
DEFENSE TECHNZCAL INFORMATION CENTER

Special Report
CMU/SEI-90-SR-3

- Carnegie-Mellon University

Software Engineering Institute

A Domain Analysis Bibliography
James A. Hess

William F_ Novak D TICRL iC T
Patrick C. Carroll PRtECT

Sholom G. Cohen I
* Robert R. Hollbau.h

Kyo C. Kang

/..A. Spencer Peterson

June1990

//

/.....................

/X''\44 4i\ " ~A

9,"--897

""~ ~ J 17"X

Ihe follow"n fsnf of ametra ' a VWe t a Mnel 0 s urs 10 Comply With tie faderal lw Thesia in cere 9a0~ee by Owe urtwl 1o assur OWa SO
people ame uedued hIn " drwy ~aid maNe Carnegiel Melon an mm"n pleca. Carnege Meson #selie S0 riclude people wiouA regard IotfA olor MaOO-
origi, sex, tieeida religon, and, rosry. Cast, Age. %oloa OWA or swuM ore talon.

Carneg" Melon UAVtesy donnaK decsflwmie aridw Carnege Mdllon Unersty Is repted no So deecrifnal in adtwmes and mnipoyni on me besn of rwAc
coWo neti orr, so or handbap i vO~ of TV@e Via Ofe CMi RVg* Act of 1964 Too IX ofls EdwJmakrI Andmexrets ol 1072 a" Setw fIA of me
Pefisodiow Ac o 1973 of CWes f, Sela.o cal lowSe or nvOt. orders. In addeion, Carnege Me~o donnaM doisome iIn aftilemoms ari emplooymemu on
Vie beW o gio gc W. ancsry, lef. age, veisr slA%* Or sexual orewaborl in Yissio of any lsdergl, ise, or loccM faws or execuiv orders Inqulnes; concern-
Ing appicoion of he polic **Ae be deld to lie PrObosa Carnegie Mellon Urirreraify. W00 Fortes &onus. PhtBurgh, PA 15213, lelepfirr (412) 211&684 or the
Ve Preeldeut for Enrolment. Carnegi Mellon Um wft? W00 Forte A"en Pffturgh. PA 16213, teione (412) 268-2056

Special Report
CMU/SEI-90-SR-3

June 1990

A Domain Analysis Bibliography

James A. Hess
William E. Novak
Patrick C. Carroll

Sholom G. Cohen
Robert R. Holibaugh

Kyo C. Kang
A. Spencer Peterson

Domain Analysis Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright @ 1990 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
saentific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn FDRA. Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly. National Techn-.al Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents
1. Introduction 1

1.1. Selection Criteria 1
1.2. Using the Bibliography 2

2. Bibliography 5
3. Classification of References 33
Appendix I. Alphabetical by Author's Name 37
Appendix II. Chronological 45
Appendix Ill. Alphabetical by Organization/Project 49
Index 55

&ooqggton ?r

i Dv
CMU/S' *J , ' -

CMU/SEI-90-SR-3I

1. Introduction
This document presents a bibliography of references on a comparatively new discipline called domain

analysis. This discipline defines a process to identify and represent the relevant information in a domain
(a set of systems which share common capabilities). The information is derived from:

1. the study of existing systems and their development histories

2. knowledge captured from domain experts

3. underlying theory

4. emerging technology

Domain analysis has received considerable attention since the early 1980s. This interest stems from
the fact that the application of domain analysis is now believed to be part of the foundation upon which a
successful and systematic program of software reuse can be built. This foundation is achieved by
capturing and preserving the information and expertise associated with an application domain. Domain
analysis allows this information to be reused in future developments in the form of application-specific
tools and reusable software models, architectures, and components.

This bibliography has been compiled as a part of the work on the Domain Analysis Project at the
Software Engineering Institute. The bibliography's purpose is to provide an historical perspective on the
field as well as a necessary background for further work in the discipline.

In addition to the appropriate publication information for each document type, all citations include either
1) an abstract taken from the document itself, usually written by the author, or 2) an annotation written for
the document by the compilers of this bibliography. In most cases the author's abstract was used. These
abstracts and annotations should help the reader to determine if there is interest in a given citation.
Various indices are also included to simplify the task of locating a particular reference or a range of
articles in a subject area.

1.1. Selection Criteria
The amount of available literature describing software reuse in general, and domain analysis in

particular, has increased dramatically over the past 7 to 10 years and continues to grow. Due to this
growth it is impossible to call any bibliography "complete" by the time it is published; in fact, it is unlikely to
include every relevant publication while the bibliography is being researched. The authors applied the
following questions to each potential reference:

1. Does the reference explicitly discuss an aspect of domain analysis, such as domain
engineering, domain knowledge or expertise, domain modelling, domain-specific
architectures, domain analysis methodologies, etc.?

2. Is the reference very closely related to an aspect of the domain analysis process, especially
one related to software reuse, although it might not refer to it as such?

3. Is the reference a seminal historical reference upon which later work in domain analysis
was based?

4. Does the reference not belong to another well-defined field of research outside of domain
analysis?

It is important to determine if a reference primarily belongs to a field of the literature separate from
domain analysis. This is pertinent to many articles, such as those concerning the formal specification of

CMU/SEI-90-SR-3

software systems, or knowledge acquisition/representation for expert systems. This is a gray area of

overlap, as both formal specification and the representation of knowledge are relevant to domain analysis.

1 Some of the most significant articles in these related areas are included in the bibliography. These

considerations helped to pare down a large collection of tangentially relevant material to a more useful set

of references that are directly applicable to domain analysis.

Finally, some otherwise relevant citations were excluded from the bibliography if they were
1. proprietary to an organization,

2. copies of slide presentations (which are typically unpublished and difficult to understand
without the accompanying talk),

3. difficult to obtain, or

4. superseded by later, better defined work of the same author(s).

If an appropriate publication has been omitted from this bibliography please contact the authors at:

Domain Analysis Project
Software Engineering Institute
Carnegie-Mellon University
Pittsburgh, PA 15213-3890

1.2. Using the Bibliography
This document contains the following sections:

1. The set of full document citations (Chapter 2)

2. A table showing the major subject classifications of the references (Chapter 3)

3. An alphabetical cross reference by author's name (Appendix I)

4. A chronological ordering by year of publication (Appendix II)

5. An alphabetical cross reference by project and sponsor names (Appendix Ill)

6. An alphabetical index listing the citation key and the page number where the full citation
may be found (Index)

The classification table in Chapter 3 divides the citations into six subject categories:
1. information gathering

2. domain analysis methodology

3. tools and environment support

4. representation (domain models and software architectures)

5. application domains

6. management issues

Within this bibliography the citation key (such as PRIE89C) is used as a unique identifier of the
document. If such a key is found in (for example) the classification table, that same key can be referenced

1 In fact, the differences between knowledge acquisition for use in domain analysis and an expert system are more in the use of

the knowledge than in the analysis process itself.

2 CMU/SEI-90-SR-3

in the index to find the page number for the full text citation.

For those readers who are unfamiliar with domain analysis, the following references may provide a

suitable starting point:

" GILR89A: Impact of Domain Analysis on Reuse Methods

" KANG89A: Results from Domain Analysis Working Group

" PRIE89A: Domain Analysis Tutorial

The following references may be of interest to those readers who require information on different

methodologies that may be applied to the domain analysis process:

" GILR89A: Impact of Domain Analysis on Reuse Methods

" PRIE87C: Domain Analysis for Reusability

CMUISEI-90-SR-3 3

4 CMUISEI-90-SR-3

2. Bibliography
[ADEL85A] Beth Adelson & Elliot Soloway.

The Role of Domain Experience in Software Design.
IEEE Transactions on Software Engineering, vol. SE-1 1, no. 11: pp. 1351-1360,

November, 1985.
IEEE. Reprinted with permission.

Annotation: In the experiment described in this article three expert and two novice
designers were presented with both familiar and nfamiliar design problems.
The designers were given three different types of systems. The designers
might or might not have had previous experience with the domain of the
object or the actual object. The designers' behavior indicated how tools
should be designed to work for people of varying domain knowledge.
Behavior was monitored and the following results observed: Behavior: (1)
Forming mental models to simulate the design in progress, (2) Simulating
the model to integrate familiar materials in novel ways and check behavior of
the model, (3) Systematic expansion to allow for smooth functioning of the
simulation, (4) Making implicit constraints explicit so as to allow for
simulation, (5) Labeling plans so previous solutions could be reused, and (6)
Note-taking to allow for systematic expansion without overlooking important
concerns not at the current level of detail. Factors affecting behavior: (1)
Simulation and note-taking happened when the designer had a certain level
of prior knowledge of the domain, (2) Designers with inadequate domain
knowledge were quick to constrain their designs so as to get a sufficiently
specific model so the simulation could go ahead, and (3) Designers who had
previously planned in their assigned domain used existing plans rather than
formulating constraints, simulating and taking notes.

[ALEX86A] James H. Alexander, et al.
Knowledge Level Engineering: Ontological Analysis.
In Proceedings of the Fifth National Conference on Artificial Intelligence, Pages

963-968. AAAI, August, 1986.
American Association for Artificial Intelligence. Reprinted with permission.

Abstract: Knowledge engineering suffers from a lack of formal tools for
understanding domains of interest. Current practice relies on an intuitive,
informal approach for collecting expert knowledge and formulating it into a
representation scheme adequate for symbolic processing. Implicit in this
process, the knowledge engineer formulates a model of the domain, and
creates formal data structures (knowledge base) and procedures (inference
engine) to solve the task at hand. Newell (1982) has proposed that there
should be a knowledge level analysis to aid the development of Al systems
in general and knowledge-based expert systems in particular. This paper
describes a methodology, called ontological analysis, which provides this
level of analysis. The methodology consists of an analysis tool and its
principles of use that result in a formal specification of the knowledge
elements in a task domain.

[ALLE87A] Bradley P. Allen & Peter L. Holtzman.
Simplifying the Construction of Domain-Specific Automatic Programming Systems: The

NASA Automated Software Development Workstation Project.
In Proceedings of the Space Operations Automation and Robotics Workshop, Pages

407-410. NASA, Johnson Space Center Houston, TX, August, 1987.
Abstract: We provide an overview of the Automated Software Development

Workstation Project, an effort to explore knowledge-based approaches to
increasing software productivity. The project focuses on applying the
concept of domain-specific automatic programming systems (D-SAPSs) to
application domains at NASA's Johnson Space Center. We describe a

CMU/SEI-90-SR-3 5

version of a D-SAPS developed in the Phase 1 of the project for the domain
of Space Station momentum management, and discuss how problems
encountered during its implementation have led us to concentrate our efforts
on simplifying the process of building and extending such systems. We
propose to do this by attacking three observed bottlenecks in the D-SAPS
development process through the increased automation of the acquisition of
programming knowledge and the use of an object oriented development
methodology at all stages of program design. We discuss how these ideas
are being implemented in the Bauhaus, a prototype CASE workstation for
D-SAPS development.

[ARAN88A] Guillermo F. Arango.
Domain Engineering for Software Reuse.
PhD thesis, University of California at Irvine, 1988.

Abstract:: A precondition for software reuse is the existence of reusable
information. There is a lack of systematic methods for producing reusable
information. This dissertation proposes a method for practical domain
analysis, defined as the process of identification, acquisition, and evolution
of information to be reused in the construction of software systems for
restricted classes of applications, or problem domains. The method for
domain analysis is presented in the context of a domain engineering
framework. A framework is not a theory and the paper does not offer a
detailed canonical scheme of how every type of domain analysis is or ought
to be done.

[ARAN88B] Guillermo F. Arantj, .
Evaluation of a Reuse-Based Software Construction Technology.
In Proceedings of the Second IEE/BCS Conference: Software Engineering 88, Pages

85-92. lEE, London, UK, July, 1988.
Annotation: The author has been involved with Draco, a technology for software

construction based on the reuse of software components. He shares some
of the lessons learned from the development and evaluation of Draco, and
discusses the features that condition the transfer and adoption of domain-
based technologies. He presents an historical account of the evolution of the
Draco technology and distinguishes the paradigm for reuse-based software
construction from the technological assembly of the Draco system.

[ARAN88C] Guillermo F. Arango & Eiichi Teratsuji.
Notes on the Application of the COBWEB Clustering Function to the Identification of

Patterns of Reuse.
Technical report ASE-RTP-87, ICS, University of California, Irvine, CA, July, 1988.

Abstract: This report illustrates aspects of the application of a clustering function
to uncover regularities among classes of applications in restricted problem
domains. Clustering is used as a means to identify reusable patterns of first-
order information. Patterns are represented in terms of classification trees
which are used for two purposes, (1) for identifying 'packages' containing
reusable patterns, and (2) to drive the elicitation of information from experts.
The motivation for choice of this technique and the context for its application
is discussed in [ARAN88A]. The next two sections provide some context.
This report is not intended to be self-contained, but is one component in a
collection.

[ARAN89A] Guillermo F. Arango.
Domain Analysis - From Art Form to Engineering Discipline.
In Proceedings of the Fifth International Workshop on Software Specification and

Design. Pages 152-159. IEEE Computer Society, Washington, DC, May, 1989.
Abstract: A precondition for reusability in software development is the existence

of reusable resources. There is a lack of systematic methods for producing

6 CMU/SEI-90-SR-3

reusable information. Within the 'reuse community', there is belief that
domain analysis will facilitate the identification and capture of reusable
abstractions for restricted classes of applications. This belief is grounded on
successful experiences conducted by some very capable individuals.
However, for domain analysis to become a practical technology we need: (1)
to understand the conceptual foundations of tha process; (2) to produce an
unambiguous definition in the form of specific techniques; and, (3) to provide
adequate support tools. In this paper we advance a conceptual framework.
We do not offer a detailed, canonical, scheme of how every type of domain
analysis is or ought to be done. We have identified a set of principles
providing coherence to a diverse set of findings about domain analysis.
Within this framework we have explored techniques for practical domain
analysis. The framework is useful for comparing between different
approaches to domain analysis, and can be used as guidance ir developing
other instances of methods and representations.

[ASDJ88A] Maryam Asdjodi.
Knowledge-Based Component Composition: An Approach :o Software Reusability.
PhD thesis, University of Alabama at Huntsville, 1988.

Annotation: This research focused on the component composition approach as a
high-level method for software generation. A pr-)totype system was designed
for semi-automatic generation of software for an application domain, using
the knowledge of the domain and a library of objects, functions, and
templates. The components of the prototype system include user interface,
library, library interface, text generator, user's environment table, object
transformation base, and a pool of instantiators.

