
AD-A248 088

DTICSELECT- D
DS_ _ _ _ _ _ _ _ _ _ _ _ __OF

A COMPUTER BASED EDUCATIONAL AID
FOR THE INSTRUCTION OF

COMBAT MODELING

THESIS

Richard S. Moore
Captain. USAF B

AFIT/GOR/ENS/92M-2 D;

This document h~as been OPPEOV.d 92-08123
fog pubic release and sale; its
distribution is unlimited.I111111 !11111111111111

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

92 331 066

AFIT/GOR/ENS/92M-21

DTIC
ELECTE-S APR01D1992

A COMPUTER BASED EDUCATIONAL AID
FOR THE INSTRUCTION OF Accesion For

COMBAT MODELING NNTIS CRA&I '

OTIC TAB [THESIS Uiarnou;:ced

Richard S. Moore J'.........o.
Captain, USAF By

AFIT/GOR/ENS/92M-21 Dist.: ibution .

Availability Codes

Dist Avail a:.d I or
Dpst Spcial

Approved for public release; distribution unlimited

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-01

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructiOns, searcnrig existing date sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden. to Washington Headquarters Services. Directorate for information Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A COMPUTER BASED EDUCATIONAL AID FOR THE INSTRUCTION
OF COMBAT MODELING

6. AUTHOR(S)

Richard S. Moore, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 REOT NUMBER
AFIT/4@ ff/ENS/92M-21

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

Department of Defense
AU CADRE/WGTA
Maxwell AFB, AL

11. SUPPLEMENTARY NOTES

12a. DISTR, JTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

Abstract

The Air Force Institute of Technology is one of few institutions that teaches combat modeling. Combat
models are typically dynamic computer simulations of specialized dynamic processes. Great difficulty exists
in portraying these dynamic and recurrent processes with conventional static diagrams.

This thesis produced a computer-based instructional aid which presents animated examples of processes
common to combat models, demonstrates a simple few-on-few aerial combat model, and encourages stu-
dent exploration and interaction with these presentations. This aid provides dynamic examples of random
number generation, detection processes, target selection, and target destruction. A complete combat model
demonstrating a few-on-few air duel is animated and includes features which permits students to monitor
the internal processes and continuously changing states of the simulation. Generated model output displays
typical measures of products often used in verification and validation of combat models. A follow- up ques-
tionnaire challenges the student and their understanding of combat modeling methodologies and encourages
their curiosity to explore the inner workings of the model.

As with any developmental software package, improvements and enhancements can always be made. This
thesis provides the foundation to support these welcomed improvements and enhancements.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Simulations; War games; Models; Training 222
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Pfescribed by ANSI Sid 139-18
298-102

THESIS APPROVAL

STUDENT: Captain Richard S. Moore CLASS: GOR 92-M

THESIS TITLE: A Computer Based Educational Aid For The

Instruction of Combat Modeling

DEFENSE DATE: 27 FEB 92

COMMITTEE: NAME/DEPARTMENT SIGNATURE

Advisor Major Michael W. Garrambone,

USA/ENS

co-Advisor Major Paul F. Auclair/ENS

AFIT/GOR/ENS/92M-21

A COMPUTER BASED EDUCATIONAL AID

FOR THE INSTRUCTION OF

COMBAT MODELING

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Masters of Science in Operations Research

Richard S. Moore, B.S.

Captain, USAF

March,1992

Approved for public release; distribution unlimited

Acknowledgments

I am indebted to my thesis advisor, Major Michael W. Garrambone, USA, for his ever present

assistance and guidance in the development of this thesis. I also wish to thank Major Paul F. Auclair

for his technical assistance and thorough critique of this document. Finally, I thank my family, my

wife Sherri, our sons Alex and Aaron, and daughter Alysha who continued to supply their uplifting

support and encouragement in light of their own personal sacrifices.

Richard S. Moore

Table of Contents

Page

Acknowledgments.. ii

Table of Contents.. iii

List of Figures..vii

List of Tables. viii

Abstract ix

1. Introduction. 1

1. 1 Background. 1

1.2 Problem Statement. 3

1.3 Thesis Objective. 3

1.4 Scope and Limitation. 4

1.5 Definitions. 4

II. Literature Review 6

2.1 Introduction 6

2.2 Computer-Assisted Instruction 7

2.3 Use of Graphics and Animation 8

2.4 Combat Simulation Model Classification. 9

2.4.1 Classification By Purpose. 9

2.4.2 Classification By Qualities. 9

2.4.3 Classification by Construction. 11

2.5 Designing Combat Models and Wargames. 16

2.6 Combat Model Processes 19

2.6.1 Searching. 19

iii

Page

2.6.2 Detection. 20

2.6.3 Target Selection 20

2.6.4 Impact Assessment 21

2.6.5 Measures of Dispersion. 22

2.7 Simulating Aircraft Performance 23

2.8 Missions and Tactics. 24

2.9 Selection of Computer Languages. 27

2.10 Conclusion. 28

II.Approach 29

3.1 Introduction. 29

3.2 Objective 29

3.3 Sub-objectives 29

3.4 The Shell 30

3.5 Menus 31

3.5.1 Opening Menu. 31

3.5.2 Examples of Processes. 31

3.5.3 Combat Demonstration 34

3.5.4 Display Output 34

3.6 The Air-to-Air Combat Modiel 36

3.6.1 Data 36

3.6.2 Scenario 37

3.6.3 Entities and Attributes 38

3.7 Generalized Model Flow 39

3.8 Verification and Validation 40

3.9 Hardware Requirements. 42

3.10 Graphic Requirements 42

3.11 Animation. 43

iv

Page

3.12 User Documentation. 44

3.13 Enhancements 46

3.14 Methods Summary 46

3.15 Summary 48

IV. ATACS Construction. 49

4.1 Introduction. 49

4.2 ATACS Specifications 49

4.3 Menus and Dynamic Examples. 50

4.3.1 Menus. 50

4.3.2 Animated Examples. 50

4.4 Scenario Creation. 62

4.5 Flight Performance Preprocessor 64

4.6 Animation. 67

4.7 Model's Principal Architecture. 71

4.7.1 Search. 72

4.7.2 Assignment of Headings 74

4.7.3 Track Angle. 76

4.7.4 Missile Launch, Track, and Aircraft Kill.. 78

4.7.5 Aircraft Advance. 81

4.7.6 Attribute Screen. 83

4.7.7 Additional Features. 83

4.8 Output. 85

4.9 Model Limitations. 86

4.10 Summary. 86

v

Page

V. Conclusions 88

5.1 Summary 88

5.2 Development of ATACS. 89

5.3 Recommendation 90

5.4 Conclusion. 91

Appendix A. ATACS SIMTAX Classification. 93

Appendix B. ATACS' User Manual 95

Appendix C. ATACS Questionnaire................................... 104

Appendix D. Variable Definitions.................................... 108

Appendix E. ATACS Source Code Listings..............................11ll

Bibliography... 202

Vita.. 205

vi

List of Figures

Figure Page

1. The "Black Box" Simulation 3

2. Classification By Purpose. 10

3. Classification By Human Participation. 12

4. Classification By Time Processing. 13

5. Treatment of Randomness. 14

6. Classification By Sidedness 16

7. Combat Air Patrol 26

8. Enhancement Flow 47

9. Menu Options 51

10. Menu Logic Flow 52

11. RNDDEMO Subroutine 54

12. Random Number Generator Example Display 55

13. PDETDEMO Subroutine (Deterministic). 56

14. Deterministic Example Screen Display. 58

15. PDETDEMO Subroutine (Stochastic) 59

16. Stochastic Example Screen Display 60

17. CEPDEMO Logic Flow. 61

18. CEP Example Screen Display 63

19. ATACS Icons 69

20. Main Control Loop of ATACS 73

21. Target Assignment75

22. Track Angle77

23. Missile Flow 80

24. Subprogram ADV. 82

25. Attribute Screen 84

vii

Figure Page

26. ATAGS menus 98

27. ATACS Icons 102

viii

List of Tables

Table Page

1.Entities and attributes 39

ix

AFIT/GOR/ENS/92M-21

Abstract

The Air Force Institute of Technology is one of few institutions that teaches combat model-

ing. Combat models are typically dynamic computer simulations of specialized dynamic processes.

Great difficulty exists in portraying these dynamic and recurrent processes with conventional static

diagrams.

This thesis produced a computer-based instructional aid which presents animated examples

of processes common to combat models, demonstrates a simple few-on-few aerial combat model,

and encourages student exploration and interaction with these presentations. This aid provides

dynamic examples of random number generation, detection processes, target selection, and tar-

get destruction. A complete combat model demonstrating a few-on-few air duel is animated and

includes features which permits students to monitor the internal processes and continuously chang-

ing states of the simulation. Generated model output displays typical measures of products often

used in verification and validation of combat models. A follow- up questionnaire challenges the

student and their understanding of combat modeling methodologies and encourages their curiosity

to explore the inner workings of the model.

As with any developmental software package, improvements and enhancements can always be

made. This thesis provides the foundation to support these welcomed improvements and enhance-

ments.

A COMPUTER BASED EDUCATIONAL AID

FOR THE INSTRUCTION OF

COMBAT MODELING

I. Introduction

1.1 Background

"Simulation is one of the most widely used techniques in operations research and management

science, and by all indication its popularity of use is on the increase" (24:2). In fact, modeling and

simulation are the principal tools used by the Department of Defense (DoD) as aids in studying their

most complex problems. Specifically, combat models and simulations are applied to problems of

battle planning, wartime operations, weapons procurement, force sizing, human resource planning,

logistics planning, and national policy analysis (22:4).

As one would expect, a diverse wealth of literature exists on the subject of combat modeling.

That is, there are books describing how to build models, memorandums on how to use them, and

critiques discussing their unfortunate and unintentional misuse. The General Accounting Office

(44) emphasized in their report, Models, Data, And War: A Critique Of The Foundation For

Defense Analysis, the need for the decisionmaker to insist that models and simulations used to

support decision making be easily understood (transparent), validated and verified (appraised),

and consistent with the stated problem (44:49). To meet this demand, the model developers

and analyst must have superior knowledge of the development and application of DoD models.

Unfortunately, gaining insight into a models construction and purpose is no easy task.

One reason for the difficulty may be that models evolve over time. That is, as the "what

if" questions arise for an analyst to assess,"new and improved" models are developed to answer

such questions. This action then adds to the model's size and complexity. Today, a small combat

model may have thousands of lines of computer code while larger models might have hundreds of

thousands of lines. It typically takes an analysts weeks to learn how to operate a small model, and

several years to learn the "guts"-the internal workings-of the more modern ones (42). In too

many cases, this learning has been a time prohibitive endeavor.

Unfortunately, in these cases, the simulation model used in application is treated like the

mysterious "black box". The model input is fed into the box and the resultant output is unques-

tionably taken, without knowledge of how the information was manipulated within the box (see

Figure 1). To ensure proper model application, immediate measures through education must be

taken to break this "black box" syndrome. It may be impractical to expect the decisionmaker and

analyst to be educated on every line of code in the model, but learning the key elements such as the

objective of the model, scenario, data requirements, and output analysis methodology is essential

in preventing the unintentional misuse of combat models (28:5).

The Air Force Institute of Technology (AFIT) has taken positive measures in preventing

this unintentional misuse of combat models. AFIT offers a two course combat modeling sequence

which is designed to educate students on a combat model's key elements and the techniques used

in dynamic modeling of combat. The students are presented with multiple static illustrations of

these dynamic processes throughout the course sequence. Following successful completion of the

courses, the students have a better understanding of modeling combat and are equipped with the

tools necessary for investigating or breaking open the aforementioned "black box". In this light,

AFIT has attempted to provide greater understanding of combat modeling to students and future

decisionmakers.

