sharp chromatic borders. These assumptions hold for many scenes, but when they do not
hold these algorithms can make predictions far from the psychophysical results. In the following scction, we
describe how our model eliminates both the washout problem and the need for assumptions about the scene by
measuring the baseline as well as the contrast.

THE MODEL:

We bave developed and simulated a neural network model that provides a biologically plausible neural
architecture capable of producing color constancy and color contrast. The model is based on primate anatomical
and physiological data from the retina to V4 and incorporates both classical center-surround inhibition as is found
in the retina and LGN, and the extremely wide-field "silent surround” inhibition reported in V4 (Schein and
Desimone, 1990). As is shown in figure 1, the simulation includes a preprocessor which converts an image from
either CIE coordinates or Munsell notation to the cone activities: R(x,y), G(x,y), B(x,y). These three matrices of
activation levels comprise the input to the network.

Overview of the Model
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Preprocessing converts image to R(x.y), G(x.y), B(x.y)

Figure 1: Overview of the network model showing connection patterns at each stage. See text for details.

The input is then fed to a center-surround color opponent stage. Each of the three color pathways con-
sists of an on-center and an off-center pathway whose receptive fields are defined by a difference of Gaussians.
The center receives input from a single cone. The surround receives input from muitiple cone types. The center
and surround are sensitive to different wavelengths and so are calied color opponent. The center-surround stage
provides the input for the large "silent surround” stage which is based on the physiological results of Schein and
Desimone (1990) and Zeki (1980, 1983) from area V4 in the macaque cortex. Each of these units has a large (up
to 16°) surround outside of its classical receptive field which is tuned to approximately the same wavelength as its
center, unlike the color opponent cells in the previous layer. The connection strength of the inputs to these sur-
rounds decreases with increasing distance from the center.
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We refer to these units with large surrounds as contrast cells. We define "positive contrast” as the center
being more active than the surround and "negative contrast” as the surround being more active than the center.
Pasitive contrast cells receive input from on-center cells and negative contrast cells receive input from off-center
cells. However, if the network measured only contrast, it would require the gray world assumption, as many of
the previous models did. Therefore, this network model calculates the "baseline” level as well as the contrast.

The "baseline” is a local average of the color opponent response. This is consistent with the physiological results
of Schein and Desimone (1990) who found that, while most of the cells in V4 did have silent surrounds, there was
also a significant quantity that did not have these surrounds. Therefore the baseline is calculated by units based on
the classical receptive fields of V4 cells.

Figure 2 shows how the contrast and baseline information are combined in this model to create a single
representation of "color". In the case where both positive and negative contrast are zero (i.e. the case of a large
uniform field) the output should follow the baseline cells. This avoids the washout problem. However, if the sur-
round response is less than the center (positive contrast) the output is enhanced above the base activity, whereas if
the surround response is more than the center (negative contrast) then the output is reduced below the base activ-
ity. This follows the psychophysical result that a gray square looks darker against a bright background than
against a dark background. This calculation is done separately in each of the color channels. As is shown in
figure 1, the contrast and baseline calculations are done only for the center of the input image for simplicity and
minimized run-time.

baseline

negative contrast

output

Figure 2: The output for each color channel is the baseline response plus the difference between the positive and
negative contrasts. See figure 1.

THE SIMULATION:

The network was simulated using NEXUS, a biologically based neural network simulation program writ-
ten at the University of Pennsylvania by Paul Sajda and Leif Finkel (1992). NEXUS is designed for creating mul-
tiple, large-scale neural maps and provides considerable flexibility in assigning pbysiological properties and
anatomical architectures. The program is written in C and features a graphical user interface (X-window based)
which makes setting up networks straightforward. Any network variable can be monitored in display windows,
and a number of diagnostic tools are available.

The simulation was tested for color contrast response using center-surround images with varying separa-
tion between the center and the surround. Blackwell and Buchsbaum (1988a) have shown that the size of the
color shift decreases as the distance between center and surround increases. As is shown in figure 3, the network
simulation aiso shows this behavior. This is a consequence of the weighting function of the silent surrounds in the
V4 stage of the model.

The simulation was also tested for its color constancy ability using the classical McCann Mondrian dem-
onstration (McCann, McKee, and Taylor, 1976) in which the illuminant on one Mondrian image is changed until
the physical R,G,B of a patch in that Mondrian is identical to a patch with different reflectance in 8 Mondrian un-
der a white illuminant. The particular case that we used was to change the illuminant on one Mondrian so that a
colored patch bad the same physical, input R,G,B as a gray patch in the Mondrian under the white illuminant. A
buman presented with this situation is able to distinguish the colored patch from the gray patch. We simulated this
experiment with the network using several different colored patches. As is shown is figure 4, the network is able
to distinguish the colored patch from the gray patch. In addition, the outputs are similar (but not identical) for the
same patch viewed under the two different illuminants. (Note that human color constancy is not 100% cffective
cither.) Thus the network demonstrates the major properties of human color constancy.




Test for Spatial Properties of Color Contrast Kesponse
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Figure 3: Change in output of each color channel for a bluegreen patch due to a green surround and a blue
surround . The change is defined as the difference between the outputs with and without the indicated surround.

McCann Color Constancy Experiment Simulation

(a)




Relative Outputs of Color Channels
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Figure 4: (a, previous page) The experimental setup. The left Mondrian has a gray patch in the centerand a
constant white illuminant. The right Mondrian has a test patch in the center which may be any color. The
intensities of the three colored lights on the right Mondrian are changed until a light meter registers the same cone
R,G,B for the test patch as for the gray patch. (b) The normalized output of the simulation's three color channcis
in V4 to patches of different reflectances within a simulated Mondrian. The top sct of data for cach colored patch
is the output under a white illuminant. The bottom set of data is the output under an illuminant which gives each
patch the same input R,G,B as the gray patch under the white illuminant. Therefore, if there were no color
constancy effect, the outputs in the bottom graph (altered illuminant) would all be identical to the output for gray.

Conclusion:

We have developed a neural network model of coler constancy and color contrast -hich agrees with the
psychophysical data. Because it uses multiple cell types to retain information about the baseline at each point as
well as the contrast, it requires no assumptions about the properties of images and does -10t suffer from the wash-
out problem that the retinex algorithm has. Because the network is based closely o . components of the visual
system, it may be used to test hypotheses about the relative significance of these -omponents to the human color
constancy abilitics. There has been much debate over the relative significance of cone adaptation versus cortical
processing in color perception. We can now add adaptation to the network and compare it's contribution to that of
the V4 stage. Each parameter (e.g. the size and shape of each receptive field, relative connection strengths of the
base, the positive, and the negative contrast cells to the output) may b manipulated separately and the output
monitored.

We would like to incorporate two additional featurss into this network. The network does not currently
use any learning algorithms. All parameters are taken from physiological data. However, we believe that the
large receptive fields of the contrast cells could be developed through a Hebbian learning process. Also, this
nctwork would be more useful as an artificial color recognition device if the output were immediately interpret-
able as a defined color, rather than as an activity pattern in a population of cells. Therefore, we will add a
panallel-distributed-processing network to the biolcgically based network to act as a pattern recognition device.
The PDP will be trained on images of single co'or patches on gray backgrounds under a standard, achromatic
illuminant. Therefore, the changes in predic:ed color appearance under other illuminants and using other back-




grounds will be due to the biological nctwork, not the PDP.,

Our results so far indicate that the contrast within each color channel (as is apparently measured in V4 of
the visual cortex) is the most important parameter affecting color constancy and color contrast. This model
addresses how the contrast is used and what other information is needed.
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