[BAIL88B] Sidney C. Bailin.
Semi-Automatic Development of Payload Operations Control Center Software.
Report prepared for NASA Goddard Space Flight Center, Computer Technology

Associates, Laurel, MD, October, 1988.
Abstract: This report summarizes the results of a domain analysis effort of

Paylcad Operations Control Center (POCC) software done for NASA
Goddard Space Flight Center. It presents the results of the domain analysis,
and proposes an approach to semi-automatic development of POCC
Application Processor (AP) software based on these results. The domain
analysis enabled us to abstract, from specific systems, the typical
components of a POCC AP. We were also able to identify patterns in the
way one AP might be different from another. These two perspectives --
aspects that tend to change from AP to AP, and aspects that tend to remain
the same -- suggest an overall approach to the reuse of POCC AP software.
We found that different parts of an AP require different development
technologies. We propose a hybrid approach that combines constructive and
generative technologies. Constructive methods provide for automated
generation of software from specifications in a very high-level language
(VHLL). In the next phase of our effort we propose to demonstrate how
these technologies can be combined to facilitate AP development.

[BAIL89C] Sidney C. Bailin.
Generic POCC Architectures.
Report prepared for NASA Goddard Space Flight Center, Computer Technology

Associates, Laurel, MD, April, 1989.
Abstract: This document describes a generic Payload Operations Control Center

(POCC) architecture based upon current POCC software practice, and
several refinements to the architecture based upon object oriented design
principles and expected developments in teleoperations. The current
technology generic architecture is an abstraction based upon close analysis
of the ERBS, COBE, and GRO POCCs. A series of three refinements is

CMU/SEI-90 .SR-3 7

presented: these may be viewed as an approach to a phased transition to
the recommended architecture. The third refinement constitutes the
recommended architecture, which, together with associated rationales, will
form the basis of the rapid synthesis environment to be developed in the
remainder of this task. The document is organized into two parts. The first
part describes the current generic architecture using several graphical as
well as tabular representations or 'views'. The second part presents an
analysis of the generic architecture in terms of object oriented principles. On
the basis of this discussion, refinements to the generic architecture are
presented, again using a combination of graphical and tabular
representations.

[BAIL89D] Sidney C. Bailin.
The KAPTUR Environment: An Operations Concept.
Report prepared for NASA Goddard Space Flight Center, Computer Technology

Associates, Laurel, MD, June, 1989.
Annotation: This report presents a high-level specification and operations concept

for KAPTUR- a development environment based on Knowledge Acquisition
for Preservation of Trade-offs and Underlying Rationales. KAPTUR is
intended to do what its name implies: to capture knowledge that is required
or generated during the development process, but that is often lost because
it is contextual (i.e., it does not appear directly in the end-products of
development). Such knowledge includes issues that were raised during
development, alternatives that were considered, and the reasons for
choosing one alternative over others. Contextual information is usually only
maintained as a memory in a developer's mind. As time passes, the
memories become more vague and individuals become unavailable, and
eventually the knowledge is lost. KAPTUR seeks to mitigate this process of
attrition by recording and organizing contextual knowledge as it is generated.
KAPTUR also seeks to facilitate the application of knowledge to future
developments. From the relations between past and ongoing work,
developers can fortify their understanding of the current problem and its
possible solutions.

[BARS85A] David R. Barstow.
Domain-Specific Automatic Programming.
IEEE Transactions on Software Engineering, vol. SE-1 1, no. 11: pp. 1321-1336,

November, 1985.
IEEE. Reprinted with permission.

Abstract: Domain knowledge is crucial to an automatic programming system and
the interaction between domain knowledge and programming at the current
time. The PhiNIX project at Schlumberger-Doll research has been
investigating this issue in the context of two application domains related to
oil well logging. Based on these experiments, we have developed a
framework for domain-specific automatic programming. Within the
framework, programming is modeled in terms of two activities, formalization
and implementation, each of which transforms descriptions of the program
as it proceeds through intermediate states of development. The activities
and transformations may be used to characterize the interaction of
programming knowledge and domain knowledge in an automatic
programming system.

[BATO88A] Don S. Batory.
Building Blocks of Database Management Systems.
Technical report TR-87-23, University of Texas, Austin, TX, February, 1988.

Abstract: We present a very simple formalism based on parameterized types and
a rule-based algebra to survey and identify the storage structure and query
processing algorithm building blocks of database management systems. We

8 CMU/SEI-90-SR-3

demonstrate building block reusability by showing how different
combinations of a few blocks yields the structures and algorithms of three
different systems, namely System R (centralized), R* (distributed), and
GRACE (database machine). We believe that codifying knowledge of DBMS
implementations is an important step toward a technology that assembles
DBMSs rapidly and cheaply from libraries of pre-written components.

[BATO88B] Don S. Batory.
Concepts for a Database System Compiler.
Technical report TR-88-01, University of Texas, Austin, TX, January, 1988.

Abstract: We propose a very simple formalism based on parameterized types and
a rule-based algebra to explain the storage structures and algorithms of
database management systems. Implementations of DBMSs are expressed
as equations. If all functions referenced in the equations have been
implemented, the software for a DBMS can be synthesized in minutes at
little cost, in contrast to current methods where man-years of effort and
hundreds of thousands of dollars are required. Our research aims to develop
a DBMS counterpart to today's compiler-compiler technologies.

[BATO88C] Don S. Batory, J. R. Barnett, J. Roy, B. C. Twichell & Jorge F. Garza.
Construction of File Management Systems from Software Components.
Technical report TR-88-36, University of Texas, Austin, TX, October, 1988.

Abstract: We present an approach for developing building-block technologies for
mature software domains. It relies on in-depth studies of existing systems,
published algorithms and structures to discern generic architectures for large
classes of systems. An architecture is a template in which building-blocks
can be plugged. Interfaces are standardized to make blocks
interchangeable. In this paper we describe our most recent prototype, a file
management system (FMS) synthesizer. The synthesizer enables a
customized FMS to be assembled from pre-written components in minutes at
little cost. Writing the same FMS from scratch requires man-years of effort
and hundreds of thousands of dollars.

[BENN84A] James S. Bennett.
ROGET: Acquiring the Conceptual Structure of a Diagnostic Expert System.
In Proceedings of the IEEE Workshop on Principles of Knowledge Based Systems,

Pages 83-88. IEEE, Washington, DC, December, 1984.
Abstract: This paper describes ROGET, a knowledge-based system that assists a

domain expert with an important design task encountered during the early
phases of expert system construction. ROGET conducts a dialogue with the
expert to acquire the expert system's conceptual structure, a representation
of the kinds of domain-specific inferences that the consultant will perform
and the facts that will support these inferences. ROGET guides this dialogue
on the basis of a set of advice and evidence categories. These abstract
categories are domain independent and can be employed to guide initial
knowledge acquisition dialogues with experts for new applications. This
paper discusses the nature of an expert system's conceptual structure and
describes the organization and operation of the ROGET system that
supports the acquisition of conceptual structures.

[BIGG88B] Ted J. Biggerstaff.
The Nature of Semi-Formal Information in Domain Models.
Technical report STP-289-88, Microelectronics and Computer Technology Corporation,

Austin, TX, September, 1988.
Annotation: This article describes several levels of abstraction, from code to

conceptual abstraction, in domain models. The lowest level is code, whose
purpose is the execution of instructions. It is an implementation-specific
abstraction that is constrained mostly by the programming language used. It

CMU/SEI-90-SR-3 9

is formal object and exists in an operational form. The next abstraction is
software engineering design, whose purpose is to abstract away detail. It is
weakly related to informal concepts, and is also implementation specific. It is
constrained by the language used and the application domain. It is
considered to be a semi-formal object that is abstractly operational, and
presents the system in reduced detail. The third abstraction is generalized
software engineering design, whose purpose is also to abstract away detail.
It is also weakly related to informal concepts, and is at a sufficiently high
level to provide widely reusable designs. The last is conceptual abstraction,
whose purpose is to strongly relate to informal concepts. Conceptual
abstractions are not implementation specific, have an object-like structure,
and assume a non-operational (prescriptive) form. The report also describes
the use of informal knowledge in design recovery and briefly describes the
DESIRE system they are constructing.

[BORG84A] Alexander Borgida, John Mylopoulos & Harry K. T. Wong.
Generalization/Specialization as a Basis for Software Specifications,
On Conceptual Modeling, Pages 87-117. Springer-Verlag, New York, NY, 1984.

Annotation: The paper describes a software specification methodology based on
the notion of concept specialization. The methodology, which is useful for
information systems, applies uniformly to the various components of these
systems, such as data classes, inheritance, transactions, exceptions, and
user interfaces (also called scripts). Its goal is the systematic and structured
description of highly detailed world models, where concepts occur in many
variations. An example from the domain of university information systems is
used to illustrate and motivate the approach. The paper's key point is that
generalization should be used as a cornerstone in designing data-intensive
applications. Generalization hierarchies help the designer organize the
process of gathering detail and integrating it into a coherent information
system.

[BORG85A] Alexander Borgida.
Features of Languages for the Development of Information Systems at the Conceptual

Level.
IEEE Software, vol. 2, no. 1: pp. 63-73, January, 1985.

Annotation: The fundamental observation underlying this article is that an
information system can be viewed as a model of the real world. Information
systems actually deal with the concepts that guide the way we think of the
world. They are conceptual models. To express the information in a
conceptual model, we need a language. Traditional languages are based on
one of several data models which are more appropriate for modeling the way
data are stored and accessed in the computer than the concepts underlying
them. Because of this, there has been considerable research into semantic
data models which allow conceptual models to be developed more
conveniently. In conceptual model languages (CMLs), an object can exist
without having a unique identifier and yet be distinct from other objects. This
is in contrast with the relational model, where an object cannot be stored
without a primary key. The author goes on to describe how to do conceptual
modeling of entities and associations and contrasts it with the traditional
approach to modeling. He discusses additional features of CMLs and shows
how they can be used to model the dynamic aspects of an enterprise. He
finishes by discussing computer aids associated with CMLs.

[BRUN88A] Glenn Bruns & Colin Potts.
Domain Modeling Approaches to Software Development.
Technical report STP-186-88, Microelectronics and Computer Technology Corporation,

Austin, TX, June, 1988.
Annotation: This paper attempts to define several terms that are fundamental to

10 CMU/SEI-90-SR-3

domain modeling, which is a larger activity that includes domain analysis. An
overview is made of five soft-are design approaches and their relation to
domain modeling: Booch's object oriented design, JSD, Draco, Gist, and
RML. Each design approach is evaluated through a series of questions for
its capabilities in (1) modeling primitives, (2) domain analysis, (3)
analysis/validation of the domain model, (4) specification, and (5)
implementation. The same example, one of scheduling meetings among
people with arbitrary schedules, is used for comparison throughout. The
paper briefly discusses two additional systems which relate domain modeling
to artificial intelligence knowledge acquisition, Fickas' KATE, and the MIT
Requirements Apprentice. Finally, some conclusions are made about the
general nature of domain abstraction mechanisms.

[CARL87A] Rick Carle.
Reusable Software Components for Missile Applications.
In Proceedings: Tenth Minnowbrook Workshop on Software Reuse, Syracuse

University and University of Maryland, Blue Mountain Lake, NY, July, 1987.
Abstract: During 1986, Raytheon Missile Systems Division conducted an

independent research project on the subject of reusable software
components for missile applications. The objective was to develop and
model the requirements for a software composition system based on
reusable components for a software composition system based on reusable
components for a limited application domain, missile systems software. A
domain analysis was conducted: Missile Systems Division projects were
studied and reusable software components identified. A model of a reusable
software library was seeded with these components, some library access
tools were built, and the concept was demonstrated.

[COHE89A] Joel Cohen.
Software Reuse for Information Management Systems.
In Position Papers of the Reuse in Practice Workshop, Software Engineering Institute,

Pittsburgh, PA, July, 1989.
Annotation: This position paper discusses the Imagery Information Management

System (IIMS) Reuse project. To reduce the cost of building this type of
complex information management system the decision was made to produce
a domain model for these applications, a generic architecture, a
classification scheme for storing reusable components, and a populated
library of such components. In doing so the project would evaluate and
document several aspects of the process and investigate tools and
techniques for applying reusable software. The domain analysis
methodology used was that developed by Gish and Prieto-Diaz. The GTE
ALS system was used to store the resulting components. The work
performed was done at a high level to maximize the breadth of experience.
Some conclusions about the domain analysis process are presented, and
some recommendations are made for improvements in future work.

[DIET87A] Scott R. Dietzen & William L. Scherlis.
Analogy in Program Development,
The Role of Language in Problem Solving 2, Pages 95-118. North Holland, 1987.

Abstract: Consensus seems to be emerging concerning new process models for
knowledge-based programming tools; surprisingly little progress has been
made, however, in understanding the nature of the programming knowledge
that is to be represented and organized in these tools. We approach this
question by considering the role of past experience in programming,
including immediate past experience, as applied to program modification,
and more remote experience, as applied to new programming problems. It is
necessary to represent this experience in a way that truly permits reuse of
designs, without forcing direct reuse of code or even abstracted code. We

CMU/SEI-90-SR-3 11

suggest that this can be achieved by considering program derivations, which
represent idealized program design histories. We illustrate how abstractions
on this kind of structure can support a rich space of generalizations and
analogies, and we speculate on how program derivations might be
represented in a semantically based programming tool.

[DIPP89B] Richard S. D'lppolito.
Using Models in Software Engineering.
In Proceedings of Tri-Ada '89, Pages 256-265. Association for Computing Machinery,

New York, NY, October, 1989.
Abstract: The Software Engineering Institute (SEI) has participated in several

projects in which the focus was on helping contractors make use of good
software engineering methods and Ada. During this participation we have
learned several important lessons about the development of software for
both large-scale and embedded systems. We have noticed that after a long
period of time where the focus on productivity generated searches for new
methodologies, tools, and ways to write reusable software, the emphasis
has shifted to quality, in recognition of the fact that the new methods and
tools were not adequate to address the problems occurring at the design
level. We propose that the industry instead concentrate the search for the
old methods still in use in the other branches of engineering, and apply
those methods to the software problem.

[DOWL89A] S. W. Dowle.
Domain Modelling for Requirements Specification.
In Proceedings of the Third International Conference on Command, Control,

Communications and Management Information Systems, Pages 1-7. lEE, London,
UK, May, 1989.

Abstract: The Logical Systems Description (LSD) project has been established to
produce requirements specifications of future submarine command systems.
This paper describes one particular aspect of this strategy, namely the
development and use of reference models. The paper begins by outlining
the LSD project strategy and goes on to describe why reference models are
necessary. The development of explicit reference models takes place during
domain analysis and is dealt with in some detail, describing the method used
together with its application by the LSD project to produce five domain
specific reference models. The use of these models by the project is
illustrated, taking as an example the elicitation activity. Finally the LSD
project experience is reviewed.

[DUBO86A] Eric Dubois, et al.
A Knowledge Representation Language for Requirements Engineering.
Proceedings of the IEEE, vol. 74, no. 10: pp. 1431-1444, October, 1986.