Combat models are typically dynamic computer simulations of specialized processes which

are difficult to illustrate with conventional static diagrams. To better present these processes, it

was suggested that a simple demonstrative combat model be used as an educational aid (18). This

2

= Model

Figure 1. The "Black Box" Simulation

model should include features that permit dynamic illustrations or animation of the key processes

of a combat model such as searching, target identification and engagement. By providing such

a tool, the student is given the opportunity to visualize, investigate, and experiment with these

processes to gain a better and longer lasting understanding of how the phenomena may be properly

portrayed.

1.2 Problem Statement

Currently AFIT lacks a dynamic media to teach and train students about the key elements

of combat modeling and simulation tools.

1.3 Thesis Objective

The objective of this thesis was to develop a simple and portable air-to-air, few-on-few

combat simulation which demonstrates the fundamental concepts of air combat, combat modeling,

and simulation in a form that supports student learning of model design and use in DoD studies.

3

1.4 Scope and Limitation

In light of the objective, this thesis describes the approach to development, design, and

application of such an educational aid. The purpose of this aid is for the education and training

of combat modeling students who will become the analysts and decision makers of tomorrow. The

combat model described in this thesis is intended only for demonstration and is not a tool for

analysis. Unfortunately, the time permitted for this thesis constrained the development of the

demonstration's full potential as an education aid. Due to this constraint, the number of dynamic

examples and novel model features were limited. In most cases, the limitations involved necessary

simplifying assumptions. These assumptions are addressed in appropriate sections throughout this

document.

Although, the detail of the combat model demonstration is limited in its ability to capture

the full realism of an air-to-air duel, the absence of some "real world" realism serves as valuable

instruction. In the employment of this aid, the student may be challenged to review the combat

demonstration again and again to identify these limitations. Identifying that which is absent is

indeed a more difficult task than observing what is present, challenging the students' understanding

of modeling combat.

1.5 Definitions

Before a discussion of the literature on the topic of combat modeling is presented, a short

glossary of terms germane to the subject, is provided. Some of these terms, such as combat model

and war game, are interchanged on occasion. Therefore, the following definitions are offered to

clarify the meaning of such terms and to highlight the subtle distinctions between them.

War Game. A simulation of a military operation involving two opposing forces, using
rules, data, and procedures designed to depict an actual or assumed real-life situation.
War games may be manual, with all decisions, assessments, and book-keeping functions
performed manually; computer-assisted; or completely computerized. (14:227)

4

Analytical Model. A simulation model comprised of sets of mathematical equations
as models of all the basic events and activities in the process being described. (14:151)

High Resolution Combat Model. A model which includes detailed interactions of
individual combatants or weapon systems. Each combatant in a high resolution model
has its own vector of state variables which describe its unique situation and its unique
perception of the battlefield as the battle progresses. Interactions among combatants
are resolved at the one-on-one engagement level-often computing separately the results
of each individual shot fired in the battle. The engagement models include terrain and
environmental effects as well as the states of firer and target. (19:Sec 1-6)

Simulation. Simulation is the use of a numerical model of a system to study its
behavior as it operates over time. Discrete event simulation deals specifically with
modeling of those systems in which the system state is deemed to change instantaneously
at discrete points in time, rather than continuously. (43:217)

H. Literature Review

2.1 Introduction

The purpose of this section is to review pertinent literature available on the principal subject

of combat modeling. The reader should keep in mind that the purpose of this thesis was not to

develop a combat analysis tool, but to develop a computer-assisted instruction (CAI) aid which

demonstrates techniques used to simulate some of the basic phenomena which occur in combat.

The wide range of material addressed in this thesis is divided into five sections. The first

section investigates the advantages and development of computer-assisted instructions (CAI). This

section provides a definition of CAI and guidelines for the development of a CAI system. The

definition as well as the guidelines assisted in defining the desired objective of the CAI.

The second section addresses the role of computer generated graphics. This section provides

support for the use of graphics as a teaching aid as well as, a valuable tool for model verification

and validation.

The third section describes the classification of combat models by purpose, qualities, and

construction. Classification of a combat model is the first and most important step in model

development. Classification establishes a model foundation and provides the skeletal structure for

model development.

The fourth section addresses simulation of several key combat processes such as search, de-

tection, target selection, and target destruction. The importance of a simulation scenario is also

addressed in this section.

Finally, the fifth section addresses the selection of an appropriate high order computer lan-

guage.

6

2.2 Computer-Assisted Instruction

Edmounds described computer-assisted instruction (CAI) as

... an area of education that involves any training technique in which a student
interacts with a computer system. The system may be based on a large mainframe-
type computer, a microcomputer such as a personal computer, or anything in between.
The basic approach used by CAI requires the student to sit at a computer terminal of
small computer and, through a keyboard or some other student-controlled technique,
respond to messages that are displayed on the monitor. Computer-assisted instruction
goes under several other names, such as computer-based training (CBT) and computer-
aided instruction (also abbreviated CAI). (15:104)

The definition above makes no reference to the type of instructions that the CAI pertains to

nor does it characterize the receiver of the instructions. A significant feature of CAI is its flexibility.

CAI may be applied to nearly every learning environment ranging from elementary schools through

the college level.

Advantages offered by CAI include (15:104- 105):

" Availability: The instructions are as available as the computer it runs on.

" Paced Learning: Student can control the pace of the instruction.

* Efficiency and Cost: A large number of people can be trained at one time with CAI techniques.

Once the software program is developed, the cost per student tends to decrease, especially

when CAI does not require personal instruction.

" Psychological: The student's training can be done privately without peer judgement.

" Interaction: The computer enhances student interaction through its high speed of response

(21:102).

" Demonstration: Computer graphics enhance dynamic demonstrations through use of anima-

tion.

7

A multitude of studies on the value and worth of CAI have been accomplished. In a literature

review of the worth of CAI, Hathaway reported that CAI generally produced as much or more

learning in less time than conventional methods of instruction. However, he warns that poorly

developed and administered computer based educational environments may in fact be detrimental

to learning (20:7).

To epsure the proper development of an effective CAI system, the role of the system and the

intended user must be defined. The purpose of the system could be to teach one or more lessons,

perform rote drills, perform simulations, act as a tutorial, or function as a game (11:1-2). In terms

of the user, the system must account for ability level, information needs, and learning environment

(38:2-3).

Thus, properly developed computer based instruction systems have been shown to be worth-

while and applicable to a wide range of subjects. It remains plausible then, that CAI may enhance

the presentation of combat modeling concepts.

2.3 Use of Graphics and Animation

Using visualization has been an effective pedagogical technique to achieve instructional goals.

In his article on animation, Robert Duisberg recognized the potential of graphics as a communica-

tion interface with the user.

The perceptual endowments of people are strongly optimized for real-time image pro-
cessing, and interactive graphics can immediately communicate multidimensional infor-
mation about the internal state of a complex dynamic process.(12:276)

The introduction of animation into simulation gives the viewer a strong visual representation

(36:363-370), and, as Knuth put it, "An algorithm must be seen to be believed" (23:4).

Graphics not only aid in achieving instructional goals, it can assist in model construction,

debugging, verification, and validation. For the model builder, graphical presentations such as

8

animations, charts, and plots provide the "seeing is believing". In short, animating a simulation

strongly enhances the verification of the model code and its performance (40:19-20);(35:33);(37:40).

2.4 Combat Simulation Model Classification

Each combat model can be described in terms of its purpose, qualities, and construction. One

such classification scheme is found in SIMTAX: A Taxonomy for Warfare Simulation, an appendix

to the Department of Defense's Catalog of Wargaming and Military Simulation Models (10).

The classifications contained within SIMTAX are significant to this research endeavor as they

provide a conceptual framework during the design and development of the instructional combat

model. Generally, these classifications branch into sub-classes which are further sub-divided as

warranted. The intent here is not to explore every possible sub-classification presented in SIMTAX,

but to discuss only those classifications that are germane to this thesis.

2.4.1 Classification By Purpose. According to SIMTAX, a wargame or military simulation

model may be used for either analysis or education and training as depicted in Figure 2. SIMTAX

defines the education and training models as those whose purpose "is to transfer or reinforce a

lesson or relationship that is already known" (25:3). The training and education models are further

categorized as those that contribute to skills development or control various wargame exercises

(25:3-5). Reflecting on the objective of this thesis, it is clear, that the purpose of this combat

model is to develop skills through education and training.

2.4.2 Clcssification By Qualities. "The qualities dimension of a military model are those

real entities and processes which the model represents" (25:7). For example, these entities may be

aircraft or airbases. A process, on the other hand, refers to an action or activity such as distributing

supplies or providing attack warning. The qualities defined in the SIMTAX are:

9

PurTose Education and Training

A lysis I

Skills Exercise
Development Driver

Adapted from (25:3)

Figure 2. Classification By Purpose

1. Domain: "The physical or abstract space in which the entities and processes operate" (25:7).

The space may be air, land, sea, or a combination depending the phenomena to be modeled

(25:7). In the case of the air domain, the physical space is three dimensional-vehicle latitude,

longitude, and altitude-assuming that no representation of ground based units such as an

airbase is made (18). However, when a ground element such as an airbase becomes a part of

the simulation, multiple domains exist-air and ground.

2. Span: "The scale of the domain" (25:7). The span, like the domain, depends on the phe-

nomenon to be modeled. In the case of global warfare, the span is obviously global. When

modeling the one-on-one, close in, air-to-air engagement, the span is defined as individual.

Description of the span is often subjective (25:7).

3. Environment: "The texture or detail of the domain" (25:7). The environment contains the

conditions that simulated combat forces are subject to, such as, types of weather, day/night,

and terrain features (25:7).

4. Force Composition: "The mix of forces that can be portrayed by the model" (25:7). A force,

as defined in the model, may depend on the domain and span of the model. In a regional air

10

model, the force may be comprised of a squadron or flight of aircraft. On the other hand, in

an individual air model, the force composition may be a single aircraft (18).

5. Scope of Conflict: "The category of weapons" (25:7). In a global warfare simulation, the

scope may be nuclear ballistic missiles. At the individual level, the scope may be a single

conventional air-to-air missile (18).

6. Mission Area: "Recognized combination of weapons and procedures used to accomplish a

specific objective" (25:7). In the global span, mission area may be defined as global air lift.

In the individual span, the mission area can be defined as a combat air patrol (18).

7. Level of Detail: "For the purpose intended, it needs to be like the real thing" (7:5).

2.4.3 Classification by Construction. Construction refers to combat model features such as

human participation, time processing, treatment of randomness, and sidedness (25:9-11). Classi-

fication of the model's construction identifies the need for a user/model interface as well as key

simulation mechanisms.

SIMTAX defines human participation as "the extent to which a human presence is allowed or

required to influence the operation of the model" (25:9). Human participation, as shown in Figure

3, may be either required or not required. Even though the latter category does not require human

participation, participation may be permitted as shown in Figure 3. This "not required" category is

further subdivided into classes of permissible participation, such as, program interruption, scheduled

changes, and participation not allowed. A program interrupt permits the user to halt the simulation

and possibly alter a modeled condition.

A scheduled change permits the user to alter the current modeled conditions. One example

would be to move resources at the end of each battle cycle. The last category, "not permitted,"

is used to classify a model which does not permit any user involvement once the simulation has

begun (25:9).

11

Human Participation
I Not Required

Required

Interruptible Schedule Not Permitted
Change

Adapted from (25:3)

Figure 3. Classification By Human Participation

A model can also be classified by the methods used to simulate the passage of time. As

shown in Figure 4, two major classes of methods exist-static and dynamic. Within the static class

of models, time advance is not represented. However, dynamic models do represent the passage of

time and employ three possible techniques to accomplish this. These techniques are the fixed time

step, event step, and closed form techniques. The time step and event step methods step through

time. With fixed time step, the step size is constant; although, there may exists several internal

time step mechanisms embedded within the model. Each of these embedded mechanisms may use

a different time step length.