Abstract: Requirements engineering, the phase of software development where
the users' needs are investigated, is more and more shifting its concern from
the target system towards its environment. A new generation of languages is
needed to support the definition of application domain knowledge and the
behavior of the universe around the computer. This paper assesses the
applicability of classical knowledge representation techniques to this
purpose. Requirements engineers insist, however, more on natural
representation, whereas expert systems designers insist on efficient
automatic use of the knowledge. Given this priority of expressiveness two
candidates emerge: the semantic networks and the techniques based on
logic. They are combined in a language called the ERAE model, which is
illustrated on examples, and compared to other requirements engineering
languages.

12 CMU/SEI-90-SR-3

[FICK87B] Stephen Fickas.
Automating the Specification Process.
Technical report CIS-TR-87-05, University of Oregon, Eugene, Oregon, December,

1987.
Abstract: Recent research results in formalizing and automating software

specification move us closer to a computer-based specification assistant. In
this paper, we review three projects that we believe are particularly relevant
to this goal. For each project we describe first the underlying model, and
second our efforts to study it by construction of a prototype tool based on the
model. Finally, we discuss incorporating the results of our study into a
knowledge-based system that assists in the construction of a formal
specification.

[FINK88A] Anthony Finkelstein.
Re-use of Formatted Requirements Specifications.
Software Engineering Journal, vol. 3, no. 5: pp. 186-197, September, 1988.

Annotation: The article describes techniques of searching for reusable
requirements based on analogical reasoning. While the article is closely tied
to a tool, it does present several techniques for formatting and isolating
reusable requirements. The article provides background for representation of
domain models and information for library organization.

[FISH86A] Gary Lee Fisher.
A Software Architecture for Strategic Management Support Systems Utilizing

Interactive Graphics.
PhD thesis, University of Arizona, 1986.

Abstract: The author developed a software architecture for strategic-management
support-systems, with underlying principle that new additions to the library of
planning tools in such support systems should not have to be new
programming efforts. The current status of group decision support is
surveyed and the lack of a software architecture for such systems is noted.
The software architecture that has been developed is intended to guide the
development of such support systems and is based on a library of
procedural abstraction called elemental-engines. Selected sets of
elemental-engines are assembled into synthesized support drivers which
support an even higher level of abstraction, that of the generic logic
supporting a family of planning tools. Thus, a family of planning tools may be
expanded by the simple creation of text files, containing the dialogue of the
new tool. The work looks first at the nature of strategic management
decision-making, then to work done in group decision support systems. A
framework for software development, particularly in the area of list-
processing is presented. A data structure to support such list processing is
developed and discussed. An example of the software architecture is
presented via the code for the initial planning-tool developed. This code was
then generalized into the library of elemental-engines and a set of
synthesized support drivers. This library of planning tools, built around the
architecture is described, and the use of the tool in a planning session is
evaluated. Some possible extensions with respect to a decision laboratory
are suggested. The laboratory incorporates features developed in the
evolution of using computers to support human decision-making, with
software written according to the architecture presented.

[FREE87A] Peter Freeman.
A Conceptual Analysis of the Draco Approach to Constructing Software Systems.
IEEE Transactions on Software Engineering, vol. SE-1 3, no. 7: pp. 830-844, July,

1987.
IEEE. Reprinted with permission.

Annotation: Draco is a black box that takes system specifications written in high-

CMU/SEI-90-SR-3 13

level languages (domain languages) and produces executable (or
compilable) code. It can be viewed as: (1) a system constructor that uses
pre-existing components, (2) a generator of program generators, or (3) a
transformer of specification into executable code. Draco strives to meet
external objectives (such as cost, size, etc.) through attainment of software
engineering principles (i.e., abstraction, cohesion, etc.) and shows their
relationship to Draco mechanisms that include multiple high-level languages,
components and attributes, transformation, and refinements.

[GIDD84A] Richard V. Giddings.
Accommodating Uncertainty in Software Design.
Communications of the ACM, vol. 27, no. 5: pp. 29-35, May, 1984.

Annotation: In this article, the author claims the waterfall model of the software
life-cycle does not adequately model the development process for many
classes of software. He proposes a new scheme for classifying software
based on the interaction between the 'universe of discourse' (the class of
problems to be computed) and the actual software produced. Based on the
classification scheme, he divides software into two classes: domain
dependent and domain independent. Domain independent software has the
following characteristics: (1) Developed under a contract with predetermined
specifications; (2) No ongoing responsib~lity for the developer other than bug
fixes; and (3) Possible limited interdependence between the software and
the universe of discourse. Domain dependent software is further divided into
two classes called experimental and embedded. Domain dependent
experimental software is characterized by intrinsic uncertainty about the
universe of discourse whereas domain dependent embedded software is
characterized by an interdependence between the universe of discourse and
the software. The author goes on to suggest a model for the domain
dependent software life-cycle with a well-defined structure and products.

IGILR89A] Kathleen A. Gilroy, Edward R. Corner, J. Kaye Grau & Patrick J. Merlet.
Impact of Domain Analysis on Reuse Methods.
Final Report C04-087LD-0001 -00, U.S. Army Communications-Electronics Command,

Ft. Monmouth, NJ, November, 1989.
Abstract: The purpose of this effort is to analyze the domain analysis process and

its relationship to the development and use of reusable components. It
includes an identification of the critical issues and risks involved throughout
the process. Capabilities of automated tools which could be used to perform
various aspects of a domain analysis are also investigated. Finally, the
study provides a set of guidelines for conducting a domain analysis for
embedded systems. The initial work performed under this effort is a survey
of existing and emerging methods and tools for performing a domain
analysis and applying its results. Based on the benefits and shortcomings of
existing approaches, alternative approaches to domain anaiysis for Army
Ada applications are analyzed, and the most promising selected for further
development. A consistent, cohesive, and complete methodology for domain
analysis which addresses the major issues is presented. The postulated
methodology for domain analysis is based on an object oriented paradigm. A
three-phased approach is recommended for domain analysis: (1) Model the
domain, (2) architect the domain, and (3) develop software component
assets. A new concept introduced is adaptation analysis, i.e., the
identification of differences among application systems in the domain.
Automated capabilities which support the domain analysis process are
proposed. These capabilities address the application of existing tools to
domain analysis, as well as future tool developments. This effort identifies
and addresses the key technical areas which affect the automation of
domain analysis. These areas include knowledge acquisition and

14 CMU/SEI-90-SR-3

knowledge-based guidance, domain languages and language-based
processing, information models and data storage and retrieval, and tool and
environment integration.

[GOMA90A] Hassan Gomaa.
A Domain Requirements Analysis and Specification Method.
Technical report, George Mason University, Fairfax, VA, February, 1990.
Draft.

Abstract: This paper describes a Domain Requirements Analysis and
Specification Method for analyzing and specifying a family of systems. This
method addresses the issues of how to represent similarities and differences
in the application domain. It supports a method for generating target system
specifications given the requirements of the individual target system. The
goal is to provide a more effective way of managing system evolution and
addressing software reuse from a generation technology perspective. The
method is illustrated by means of an example.

[GOOD83A] Michael Goodell.
Quantitative Study of Functional Commonality in a Sample of Commercial Business

Applications.
In Proceedings of the Workshop on Reusability in Programming, Pages 279-286. ITT

Programming, Stratford, CT, September, 1983.
Abstract: This study offers a more precise account of the nature of functional

commonality in the commercial business application domain than has been
available so far. Sixty-four commercial program products were selected for
study. My goals were to (1) identify recurring program functions, (2) tabulate
their frequencies of occurrence, and (3) compare the function frequency
distributions of products designed for different kinds of industries and
applications. Frequency distributions were found to be roughly similar for all
groups, with reporting always predominating, followed by either file updating
or file building and copying functions.

[GREE88A] Sol J. Greenspan, Clement L. McGowan & M. Chandra Shekeran.
Toward an Object-Oriented Framework for Defining Services in Future Intelligent

Networks.
In Proceedings of the IEEE International Conference on Communications '88: Digital

Technology - Spanning the Universe, Pages 867-873. IEEE, New York, NY, June,
1988.
Abstract: The authors propose that an environment for defining services must be

domain-specific (as opposed to a general-purpose programming
environment). The cornerstone of such an environment is an explicit model
of the network-services domain. This domain model captures the object
universe of both the network capabilities and the user environment (e.g.,
line, call, customer), within which services are defined. A framework for
object-oriented conceptual modeling that applies knowledge representation
techniques from artificial intelligence is proposed as the basis. In this
framework, service behavior is defined in terms of the operations associated
with the domain model objects. This can accommodate basic service
elements (BSEs) mandated by open network architecture (ONA) plans.
Further, service definitions themselves are treated as reusable objects and
organized in a taxonomic hierarchy. The goal is to define new services via
extensive reuse that incorporates existing, well-tested service definitions.

[HARA89A] Mehdi T. Harandi & Mitchell D. Lubars.
Automating Software Specification and Design.
Technical report STP-001-89, Microelectronics and Computer Technology Corporation,

Austin, TX, January, 1989.
Abstract: Software specification and design can be viewed as parallel activities in

CMU/SEI-90-SR-3 15

which transmitted specifications are used to guide software design and the
state of the design provides feedback as to the quality of the specifications.
Such a paradigm can be realized with a user supplying the specifications
and a knowledge-based design assistant helping to generate the software
design from those specifications using a knowledge base of reusable design
schemas and refinement rules. IDeA was developed as a prototypical
knowledge-based design assistant to demonstrate the paradigm. This paper
describes the concepts of the paradigm and the features of IDeA.

[HRYC87A] Tomas Hrycej.
A KnowleOge-Based Problem-Specific Program Generator.
ACM SIGPLAN Notices, vol. 22, no. 2: pp. 53-61, February, 1987.

Abstract: A commercially relevant paradigm for a knowledge-based problem-
specific program generator is described. It is applicable to repeatedly
implemented software, particularly in the intermediate area between
exclusive and standard software. Not the first implementation, but the
repeated ones are supported using the 'problem-specific programming
knowledge collected' during the past implementations. The technical details,
as knowledge representation and functional component, are explained and
illustrated on an example. Finally, conditions for an efficient application of
the program generator are defined. The system can be developed at a
relatively low expense of several months.

[HUTC88A] J. W. Hutchinson & P. G. Hindley.
A Preliminary Study of Large-Scale Software Re-use.
Software Engineering Journal, vol. 3, no. 5: pp. 208-212, September, 1988.

Annotation: The article discusses a domain analysis performed by studying
existing software and determining whether components were reusable;
either as is, with modification, or not at all. The methodology is that of a
commonality study, examining existing software in light of its applicability to
later developments. The study used a cataloging scheme to catalog and
retrieve components. They could not attest to the success of their library
effort due to the small number of components and inadequate cataloging.

[ISCO88A] Neil Iscoe.
Domain-Specific Reuse: An Object-Oriented and Knowledge-Based Approach,
In Will J. Tracz, Software Reuse: Emerging Technology, Pages 299-308. IEEE

Computer Society, Washington, DC, 1988.
Annotation: This article describes previous work and current directions at the

University of Texas in software reuse within specific application domains.
Previous work includes a prototype configuration system for reconfigurable
databases, and a commercial screen and constraint system for
microcomputer applications. Currently a model of application domain
knowledge is being created for the purpose of specifying and generating
programs. The overall approach is based on an object-oriented style of
structuring, a visually-oriented, end-user interface, and a knowledge-based
mechanism for transforming requirements into primitive functions. The article
lays out a 9-step long-range research plan for addressing these issues and
discusses the approach for each step in detail. The steps are: (1) Create a
model of domain knowledge; (2) Implement the model; (3) Instantiate the
system for the library domain; (4) Specify and generate programs within the
domain; (5) Instantiate the system for another related domain; (6) Refine the
model; (7) Compare the instantiations; (8) Identify the characteristics and
traits that generalize across the domains, and (9) Identify the algorithms and
techniques that can be used across a class of domains.

16 CMU/SEI-90-SR-3

[ISCO89A] Neil Iscoe, James C. Browne & John Werth.
Generating Domain Models for Program Specification and Generation.
Technical report, University of Texas, Austin, TX, July, 1989.

Abstract: This paper describes a formalized domain modeling technique which we
have designed to represent relevant portions of the domain knowledge
required to specify and implement application program generators.
Successful application generators are always domain specific. Software
engineering of application generators and meta-generators must be based
on a characterization of domain knowledge which captures the relevant
application domain knowledge necessary for the paradigm. The operational
goal is to allow designers, who are neither computer programmers nor
domain experts, to construct application programs by declaratively
describing Pnd refining specifications for the programs that they wish to
construct. The focus is on a representation technique to support the meta-
level aspects of such a system- a generator for narrow domain application
program generators. A domain model generated using this technique is
based on classes that are composed of attributes defined in formal terms
that characterize an application domain. Unique to this technique is the
integration of domain-specific properties such as units, quantities,
granularity, qualitative scales, population parameters into a coherent system
of reusable attributes and classes. A system prototype, Ozym, has been
developed to experiment with domain model generation.

[JAWO90A] Allan Jaworski, Fred Hills, Thomas A. Durek, Stuart Faulk & John E. Gaffney.
A Domain Analysis Process.
Interim Report 90001-N (Version 01.00.03), Software Productivity Consortium,

Hemdon, VA, January, 1990.
Abstract: This paper describes a process for domain analysis, an approach to the

analysis and structuring of software requirements aimed at facilitation reuse
of software requirements, design, code, and test information across a
domain, a family of similar problems. Domain analysis is the critical front-end
activity associated with the Software Productivity Consortium's vision of
Synthesis, a process for software development that emphasizes the
automated generation of software systems from software components and
models designed for reuse. The major thesis of this paper is that, if we
develop standard high-level designs for software systems that are not likely
to change from implementation to implementation and routinely use them as
frameworks for structuring requirements and lower-level design knowledge,
then over time we will build up an infrastructure that supports reuse of
software.

[KANG89A] Kyo C. Kang, et al.
Results from Domain Analysis Working Group.
Reuse in Practice Workshop, Pittsburgh, PA.

Annotation: The working group focused on the formulation of a general domain
analysis model that could be accepted as a baseline by the software reuse
community. This paper describes the Pittsburgh Workshop Model of Domain
Analysis (PWMDA) which contains three parts: (1) a problem space, (2) a
solution space, and (3) a mapping between the two. The problem space
deals with principles, features, relationships, and analogies in the application
domain. The solution space deals with the issues, decisions, and
architectural components involved in implementing systems that match the
problem requirements. Architectural components may vary greatly in level of
detail from simple assertions to a detailed design description.

CMU/SEI-90-SR-3 17

[KANG89B] Kyo C. Kang.
Features Analysis: An Approach to Domain Analysis.
In Position Papers of the Reuse in Practice Workshop, Software Engineering Institute,

Pittsburgh, PA, July, 1989.
Abstract: A domain analysis was performed at the Software Engineering Institute

as part of a reuse experiment. The analysis was called features analysis
because of its heavy emphasis on the analysis of functional features. The
goal of the analysis was to identify and represent a generalized functional
model from which software requirements can be derived and based on
which reusability of components can be evaluated and classification of
components can be made. Some of the experiences from the analysis are:
(1) the domain analysis provided opportunities for experts to consolidate and
organize their domain knowledge and for non-experts to learn about the
domain, (2) analyzing the functional features was an effective way to
determine the product commonality and the scope of the domain analysis,
and (3) there is no adequate mechanism for representing a domain model to
support reuse through the requirements analysis phase. The purpose of the
domain analysis was to investigate the concept and feasibility, and there
was no 'formal' approach that was followed. A conceptual modelling method
which is based on the analysis of the 'universe of discourse' is proposed in
this paper as a domain analysis method.

[LATO89B] Larry Latour.
Issues Involved in the Content and Organization of Software Component Information

Bases: Interim Report.
Technical Report for U.S. Army CECOM , University of Maine, Orono, ME, May, 1989.

Abstract: We have been tasked to investigate new and innovative techniques for
organizing a database of reusable components. In this report we discuss
hypertext as a tool for describing taxonomies of Ada packages in order to
facilitate their reuse. Our basic premise is that the primary inhibitor to the
reuse of software components is understanding. We describe a component
as an information 'web' of attributes, containing specification,
implementation, and usage information. The hypertext model is used to
describe component information webs, alternate taxonometric structures
leading to these webs, and class information webs describing information
common across component webs. To better understand the content of
information webs we discuss a number of related topics such as the
relationship between design and reuse, the notions of context independent
and context dependent information, and the relationship of these notions to
domain analysis. Included is a description of a reuse experiment performed
at Maine using the Booch components.

[LEDB83A] Lamar Ledbetter.
Reusability of Domain Knowledge in the Automatic Programming System (phi).
In Proceedings of the Workshop on Reusability in Programming, Pages 97-105. ITT

Programming, Stratford, CT, September, 1983.
Abstract: There are two primary issues in software reusability. The first is the

ease of incorporating an existing software entity in new applications. In this
issue, the concerns are primarily with algorithm performance, linkage,
parameter typing and order, output values and side effects. The second
issue is the ability to define a computational problem or sub-problem and
retrieve the software entities which either solve the problem or can be easily
modified to solve the problem. This paper discusses the potential impact on
these software reusability issues of automatic programming systems which
operate on computational models defined in user domain terms.

18 CMUISEI-90-SR-3

[LEE88A] Kenneth J. Lee, et al.
An OOD Paradigm for Flight Simulators, 2nd Edition.
Technical report CMU/SEI-88-TR-30, Software Engineering Institute, Pittsburgh, PA,

September, 1988.
Annotation: This report presents a paradigm for object-oriented implementations

of flight simulators. A jet engine simulator was implemented. The approach
used to croate the simulator was to represent the various engine
components as objects. These objects then communicated in ways
analogous to thuse used among the different components of an actual jet
engine. This allowed the overall behavior of the engine to be accurately
simulated based on the theoretical engineering models for each of the
objects (i.e., burner, rotor, diffuser, etc.). The resultant paradigm produced is
in some sense a domain analysis for jet engines. Reusable code templates
were used to standardize the object interfaces, and contained the general
features and placeholders for the specific features of the objects. This report
represents work done on the Ada ShAmulator Validation Program (ASVP)
carried out by members of the technical staff at the Software Engineering
Institute (SEI).

[LUBA87A] Mitchell D. Lubars.
A Knowledge-based Design Aid for the Construction of Software Systems.
PhD thesis, University of Illinois at Urbana-Champaign, 1987.

Abstract: This thesis addresses the use of knowledge-based techniques in
providing high-level support for software design activities. A knowledge-
based refinement paradigm of software development is introduced that
alleviates some of the problems of the traditional software life-cycle. A
design system, IDeA, is presented as a prototypical environment that
supports this paradigm. Within IDeA, design knowledge is encoded in
schematic forms that abstract out the common design features across
related application domains. These design schemas represent design
families and provide significant potential for design reuse, since they can be
customized and refined to satisfy a particular user's design requirements.
This is accomplished through the application of specialization and
refinement rules that are associated with the schemas. Design schemas also
represent shared constraints and design decisions. This schema
representation is based on a notion of polymorphic data typing with multiple
constraints. IDeA supplements the knowledge-based techniques with a
schema selection strategy that facilitates user selection of design fragments.
In addition, constraint propagation and planning techniques provide support
for intelligent design activities. These techniques are integrated with other
support aspects, such as clerical, organizational, and analysis support, to
present IDeA as a complete environment for software design.

[LUBA88A] Mitchell D. Lubars.
A Domain Modeling Representation.
Technical report STP-366-88, Microelectronics and Computer Technology Corporation,

Austin, TX, November, 1988.
Abstract: A serious problem in most software development projects is that key

information fails to get recorded, and many other kinds of information are not
uniformly integrated. A possible solution to the problem is to evolve a model
of the software system that includes the relevant knowledge about its
development. It is conjectured that if all this information could be recorded,
its use would provide better quality software, facilitate communication
between software engineers, enhance software maintenance, and provide
software artifacts that are more reusable. This paper presents a domain
modelling representation (DMR) that represents a large portion of the
desired information.

CMU/SEI-90-SR-3 19

[LUBA88B] Mitchell D. Lubai-,.
Domain Analysis and Domain Engineering in IDeA.
Technical report STP-295-88, Microelectronics and Computer Technology Corporation,

Austin, TX, September, 1988.
Annotation: This paper describes an approach to domain analysis based on the

information contained in the IDeA knowledge bases. The information is
classified into six categories. The first category is properties about objects
(objects can be anything) in the domain. These properties are mainly
attributes describing the objects. The properties are arranged in a tree
structure which has the more abstract objects appearing higher in the tree.
The relations between the properties are derived from the context of the
domain. Data Types are described in terms of their properties and are
organized into a type lattice. The data type lattice is also used in classifying
and selecting design schemas. Design Schemas are abstract solutions for a
class of related design problems. Although not stated, these appear to be
organized into an abstraction hierarchy. Schema specialization rules are
mappings between an abstract design schema and a more specialized
design schema. Schema specializations are almost always associated with
the addition of requirements or design commitments beyond those implied
by the more abstract design schema. Schema refinement rules are
mappings between a design schema and a data flow desig.i that represents
the refinement or implementation of that schema. Refinement rules don't
change the level of abstraction. Type constraints are included in design
schemas to propagate property assignments of data types to other data
types that share the same abstract property class. The domain analysis
process is defined as a set of seven steps and the domain engineering
process is defined as a set of nine steps.

[MANO88A] Nobuoki Mano.
Modeling of Data-Processing Software for Generating and Reusing Their Programs.
In Proceedings of the 10th International Conference on Software Engineering, Pages

231-240. IEEE, New York, NY, April, 1988.
Annotation: A modeling scheme named S-model (semantic model) is proposed,

which is based on a uniform object-relationship formalism. S-model
combines notions from logic, set theory, and abstract syntax and covers a
wide range of information on file-processing and data-structure-manipulating
software. With the procedural algorithms and problem-solving capability of
the S-model system, it is possible to generate and reuse programs in various
fields.

[MAUR88A] John Mauri, Celeste N. Anton & Mark L. McLeod.
Cartographic Applications for Tactical and Strategic Systems (CA TSS) Functional

Software Design.
Final Technical Report RADC-TR-87-1 18, Rome Air Development Center, Griffiss

AFB, NY, January, 1988.
Abstract: A functional description specification and functional prototype were

developed. The functional description recommends a design approach
wherein functions result from a decomposition of cartographic processes
and algorthms into generic, building block, low-level primitives. These low-
level routines are then aggregated to create higher-level cartographic
functions and applications which can in turn be combined to form systems.
The functional software prototype demonstrated the feasibility and
advantages of this design approach and will be used as a baseline upon
which to evolve the final design for a generic cartographic application.

20 CMU/SEi-90-SR-3

[MCCA85C] Ron McCain.
A Software Development M - hodology for Reusable Component.
In Proceedings of the Software Technology for Adaptable Reliable Systems (STARS)

Workshop, Pages 361-384. Naval Research Laboratory, Washington, DC, April,
1985.

Available from Defense Technical Information Center as AD-Al 63 463.
Abstract: Software reusability could potentially provide substantial economic

benefits. Large-scale software component reuse, however, will not be
possible without a software development approach that emphasizes the
production of reusable software components. This paper defines the
characteristics of reusable software and proposes a software deveiopment
methodology that produces software components exhibiting these
characteristics. The methodology is intended to supplement ra* ar than
replace other sound software development methodologies. In addition to
describing the reusability-oriented thought process associated with the
methodology, the paper suggests new work products and validation
procedures to support the methodology.

[MCNI86A] Daniel G. McNicholl, et al.
Common Ada Missile Packages (CAMP) - Volume I: Overview and Commonality

Study Results.
Technical report AFATL-TR-85-93, McDonnell Douglas Astronautics Company, St.

Louis, MO, May, 1986.
Abstract: The objective of the CAMP program is to demonstrate the feasibility of

reusable Ada software parts in a real-time embedded application area; the
domain chosen for the demonstration was that of missile flight software
systems. This required that the existence of commonality within that domain
be verified (in order to justify the development of parts for that domain), and
that software parts be designed which address those areas identified. An
associated parts cataloguing scheme and parts composition system were
developed to support parts usage.

[MCNI88A] Daniel G. McNicholl, Sholom G. Cohen, Constance Palmer, et al.
Common Ada Missile Packages - Phase 2 (CAMP-2) - Volume I: CAMP Parts and

Parts Composition System.
Final Report AFAL-TR-88-62, Vol. I, McDonnell Douglas Astronautics Company, St.

Louis, MO, November, 1988.
Abstract: CAMP-2 was primarily a technology demonstration of the concepts

developed in CAMP-I. The first major task was the construction of the
reusable parts identified during CAMP-I. A total of 454 production-quality,
reusable Ada parts were coded, tested, and documented in accordance with
DoD-STD-2167. In addition, a prototype of the parts composition system
(PCS) tool defined in CAMP-1 was also constructed, tested, and
documented in accordance with DoD-STD-2167. To illustrate the utility of
this tool, a user can spend 3 minutes describing his requirements for a
Kalman filter subsystem and the tool will generate and assemble over 1900
lines of Ada code which efficiently implement this subsystem.

[MOOR88A] John M. Moore & Sidney C. Bailin.
Position Paper on Domain Analysis.
In Position paper for Domain Aralysis Working Group at OOPSLA '88, Association for

Computing Machinery, New York, NY, October, 1988.
Annotation: This position paper discusses the general domain analysis process

as used by CTA in performing a Control Center domain analysis for NASA
Goddard Space Flight Center. The areas covered include a high-level
overview of the methodology, a pragmatic discussion of aomain boundary
scoping, and the way CTA represented the domain model which resulted
from the analysis. The domain model consisted of (1) an interactive model (a

CMU/SEI-90-SR-3 21

reuse database), and (2) a gr-phical model (using annotated entity-
relationship diagrams). A brief discussion is also given on the process of
identifying objects in the course of the domain analysis.

[MOOR89A] John M. Moore & Sidney C. Bailin.
Domain Analysis: Framework for Reuse.
Technical report, Computer Technology Associates, Rockville, MD, October, 1989.

Annotation: This paper presents a life-cycle approach to domain analysis and
reuse-based software development. Domain analysis is seen as
complementary and parallel to the ongoing process of system development.
Reuse-based development is described in terms of both the demand side
(seen by the user of reusable resources) and the supply side (seen by the
developer of reusable resources, which includes domain analysis and
reusable product development). Both aspects are examined in detail. The
paper concludes with a discussion of the domain analysis method used for
the control center domain in work done for NASA Goddard Space Flight
Center.

[MOST85A] John Mostow.
Toward Better Models of the Design Process.
The Al Magazine, pp. 44-57, Spring, 1985.

Annotation: One of the key research problems in Al-based design for the near
future may be to develop a better model of the design process by
incorporating knowledge-based techniques. A comprehensive model of
design should address the following aspects of the design process: design
decisions; rationales for design decisions; control of the design process; and
the role of learning in design. This article presents some of the most
important ideas emerging from current Al research on design, especially
ideas for better models of design. It is organized into sections dealing with
each of the aspects of design listed above. The author recommends
development of better models of the design process. He advocates
compliance with six criteria: (1) make the state of the design explicit, (2)
make the goal structure explicit, (3) make the design decisions explicit, (4)
make the design rationale explicit, (5) understand how to control the design
process, and (6) integrate the role of learning in design.

[MYER88AI Brad A. Myers.
A Taxonomy of Window Manager User Interfaces.
IEEE Transactions on Computer Graphics & Applications, vol. 8, no. 5: pp. 65-84,

September, 1988.
IEEE. Reprinted with permission.

Abstract: This article presents a taxonomy for the user-visible parts of window
managers. It is interesting that there are actually very few significant
differences, and the differences can be classified in a taxonomy with fairly
limited branching. This taxonomy should be useful in evaluating the
similarities and differences of various window managers, and it will also
serve as a guide for the issues that need to be addressed by designers of
future window manager user interfaces. The advantages and disadvantages
of the various options are also presented. Since many modem window
managers allow the user interface to be customized to a large degree, it is
important to study the choices available.

INEIG80A] James M. Neighbors.
Software Construction Using Components.
PhD thesis, University of California at Irvine, 1980.

Annotation: This dissertation asserts that the reuse of software results only from
the reuse of analysis, design, and code, rather than simply the reuse of
code. The concept of domain analysis is introduced to describe the activity

22 CMU/SEI-90-SR-3

of identifying the objects and operations of a class of similar systems in a
particular problem domain. Experiments using a prototype system, Draco,
are presented and the results discussed.

[NEIG83A] James M. Neighbors.
The Draco Approach to Constructing Software from Reusable Components.
In Proceedings of the Workshop on Reusability in Programming, Pages 167-178. rT

Programming, Stratford, CT, September, 1983.
Abstract: This paper discusses a mechanism called Draco which aids in the

construction of software systems. In particular we are concerned with the
reuse of analysis and design information in addition to programming
language code. The goal of the work on Draco has been to increase the
productivity of software specialists in the construction of similarsystems. The
particular approach we have taken is to investigate the construction of
software from reusable software components which are organized by
problem domain. The experimental method used was to hypothesize a
scheme based on previous work and experiment with example problems on
a prototype system.