The event step technique is more efficient, in most cases, than the fixed step. The timing

mechanism of the event step "looks ahead" to see when the next event will occur. The time is then

advanced to coincide with this event's occurrence.

The closed form technique uses a set of differential or difference equations. This technique

applies to modeled events that have a close form solution (25:9-10).

There are advantages and disadvantages in both the fixed and event time step mechanisms.

The greatest advantage of the fixed time step is its simplicity in computer program coding. Unfor-

tunately there are three major disadvantages of using this technique (19:Sec 2,7).

12

Time Processing
[] Dynamic

Static[[[

Time Step Event Step Closed
Form

Adapted from (25:10)

Figure 4. Classification By Time Processing

1. If the model has periods of inactivity in which state variables are not changing, computer

processing time is wasted by checking these variables at each time step (19:Sec 2,8).

2. If a change in a state variable does oce',r, the recording of the event takes place at the end of

the time step interval and not at the "actual" time within the interval it would have occurred

(19:Sec 2,8).

3. If at the end of the interval, mutual events occur, a determination as to which event occurred

first cannot be performed. For example, it would be impossible to determine which of two

pilots fired first in an engagement (19:Sec 2,8).

The last two disadvantages can be overcome by making the step size sufficiently small. However,

this action only amplifies the first disadvantage listed above (19:Sec 2,8).

Hartman wrote, "Most modern high resolution models do not use the fixed til-ie step ap-

proach" (19:Sec 2,7). This comment by Hartman was directed at combat models in general. How-

ever, this statement appears to apply primarily to ground combat models. A review of the J8

Catalog of Wargaming and Military Simulation Models revealed that the majority of the air-to-air

high resolution models used the fixed time step technique in modeling aerial engagements (10:M30-

13

Treatment of
Randomness

[] Stochastic

DeterministicF

Direct Monte Carlo
Computation

Adapted from (25:10)

Figure 5. Treatment of Randomness

M32). These highly dynamic state variables require continual updates of aircraft performance

parameters and location. This constant need for updates presents an ideal condition for use of the

fixed time step technique. In other words, since the aircraft must always be on the move, the state

of the simulation is always changing.

The advantage of the event step technique is that it overcomes the disadvantages of the fixed

step. The event step jumps over periods of inactivity; events are recorded at thp "actual time" of

occurrence, and multiple occurrence of events are distinguishable. The disadvantage of the event

step is it is more difficult to develop. An additional disadvantage occurs when the frequency of the

simulation demands for updates increases. At some point, the efficiency of the event step is lost,

and the run time of the simulation will greatly increase due to the constant scheduling of updates.

As shown in Figure 5, a model's construction can also be classified by the method used to

treat randomnmss. A model is categorized as deterministic if there is no consideration of randomness

in the simulation. If randomness is addressed, the model is then categorized as stochastic (25:10).

The stochastic method employs the use of pseudo random number generated uniformly over

an interval from zero to one. A model which uses this technique of random number generation

14

is generally referred to as a Monte Carlo model. The following quote from SIMTAX states the

condition by which a model is labeled as Monte Carlo model.

If any part of a model draws even one random number for use in determining a
realization of a random variable (i.e., uses the Monte Carlo method), then that part is
Monte Carlo, and if any part of a model is Monte Carlo then the model as a whole is
Monte Carlo. (25:A12)

The Monte Carlo process requires a random number to be generated. A great majority

of random number generators use the linear congruential method to create a stream of random

numbers to be used in the simulation. This method is described below (24:424).

A sequence of integers Z 1, Z2 ,..• is defined by the recurrent formula

Zi = (aZ,-1 + c)(modm)

where m (the modulus), a (the multiplier), c (the increment), and ZO (the seed or starting

value) are nonnegative integers.

The final category of classification by construction is the sidedness of the model shown in

Figure 6.

Sidedness refers to "the number of collections or alliances of resources working on or through

the model toward a common goal" (25:11). This category is divided into three classes. First is the

one sided classification where all the assets belong to one side. The second and third classes are

two-sided and three or more sided. These last two classes are divided into two subclasses-symmetric

and asymmetric. For a model to be symmetric, three conditions must exist. First, a simulated

resource belongs to one side only, not shared. Second, resources on either side must be equitable.

For example, if one side, say side one, has the capability to defeat a threat owned by side two, then

side two must also have an equitable defense against a threat possessed by side one. The third

15

Sidedness

One-Sided Two-Sided Three or More

Asymetric al

Symmetric

One Side All sides
Non-reactive reactive

Adapted from (25:11)

Figure 6. Classification By Sidedness

condition states that the interaction which is simulated between side one's defense and side two's

threat must exists for side two's defense against side one's threat. When there is an imbalance

between these conditions, the model is then classified as asymmetrical-one force is superior to the

other (25:11).

Asymmetric is further divided as either one side reactive or both sides reactiVe. In the case

of one side being non-reactive, that side will not fire back in defense nor take action, such as taking

cover to prevent being detected or hit. In the reactive case, both sides react to stimulus such as

shooting and defending.

2.5 Designing Combat Models and Wargames

In his research memorandum, Wargame Design, Developmcnt, And Play, Peter Perla posed

fundamental questions that designers of wargames must ask and answer. These questions are also

appropriate to the design of this instruction aid. These questions are (28:2):

16

1. What does the sponsor [investigator] want to learn from the player?

2. What does the sponsor want to say to the players?

3. Who are the players that will be involved or that need to be involved, and what are their

interests or concerns?

4. How can the sponsor's and player's goals best be linked? In particular, what information

must the game provided, and how can it be structured to do so?

Responding to these questions provides rudimentary guidance for the development of a mod-

eling effort. Based on these questions, Perla also presents a step-by-step set of specific processes

to guide the development of a wargame. These processes were then synthesized with the questions

addressed above to establish the following useful guidelines (28:3-25);(32:11):

" Specifying the Objective

" Defining the infrastructure

" Assembling the information

" Devising the mechanics

" Model Translation

" Verification

" Validation

" Documentation

The list above does not necessarily represent a sequence, but only a list of activities. Many

of these activities in fact may be accomplished simultaneously.

Specifying the objective and defining the infrastructure are addressed by the classification

of the model's purpose and qualities. The assembling of information is the process of defining

17

the wargame scenario and collecting data. From Perla, "The term 'scenario' has its origins in the

theatrical world, where it refers to an outline or synopsis of the plot of a play, novel, or other work".

A scenario may define an aircraft entity's role or mission, the tactics which enable the aircraft to

meet its mission objectives, and the logistics to support the aircraft (28:8-9).

The mechanics, as Perla defines them, are the math models and the procedures. A math

model serves a function. For example, a math model may be used to calculate the dynamic air

pressure at a missile's current velocity and altitude. In contrast, a procedure is comprised of order

dependent steps that may contain a math model in one of those steps. An example of a procedure

may be the steps in simulating the flight of an air-to-air missile. First the missile location must be

advanced. Second, the missile's range to target must be calculate. Third, if within range of the

target, the missile detonatess. The fourth procedure then determines if the target was eliminated

(28:21).

The process of model translation transforms the objective, infrastructure, scenario, and pro-

cedures of an abstract model into acceptable computer code (32:12). This begins by decomposing

the conceptual model into smaller modules. Each of these modules may be the steps of a procedure

like those described in the above paragraph. For each of these smaller modules, pseudo code is

developed-a literal description of the computer program flow. From the pseudo code, flow charts

are developed and finally the actual coding of the model is accomplished (16:8-9). This approach of

breaking a large job into smaller more visible tasks leads to the development of structured computer

code.

Validation and verification are evaluation processes. These tasks respectively consist of "...

determining that the translated model e -ecutes on the computer as the modeler intended.", and

"... determining that the simulation model is a Teasonable representation of the system being

simulated." The verification and validation process is key in establishing the worth and credibility

the model (32:12).

18

The final process is the documentation of the model. Documentation is a written record de-

scribing the model or its use. It may take the form of comments embedded in the model's computer

code or that of a manual. Whatever form it takes, documentation should occur throughout the

model's development.

In addition to Perla's set of guidelines, Dunnigan provides two simple rules in developing

a combat model: keep it simple and plagiarize. Plagiarizing is Dunnigan's way of saying "use

available techniques", a point of view shared also by Perla (13:236-237);(30:187).

2.6 Combat Model Processes

The intent of the this section is to present specific processes germane to combat engagements

and the techniques used to simulate those processes. Several of the techniques addressed in the

following paragraphs have been adopted from the Piloted Air Combat Analysis Model (PACAM),

a high resolution, air-to-air, many-on-many, close-in combat simulation model (1).

The flow of a combat model can be defined as a simple recurrence between two distinct

processes. Hartman has labeled these processes as "searching" for and "engaging" the enemy. If

the search process does not identify an enemy, the process loops until an enemy is identified. Each

of these processes are composed of distinct events. Hartman labels the searching events as "search"

for targets, "detect" them, and "select" one. In the case of the engaging process, he labels the

events as "fire" at the target and assess the "impact" (19:Sec 2,20). The process described by

Hartman appears to be standard for high resolution combat simulations (18).

2.6.1 Searching. Models which simulate the process of searching focus on a situation where a

target's location within the search area is unknown. The target is only in the view of the sensor for a

limited time as the field of view of the sensor pans the region occupied by the target. This process

of searching continues in cycles. The cycles begins with initiation of the search and terminates

when the sensor either detects a target or has reached the limits of the search pattern (19:Sec

19

5,1). "Search models try to describe the probability distribution of the amount of time required

to find the target under these circumstances' ; (19:Sec 5,1). The outcome of the search process is

dependent on the effective range of the sensor, the position of the sensor, and the position of the

target. Measurement of the sensor position and that of the target is accomplished by establishing

a relative coordinate system that is centered on the sensor. As the target approaches and enters

the effective range of the sensor, detection can occur (19:Sec 5,4).

2.6.2 Detection. The simplest means of simulating the process of search and follow-on detec-

tion is by the deterministic "definite range law" or "cookie cutter" method. This method simulates

a sensor which has perfect coverage within the search region as defined by the sensor's sweep limits

and maximum range. As soon as the target enters the search region, the target is detected with

a probability of 1.0 (19:Sec 5,6). Another approach to detection is a continuous search method.

Unlike the cookie cutter, this method is stochastic. The continuous search model used in PACAM

is a function of the nominal range of the sensor and the range to the target. The nominal range is

a function of the target's aspect. This detection model is show below

Pd = eln(5)*(R/RNm)4

where R is the range to target and RNom is the nominal range of the radar with respect to the

target's orientation relative to the radar's antenna. When RNom data is not available, the value

of one is used in its place. Once the target is subject to detection, a random number is drawn and

compared to the detection probability. If the random number drawn does not exceed the detection

probability, the target is detected (4:149).

2.6.3 Target Selection. Following the detection of a target, the target is added to a target

list, this list may contain one or more targets. Hartman wrote, "An unfortunate fact about target

selection modeling is that there is no basic seminal theory known to this writer [Hartman]" (19:Sec

20

6,1). Hartman acknowledges that each combat model performs the selection of targets based on

the scope of the combat model.

Hartman addresses two applicable target selection situations. The first situation is the single

autonomous firer. The firer engages the target based only on what he knows about the target.

If more than one target is present, the single firer must have a means to prioritize the target

selection. Factors to consider in the prioritization of the targets are range, target type, threat, and

ammunition availability (19:Sec 6,1-3).

In air models, prioritization of air targets is based on their location within segments of the

air space surrounding the aircraft. These segments are defined by the target range and the angle

between the aircraft's velocity vector and the line of sight vector terminating at the target. Selection

of targets is then based on the presence of targets in prioritized segments. Generally, the segment

immediately forward of the aircraft (a position known as the forward quarter) is the preferred

region for attacking a target. If an enemy has been detected, and is in some other region, the pilot

will maneuver in such a way to bring the target aircraft into the forward quarter (1:84-98).