[NEIG87A] James M. Neighbors.
Report on the Domain Analysis Working Group Session.
In Proceedings of the Workshop on Software Reuse, Rocky Mountain Institute of

Software Engineering, Boulder, CO, October, 1987.
Abstract: This working group report touches briefly on a number of issues central

to domain analysis. It discusses some rationales for performing domain
analysis, various representation techniques generally proposed for domain
analysis, some of the results of a simple test application of domain analysis
to a small example system specification, and a brief outline of the domain
analysis process used.

[PARN76A] David L. Pamas.
On the Design and Development of Program Families.
IEEE Transactions on Software Engineering, vol. SE-2, no. 1: pp. 1-9, March, 1976.
IEEE. Reprinted with permission.

Abstract: Program families are defined (analogously to hardware families) as sets
of programs whose common properties are so extensive that it is
advantageous to study the common properties of the programs before
analyzing individual members. The assumption that, if one is to develop a
set of similar programs over a period of time, one should consider the set as
a whole while developing the first three approaches to the development, is
discussed. A conventional approach called 'sequential development' is
compared to 'stepwise refinement' and 'specification of information hiding
modules'. A more detailed comparison of the two methods is then made. By
means of several examples it is demonstrated that the two methods are
based on the same concepts but bring complementary advantages.

[PARN79A] David L. Pamas.
Designing Software for Ease of Extension and Contraction.
IEEE Transactions on Software Engineering, vol. SE-5, no. 2: pp. 128-138, March,

1979.
IEEE. Reprinted with permission.

Abstract: Designing software to be extensible and easily contracted is discussed
as a special case of design for change. A number of ways that extension
and contraction problems manifest themselves in current software are
explained. Four steps in the design of software that is more flexible are then
discussed. The most critical step is the design of a software structure called
the 'uses' relation. Some criteria for design decisions are given and
illustrated using a small example. It is shown that the identicfication of

CMU/SEI-90-SR-3 23

minimal subsets and minimal extensions can lead to software that can be
tailored to the needs of a broad variety of users.

[PARN85A] David L. Pamas, Paul C. Clements & David M. Weiss.
The Modular Structure of Complex Systems.
IEEE Transactions on Software Engineering, vol. SE-1 1, no. 3: pp. 259-266, March,

1985.
IEEE. Reprinted with permission.

Annotation: The authors noticed a growing gap between software engineering
principles being advocated at major conferences and the practice of
software engineering at many industrial and governmental laboratories. They
saw that either good ideas were illustrated using unrealistically simple code
fragments or complex problems were not worked out in any great detail.
They decided to take a realistic, difficult problem, apply academic ideas, and
improve it. Success would show: (1) the feasibility of the ideas, (2) a model
for other developers, and (3) how to refine ideas to work in more complex
situations than those described in the literature. The problem selected was
the operational flight program (OFP) for the A-7E aircraft. This program used
many 'dirty tricks', barely fitted in memory, and barely met its real-time
constraints. It was also considered to be one of the best programs of its
type, and could be considered sufficiently challenging so that skeptics would
not attribute success to poor quality of the original program. The original
program could be viewed as one big module. The team decided to
decompose the program into separate modules based on the idea of
information hiding. This would make the program more maintainable by
allowing modules to be designed and revised independently. The teams
experience suggested that the use of information hiding in complex systems
is practical. The team created what they called a 'module guide' which is a
sort of description of the OFP domain. This document proved to be useful to
designers and programmers when attempting to resolve problems. It also
aided new programmers joining the project in understanding the structure of
the program.

[PAYT88B] Ten F. Payton.
Reusability Library Framework.
Presentation at STARS Foundations Workshop, Unisys Defense Systems, Paoli, PA,

April, 1988.
Reprinted with permission of Unisys Corporation.

Annotation: The Unisys Reusability Ubrary Framework (RLF) STARS
Foundations project is intended to provide a general framework and a base
set of tools supporting the creation and maintenance of a repository of
reusable Ada software components, organized around particular application
domains. This paper presents a brief summary of the RLF project. Unisys
believes that the most effective gains in productivity through reuse will be
from the development of libraries of components for specific domains, which
are structured according to explicit domain models. The objective of the RLF
project is to develop knowledge-based foundations technology for building
intelligent librarians, and to demonstrate the use of this technology by
building an example library for the domain of Ada benchmark tests. The
underlying knowledge representation used is based on semantic networks
and is implemented in the AdaKNET subsystem.

[PERR89A] James M. Perry & Mary Shaw.
The Role of Domain Independence in Promoting Software Reuse: Architectural

Analysis of Systems.
In Position Papers of the Reuse in Practice Workshop, Software Engineering Institute,

Pittsburgh, PA, July, 1989.
Abstract: While there are several variations of domain analysis, they are usually

24 CMU/SEI-90-SR-3

characterized by their emphasis on application dependencies. This position
paper describes architectural analysis which is a type of analysis for
furthering our understanding of software architectures. It attempts to raise
the abstraction level of design elements and, thereby, emphasizes domain
independence. Although architectural analysis and domain analysis for
reuse have different processes and goals, they are closely related and
support one another. This mutual support is identified and examined. The
SEI Software Architecture Project is described to provide an example of
architectural analysis.

[POLL85A] Guylaine Marie Pollock.
A Design Methodology and Support Environment for Complexity Metrics via Reusable

Software Parts.
PhD thesis, Texas A&M University, 1985.

Abstract: The objective of this research is the design of a system of reusable
software parts which can be utilized as kernel primitives in constructing
prototype software metrics. A methodology for designing an automatable set
of elementary measures of primitive constructs is first defined. Primitives
designed through this methodology are used to develop a library of reusable
software parts for implementation of composite or hybrid software metric
prototypes. A domain analysis of software complexity metrics served to
define basic operations or functional primitives common to complexity metric
definitions. Twenty-two representative software complexity metrics were
analyzed to determine common measurements or functions between the
various metrics. In addition, basic data structures such as stacks, queues,
and linked lists that were needed by the kernel primitives were also
identified. A kemel set of metric primitives was defined from this analysis.
Generic Ada packages were designed to implement the defined structures
and the operations necessary for their manipulation. The delineated
functions compose a reusable software library. The system provides an
attractive research environment for software metric studies. Reusability
aspects of the design and partial implementation support development of
rapid prototypes. The Ada language was useful in providing constructs to
facilitate implementation of the reusable software parts. Separate
compilation, generics and tasking were attractive features. Strong typing
restrictions, however, limited the design capabilities. Based on experiences
in this research the methodology appears to be reusable in developing
metric primitives for other metric classes.

[PRIE87C] Ruben Prieto-Diaz.
Domain Analysis for Reusability.
In Proceedings of COMPSAC 87:The Eleventh Annual International Computer

Software & Applications Conference, Pages 23-29. IEEE Computer Society,
Washington, DC, October, 1987.

Annotation: This paper proposes a methodology for domain analysis. The
process is decomposed into three areas: pre-DA activities, DA, and post-DA
activities. Pre-DA includes: defining and scoping the domain, identifying
sources of knowledge and information about the domain, and defining the
approach to DA. Post-DA activities include: identification and implementation
of reusable components, and production of software reuse guidelines. The
paper defines the context for DA as the inputs and output to DA. The inputs
are: DA guidelines from the domain analyst, domain knowledge from the
domain expert, and standard examples from existing systems. The outputs
from DA are: reusable components and domain standards. The process is
given in data flow diagrams where the three main steps are: prepare domain
information, analyze domain, and produce reusable work-products.

CMU/SEI-90-SR-3 25

[PRIE87D] Ruben Prieto-Diaz.
Faceted Classification and Reuse Across Domains.
In Proceedings of the Workshop on Software Reuse, Rocky Mountain Institute of

Software Engineering, Boulder, CO, October, 1987.
Annotation: Most reusability successes result from concentrating on a narrow

domain, but little has been done about reuse across domains. This paper
proposes an approach to facilitate reuse across domains using concepts
from domain analysis and faceted classification. This approach uses domain
analysis to derive faceted classification schemes of domain specific
collections (via literary warrant (LW)), and then derives a global faceted
scheme that relates the different domain specific vocabularies. A global
scheme allows users to identify and select components from different
application domains and thus increase their potential reusability.

[PRIE89A] Ruben Prieto-Diaz.
Domain Analysis Tutorial.
In Papers from the Workshop: Tools and Environments for Reuse, Software

Productivity Solutions in cooperation with the IEEE Committee on Software
Engineering, Indialantic, FL, May, 1989.
Annotation: This tutorial presentation presents an overview of many of the

fundamental aspects of domain analysis, from definitions of domain analysis
terminology to general background including the Draco domain analysis
process, CAMP, Prieto-Diaz's domain analysis model, Arango's work
formalizing domain analysis, the University of Oregon KATE system work,
and the CTA work for NASA Goddard.

[PUNC88A] P. Paolo Puncello, Piero Torrigiani, Francesco Pietri, Riccardo Burlon, Bruno Cardile &
Mirella Conti.
ASPIS: a knowledge-based CASE environment. (Application Software Prototype

Implementation System).
IEEE Software, vol. 5, no. 2: pp. 58-66, March, 1988.

Abstract: This article reports on ESPRIT Project 401, building the Application
Software Prototype Implementation System. ASPIS exploits artificial
intelligence techniques in a software-development environment. Our goal is
to encourage a more flexible and effective software-development life cycle,
smoothing the transition between user needs, analysis, and design. The
novel aspects of our project are the knowledge-based tools called assistants
and the definition of a logic-based formalism for specifications. ASPIS has
four assistants. Two knowledge-based assistants - an Analysis Assistant
and a Design Assistant - are used directly by the developers of a particular
methodology. They embody knowledge about both the method and the
application domain. Once defined, the specifications can be executed by the
Prototype Assistant, which verifies the system's properties. A fourth
assistant, the Reuse Assistant, helps developers reuse specifications and
designs.

[ROBI89B] William N. Robinson.
Integrating Multiple Specifications Using Domain Goals.
Technical report CIS-TR-89-63, University of Oregon, Eugene, Oregon, February,

1989.
Abstract: Design is a process which inherently involves tradeoffs. We are

currently pursuing a model of specificaton design which advocates the
integration of multiple perspectives of a system. We have mapped the
intrgration problem onto the negotiation problem of many issues between
many agents in order to apply known resolution techniques. Part of that
mapping requires the modeling of domain goals which serve as issues for
negotiation. Herein, we describe the use of domain goals in our conflict
resolution process which is applied during the intrgration of specifications.

26 CMU/SEI-90-SR-3

[ROSA88A] S. Roody Rosales & Prem K. Mehrotra.
MES: An Expert System for Reusing Models of Transmission Equipment.
In Proceedings of the Fourth Annual Conference on Artificial Intelligence Applications,

Pages 109-113. IEEE, New York, NY, March, 1988.
Abstract: The Modelling Expert System (MES) aids in the generation of models

for new transmission equipment (unit) by reusing the models of existing
transmission equipment. The concept of model reuse is based on 'clones'.
An existing model is said to be a base model for generating a 'clone' (the
model of a new unit), if the transmission characteristics of the two models
are similar but not identical. There may be some changes ('fixes') required in
the base model to generate the model for the new unit. The knowledge
required for deciding what existing models can serve as the basis for cloning
is empirical, ill-structured, and known only to a few human experts. The
expert system programming facilitates preservation of such knowledge in
software. The 'done' determination/generation knowledge for a few
equipment families has been captured in MES. The models of the
transmission equipment are presently written in PL/I programming language.
The code changes ('deltas') that are required in the PL/I code of the base
model, to generate the code for the new unit, do not require extensive
knowledge of the PilI language or modelling. Instead, these 'deltas' are
specified as templates. MES also aids in the generation of these 'deltas' by
using the powerful macro facility of LISP. MES is written in OPS5 and Franz
LISP, and runs under AT&T UNIX operating system. The clone
determination part is largely OPS5 rule-based, whereas the code generation
software consists of LISP functions. MES also uses a pattern-action
language, AWK, for finding the lines where the code changes are to be
made.

[SCHE86A] William L. Scherlis.
Abstract Data Types, Specialization, and Program Reuse.
In Lecture Notes in Computer Science (#244): Proceedings of an International

Workshop on Advanced Programming Environments, Pages 433-453. Springer-
Verlag, June, 1986.
Abstract: It is often asserted that our ability to reuse programs is limited primarily

by the power of programming language abstraction mechanisms. We argue
that, on the basis of performance considerations, this is just not the case in
practice- these 'generalization' mechanisms must be complemented by
techniques to adapt the generalized structures to specific applications.
Based on this argument, we consider a view of programming experience as
a network of programs that are generalizations and specializations on one
another and that are interconnected by appropriate program derivation
fragments. We support this view with a number of examples. These
examples illustrate the important role of abstract data type boundaries in
program derivation.

[SHLA89A] Sally Shlaer & Stephen J. Mellor.
An Object-Oriented Approach to Domain Analysis.
ACM SIGSOFT Software Engineering Notes, vol. 14, no. 5: pp. 66-77, July, 1989.

Annotation: This paper presents an object-based approach to domain analysis
called object-oriented analysis. The approach is based on building three
types of formal models: an information model, a set of state models, and a
set of process models. All three models are used together with prescribed
rules of integration. Data flow diagrams are derived mechanically from the
state models. The interactions between the state models are depicted in a
graphical representation called an Object Communication Model.

CMU/SEI-90-SR-3 27

[SHLA90A] Sally Shlaer & Stephen J. Mellor.
Recursive Design.
Computer Language, vol. 7, no. 3: pp. 53-65, March, 1990.

Abstract: Modern approaches to systems analysis focus largely on the particular
application problem, as expressed by the system's eventual users. The
analysis is expressed in terms of real-world entities such as trains,
passenger stations, switches, and cargo shipments. However, to develop a
software system design, the designer must also contend with computer
science entities such as messages, mailboxes, tasks, and files - the
conceptual entities of the implementation language and operating system.
To bridge the distance between the application and the implementation,
experienced designers often speak loosely of 'making a mapping' between
these separate and distant worlds. Recursive design is a method for
handling the transistion between analysis and design. In recursive design,
the emphasis is on producing mappings that can be applied to all the
elements of the problem in a uniform and systematic manner.

[SIDO89A] James L. Sidoran.
Conceptual Modeling and C31 System Design.
In Proceedings of the AIAA Computers in Aerospace VII Conference, Pages 672-677.

The American Institute of Aeronautics and Astronautics, Washington, DC, October,
1989.
Abstract: This paper describes current research in an expert system based

approach to domain analysis. Currently, expert systems are engineered with
a narrow focus on the domain. This results from the fact that in order for
expert level information to exist in an automated tool, it is necessary to go
deep and narrow. Consequently, this restricts analysis activities. An
extension to this approach is to provide a 'meta-modelling' paradigm that
has initially, high-level domain specific information and terminology. In
theory, as the breadth of the domain is defined, and frameworks for domain
structures are incorporated into the representation, it may be reasonable to
approach a domain definition that is both broad and detailed. This paper only
serves to identify and bound this capability within the domain of Command
and Control (C2). A prototype tool, Conceptual Modelling via Logic
Programming (CMLP), has been developed containing an initial system
structure shell of the Command and Control domain. The prototype tool
includes a user interface that allows the user to view multiple perspectives of
the domain in multiple windows.

[SIMO87B] Mark A. Simos.
The Domain-Oriented Software Life Cycle: Towards an Extended Process Model for

Reusability.
In Proceedings of the Workshop on Software Reuse, Rocky Mountain Institute of

Software Engineering. Boulder, CO, October, 1987.
Annotation: One fundamental problem in software reuse is integrating reusability

into a conventional top-down 'waterfall' life-cycle model of software
development. This paper outlines some general characteristics that an
extended life-cycle model should have. These characteristics include: (1) A
perspective centered on the notion of 'domains', or lamilies' of related
programs or systems supporting particular application areas; (2)
concentration on application specificity, or 'narrow-band' reuse within
specific application domains as the best means of achieving significant
productivity increases; and, (3) recognition that a spectrum of techniques for
reusable software are needed, such as 'ad hoc' reuse, libraries, code
generation techniques, and even knowledge-based techniques. The paper
discusses the Application-Specific Languages (ASL) approach used at
Unisys in such areas as computer system configuration and message format

28 CMUISEI-90-SR-3

translation/validation. It also discusses the need for a perspective on
software development that looks beyond the single project life-cycle and
allows the traceability of information across individual project phases.

[SOLD89A] James J. Solderitsch, Kurt C. Wallnau & John A. Thalhamer.
Constructing Domain-Specific Ada Reuse Libraries.
In Proceedings of the Seventh Annual Conference on Ada Technology, Pages

419-433. U.S. Army Communications-Electronics Command, Ft. Monmouth, NJ,
March, 1989.
Abstract: High-impact reuse is achieved by focusing on specific Application

Domains. A Software Component Reuse Library System must support
domain modelling as well as repository management features. The RLF
project addresses both of these areas. Repository management capabilities
including retrieval, classification, insertion, and qualification of components
are all provided. Domain modelling is achieved through knowledge
representation components that were developed in Ada using an Ada
perspective. The domain model provides an effective and powerful interface
to the library. An evolutionary approach has enabled the production of a
family of library applications of varying functionality and point-of-view. Ada
features, such as generics and exception handling, and Ada design
principles, such as data abstraction, are used to construct systems that
incorporate traditional Al functionality while providing enhanced system
maintainability and evolvability.

[UNIS88A] Unisys.
Reusability Library Framework AdaKNET/AdaTAU Design Report.
Design Report, Unisys Corporation, Paoli, PA, May, 1988.
Reprinted with permission of Unisys Corporation.

Annotation: The Reusability Library Framework (RLF) was a STARS foundation
area development. RLF provides a basic set of tools to create and maintain
libraries of reusable components in specific domains. The system supports
knowledge-based representation of domains to assist in the selection of
components. This technical report is an overview of the capabilities of the
system and is useful for developing both domain and library representation
techniques, but does not provide direct insight into the domain analysis
process.

[VITA90B] William Vitaletti & Emesto Guerrieri.
Domain Analysis within the ISEC Rapid Center.
In Proceedings of the Eighth Annual National Conference on Ada Technology, Pages

460-470. U.S. Army Communications-Electronics Command, Ft. Monmouth, NJ,
March, 1990.
Abstract: One of the main activities of the RAPID Center in supporting a

development effort in the identification of reuse possibilities within the
system being developed as well as across similar systems. This activity is
accomplished by performing a domain analysis. This paper describes the
domain analysis process proposed for the RAPID Center, the expected
domain model, and the experience gained from apphing this process to the
currently supported development effort.

[WARD88A] Paul T. Ward & Lloyd G. Williams.
Using the Structured Techniques to Support Software Reuse.
In Proceedings of the Structured Development Forum X, Pages 211-222. Structured

Development Forum, San Francisco, CA, August, 1988.
Abstract: The development and use of reusable software components offers a

means of reducing the cost of new software systems while, at the same
time, improving their quality. Recent advances in software engineering
technology have increased the practicality of software reuse. There is,

CMU/SEI-90-SR-3 29

however, very little available in the way of support for the identification,
design, and construction of reusable components. Object oriented
development and domain analysis are two techniques which offer support for
developing reusable components. Object oriented development assists in
structuring software systems so that their components have a high potential
for reuse. Domain analysis assists in identifying those components. This
paper presents an approach to the development of reusable software
components based on the use of Real-Time Structured Analysis and Design
in conjunction with domain analysis and object oriented development.

[WEBS88A] Dallas E. Webster.
Mapping the Design Information Representation Terrain.
Technical report STP-367-88, Microelectronics and Computer Technology Corporation,

Austin, TX, November, 1988.
Abstract: This report attempts to establish a context for design information

representation research, via a qualitative survey and comparison of a broad
range of relevant technologies. We discuss associated representation
requirements, and present a working 'technology map', which reflects
relationships among the surveyed technologies. Within the context provided
by the map we point out limitations of the representation mechanisms of
conventional software development technologies, and prospects for
overcoming them. This report results from editing STP-093-087 for
publication in IEEE Computer. It reflects significant reorganization and
condensation, as well as some updating of the earlier, more detailed report.
It also provides additional background material to make it accessible to a
wider audience.

[WEIS88A] David M. Weiss.
Reuse and Prototyping: A Methodology.
Technical report SPC-TR-88-022, Software Productivity Consortium, Reston, VA,

March, 1988.
Abstract: This report describes the concepts underlying a proposed methodology

for software development and maintenance that encompasses both
prototyping and reuse. It shows how the concepts may be embodied in tools
that support the methodology, and suggests how the Consortium's current
set of tools can evolve into a set that fully supports the methodology.
Example scenarios of the application of the concepts and the tools are also
presented. The underlying concepts discussed are information hiding,
program families, hierarchical structuring by both information hiding relation
and by the uses relation, and characterization of modules as black boxes.
The envisioned development paradigm consists of maintaining collections of
program families and tools for searching through such collections, adapting
family components to create new family members, composing new family
members from existing components, describing families, assessing families,
and storing families, including the information needed to characterize them
for future use.

[YADA88A] Surya B. Yadav, et al.
Comparison of Analysis Techniques for Information Requirement Determination.
Communications of the ACM, vol. 31, no. 9: pp. 1090-1097, September, 1988.

Annotation: The article presents a framework for analysis and comparison of
requirements analysis techniques. It also discusses an experiment to apply
the framework in comparing two such techniques. The article presents a
good discussion of parameters for domain analysis: (1) What requirements
should be; (2) how they should be represented, and (3) how they should b
derived.

30 CMU/SEI-90-SR-3

[YADA89A] Surya B. Yadav & D. R. Chand.
An expert modeling support system for modeling an object system to specify its

information requirements.
Decision Support Systems, vol. 5, no. 1: pp. 29-45, March, 1989.

Abstract: The paper presents an analyst support system that partially automates
the process of determining information requirements. The focus is upon the
problems associated in developing a clear and consistent understanding of
the object system by the analysis team, where the object system is
essentially the larger system that an information system serves. The paper
describes the design of a computer aided tool which is based upon an
extension of SADT and it incorporates the use of problem domain
knowledge-base and decision concepts of Simon. The emphasis is on the
rationale for the structure and components of this tool and how it may be
used for modeling the object system and performing both component and
precedence analysis. The problem of generating information system
requirements is reduced to traversing the conceptual model.

CMU/SEI-90-SR-3 31

32 CMU/SEI-90-SR-3

3. Classification of References
The following table lists all of the references and marks the general area of domain analysis addressed

by the reference. This simple classification is intended to help someone seeking information about a
specific aspect of domain analysis. There are six general categories identified here:

1. Information Gathering
The process of collecting proper and sufficient information/knowledge with which to perform
a domain analysis

2. Domain Analysis (DA) Methodology
The methodology used to perform a domain analysis

3. Tools and Environment Support
The automated tools and environment support used in performing and applying domain
analysis

4. Representation- Domain Models and Software Architectures
The forms in which the domain analysis information is represented and available to the user

5. Application Domains
The specific "real-world" applications to which domain analysis has been applied

6. Management Issues
Aspects of domain analysis which are not directly related to the technical problems, such as
economic, legal, and managerial

Information DA Tools & Model/ Application Mgmt.

Name Gathering Method Environ. Architect. Domains Issues

ADEL85A

ALEX86A

ALLE87A

ARAN88A

ARAN88B

ARAN88C

ARAN89A

ASDJ88A

BAIL88B

BAIL89C

BAIL89D

BARS85A

BATO88A

BATO88B

BATO88C

BENN84A

BIGG88B

BORG84A

BORG85A

CMU/SEI-90-SR-3 33

Information DA Tools & Model/ Application Mgmt.
Name Gathering Method Environ. Architect. Domains Issues

BRUN88A

CARL87A

COHE89A 1
DIET87A __1

DIPP89B 0

DOWL89A

DU B086A _

FICK87B

FINK88A

FISH86A

FREE87A

GIDD84A

GILR89A

GOMA90A

GOOD83A

GREE88A

HARA89A

HRYC87A

HUTC88A

ISCO88A

ISCO89A -

JAWO90A 0 0

KANG89A 0

KANG89B

LATO89B .

LEDB83A 0

LEE88A __
LUBA87A 0 0

LUBA88A _
LUBA88B 0

MANO88A _

MAUR88A 0 _

MCNI86A 0_ _

MCNI88A

34 CMU/SEI-90-SR-3

Information DA Tools & 1 Model/ Application Mgmt.

Name Gathering Method Environ. Architect. Domains Issues
[MOOR88A ____ ____

MOOR89A

MOST85A 1
MYER88A

NEIG80A

NEIG83A

NEIG87A -

PARN76A

PARN79A

PARN85A

PAYT88B

PERR89A
POLL85A •

PRIE87C

PRIE87D

PRIE89A

PUNC88A

ROBI89B

ROSA88A

SCHE86A

SHLA89A

SHLA90A

SIDO89A

SIMO87A

SIMO87B

SOLD89A

UN IS88A

VITA90B 1 • _

WARD88A

WEBS88A _

WEIS88A 0

YADA88A _

YADA89A ____j

CMU,SEI-90-SR-3 35

36 CMU/SEI-90-SR-3

Appendix I
Alphabetical by Author's Name

ADELSON, BETH
* ADEL85A: The Role of Domain Experience in Software Design

ALEXANDER, JAMES H.
* ALEX86A: Knowledge Level Engineering: Ontological Analysis

ALLEN, BRADLEY P.
* ALLE87A: Simplifying the Construction of Domain-Specific Automatic

Programming Systems: The NASA Automated Software Development
Workstation Project

ANTON, CELESTE N.
* MAUR88A: Cartographic Applications for Tactical and Strategic Systems

(CATSS) Functional Software Design
ARANGO, GUILLERMO F.

" ARAN88A: Domain Engineering for Software Reuse

" ARAN88B: Evaluation of a Reuse-Based Software Construction
Technology

" ARAN88C: Notes on the Application of the COBWEB Clustering
Function to the Identification of Patterns of Reuse

* ARAN89A: Domain Analysis - From Art Form to Engineering Discipline
ASDJODI, MARYAM

* ASDJ88A: Ki owledge-Based Component Composition: An Approach to
Sottware Reusability

BAILIN, SIDNEY C.
" BAIL88B: Semi-Automatic Development of Payload Operations Control

Center Software

" BAIL89C: Generic POCC Architectures

" BAIL89D: The KAPTUR Environment: An Operations Concept

" MOOR88A: Position Paper on Domain Analysis

" MCOR89A: Domain Analysis: Framework for Reuse
BARNETr, J. R.

o BATO88C: Construction of File Management Systems from Software
Components

BARSTOW, DAVID R.

o BARS85A: Domain-Specific Automatic Programming
BATORY, DON S.

" BATO88A: Building Blocks of Database Management Systems

" BATO88B: Concepts for a Database System Compiler

" BATO88C: Construction of File Management Systems from Software
Components

BENNETT, JAMES S.
* BENN84A: ROGET: Acquiring the Conceptual Structure of a Diagnostic

Expert System

CMU/SEI-90-SR-3 37

BIGGERSTAFF, TED J.
o BIGG88B: The Nature of Semi-Formal Information in Domain Models

BORGIDA, ALEXANDER
" BORG84A: Generalization/Specialization as a Basis for Software

Specifications

" BORG85A: Features of Languages for the Development of Information
Systems at the Conceptual Level

BROWNE, JAMES C.
* ISCO89A: Generating Domain Models for Program Specification and

Generation
BRUNS, GLENN

o BRUN88A: Domain Modeling Approaches to Software Development
BURLON, RICCARDO

* PUNC88A: ASPIS: a knowledge-based CASE environment. (Application
Software Prototype Implementation System)

CARDILE, BRUNO
• PUNC88A: ASPIS: a knowledge-based CASE environment. (Application

Software Prototype Implementation System)
CARLE, RICK

* CARL87A: Reusable Software Components for Missile Applications
CHAND, D. R.

* YADA89A: An expert modeling support system for modeling an object
system to specify its information requirements

CLEMENTS, PAUL C.
o PARN85A: The Modular Structure of Complex Systems

COHEN, JOEL
o COHE89A: Software Reuse for Information Management Systems

COHEN, SHOLOM G.
* MCNI88A: Common Ada Missile Packages - Phase 2 (CAMP-2) -

Volume I: CAMP Parts and Parts Composition System
COMER, EDWARD R.

& GILR89A: Impact of Domain Analysis on Reuse Methods
CONTI, MIRELLA

* PUNC88A: ASPIS: a knowledge-based CASE environment. (Application
Software Prototype Implementation System)

D'IPPOLITO, RICHARD S.
* DIPP89B: Using Models in Software Engineering

DIETZEN, SCOTT R.

* DIET87A: Analogy in Program Development
DOWLE, S. W.

* DOWL89A: Domain Modelling for Requirements Specification
DUBOIS, ERIC

* DUBO86A: A Knowledge Representation Language for Requirements
Engineering

DUREK, THOMAS A.
* JAWO90A: A Domain Analysis Process

38 CMU/SEI-90-SR-3

FAULK, STUART

* JAWO9OA: A Domain Analysis Process
FICKAS, STEPHEN

* FICK87B: Automating the Specification Process
FINKELSTEIN, ANTHONY

* FINK88A: Re-use of Formatted Requirements Specifications

FISHER, GARY LEE
* FISH86A: A Software Architecture for Strategic Management Support

Systems Utilizing Interactive Graphics
FREEMAN, PETER

• FREE87A: A Conceptual Analysis of the Draco Approach to Constructing
Software Systems

GAFFNEY, JOHN E.
9 JAWO90A: A Domain Analysis Process

GARZA, JORGE F.