The second situation defined by Hartman is where several firers coordinate their target selec-

tion to mass their fire on a target. To simulate this activity requires a set of fire coordination rules

which generally express the execution of some tactical doctrine (19:Sec 6,10). PACAM uses such

a set of coordinated procedures defined by the user as an input to the model. These procedures

define the tactics to be used in order to concentrate fire on a target (1:84-98).

2.6.4 Impact Assessment. After firing upon the target, the task of simulating the outcome

follows. The simulation of a weapon's accuracy assumes that the impact point is a normally

distributed random variable (19:Sec 7,2- 3).

The randomness of the impact point is due to a couple factors. These include the human

component, such as aim, and the physical component such as deviation in the projectile's ideal

performance (19:Sec 7,3). To model the randomness, normal random deviates are generated using

21

the polar method (described in Chapter IV) to simulate impact points, Hartman provides the

following.

Statistical theory suggest that the Normal distribution might be a reasonable model
for the impact point. This has been confirmed by thousands of test firing of numer-
ous weapons, and thus the Normal distribution is universally used as the appropriate
stochastic model of firing accuracy. (19:Sec 7,3).

2.6.5 Measures of Dispersion. After firing a weapon repeatedly at a target, a pattern around

the intended impact point will develop. This pattern illustrates the accuracy of the weapon system.

The Normal probability distribution function (pdf) is the most common means of describing the

dispersion pattern. The two parameters of the Normal pdf are the mean and the variance of the

data. In this case the mean is the round-to-round systematic error component and the variance

or dispersion is the round-to-round independent error component (19:Sec 7,3).

The most common metric for classifying the accuracy of the weapon's impact point is the

weapons circular error probable "The circular error probable (CEP) is that radial distance from

the aim point within which half the impacts are expected to land" (19:Sec 7,4). For the simple

case that assumes a circular target, circular impact distribution, no bias, and equal down and cross

range dispersion error, the CEP may be approximated by

CEP = 1.1774a (1)

where o is the standard deviation of the weapon's dispersion pattern (19:Sec 7,5). Unfortunately,

the assumptions of Eq (1) are often overly restrictive. In many cases, a can not be represented by

a single value because the dispersion error along the cross range axis is not the same as that across

the firing axis. In addition, most weapons tend to exhibit some degree of weapon bias. To treat

22

these less than ideal cases, the CEP may be estimated by

CEP = CEPMPI • (1.0039 - .0528. V + .4786. V 2 - .0793. V 3) (2)

where

V = Bias/CEPMpi (3)

CEPMpI = 0.6140, + 0.563aT (4)

"Bias" is the radial distance between the aim point and the mean point of impact, CEPMPI is the

CEP of the mean point of impact, and o, is the smaller of the two dispersion measurements (31).

By substituting the representative values for the conditions of Eq (1) into the corresponding

parameters of Eqs (2),(3), and 0) the resultant function is that of Eq (1). Therefore, Eq (2) is

more robust than that ot I '1(1) and it allows treatment of the less than ideal parameters which

characterize a weapons accuracy performance.

Proba bility of Hitting a Target. The CEP can be used in determining the probability of hit

for an target size. This probability can be generated with use of the function

PH. = 1 - e
- 0 .

693147
*

R
2
/CEP

2 (5)

where the constant term of Eq (5) is one half of the square of the constant term in Eq (1), and

R is the radius of the target. The equation's use of the ratio of target radius to CEP is ideal for

expressing the relationship of CEP and target radius (33:Sec 3-25).

2.7 Simulating Aircraft Performance

One essential element of combat that Hartman did not include in his two step combat process

was movement. For aircraft to stay aloft, they must move continuously. The aircraft movement ca-

23

pability is determined by several performance measures. The performance measures are dependent

on several physical conditions such as altitude and aircraft velocity.

PACAM determines several performance factors such as lift, drag, thrust, and fuel consump-

tion by the use of look-up tables of aircraft performance factors. Several of these look-up tables

provide a surface of discrete points representing one aspect of the aircraft's performance, say fuel

consumption. The method of double interpolation is used to determine fuel consumption which is

a function of the two independent factors, velocity and altitude. (3:281); (1:28-36). This method is

quite effective in capturing the performance aspects of the aircraft; however, the constant double

interpolation of several performance tables adds significantly to the simulation time.

2.8 Missions and Tactics

The scenario of the combat model is what drives the simulation. The scenario may be driven

by the mission, its objective, tactics, and the environment to be simulated (18). The type of mission

selected to support this thesis is contained in the scenario as a Combat Air Patrol (CAP).

This type of mission comes under the heading of defensive counter air. The defensive counter

air mission as defined in United States Air Force Basic Doctrine, AFM 1-1 is the process of "de-

tecting, identifying, intercepting, and destroying enemy air forces that are trying to attack friendly

forces or enter friendly air space" (9:3-3). Shaw describes conditions favorable to the use of CAP.

One such condition exists when "attacks by aircraft armed with long-range, stand-off weapons can

be launched many miles from their target" (41:325). The advantage of the CAP mission is that

airborne aircraft have a greater chance of intercepting an intruder than ground-alert interceptors

in time critical circumstances. This, of course, assumes that the approach direction of the attacker

is known with some degree of accuracy. (41:326).

The stationing of the CAP is dependent on several factors, such as, fuel, patrol velocity,

altitude, and patrol pattern. Shaw describes one such pattern as the Lufbery circle. This pattern,

24

as shown in Figure 7 is an elongated racetrack and provides the best sensor coverage when two

aircraft are on the station (41:328).

The role of the aircraft flying the CAP mission is to intercept intruders. The method of

interception, in most cases, is dependent on the situation. To simulate this activity, research into

the type of maneuvers for a given situation was required. Again, Shaw provides the insight as to

the type of maneuver used in the typical interception.

The intercept begins with a two part maneuver. The first maneuver begins with the forward

quarter intercept. In this intercept position, the interceptor, offset by some prescribed distance,

flies a parallel track towards the oncoming intruder. At some point along the interceptor track,

a conversion point is reached where the pilot begins the stern conversion maneuver toward the

intruder. If performed correctly, this maneuver will allow the interceptor to keep his nose and

weapons pointed at the intruder throughout the entire turn. The maneuver results in a position

where the intruder is slightly ahead of the interceptor and within weapons range (41:351).

The forward quarter and stern conversion maneuvers require some guess work and simple

calculations. To begin, the pilot must determine what is the required displacement between the

interceptor and intruder flight paths. This displacement represents the turning circumference for

his given velocity, altitude, and sustainable load on the aircraft. This displacement, is determined

by the following calculation

Displacement = 100 • TAA . Range

where TAA is the angle between the target's heading and the line-of-site vector, and range is the

distance between the two aircraft. Once the displacement is known, the conversion range must be

determined. This is the target range at which the interceptor begins his stern conversion. This

range is a function of the length of the arc defined by the current turn radius of the interceptor,

the velocity of the two aircraft, and the distance the pilot wants to be behind the intruder when

25

THREAT AXIS

do s

THREAT SECTOR

TARGET

Reprinted from (4 1:328)

Figure 7. Combat Air Patrol

26

he engages weapons. Conversion ranges for specific displacements, velocities, and altitudes are

specified in the aircraft's performance charts. (41:348-353). Not all intercepts fly this combination

of maneuvers when intercepting an intruder; however, the simulation of this combination is ideal

and within the scope of this thesis effort.

2.9 Selection of Computer Languages

In paragraph 2.4, a discussion of the use of graphics as an effective pedagogical technique

to achieve instructional goals was presented. However, developing the means of presenting the

graphics on a computer screen could become an difficult task without special provision. These

provisions, such as functions for drawing a line or circle, are often provided in some higher order

computer languages and will be discussed in the paragraph below.

This author selected the BASIC language computer language from among several high order

languages to use in this thesis primarily for its ease of coding and graphical function capabilities.

In addition to graphical functions in a computer language, a means to provided animation is

equally desired. The BASIC computer language features both graphics and animation constructs.

Animation in BASIC is achieved by alternating virtual pages of graphic images on the screen. As

cne page is displayed, another page is being created. As the graphics images change from page to

page and the pages are move sequentially on and off of the computer screen, animation of objects

takes place. Additionally, this feature is ideal when there is a need to switch from a graphics format

to a text format without losing the graphic images or having to recreate them (45).

BASIC provides additional features other than those of graphics and animation. Functions

which enable the altering the color of text and the generation of aural cues permits the development

of special features which can enhance the man-machine interface.

The new ANSI BASIC it les many features now common to later generation high order

languages. New program flow features include the "select case", "do while", and "if-then-else, and

27

elseif" statements. Another new feature allows alphanumeric labels to direct jumps in program

flow. The most outstanding feature between the old and new BASIC is the ability to compile the

BASIC code and link to other object files written in different languages. Some reviewers of the

new BASIC claim that many of these new features have outdone Pascal, Modula-2, and even C

(39:295). Fortunately, in light of the all the new features that BASIC offers, the best of the old

features have been retained, such as the graphics functions, multipage screens, program interrupts,

and simple syntax.

2.10 Conclusion

A wide range of literature had to be reviewed in order to develop this thesis. Given this

wide range, this review was divided into five sections. The first section investigated the worth and

development of computer aided instruction. In the second section, the role of computer generated

graphics was addressed. The third section laid the foundation for structuring a combat model by

classifying a model's purpose, qualities, and construction. Presented in the fourth section was a

review of simulating key combat process. This review included the processes of search, detection,

target selection, impact assessment, and movement. Finally, the fifth section addressed the issue

of computer languages and specific advantages these languages provide.

28

III. Approach

3.1 Introduction

This chapter presents the approach taken in developing the animated tutor for aerial combat

simulation (ATACS). The approach began by defining the objective, breaking it into two distinct

sub-objectives and then identifying the tasks associated with each sub-objective to be performed.

3.2 Objective

The objective of this thesis was to develop an aid which would perform visual demonstrations

of combat modeling concepts and present a high resolution air-to-air combat simulation. The

approach taken in the design of this thesis was to provide instructors of combat modeling with

aid that would complement their course material. The aid not only had to complement the course

material through demonstration, but also provide the "seeing is believing" realism to key modeling

processes. To fulfill this objective, the needs of the instructor and the students of combat modeling

remained the foremost guide in this approach.

3.3 Sub-objectives

Two sub-'-bjectives were identified in the problem statement. The first was the need to develop

a shell around the actual combat simulation. This shell needed to communicate instructions to

the students, prompting them for information as well as responding to their input. Another term

typically used to describe this function is "interface"; the shell needed to act as an interface between

the student and the computer. The shell also needed to perform the function of "integrator".

That is, the shell needed to demonstrate or animate specific learning objectives in concert with the

material presented by the instructor. For this purpose, the shell would integrate the lesson material

into a dynamic and visual context.

29

The second sub-objective was the design and implementation of the high resolution combat

model. Specifically, the sub-objective required the design of an air-to-air, combat simulation that

would demonstrate the basic fundamentals and key elements of combat modeling in a form that

could support student learning of model design and use. To support student learning, the model

had to be transparent. In this sense, transparency means the model had be visible to the student,

much like the clear plastic automotive model engines which allow their viewers to look inside at

moving components to see how the parts worked together. Here the student has the ability to look

inside the simulation. To permit such an activity, a portal or window had to be developed that

would display the current status of the model's parts. These parts are, in fact, the model variables

which characterize the changing states of the simulation over time.