* BATO88C: Construction of File Management Systems from Software
Components

GIDDINGS, RICHARD V.

* GIDD84A: Accommodating Uncertainty in Software Design

GILROY, KATHLEEN A.

* GILR89A: Impact of Domain Analysis on Reuse Methods

GOMAA, HASSAN
* GOMA90A: A Domain Requirements Analysis and Specification Method

GOODELL, MICHAEL

* GOOD83A: Quantitative Study of Functional Commonality in a Sample
of Commercial Business Applications

GRAU, J. KAYE

* GILR89A: Impact of Domain Analysis on Reuse Methods
GREENSPAN, SOL J.

* GREE88A: Toward an Object-Oriented Framework for Defining Services
in Future Intelligent Networks

GUERRIERI, ERNESTO
* VITA90B: Domain Analysis within the ISEC Rapid Center

HARANDI, MEHDI T.

* HARA89A: Automating Software Specification and Design
HILLS, FRED

* JAWO90A: A Domain Analysis Process

HINDLEY, P. G.
* HUTC88A: A Preliminary Study of Large-Scale Software Re-use

HOLTZMAN, PETER L.

* ALLE87A: Simplifying the Construction of Domain-Specific Automatic
Programming Systems: The NASA Automated Software Development
Workstation Project

HRYCEJ, TOMAS

* HRYC87A: A Knowledge-Based Problem-Specific Program Generator
HUTCHINSON, J. W.

* HUTC88A: A Preliminary Study of Large-Scale Software Re-use

CMU/SEI-90-SR-3 39

ISCOE, NEIL
" ISCO88A: Domain-Specific Reuse: An Object-Oriented and Knowledge-

Based Approach

" ISCO89A: Generating Domain Models for Program Specification and
Generation

JAWORSKI, ALLAN
* JAWO9OA: A Domain Analysis Process

KANG, KYO C.
" KANG89A: Results from Domain Analysis Working Group

" KANG89B: Features Analysis: An Approach to Domain Analysis
LATOUR, LARRY

• LATO89B: Issues Involved in the Content and Organization of Software
Component Information Bases: Interim Report

LEDBETTER, LAMAR
* LEDB83A: Reusability of Domain Knowledge in the Automatic

Programming System (phi)
LEE, KENNETH J.

* LEE88A: An OOD Paradigm for Flight Simulators, 2nd Edition
LUBARS, MITCHELL D.

" HARA89A: Automating Software Specification and Design

" LUBA87A: A Knowledge-based Design Aid for the Construction of
Software Systems

" LUBA88A: A Domain Modeling Representation

" LUBA88B: Domain Analysis and Domain Engineering in IDeA
MANO, NOBUOKI

* MANO88A: Modeling of Data-Processing Software for Generating and
Reusing Their Programs

MAURI, JOHN
* MAUR88A: Cartographic Applications for Tactical and Strategic Systems

(CATSS) Functional Software Design
MCGOWAN, C. L.

* GREE88A: Toward an Object-Oriented Framework for Defining Services
in Future Intelligent Networks

MCLEOD, MARK L
* MAUR88A: Cartographic Applications for Tactical and Strategic Systems

(CATSS) Functional Software Design

MCNICHOLL, DANIEL G.
" MCNI86A: Common Ada Missile Packages (CAMP) - Volume I:

Overview and Commonality Study Results

" MCNI88A: Common Ada Missile Packages - Phase 2 (CAMP-2) -
Volume I: CAMP Parts and Parts Composition System

MEHROTRA, PREM K.
* ROSA88A: MES: An Expert System for Reusing Models of Transmission

Equipment

40 CMU/SEI-90-SR-3

MELLOR, STEPHEN J.
" SHLA89A: An Object-Oriented Approach to Domain Analysis

" SHLA9OA: Recursive Design

MERLET, PATRICK J.
* GILR89A: Impact of Domain Analysis on Reuse Methods

MOORE, JOHN M.

* MOOR88A: Position Paper on Domain Analysis

• MOOR89A: Domain Analysis: Framework for Reuse
MOSTOW, JOHN

* MOST85A: Toward Better Models of the Design Process
MYERS, BRAD A.

e MYER88A: A Taxonomy of Window Manager User Interfaces

MYLOPOULOS, JOHN
*BORG84A: Generalization/Specialization as a Basis for Software

Specifications
NEIGHBORS, JAMES M.

" NEIG80A: Software Construction Using Components

" NEIG83A: The Draco Approach to Constructing Software from Reusable
Components

" NEIG87A: Report on the Domain Analysis Working Group Session
PALMER, CONSTANCE

* MCNI88A: Common Ada Missile Packages - Phase 2 (CAMP-2) -
Volume 1: CAMP Parts and Parts Composition System

PARNAS, DAVID L
* PARN76A: On the Design and Development of Program Families

" PARN79A: Designing Software for Ease of Extension and Contraction

" PARN85A: The Modular Structure of C' omplex Systems
PAYTON, TERI F.

9 PAYT88B: Reusability Library Framework
PERRY, JAMES M.

* PERR89A: The Role of Domain Independence in Promoting Software
Reuse: Architectural Analysis of Systems

PIETRI, FRANCESCO
* PUNC88A: ASPIS: a knowledge-based CASE environment. (Application

Software Prototype Implementation System)
POLLOCK, GUYLAINE MARIE

*POLL85A: A Design Methodology and Support Environment for
Complexity Metrics via Reusable Software Parts

POTTS, COLIN

* BRUN88A: Domain Modeling Approaches to Software Development
PRIETO-DIAZ, RUBEN

* PRIE87C: Domain Analysis for Reusability

* PRIE87D: Faceted Classification and Reuse Across Domains

" PRIE89A: Domain Analysis Tutorial

CMU/SEI-90-SR-3 41

PUNCELLO, P. PAOLO
* PUNC88A: ASPIS: a knowledge-based CASE environment. (Application

Software Prototype Implementation System)
ROBINSON, WILLIAM N.

9 ROBI89B: Integrating Multiple Specifications Using Domain Goals

ROSALES, S. ROODY
* ROSA88A: MES: An Expert System for Reusing Models of Transmission

Equipment
ROY, J.

* BATO88C: Construction of File Management Systems from Software
Components

SCHERLIS, WILUAM L.
" DIET87A: Analogy in Program Development

" SCHE86A: Abstract Data Types, Specialization, and Program Reuse
SHAW, MARY

* PERR89A: The Role of Domain Independence in Promoting Software
Reuse: Architectural Analysis of Systems

SHEKERAN, M. C.
* GREE88A: Toward an Object-Oriented Framework for Defining Services

in Future Intelligent Networks
SHLAER, SALLY

" SHLA89A: An Object-Oriented Approach to Domain Analysis

" SHLA90A: Recursive Design
SIDORAN, JAMES L.

* SIDO89A: Conceptual Modeling and C31 System Design

SIMOS, MARK A.
o SIMO87A: The Domain-Oriented Software Life Cycle: Towards an

Extended Process Model for Reusability

o SIMO87B: The Domain-Oriented Software Life Cycle: Towards an
Extended Process Model for Reusability

SOLDERITSCH, JAMES J.
* SOLD89A: Constructing Domain-Specific Ada Reuse Libraries

SOLOWAY, ELLIOT
* ADEL85A: The Role of Domain Experience in Software Design

TERATSUJI, EIICHI

* ARAN88C: Notes on the Application of the COBWEB Clustering
Function to the Identification of Pattems of Reuse

THALHAMER, JOHN A.
* SOLD89A: Constructing Domain-Specific Ada Reuse Libraries

TORRIGIANI, PIERO

* PUNC88A: ASPIS: a knowledge-based CASE environment. (Application
Software Prototype Implementation System)

TWICHELL, B. C.

* BATO88C: Construction of File Management Systems from Software
Components

42 CMUISEI-90-SR-3

UNISYS
* UNIS88A: Reusability Library Framework AdaKNET/AdaTAU Design

Report

VITALETTI, WILLIAM
o VITA90B: Domain Analysis within the ISEC Rapid Center

WALLNAU, KURT C.

o SOLD89A: Constructing Domain Specific Ada Reuse Libraries
WARD, PAUL T.

o WARD88A: Using the Structured Techniques to Support Software Reuse

WEBSTER, DALLAS E.

o WEBS88A: Mapping the Design Information Representation Terrain
WEISS, DAVID M.

" PARN85A: The Modular Structure of Complex Systems

" WEIS88A: Reuse and Prototyping: A Methodology
WERTH, JOHN

• ISCO89A: Generating Domain Models for Program Specification and
Generation

WILLIAMS, LLOYD G.
o WARD88A: Using the Structured Techniques to Support Software Reuse

WONG, H.
* BORG84A: Generalization/Specialization as a Basis for Software

Specifications

YADAV, SURYA B.
" YADA88A: Comparison of Analysis Techniques for Information

Requirement Determination

" YADA89A: An expert modeling support system for modeling an object
system to specify its information requirements

CMU/SEI-90-SR-3 43

CMU/SEI-90-SR-3

Appendix II
Chronological

1976
* PARN76A: On the Design and Development of Program Families

1979
* PARN79A: Designing Software for Ease of Extension and Contraction

1980
, NEIG80A: Software Construction Using Components

1983
" GOOD83A: Quantitative Study of Functional Commonality in a Sample

of Commercial Business Applications

" LEDB83A: Reusability of Domain Knowledge in the Automatic
Programming System (phi)

" NEIG83A: The Draco Approach to Constructing Software from Reusable
Components

1984
" BENN84A: ROGET' Acquiring the Conceptual Structure of a Diagnostic

Expert System

* BORG84A: Generalization/Specialization as a Basis for Software
Specifications

" GIDD84A: Accommodating Uncertainty in Software Design

1985
" ADEL85A: The Role of Domain Experience in Software Design

" BARS85A: Domain-Specific Automatic Programming

" BORG85A: Features of Languages for the Development of Information
Systems at the Conceptual Level

" MOST85A: Toward Better Models of the Design Process

" PARN85A: The Modular Structure of Complex Systems

" POLL85A: A Design Methodology and Support Environment for
Complexity Metrics via Reusable Software Parts

1986
* ALEX86A: Knowledge Level Engineering: Ontological Analysis

" DUBO86A: A Knowledge Representation Language for Requirements
Engineering

" FISH86A: A Software Architecture for Strategic Management Support
Systems Utilizing Interactive Graphics

* MCNI86A: Common Ada Missile Packages (CAMP) - Volume I:
Overview and Commonality Study Results

* SCHE86A: Abstract Data Types, Specialization, and Program Reuse

1987
* ALLE87A: Simplifying the Construction of Domain-Specific Automatic

Programming Systems: The NASA Automated Software Development

CMU/SEI-90-SR-3 45

Workstation Project

" CARL87A: Reusable Software Components for Missile Applications

" DIET87A: Analogy in Program Development

" FREE87A: A Conceptual Analysis of the Draco Approach to Constructing
Software Systems

" HRYC87A: A Knowledge-Based Problem-Specific Program Generator

" LUBA87A: A Knowledge-based Design Aid for the Construction of
Software Systems

" NEIG87A: Report on the Domain Analysis Working Group Session

* PRIE87C: Domain Analysis for Reusability

" PRIE87D: Faceted Classification and Reuse Across Domains

" SIMO87A: The Domain-Oriented Software Life Cycle: Towards an
Extended Process Model for Reusability

" SIMO87B: The Domain-Oriented Software Life Cycle: Towards an
Extended Process Model for Reusability

1988
" ARAN88A: Domain Engineering for Software Reuse

" ARAN88B: Evaluation of a Reuse-Based Software Construction
Technology

" ARAN88C: Notes on the Application of the COBWEB Clustering
Function to the Identification of Patterns of Reuse

" ASDJ88A: Knowledge-Based Component Composition: An Approach to
Software Reusability

" BAIL88B: Semi-Automatic Development of Payload Operations Control
Center Software

" BATO88A: Building Blocks of Database Management Systems

" BATO88B: Concepts for a Database System Compiler

" BATO88C: Construction of File Management Systems from Software
Components

" BIGG88B: The Nature of Semi-Formal Information in Domain Models

" BRUN88A: Domain Modeling Approaches to Software Development

" FINK88A: Re-use of Formatted Requirements Specifications

* GREE88A: Toward an Object-Oriented Framework for Defining Services
in Future Intelligent Networks

" HUTC88A: A Preliminary Study of Large-Scale Software Re-use

" ISCO88A: Domain-Specific Reuse: An Object-Oriented and Knowledge-
Based Approach

* LEE88A: An OOD Paradigm for Flight Simulators, 2nd Edition

* LUBA88A: A Domain Modeling Representation

* LUBA88B: Domain Analysis and Domain Engineering in IDeA

46 CMU/SEI-90-SR-3

" MANO88A: Modeling of Data-Processing Software for Generating and
Reusing Their Programs

" MAUR88A: Cartographic Applications for Tactical and Strategic Systems
(CATSS) Functional Software Design

* MCNI88A: Common Ada Missile Packages - Phase 2 (CAMP-2) -

Volume 1: CAMP Parts and Parts Composition System

" MOOR88A: Position Paper on Domain Analysis

" MYER88A: A Taxonomy of Window Manager User Interfaces

" PAYT88B: Reusability Library Framework

" PUNC88A: ASPIS: a knowledge-based CASE environment. (Application
Software Prototype Implementation System)

" ROSA88A: MES: An Expert System for Reusing Models of Transmission
Equipment

" UNIS88A: Reusability Library Framework AdaKNET/AdaTAU Design
Report

* WARD88A: Using the Structured Techniques to Support Software Reuse

" WEBS88A: Mapping the Design Information Representation Terrain

" WEIS88A: Reuse and Prototyping: A Methodology

" YADA88A: Comparison of Analysis Techniques for Information
Requirement Determination

1989
" ARAN89A: Domain Analysis - From Art Form to Engineering Discipline

" BAIL89C: Generic POCC Architectures

" BAIL89D: The KAPTUR Environment: An Operations Concept

" COHE89A: Software Reuse for Information Management Systems

* DIPP89B: Using Models in Software Engineering

" DOWL89A: Domain Modelling for Requirements Specification

" FICK87B: Automating the Specification Process

" GILR89A: Impact of Domain Analysis on Reuse Methods

" HARA89A: Automating Software Specification and Design

" ISCO89A: Generating Domain Models for Program Specification and
Generation

* KANG89A: Results from Domain Analysis Working Group

* KANG89B: Features Analysis: An Approach to Domain Analysis

" LATO89B: Issues Involved in the Content and Organization of Software
Component Information Bases: Interim Report