3.4 The Shell

As mentioned, the shell had to interface between the student and the computer while inte-

grating lesson material with animated illustrations. The interface process required the development

of some means to prompt the student's actions. The shell had to provide a means to present the

available presentations to the student and permit flexibility in the timing or selection of ATACS

options. Two feasible solutions where considered. The first was that of a predetermined sequen-

tial presentation approach much like a guided tutorial. In this case the student would have been

presented with concept number one followed by concept number two followed by the remaining con-

cepts in sequence. This approach would have met the first requirement to present all presentations;

however, it would have failed the second requirement of flexibility.

The second approach was to develop an interactive hierarchial system of menus. This approach

would permit the display of all the programmed presentations as well as allowing the flexibility to

view a presentation or simulation from any point in the program. This approach also provided a

degree of flexibility for the instructor as to when the material should be presented and the order

30

of presentation. The menu approach met both requirements of presentation and flexibility and was

selected as the preferred means by which the shell would operate.

3.5 Menus

The menus present all of ATACS available options as well as provide the student with the

flexibility to revisit a specific option or skip around it. The following discussion addresses these

menus and the options each provide.

3.5.1 Opening Menu. The opening menu permits selection from the following options:

" Examples of Processes

" Run Combat Demonstration

" Display Input/Output

" Terminate

Once an option is selected from the opening menu, a subordinate menu is displayed. The

subordinate menu presents the selections associated with the selected main menu option. The

following paragraphs describe the features of each option.

3.5.2 Examples of Processes. Following the selection of Examples of Processes, six examples

of processes common to high resolution combat models are offered. These rrocesses are:

" Random Number Generation

" Search

* Detect

" Target Selection

" CEP Demonstration

31

9 Track Angle

Each of these options introduces a process used in air-to-air combat simulation. Once an example is

selected, a narrative of the process is displayed and student interaction is solicited. Most examples

require student interaction, prompting them to manipulate and explore the process being examined.

In most of the examples, animation is used to support the presentation and the point of the example.

3.5.2.1 Random Number Generation. The first option, Random Number Generation,

presents a brief narrative describing the useful purpose of the pseudo random number generator.

The student is prompted to enter an initial random number seed and the number of samples to be

generated. A test of the generator is then performed to demonstrate the random number generator's

uniform probability density function. This feature allows the student to observe graphically the

impact of sample size and seed values on the test results. It also presents a means of validating the

uniform random number generator to the student.

3.5.2.2 Search. The second option, Search, presents a brief narrative that describes

how the process of search may be simulated as an attempt to detect.

3.5.2.3 Detect. The third option, Detect, presents a narrative that describes two meth-

ods to simulate the detection process. The two methods presented are the deterministic "cookie

cutter" method and a stochastic continuous method. An illustration contrasting both methods is

presented to the student.

To illustrate the cookie cutter method, a step function is plotted on the screen. It shows the

range at which the probability of detection steps from zero to one. After the student enters a range-

to-target in response to a prompt, the program places a maker on the step function corresponding

to that range and displays the outcome of the detection event.

32

Following the example of the cookie cutter, the program enters the second detection example.

This example presents a stochastic detection model. A plot of the model's output is superimposed

over the earlier plotted step function as a means of comparing these two approaches. The student

is again prompted for a target range. Once entered, the probability is determined, and a marker

is plotted on the probability curve. The program then selects a random number. The random

number drawn is used to determine if the target was detected at the range entered by the student.

The outcome of the detection event is then reported to the student.

The point of the detection example is to highlight the fundamental differences between two

common modeling techniques. Understanding these differences allows the student to determine

which of these techniques is best suited for a specific simulation task.

3.5.2.4 Target Selection. The fourth option, Target Selection, is a narrative describing

a means to simulate the target selection process in the air-to-air combat environment. It addresses

the technique of rule based target prioritization and selection as well as the simulation of identifi-

cation friend or foe interrogation.

3.5.2.5 CEP Demonstration. The fifth option, CEP Demonstration, presents a narra-

tive pertaining to the calculation and use of this factor. In this example, the student is prompted

to enter the number of sample weapons firings. The down range and cross range miss distance for

each firing is then plotted on a graph. At the completion of the firing, mean and variance of the

cross range and down range miss distances are calculated. Based on these statistics, the circular

error probable (CEP) is calculated and a circle depicting the CEP is drawn around the impact

points.

A plot of the probability of hit, based on the calculated CEP is then plotted. The student

may enter various target radii and observe the impact target radius may have on the hit probability.

33

To contrast the impact of CEP on the probability of hit, the student may enter additional CEP

values to generate new cumulative distribution curves.

The circular error probable (CEP) example was designed to illustrate the concept and ap-

plication of the CEP factor. The point to be illustrated is that as different CEPs are used, the

probability of hitting a target of constant size changes.

3.5.2.6 Track Angle. The final example, Track Angle, is another narrative example.

It discusses the concept of the track angle, specifically describing how it is determined and applied.

3.5.3 Combat Demonstration. This selection begins the simulation of air-to-air combat. The

simulation utilizes most of the processes demonstrated in the narrative and animated examples.

Immediately following the selection of the simulation option, the student must select an "express"

or "edit" data entry option. The express option loads the scenario file or user requested scenario

file and begins the simulation. The edit option permits the student to load a scenario file and

edit its contents. The option of editing the scenario file invites the student to explore the model's

flexibility and its ability to respond to scenario changes.

During the combat simulation, the student will have the option to view the simulation graph-

ically as an animation on the computer screen or switch to the Attribute Screen. The Attribute

Screen displays the status of several characteristics of the entities as they change over the period

of the simulation. A sample of these characteristics include the aircraft velocity, fuel consumption,

location, and status such as engaged or not engaged.

3.5.4 Display Output. When the simulation is complete, the student may select the Display

Output option. Output reports from a simulation provide the opportunity to compare the results

with an expected outcome. Output reports are one of many valuable tools used to verify and

validate simulation models.

The output reports available to the student are the following:

34

" Reflected/Echo Input Report

" Detailed Summary Report

" Aircraft Performance Factors

" Significant Event Summary Report

3.5.4.1 Reflected Input Report. The first option, Reflected Input Report, produces a

listing of all the input data, both user entered such as the scenario file and embedded, such as the

aircraft performance data file. This report exemplifies the magnitude of data required for a small

simulation such as this. Furthermore, this option demonstrates the extent of data that may be

embedded in the "black box" without the prior knowledge of its existence. This option emphasizes

the extent of embedded data within models which may not always be apparent to the model user.

3.5.4.2 Detailed Summary Report. The Detailed Summary Report produces a listing

of selected variables and their values at each time pulse of the simulation. This report gives the

student an option of capturing an account of what actually took place inside the model.

3.5.4.3 Aircraft Performance Factors. This report lists the model-generated aircraft

performance factors. The display lists such factors as aircraft thrust, fuel consumption rates, and

turn performance. This report highlights the fact that the entities, aircraft in this case, must be

characterized by their performance, such as their ability to move and consume.

3.5.4.4 Significant Event Summary. The final report, Significant Event Summary,

provides a listing of the significant events and their time of occurrence. Such events include detec-

tion of an intruder, target identification, and target destruction. The advantage of such a report

permits examination of the occurrence of major events directly without having to uncover the event

from the profusion of data found in the extensive detailed listing. These reports are indicative of

35

those found in most high resolution models and provide an added view into the operation of the

simulation. Also, these are the typical reports used by modelers in debugging and validating models.

3.6 The Air-to-Air Combat Model

The air-to-air combat model is the core of this educational aid. Discussions of key factors

and concepts, such as the input data, combat scenario, entities, and program flow are presented in

the following paragraphs.

3.6.1 Data. The data used to drive the simulation was adapted from the Piloted Air Combat

Analysis Model (PACAM). This data was provided by the Survivability/Vulnerability Information

Analysis Center located at Wright-Patterson AFB, OH. The primary data includes aircraft and

missile flight performance and fuel consumption data. The performance data relates specific atti-

tudes (velocity and altitude) to consumption and performance measures. PACAM and the data

was validated by comparison with 37 scripted flight tests.

Two possible approaches for the application of this data were explored. The first approach

was to calculate aircraft performance by interpolation of data arrays as is done in PACAM. The

disadvantage of this approach is the excessive processing time required at each timd step during the

simulation. This excessive processing would have rendered real time animation of the simulation

impossible. The second approach was to fit the data to a surface, but that did not prove to be

feasible. For example, fuel consumption rates are based on two parameters, altitude and velocity.

A surface plot of these parameters revealed a very difficult and complex surface to regress.

Both approaches presented serious limitations; however, in light of the scope of this research,

a modification to the first approach was adapted. The aircraft performance factors based on a

single altitude and two velocities are computed at the models initialization. Unfortunately, this

limits the aircraft to a single altitude and two, user selected, velocities.

36

3.6.2 Scenario. Before the flow of the model can be presented. the scenario surrounding the

model and the roles played by each of the characters must be discussed. The scenario is what drives

the simulation. Without a clearly defined scenario, design of the simulation would proceed without

direction. Hence, a scenario had to be defined for this simulation which included defining combat

objectives or missions, command relationships between aircraft commanders in the simulation, and

resources available to both Red and Blue forces (28:29- 30).

In chapter II, a review of the defensive counter air mission and a subset of that mission, the

combat air patrol (CAP) was presented. It is the CAP mission that is simulated in this model.

The scenario begins with two Blue air interceptors (AI) flying a circle profile over a forward

operating location in defense of a Blue airbase. Upon detection of a possible hostile intruder or

intruders by the airbase's tactical surveillance radar, the AI are vectored to intercept. Guidance

to the intruder is controlled by the ground controller until the interceptor's sensors have locked on

to the intruder. To demonstrate decision processes and maneuvering, a rule of engagement (ROE)

embedded within the model requires the interceptor to maneuver within visual range of the intruder

to confirm its identity.

At the moment of the intruder's detection, Blue accelerates to the intruder until he is within

the visual range of the intruder. The intruder continues on a course toward the airbase target

unaware of Blue's advance. Upon visual identification of the intruder by the Blue aircraft's com-

mander, Blue fires a missile at the intruder. At the time of missile launch, location of the target is

passed to the missile and missile begins its flight toward the target. During missile flyout, the mis-

sile is continually updated on the location of the target. When the missile has reach the location of

its target, an impact assessment is performed. If the intruder is eliminated, the interceptor resumes

flying the CAP. If the intruder survives, the interceptor prepares for another missile launch. If the

intruder makes it to the intended target before being eliminated, it destroys the target.

37

Each Blue aircraft will continue to track the intruding Red forces unless a " Bingo" condition

is experienced. A Bingo condition is when an aircraft has reached a point where only enough fuel

remains to safely return to base. If such a condition occurs the Blue aircraft will break off any

attempt to intercept the attacking Red force. The one exception to this event is in the case where

a Blue aircraft has a target within visual range. If this condition exists, the Blue aircraft remains

engaged with the intruder until either the Red or Blue combatant is destroyed.

The simulation ends in one of two ways. The student may end the simulation via a Quit

featiir,- or tho simulation times out.

Once the simulation has terminated, the student is offered the option of reviewing a list of

questions addressing the models features. An example of these questions is provided in Appendix

C.

3.6.3 Entities and Attributes. The aircraft, missile, and airbase entities have certain char-

acteristics referred to as attributes. Entities in ATACS exist as a collection of the attributes listed

in Table 1; the entity is created by assigning values to these attributes. Since an aircraft is an

entity, this entity can be characterized by its sidedness such as "Blue" or "Red". Each aircraft

can be characterized by its velocity-forward velocity, and component velocities in the X and Y

directions. Since the aircraft is moving in a direction, then the heading becomes another means of

characterizing the entity. The aircraft is traveling in three dimensional space; therefore, its location

as defined in a three dimensional coordinates system will also describe the entity. The aircraft's

list of targets and their location is another attribute which can further describe the entity. Finally,

the status of the entity such as "patrolling", "intercepting", "detected", "not detected", or "killed

in action" are also used to characterize the entity.

Other entity types mentioned above include the missiles, and the airbase. For the missiles,

many of the attributes that characterize the aircraft apply to the missiles as well. As for the airbase,

its defined by its X and Y coordinates, posture, and the range of the search radar which it owns.

38

Aircraft Missiles Airbase
Side Owner X Location

Aircraft Status Missile Number Y Location
X Location Missile Status Posture
Y Location X Location Radar Range

Heading Y Location
Fuel Level Heading

Velocity Flight Time
Thrust Mil Velocity
Thrust AB Tracker Range

Fuel Mil Kill Probability
Fuel AB Target

Sustained Gs
Max Gs

Min Turn Radius
Wing Area
Max weight
Min weight

Radar Range
Optical Range

Target
Number of Missiles

Table 1. Entities and attributes

3. 7 Generalized Model Flow

Using the scenario and the entity's characteristics, the following generalized model flow was

developed.

" Begin simulation, initialize variables

" Assign Red's Target

" For each second of simulated time perform the following

1. SEARCH

- Fly CAP mission

- Search for intruders

- Intruder detected, begin TARGET SELECTION, otherwise return to SEARCH

2. TARGET SELECTION

39

-- Assign available Blue aircraft to Red targets based on closes proximity

3. PURSUIT

- Vector Blue to Red intruders

7 If firing conditions are met, begin FIRE, otherwise continue PURSUIT

4. FIRE

- Fire missile at intruder

- Assess impact

- If target was not destroyed and firing conditions -net, FIRE

- If intruders are destroyed, return to CAP

The abpve describes the action taken primarily by the Blue forces. In this model, the Red

forces are non-reactive. They have a single minded goal to attack the Blue airbase.

3.8 Verification and Validation

Verification. Verification is the process of verifying that the code, as written, is correct in

syntax and logic. The verification process was performed throughout the development of ATACS

by module prototyping, graphical methods, animation, and review of output products.

In many cases, a prototype module which simulated a specific process was written and tested

before introduction into the model. The module's output was then verified against existing values

when available. The development of the module which calculates the aircraft performance factors

was such a case. Each factor produced by ATACS was verified against a related performance chart

found in the aircraft's operating manual.

A second method used to verify specific analytical processes made use of MATHCAD, a

mathematical software package with graphics support. Using this method, the output from the

40

developed module was plotted and compared to the results from MATHCAD. This method was

used to verify the module's representation of the modeled analytical process.

The third method used in verifying processes such as movement and scale considerations was

ATACS animation feature. This method allowed visualization of the processes such as the aircraft

turning in the direction of the calculated heading, as well as the distance the aircraft moved in one

time pulse. An unreasonable outcome here indicated a breakdown in logic or scale of units.

The fourth method used another ATACS feature. The attribute screen was used to monitor

attribute values during the simulation, and ATACS' generated output products were reviewed

following a simulation. These built in features quickly identified improperly assigned values to

variables and logic errors.

These last two methods of verification clearly identified the strengths of the significant ani-

mation and attribute screen features of ATACS. These features are intended to served as a means

to expose the simulation's "guts" to the student. Proof of the ability of these features to provide

their instructional value lies in the constant reliance on these features by this author when verifying

many of ATACS' modeled processes.

Validation. Validation is the process of ensuring the model is reflecting the "real world" to the

extent possible. For example, an aircraft that continues to fly with no fuel or performs maneuvers

inconsistent with a specific situation or condition does not reflect this real world image. Once again,

ATACS' ability to animate the simulation and display the dynamic states of the simulation were

relied upon in the validation process also.

Validation lies with the experts, the experts being the individual or group who have experi-

enced the environment being simulated. In this case, the scenario and animation were reviewed by

experienced pilots whose comments and recommendations were reviewed and if possible, incorpo-

rated.

41

3.9 Hardware Requirements

Returning to the objective for a moment, a requirement for the system was that it needed to

be portable. So a means by which the system could be made portable had to be considered. One

type of computer system had to be selected to base the program on. It was decided that the design

should be compatible with an IBM AT system or clone with the Mircosoft Disk Operating System.

This choice would permit portability to the largest population of computers.

The entire system is capable of being transported on two 360 kilobyte floppy diskettes. The

operating speed of the machine clearly influence the run time of the program. An 80286 class or

better machine produces reasonable performance, but use of an XT requires the virtue of long-

suffering. The program is compatible with the enhanced graphics adapter (EGA) and the video

graphics array (VGA).

3.10 Graphic Requirements

Being IBM compatible does not ensure the compatibility of controlling and presenting screen

graphics. The presentation of graphics is controlled by the computers graphics adaptor. The two

more common adapters are the EGA and VGA adapters. Each of these have design limitation on

screen resolution (the detail of the image that can be presented). The EGA detail is less than that

of the VGA. Thus programs written explicitly for VGA graphics are not downward compatible with

an EGA system. However, the reverse is not true, that is, a graphics program written for the EGA

is most often compatible with a VGA system.

One approach to be taken to meet the condition of portability was to develop the graphics

software to be compatible with the EGA. This in turn would permit the system to run on both

EGA and VGA based systems. The cost of this solution would be a limitation of screen resolution

for the VGA user. The graphics would always be constrained to that of the EGA limitations. A

second approach was to develop a means by which the computer program would interrogate the

42

system it was installed on and determine the type of graphics hardware of the computer host. Once

the hardware configuration was known, the program would automatically configured itself for the

existing hardware. This latter approach was selected based on the flexibility it offered.

3.11 Animation

During the air-to-air combat model demonstration, the positions of the graphic images, such

as aircraft icons, are computed and updated. Refreshing the screen with the updated image position

provides animation of the icons. Two possible methods to create the animation were possible and

examined. Selection between these methods was based principally on the quality of the animation,

the computational efficiency, and absence of distracting screen flicker.

The first method was based on a straight forward sequential operation. Starting with as

much as four icon aircraft images the process would begin by drawing the first, second, third, and

then the fourth icon. In each iterative loop, the first icon is erased from its current position then

redrawn based on its updated position. The second icon is then erased and redrawn based on its

updated position then on to the third and fourth icons. This approach requires the image to be

drawn on the screen as the image is being viewed. This process could be quite distracting for a

computer operating with a clock speed of eight mega-hertz or less.

The second method makes use of a special screen feature provided by the high order computer

language BASIC. This feature permits the drawing of images on a virtual screen page in the

computer's memory while presenting an earlier drawn image to the viewer. When it is time to

update the screen image, the virtual page in memory is presented, already drawn. The drawing of

pages in memory permits a smooth transition between update icon positions.

Unfortunately this option also comes with a cost. The minimum number of pages for the

animation would be two. When the page feature is used, a portion of the computer's graphics

memory is allocated to these pages. As the number of pages increase, say four, the resolution of

43

each page decreases. So the cost of this option is in resolution of the icon images if 2 or more pages

are used. With only two pages allocated, the resolution is equivalent to that of EGA graphics.

Use of the screen page options would limit the screen to that of the EGA requirements.

Currently, BASIC does not support this feature for VGA graphics. Therefore, until BASIC can

support the page feature for VGA, the sequential operation will remain as the preferred structure

for animation.

3.12 User Documentation

To assist in operating ATACS, user documentation was developed. A copy of the documen-

tation is attached as Appendix B. The documentation is divided into two major sections. The first

section describes ATACS' system files and installation procedures. The second describes the AT-

ACS model options such as the animated examples, the combat demonstration, and model output

display.

A listing of the files which makeup ATACS are provided below.

" ACS.EXE: ATACS executable file

* ACS.BAS: The aircraft combat simulation source code.

" MAINMENU.BAS: The menu driver module.

" MODRND.BAS: The random number example module.

" MODPDET.BAS: The probability of detection example module.

" MODCEP.BAS: Impact assessment example module.

" MODMSG.BAS: Message module.

" MODOUT.BAS: Output module.

" MODTITLE.BAS: Generate ATACS opening screen.

44

" B1PERF.DAT: Blue one's aircraft performance data.

* RIPERF.DAT: Red one's aircraft performance data.

" B2PERF.DAT: Blue two's aircraft performance data.

* R2PERF.DAT: Red two's aircraft performance data.

" BIPERF.DOC: Blue one's documented aircraft performance data.

* RIPERF.DOC: Red one's documented aircraft performance data.

" B2PERF.DOC: Blue two's documented aircraft performance data

" R2PERF.DOC: Red two's documented aircraft performance data

" MASTER.DAT: Default scenario data file

" ACPERF.DAT: Calculated aircraft performance factors. This file is produced during the

simulation.

" DETAIL.DAT: A Second-by-second detailed listing of activities that occurred during the

simulation. This file is produced during the simulation.

* OUTPUT.DAT: A listing of significant events that occurred during the simulation. This

file is also produced during the simulation.

Additional documentation is available when using ATACS. Accompanying each set of menus

is information addressing the purpose of each displayed option. As an introduction to the combat

demonstration, a scenario synopsis is presented to the student. Following the synopsis, a simple

reminder of the purpose of each of the function keys is displayed. Upon selection of an output

report, a short paragraph addressing the type of report and its typical use is presented before the

report is actually displayed.

One last source of documentation is the source code itself. The source code is provided to

the student as another instructional aid. The student is free to enhance or embellish the code in

45

any fashion which will support further understanding of simulating combat. For this reason the

code has over 900 embedded comments. Many of these comments are program variable definitions,

descriptions of conventions used in naming variables, descriptions of sequences, and warnings.

3.13 Enhancements

The processes and order in which these sub-objectives were accomplished are illustrated in

Figure 8. Enhancement iterations continued until the remaining time was insufficient to complete

another full iteration. Further enhancements may possibly include greater interaction between the

user and the model, additional examples, additional aircraft, and an increase number of screen

options.

3.14 Methods Summary

The following paragraphs below summarize the methods used in the design and development

of this educational aid. These methods consisted primarily of research, identification and use of

existing combat model computer algorithms, interviews, and use of operation research techniques.

The scenario had to demonstrate, to some degree, Air Force doctrine, rules of engagement,

tactics, and decision rules. Development of the scenario was supported by interviews with rated

Air Force officers and allied officers to gain insight into mission planning, electronic sensor use,

maneuvering, and tactics employed during air-to-air combat.

The use of class notes from Military System Simulation, Military Systems Analysis, and

Combat Modeling High Resolution and Aggregated combat modeling were the core sources of

simulation techniques and applications of combat models.

A review of air-to-air combat models' operating manuals provided valuable insight into pro-

gram structure and algorithms used to represent the combat. From these manuals, the necessary

characteristics to sufficiently depict entities and their objectives were identified.

46

Develop/Enhance

Simulation Prototype

Develop/Enhance

Analyst Screen

Develp/Enhance

Output

Develop/Enhance

User Manual

No
STerminate

Figure 8. Enhancement Flow

47

The methods used by air-to-air manual "board" wargames were studied as alternatives to

simulate movement, search, and detect processes associated with air-to-air combat. It was hoped

that these board games might reveal computationally efficient process algorithms. Unfortunately,

they did not.

To establish what ATACS should emphasize, instructors and students were interviewed. The

interviews focused on finding areas of combat modeling instructions that could be complemented by

a computer based demonstration. The instructor's and students' responses provided the guidance

in developing the animated examples found in ATACS.

3.15 Summary

This section presented the approach taken in the design of ATACS. In many cases, design

options that would impact the value and performance of this aid were presented and argued.

Presentations of several key features were provided and accompanied by an explanation of the

value each feature. An outline of the combat scenario was presented as well as the concepts of the

entity and its characteristics or attributes. The essential verification and validation approach and

its results were fully discussed. Finally, the case of hardware consideration and compatibility was

presented and argued. Chapter IV will discuss the design of the many BASIC subprograms within

ATACS.