• MOOR89A: Domain Analysis: Framework for Reuse

" PERR89A: The Role of Domain Independence in Promoting Software
Reuse: Architectural Analysis of Systems

" PRIE89A: Domain Analysis Tutorial

CMU/SEI-90-SR-3 47

" ROBI89B: Integrating Multiple Specifications Using Domain Goals

* SHLA89A: An Object-Oriented Approach to Domain Analysis

" SIDO89A: Conceptual Modeling and C31 System Design

" SOLD89A: Constructing Domain-Specific Ada Reuse Libraries

" YADA89A: An expert modeling support system for modeling an object
system to specify its information requirements

1990
" GOMA9OA: A Domain Requirei.,ents Analysis and Specification Method

• JAWO90A: A Domain Analysis Process

" SHLA90A: Recursive Design

" VITA90B: Domain Analysis within the ISEC Rapid Center

48 CMU/SEI-90-SR-3

Appendix III
Alphabetical by Organization/Project
BAUHAUS

* ALLE87A: Simplifying the Construction of Domain-Specific Automatic
Programming Systems: The NASA Automated Software Development
Workstation Project

CAMP
" MCNI86A: Common Ada Missile Packages (CAMP) - Volume L

Overview and Commonality Study Results

" MCNI88A: Common Ada Missile Packages - Phase 2 (CAMP-2) -
Volume I: CAMP Parts and Parts Composition System

" PRIE89A: Domain Analysis Tutorial

CMU

* MYER88A: A Taxonomy of Window Manager User Interfaces

CTA

" BAIL88B: Semi-Automatic Development of Payload Operations Control
Center Software

* BAIL89C: Generic POCC Architectures

" BAIL89D: The KAPTUR Environment: An Operations Concept

" MOOR88A: Position Paper on Domain Analysis

" MOOR89A: Domain Analysis: Framework for Reuse

DESIRE
* BIGG88B: The Nature of Semi-Formal Information in Domain Models

DRACO

" ARAN88B: Evaluation of a Reuse-Based Software Construction
Technology

" BRUN88A: Domain Modeling Approaches to Software Development

* FREE87A: A Conceptual Analysis of the Draco Approach to Constructing
Software Systems

• NEIG80A: Software Construction Using Components

* NEIG83A: The Draco Approach to Constructing Software from Reusable
Components

ESPRIT
* PUNC88A: ASPIS: a knowledge-based CASE environment. (Application

Software Prototype Implementation System)

GENESIS
* BATO88A: Building Blocks of Database Management Systems

" BATO88B: Concepts for a Database System Compiler

" BATO88C: Construction of File Management Systems fom Software
Components

GIST
* BRUN88A: Domain Modeling Approaches to Software Development

CMU/SEI-90-SR-3 49

GTE
" COHE89A: Software Reuse for Information Management Systems

" PRIE87C: Domain Analysis for Reusability

* PRIE87D: Faceted Classification and Reuse Across Domains

• PRIE89A: Domain Analysis Tutorial

IDEA
" HARA89A: Automating Software Specification and Design

" LUBA87A: A Knowledge-based Design Aid for the Construction of
Software Systems

• LUBA88B: Domain Analysis and Domain Engineering in IDeA

INFERENCE

• ALLE87A: Simplifying the Construction of Domain-Specific Automatic
Programming Systems: The NASA Automated Software Development
Workstation Project

KAPTUR
* BAIL89D: The KAPTUR Environment: An Operations Concept

KATE

" FICK87B: Automating the Specification Process

" PRIE89A: Domain Analysis Tutorial

MCC

* BIGG88B: The Nature of Semi-Formal Information in Domain Models

" BRUN88A: Domain Modeling Approaches to Software Development

" HARA89A: Automating Software Specification and Design

" LUBA88A: A Domain Modeling Representation

" LUBA88B: Domain Analysis and Domain Engineering in IDeA

* WEBS88A: Mapping the Design Information Representation Terrain

MCDONNELL-DOUGLAS
" MCNI86A: Common Ada Missile Package, (CAMP) - Volume I:

Overview and Commonality Study Results

* MCNI88A: Common Ada Missile Packages - Phase 2 (CAMP-2) -
Volume 1: CAMP Parts and Parts Composition System

NASA

" ALLE87A: Simplifying the Construction of Domain-Specific Automatic
Programming Systems: The NASA Automated Software Development
Workstation Project

" BAIL88B: Semi-Automatic Development of Payload Operations Control
Center Software

" BAIL89C: Generic POCC Architectures

* BAIL89D: The KAPTUR Environment: An Operations Concept

" MOOR88A: Position Paper on Domain Analysis

" MOOR89A: Domain Analysis: Framework for Reuse

50 CMU/SEI-90-SR-3

OZYM
* ISCO89A: Generating Domain Models for Program Specification and

Generation

PHINIX

* BARS85A: Domain-Specific Automatic Programming

" LEDB83A: Reusability of Domain Knowledge in the Automatic
Programming System (phi)

RADC
* MAUR88A: Cartographic Applications for Tactical and Strategic Systems

(CATSS) Functional Software Design

RAYTHEON
" CARL87A: Reusable Software Components for Missile Applications

RLF
" PAYT88B: Reusability Library Framework

" SOLD89A: Constructing Domain-Specific Ada Reuse Libraries

" UNIS88A: Reusability Library Framework AdaKNET/AdaTAU Design
Report

ROGET
* BENN84A: ROGET: Acquiring the Conceptual Structure of a Diagnostic

Expert System

SCHLUMBERGER-DOLL

" BARS85A: Domain-Specific Automatic Programming

" LEDB83A: Reusability of Domain Knowledge in the Automatic
Programming System (phi)

SEI
• DIPP89B: Using Models in Software Engineering

* KANG89A: Results from Domain Analysis Working Group

* KANG89B: Features Analysis: An Approach to Domain Analysis

" LEE88A: An OOD Paradigm for Flight Simulators, 2nd Edition

" PERR89A: The Role of Domain Independence in Promoting Software
Reuse: Architectural Analysis of Systems

SPC

" JAWO90A: A Domain Analysis Process

* WEIS88A: Reuse and Prototyping: A Methodology

SPS

" GILR89A: Impact of Domain Analysis on Reuse Methods

STARS

" MCNI86A: Common Ada Missile Packages (CAMP) - Volume 1:
Overview and Commonality Study Results

" MCNI88A: Common Ada Missile Packages - Phase 2 (CAMP-2) -
Volume 1: CAMP Parts and Parts Composition System

" PAYT88B: Reusability Library Framework

CMU/SEI-90-SR-3 51

" SOLD89A: Constructing Domain-Specific Ada Reuse Libraries

" UNIS88A: Reusability Library Framework AdaKNET/AdaTAU Design
Report

U-ARIZONA
* FISH86A: A Software Architecture for Strategic Management Support

Systems Utiizing Interactive Graphics

U-MAINE
* LATO89B: Issues Involved in the Content and Organization of Software

Component Information Bases: Interim Report

U-OREGON

" FICK87B: Automating the Specification Process

" ROBI89B: Integrating Multiple Specifications Using Domain Goals

UA-HUNTSVILLE
• ASDJ88A: Knowledge-Based Component Composition: An Approach to

Software Reusability

JC-IRVINE
" ARAN88A: Domain Engineering for Software Reuse

" ARAN88B: Evaluation of a Reuse-Based Software Construction
Technology

" ARAN88C: Notes on the Application of the COBWEB Clustering
Function to the Identification of Patterns of Reuse

" ARAN89A: Domain Analysis - From Art Form to Engineering Discipline

" FREE87A: A Conceptual Analysis of the Draco Approach to Constructing
Software Systems

" NEIG80A: Software Construction Using Components

" NEIG83A: The Draco Approach to Constructing Software from Reusable
Components

UI-URBANA
" HARA89A: Automating Software Specification and Design

" LUBA87A: A Knowledge-based Design Aid for the Construction of
Software Systems

UNISYS
" PAYT88B: Reusability Library Framework

" SOLD89A: Constructing Domain-Specific Ada Reuse Libraries

• UNIS88A: Reusability Library Framework AdaKNET/AdaTAU Design
Report

USA-CECOM
" GILR89A: Impact of Domain Analysis on Reuse Methods

" LATO89B: Issues Involved in the Content and Organization of Software
Component Information Bases: Interim Report

UT-AUSTIN
* BATO88A: Building Blocks of Database Management Systems

52 CMU/SEI-90-SR-3

" BATO88B: Concepts for a Database System Compiler

" BATO88C: Construction of File Management Systems from Software
Components

" ISCOB8A: Domain-Specific Reuse: An Object-Oriented and Knowledge-
Based Approach

" ISCO89A: Generating Domain Models for Program Specification and
Generation

CMU/SEI-90-SR-3 53

54 CMU/SEJ-90-SR-3

Index
ADEL85A 5
ALEX86A 5
ALLE87A 5
ARAN88A 6
ARAN88B 6
ARAN88C 6
ARAN89A 6
ASDJ88A 7

BAIL88B 7
BAIL89C 7
BAIL89D 8
BARS85A 8
BATO88A 8
BATO88B 9
BATO88C 9
BENN84A 9
BIGG88B 9
BORG84A 10
BORG85A 10
BRUN88A 10

CARL87A 11
COHE89A 11

DIET87A 11
DIPP89B 12
DOWL89A 12
DUBO86A 12

FICK87B 13
FINK88A 13
FISH86A 13
FREE87A 13

GIDD84A 14
GILR89A 14
GOMA90A 15
GOOD83A 15
GREE88A 15

HARA89A 15
HRYC87A 16
HUTC88A 16

ISCO88A 16
ISCO89A 17

JAWO0A 17

KANG89A 17
KANG89B 18

LATO89B 18
LEDB83A 18
LEE88A 19
LUBA87A 19
LUBA88A 19
LUBA88B 20

MANO88A 20
MAUR8SA 20
MCCA85C 21
MCNI86A 21
MCNI88A 21
MOOR88A 21

CMU/SEI-90-SR-3 55

MOOR89A 22
MOST85A 22
MYER88A 22

NEIG80A 22
NEIG83A 23
NEIG87A 23

PARN76A 23
PARN79A 23
PARN85A 24
PAYT88B 24
PERR89A 24
POLL85A 25
PRIE87C 25
PRIE87D 26
PRIE89A 26
PUNC88A 26

ROB189B 26
ROSA88A 27

SCHE86A 27
SHLA89A 27
SHLA90A 28
SID089A 28
SIM0878 28
SOLD89A 29

UNIS88A 29

VITA90B 29

WARD88A 29
WEBS88A 30
WEIS88A 30

YADA88A 30
YADA89A 31

58 CMU/SEI-90-SR-3

INL!.I I TED, UiN(LIA:;.S Fl vD

SECU AI I CLASS II LA I GN c)f T-'S P'.C,[

REPORT DOCUMENTATION PAGE
1 Pt POfT sr ki (fITY CLA1,F I CAI ON l., R(SF;ICTIVE MARKINGS

UNCLASSI FI ED NONE
2. SfCURAT V CLA SI fCATILN AUl, OPITY - O]ST RE UTION/AVAILABILITY OF RPORT

N/A APPROVED FOR PUBLIC RELEASE
2b O(CLASS

I
sCAT

'
V

)
,

L
t N

i
O

F
SAO

I
NG SCs4OULE DISTRIBUTION UNLIMITED

N/A
pA R DI INAIN.C OAGANiZATION PiPORT NUMfIT AIS) 5 MONITORING ORGANIZATION RCPORT NUMEIA(S)

CMU/SEI-90-SR-3

6e, NAME OF PE 0FORM41NG ORGANIZATION 6b, OFFICE SYM6OL 7& NAME OF MONITORING ORGANIZATION

I (it applsc. ble)SOFTWARE ENGINEERING INST. SEI SEI JOINT PROGRAM OFFICE

6,- ADORESS (C', ly. So o's 71P C o. 7b ADORESS (Cd d . SI ,se od ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE, MA 01731

6.. NAME OF FUNDING/SPONSORING 6b. OFFICE SYMOL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUM6ER
ORGANIZATION (it apphli Lei

SEI JOINT PROGRAM OFFICE ESD/ AVS F1962890CO003

Sc- ADODRESS I4Cy. State .'d ZIP Codl 10 SOURCE Of FUNOING NOS.
CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK WORK UNIT

PITTSBURGH, PA 15213 ELEME NT NO. NO. NO. NO.

63752F N/A N/A N/A
It TITLE I('1cI.ae S tc.rty C"L .c.I.olo.j

A DOMAIN ANALYSIS BIBLIOGRAPHY

12. PERSONAL AUTHORIS)

James A. Hess, William E. Novak, Patrick C. Carroll Shnlnm G. Cohen, et al
13. TYPE OF REPORT 1b. TIME COVERED 14 DATE OF REPORT (Yr., Mo.. D .y 15. PAGE COUNT

FINAL FROM To_ 1o June 19901 56
16. SUPPLEMENTARY NOTATION

17 COSATI COOES It. SUOJECT TERMS (Consnul OA 5Wvumrrw If nlece'4ry end ide ci'y by b(ock numbor

FIELO ;AOUP Sue Go bibliography
domain analysis
software reuse

1 ABSTRACT IConIAs mt r #crre4 'I'ScEU4') and Id~nitfy by 64ock oomb4ri
This document presents a bibliography of references on a comparatively new discipline
called domain analysis. This discipline defines a process to identify and represent the
relevant information in a domain (a set of systems which share common capabilities).
The information is derived from:
I. the study of existing systems and their development histories
2. knowledge captured from domain experts
3. underlying theory
4. emerging technology

Domain analysis has received considerable attention since the early 1980s. This interest
stems from the fact that the application of domain analysis is now believed to be part of
the foundation upon which a successful and systematic program of software reuse can be
built. This foundation is achieved by capturing and preserving the information to be

20. ODISTRI BUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

URNCLA.SSIFIEOUNLIMITEO k SAME AS RFT. 0 OTIC USIE 13 UNCLASSIFIED, UNLIMITED DISTRIBUTIGN
22&. NAMAOE OF RIESPONSILE INDIVIDUAL 22tL TELEPHONE NUMBER 22c. ORFICE SYMBOL

JOHN S. HERMAN, Capt. USAF ESDAVS
, _ ___ _412 268-7630 SEI JPO)

DO FORM 1473.83 APR BOfTION Of I JAN 73 IS OeSOLET E. UNLIMITED, UNCLASSIFIED
- (t'RITY r, A S IC ATION CrV rH.S PAGI,

reused in future developments in the form of application-specific tools and reusable
software models, architectures, and components.

This bibliography has been compiled as a part of the work on the Domain Analysis Project
at the Software Engineering Institute. The bibliography's purpose is to provide an
historical perspective on the field as well as a necessary background for further work
in the discipline.

3OWd SIM1 j0 NOBLYjId1SSWV1 AllWun3S