48

IV. ATACS Construction

4.1 Introduction

The purpose of this chapter is to present an informative discussions of how the animated

tutor for aerial combat simulation (ATACS) simulates key processes common to combat models.

The following sections highlight the major processes used in generating visual examples, animation,

combat simulation, and output generation.

Discussions of the logic flow of ATACS have been limited to the pseudo code level. Unfortunate

as it may seem to limit the discussion in such a fashion, the alternative to address every line is

impractical. Variable definition for the air combat model and a complete documented source

listing have been included in Appendix D and Appendix E. Whenever reference to a subprogram or

function is made, the actual cryptic name of the program will be used. This should provide useful

guidance for those who wish to follow the pseudo code discussion using the provided source code.

4.2 ATACS Specifications

Throughout the discussion of ATACS' program structure, the reader will find that ATACS is

module and subprogram orientated. A module was used to compartmentalize the many options,

such as the process examples, the combat model, and output generation offered within ATACS.

Within a module, subroutines and functions were used to separate tasks. All together, ATACS

consists of eight modules and 50 subprograms. In terms of lines of source code, ATACS consists of

5,074 lines. Of these lines, 3,520 lines consist of one or more executable statements. As Microsoft

BASIC 4.5 permits more than one executable statement per line, the 3,520 lines contain 4,514

executable statements. During the discussion of the user manual in Section III, the use of embedded

comments was mentioned. ATACS has 976 lines of white space, 321 comments, comments which

share the same line as an executable statement, and 582 full-line comments. All together, not

counting white space, there are 903 embedded comments in ATACS' source code. In terms of data

49

.... _____________._____.......________________

and program files, the system consists of one executable file, five input data files, four documented

input files, and eight module source code files. The system will fit on two, low density, 360 kilobyte,

floppy diskettes.

4.3 Menus and Dynamic Examples

This section briefly presents the operation of ATACS' menu feature followed by a detailed

discussion of the flow of each of ATACS animated examples.

4.3.1 Menus. Figure 9 illustrates ATACS' hierarchial structure of menus and available op-

tions. The lines connecting the menus define the routes between the main menu and the subordinate

menus. The purpose of the menu system is to direct execution of subroutines which correspond to

the student's selected option. Figure 10 illustrates the basic logic flow of the menu system. The

main menu is the initial starting point for ATACS. A selection from the main menu will cause the

display of a subordinate menu. A selection from subordinate menu in-turn executes the subprogram

supporting the selected option.

4.3.2 Animated Examples. Of the six examples provided under the Examples option, only

three are addressed here. These examples are: Random Number Generator, Detection, and CEP

Demonstration. Those that are not addressed are static examples presenting text only.

4.3.2.1 Random Number Generator (RNG). The subroutine RNDDEMO performs

all the necessary student interfaces, calculations, and graphical operations required to run this

example. The only exception is the use of the functions RND and RANDOMIZE, which are

provided by Microsoft BASIC. Figure 11 is an abbreviated logic flow diagram of RNDDEMO.

The subprogram is called by the main program. Upon entering the program, a page of

introductory text is displayed. followed by the initialization of variables and graphic parameters.

50

EXAMPLES MENU

Random Number Generator

Search

Detection

Target Selection

CEP Demonstration

Utility of Track Angle

Return to Main
MAIN MENU

MODEL MENU
Examples

Run Combat Express Load and Go

Model Load and Edit Scenario
Display
Ou pu Run Combat Demonstration

Terminate Return to Main

OUTPUT MENU

Reflected Input

Aircraft Performance
Factors

Detailed Summary

Significnat Event

Return to Main

Figure 9. Menu Options

51

Begin R - Sub RNDDEMO
MainMenu

Sn n y Track angle

Disp Main message
Menu y.

D Sub PDETDEMO

Op y Tgt Selection
message

Y Y

Disp Examples C Sub CEPDEMO
Menu y . Sea.rch

Message

GetDat, MainLoop

L y, Sub USERDAT,
y GetDat

Disp Demo R y Sub Mainloop

R y Sub Reflect

D -a- Sub Detlrpt

Disp Output A Sub ACperf
Menu

S Sub Sigevnt

Figure 10. Menu Logic Flow

52

The graphical parameters include establishing the viewport (a graphic window display) and window

dimensions which orient the viewport coordinates.

Following initialization, the student is then prompt to enter a seed value for the RNG and the

number of samples to be drawn from the RNG. Once these entries have been made, the program

enters a recursive loop. The operations within the loop include the drawing of the random number,

finding the cell in which it belongs, drawing and stacking a bar in that cell, and updating the cell

frequency. There are 10 cells; each cell is 0.1 unit wide. Once the random number is assigned to

the appropriate cell, a bar is added to the cell stack to animate a dynamic histogram. Additionally,

for each cycle of the loop, the cell frequency is computed and presented. The cell frequencies are

displayed along the X axis. Once the number of samples has been reached, the program exits the

loop and prints the output statistics. The student is then prompt again to choose another sample

size or to exit the example. The screen image displayed to the student is shown in Figure 12.

4.3.2.2 Detection. The subroutine PDETDEMO performs all the necessary student

interfaces, calculations, and graphical operations required to run this example. The only exceptions

are calls to functions PDET and RND. Figures 13 and 15 are abbreviated logic flow diagrams of

subroutine PDETDEMO. Figure 13 illustrates the flow of the deterministic detection model, and

Figure 15 illustrates the flow of the stochastic model. Both methods are featured as animated

examples.

PDETDEMO is called by the main program whenever the student selects the Detection

Methods example. The first part of this program demonstrates the cookie cutter method. Upon

entering the subroutine, variables are initialized and graphical parameters are set according to

procedures similar to those described in Section 4.3.2.1.

Following the initialization, a step function representing the cookie cutter range is plotted in

the graphics window. The student is then prompted to enter a Range to target value. The program

53

Initialize variables
and graphic parameters

Print labels and text

Prompt for seed value
and sample size

Assign to cell

Draw graphic in cell

i>4
_/i = I S~aple Yes

NoNo

Figure 11. RNDDEMO Subroutine

54

14.1c I £
C.,-

'4a

",
0oc t

L) -0

I£O 00 L

IL 0

co a,%

C9N

CS) W '-4

550

Initialize variables
and graphic parameters

Print labels and text

I Run initial example

with default MaxRng

Display Cookie Cutter
step function

Prompt for range t

/ target. Plot ranet/o

Yes Tgt mng No

axRng

Print Not Detected Print Detected

Yes
Another
try

No Go to next example

Figure 13. PDETDEMO Subroutine (Deterministic)

56

plots this point on the curve and reports the outcome of the detection process. Figure 14 shows an

example of the display presented to the student.

To contrast the deterministic and stochastic methods, the program superimposes the graph

of the exponential detection function over the previous plotted step function. Again the student

is prompted for a range to target. Once this value is entered, the program plots the point on the

curve, computes the probability of detection, makes a draw from the RNG, and prints the detection

results. The results displayed to the student are: probability of detection, the value of the random

number generated, and whether the target was detected or not. Figure 16 shows an example of the

display presented to the student.

In both, the deterministic and stochastic examples, the student may enter as many range-

to-target values as they wish. In the case of the stochastic example, reentering the same range

emphasizes the element of chance. By superimposing the graph of one function over the other,

the student is presented a visual comparison of these functions.' By entering the same range-to-

target for in both examples, the student can observe the different characteristics between these two

detection techniques. Understanding these differences is the point of this example and allows the

student to determine which of these techniques is best suited for, future simulation tasks.

The CEP demonstration is the third and last example to be discussed. This example is based

on a test firing of a simulated weapon where measurements of the impact points are made and

collected. From the collected data, a point estimate of the circular error probable (CEP) and mean

impact point is calculated and displayed. The animation of the weapon test firing and a displayed

narrative explaining how the CEP is used in simulations provides the basis for understanding

simulated kills. Figure 17 illustrates the logic flow of this example.

The example begins by asking the student to enter the number of test firings to be performed.

Once the student enters the sample size, the program enters into a recursive loop. With each pass

57

CS)-

CC,,

COC

CID)

cnj
CC.

94 -4

0 d t 0 a -
to

A5 0 0 U b
eli 04 04J C- a

It' aw t *.'
x ' .4' U S

c~i c.58

From Deterministic Example

> ~Nominal -
i1Tgt DRg

To Plot FunctionCall Function

PDet(i ,RNom)

Plot Pdet

Prompt for range to Function PDet
target. Plot range

Call Function ic = ln(.5)
PDet(i,RNom) PDet = ele(i/RNom)'

SRN=Random Number

F Compare random number with]

with PDet value

Yes- Pdet < RND No

Print Detected Print Not Detected

Figure 15. PDETDEMO Subroutine (Stochastic)

59

CS)

P6-q

m 0

*aa

S..o
C S

go v

0 +0 l 1- to a~4
u ILI

94 t

II A
*0 0 4-

.0 1" S..
0 U 3 z

0 S60

From
Main

Initialize variables
and graphic parameters

Print labels and text

1
0

Prompt for number of
shcts to be fired

1

: i >
Yes

ssh:o:ts:)-

No # Calculate
I CEPGenerate wo III)

N(0,1) deviates I I

Draw CEP
Band

Print Stats

Yes nother
est

-sTN,

Figure 17. CEPDEMO Logic Flow

61

..............

through the loop, the polar method is used to simulate normally distributed impact points. The

following steps outline the process of generating the random impact points (24:491).

1. Generate two independent identically distributed (IID) uniform random numbers from using

the system RNG. Say U, and U2

2. As an intermediate step, set temporary values Vi = 2 * Ui for i = 1,2 and let W = V 2 + /2.

3. If W is greater than 1, start over. A value greater than one would cause a negative argument

under the radical in the following step

4. Let Yj = Vip'j /(-21nW)/W, where p is the bias and ai for i = 1,2 are the cross and

down range errors. In this CEP demonstration, o- = 02.

Y, 1 and Y, 2 are now (lID) Normal(0,1) random variates of which only one is used. The process

is then repeated a second time and another coordinate generated. The results produces a set of

random X and Y coordinates for a single impact point.

Once the number of sample firings is completed, the CEP is calculated. The output statistics

include the estimated mean impact point and the value of the CEP. Figure 18 shows an example

of the display screen presented to the student.

4.4 Scenario Creation

The ATACS scenario is somewhat rigid. That is, the scenario is based on one or two Blue

aircraft orbiting around a combat air patrol station. The Red forces which are comprised of one

or two aircraft attempt to attack the Blue force's airbase. Once the Red forces are detected, the

Blue aircraft are directed to intercept and destroy the intruders. This scenario can not be changed

by the student. However, several of the initial conditions such as the location of the airbase, CAP,

and intruders may be altered by the student. The student may also change the aircraft's altitude,

velocities, sensor performance, fuel, and number of missiles carried.

62

* 0

A4 C4 £4

94 4 0J

o
0,W4. C 96 0

0

I 6

go j-% I

I 6)

- a)

r- £4 -

633

To load or create a scenario, the student selects Run Demonstration. After making this initial

selection, the program displays the simulation menu. The student may select Express Load and Go

to load and execute available scenario files or Load and Edit Scenario to edit a scenario file. In

either case, the student has the option to view a synopsis of the scenario. The synopsis introduces

the scenario to the student as well as explains what they will see during the simulation.

When editing a scenario, the first display in this sequence prompts the student with an option

to either load the system default scenario or modify an existing scenario file. If the default scenario

is selected, the ATACS will read in the master scenario and perform the necessary preprocessing.

If the alternative is selected, the student is asked for the name of the scenario file to be modified.

This latter option permits the student to build a library of scenario files if desired.

A secondary benefit of the scenario editor is the enhanced visibility of the model. The editor

permits the student to view and alter all the scenario components. Through observation of the

simulation, the student can determine how an altered scenario component affects the simulation

outcome.

4.5 Flight Performance Preprocessor

The flight performance preprocessor, subroutine GETDATA, initializes the remaining data

elements, particularly aircraft flight performance elements. GETDATA uses these elements to

calculate the aircraft performance parameters.

To capture as much of the physical realism as possible, the following parameters are deter-

mined.

* Atmospheric density

* Dynamic pressure at velocity

" Speed of sound

64

" Mach number

" Dynamic pressure at speed of sound

" Coefficient of lift

* Drag coefficient

" Thrust in military power and afterburner

" Fuel consumption in both military power and afterburner

" Sustain normal force for sweeping turns

" Radius of turn and turn rate.

Some of the above values are calculated directly while others such as coefficient of lift, drag

coefficient, thrust, and fuel consumption are interpolated from data arrays.

Once GETDATA has completed reading in the performance data elements, it enters a pre-

processing phase. It first calculates an aircraft's mach number based on the velocity entered by

the student. This calculation requires a call to function SPDS. Function SPDS then calculates the

speed of sound at the scenario specified altitude. Mach is then calculated by dividing the aircraft's

velocity by the speed of sound. GETDATA then calculates two pressure parameters-dynamic

pressure at the specified velocity and the dynamic pressure at the speed of sound.

Aircraft performance factors are determined by the process of double interpolation. A gener-

alized flow of this process is shown below.

Slopel = Mach - MachVal,/(MachVali+I - MachVal,) (6)

Slope2 = Alt - AItVa, /(AltValj+j - AltVali) (7)

Slope2 = I - Slope2 (8)

65

Templ = Slope2 * Valij + Slope2 * Valij+1 (9)

Temp2 = Slope2 * Val4+1 ,j + Slope2 * Vali+,j+1 (10)

Result = Templ + Slope 1 * (Temp2 - Templ) (11)

Mach Val and Alt Val in Eqs (6) and (7) are the marginal row and column values of the

performance data tables. Mach and Alt in the same equations are the student supplied values

based on velocity and altitude. Val terms in Eqs (9) and (10) are the table values from the aircraft

performance array, such as fuel consumption. Each of the Temp values in Eqs (9) and (10) are

values which lie between two sequential values in the array occupying adjacent columns. Then the

result, Eq (11) is simply a linear interpolation between these two intermediate Temp values.

This sequence is performed to estimate the aircraft's thrust, drag, and fuel consumption in

afterburner and military power throttle settings. A value for each of these parameters is estimated

for both velocities specified for each aircraft.

Sustained Turn Performance: This performance measure is defined at the point where thrust

equals drag in a level turn at a specified power setting. The aircraft sustained turning performance

may be lift limited, structural limited, or thrust limited (4). Since velocity is limited to two values

and altitude is held constant, thrust is then a constant. This leaves lift is the only variable that

remains to be calculated. Once lift is determined, then the sustained normal force is calculated by

SusG = MAX(1, DesireLift) * U * Mach

where DesireLift is the lift obtainable given current velocity, altitude, and thrust. However, to

sustain flight, this value is bound at the lower end to one gravitational constant (G). U is the

dynamic pressure at the speed of sound, and Mach is the mach number. SusG is then used to

66

determine the RadTurn (radius of turn). RadTurn is calculated as follows

RadTurn = V 2,i(G * Min(3, SusG))

where V is current velocity and G is the gravitational constant. In the denominator, SusG is

bounded at the upper end at three Gs, as a human factors consideration (4).

The calculation of the above aircraft performance factors is accomplished as part of the

initialization of the combat model. Initialization of icons is also performed at this time. These

icons are used in the animation of the aircraft, missiles, and airbase.

4.6 Animation

Without a doubt, graphics provides a sense of entertainment for the student using ATACS.

However, the intended purpose of the graphics is to provide a visual interface between the dynamic

simulation and the student.

Most often, an object such as an aircraft or missile in a high resolution combat model is

treated as a point mass. This point mass has an associated coordinating vector which defines

its relative location. Changes in the vector represents the transition of the point mass. ATACS

uses the same convention with the addition of real-time graphics. Once the graphic features were

introduced to ATACS, the point mass not only had a set of coordinating points defined by the

vector, it also had a two dimensional shape which had an orientation governed by the aircraft's

heading. Providing that shape, and orientating the shape to the aircraft's heading is the subject

of this section.

First, a short discussion of the layout of the graphics screen. At initialization, the graphics

screen represents an airspace of 430 miles across the screen along the X axis, and 300 miles down

the screen along the Y axis. A Cartesian coordinate system is used with the origin at the center

67

of the screen. A zero heading-North-points to the center of the viewers right hand side of the

screen.

Figure 19 shows the icons used for both Blue and Red aircraft, missiles, and the airbase. The

same aircraft icon is used for both the Blue and Red forces; only their color distinguishes them

from one another. The creation of the icon is accomplished by orientating the image at the screen

origin. The coordinate points which define the beginning and ending points of each line segment are

initialized and stored at startup. For each change in position and heading, th icon line segments

are translated from the origin to the current relative position of the point mass and rotated to the

aircraft's heading.

The sensor fan which protrudes from the nose of the aircraft follows a slightly different

process. For reasons of appearance, the aircraft image size was not constrained to the scale of the

map. However, the range of the radar had to be scaled to the graphics map since it represented an

actual range. For example, if the student selects a radar fan with a maximum range of 15 miles,

the fan displayed on the map will extend 15 miles in front of the aircraft. Had the icon been scaled

to the graphics map; the icon would have appeared as a dot. Since a dot provides less character

than the icon shown in Figure 19, drawing the icon out of scale was justified.

The following steps describe the process of initiating and animating the icon image.

1. Initialize icon coordinates X 2 ,.. ., X 13 and Y2 ,.. .,Y 13 and Xi, 14 ,• . Xi,1 7 and Yi 4 , •-, 7

where i=1 to the number of aircraft.

2. For each change in position and heading do the following.

(a) Erase the old image of icon with background color.

(b) For each aircraft, translate and rotate all coordinate points.

xx, = (Xi * cos(ACHead) - Yi * sin(ACHead)) + AC,

68

Radar Frontier

Sweep Angle

Radar Maxg

FanRag

Nose . . .,/ Center

Tail of mass

Aircraft

Airbase Missile

Figure 19. ATACS Icons

69

yy, = (Xi * sin(ACHead) - Yj * cos(ACHead)) + ACy

where AC. and ACy are the X and Y coordinates of the point mass.

(c) Assign a color depending on known or unknown sidedness.

(d) Draw each line segment using BASIC's LINE function.

(e) Capture coordinates. By capturing the old coordinates, they can be used for erasing the

image during next pass.

Radar Fan. The displaying of the radar fan is a little more complex. The arc which represents

the frontier of the maximum range is drawn using BASIC's CIRCLE function. The function's

argument consist of a center point (the nose of Lhe aircraft), the radius (the radars maximum

range), a radial measurement indicating the relative starting point of the circle, and a terminating

point. Because of the =invention used by BASIC to define the start and stop points of the arc,

the frontier is drawn in two arcs, left and right of the aircraft's nose. Additionally, checks to see if

values greater than 21r or less than zero are performed before they are entered as members of the

CIRCLE argument. In these cases, 2,r is either subtracted or added to the start or stop value.

Missiles. Launch ' missiles are also mobile entities that must be displayed. With the ex-

ception of fewer line segments to draw and no radar fan, the animation process is quite similar to

that of the aircraft. If it is determined the missile has killed the target, the missile and the target

images are removed from the display.

Airbase, Radar, and Grid There are three images displayed which are not mobile. These

are the airbase, the tactical surveillance radar maximum range frontier, and a grid overlay. The

airbase is dispiayed by drawing three line segments to create the image of runways. The tactical

surveillance radar frontier is created by drawing a circle centered on the airbase with radius equal

to the maximum range of the radar. The grid overlay is a pattern of dots with an interspacing

scaled to 15 miles. The purpose of the overlay is to provide scaled reference system to the viewer.

70

Additional graphic features provided by the ATACS are the Zoom-In and Zoom-Out functions.

The zoom in function provides the option to zoom in on the center of the screen which magnifies

the images within the view. Of course, the zoom out function performs the opposite operation.

These functions are particularly useful when the aircraft are in close proximity of each other and

closer observation is desired. If the initial conditions position the attacking aircraft well outside

the screen view, the zoom out function provides the option to reduce the scale, which expands the

area being viewed.

4.7 Model's Principal Archilecture

The model basically consists of an initialization step, a main recursive loop, and a termination

procedure. The initialization step includes the data-gathering and initiating of system variables.

The data-gathering step includes importing and building the scenario data file as well as computing

aircraft performance parameter as discussed in Section Section 4.5.

Following initialization, the program executes a recursive loop. For each pass through the

loop, the program directs control to subprograms which perform such key processes as search,

detect, steer, and shoot. The following outline describes the program flow that is illustrated in

Figure 20.

1. Search for intruders. Check for detection of intruders. If intruders are present, assign targets

and pursue. Otherwise, fly on station.

Determine aircraft's headings.

3. Compute course corrections.

4. If intruder is present, check firing conditions.

5. If firing conditions are met, fire missile.

6. If missile is fired, begin a quarter second time step within missile loop.

71

(a) Compute missile course correction.

(b) Check range to target.

e If target range is within one half the distance of missile advance in a quarter second,

declare a target hit.

(c) Draw missile image.

(d) Advance missile.

7. Draw aircraft images.

The following discussion in this section focuses on the above tasks with the exception of the drawing

the images.

4.7.1 Search. The process of Search in ATACS is really the process of trying to detect. Each

pass through the main loop advances the simulation clock by one second. During each pass, the

model determines if an intruder has come within sensor range of the blue forces.

Within each pass through the main loop, the subprogram DETECT is called. Within DE-

TECT, the distances between the intruders and their intended target, as well as, the distances

between intruders and interceptors are determined. The distance measurements are-preformed by

function DIST. The X and Y coordinates of the airbase location, and an intruder aircraft are passed

as arguments to Dist. The distance is then computed based on the familiar distance formula

Dist = V'(X 2 - X1) + (Y2 - Y1)

If the distance between the base and an intruder is equal to or less than the tactical surveillance

radar range, the intruder is detected, the posture of the airbase goes to High, the status of the

blue forces changes to pursuit, and the status of the intruding aircraft is(are) changed to Detected.

Otherwise, blue forces continue to fly their CAP missioI unaware of the approaching enemy aircraft.

72

Initialize
Variables

i =i+l EndSim C-

Search for Intruders
(Detect)

Yes Assign Target

(TgtSel)

Update Yes No

T ttatus 0 Maintain
Tgt Loc "Hi" Station

Update Heading

Draw All AC

Firin Yes Fire or Update

Gond Met Missile

Advance All AC

Figure 20. Main Control Loop of ATACS

73

Once an intruder has been detected, it becomes the target of the blue forces. If the scenario

calls for two intruders, the second intruder will not be targeted until detected.

Targeting. Targeting is based on an internal Rule of Engagement (ROEs). This rule states

that intruders will be targeted based on minimum range. That is, if Blue 1 and Blue 2 are in

pursuit of a Red target and another Red intruder is detected, the Blue aircraft which is the closest

to the first Red target remains engaged while the other Blue aircraft will break off and pursue the

newly detected intruder. Once one of the Red targets has been eliminated, the newly freed Blue

interceptor will be reassigned to the remaining Red target. The logic flow of the target assignment

algorithm is shown in Fig 21.

4.7.2 Assignment of Headings. For each pass through the loop, an initial heading is com-

puted for each aircraft by function MHEAD. Function MHEAD begins by finding the relative

distance between the aircraft and its target in both X and Y directions. In this fashion, a coordi-

nate system is established with the aircraft at the origin and the target in one of four quadrants.

To determine which quadrant the target is located in, several checks are performed based on the

position of the target relative to the aircraft.

Once the checks are complete, the heading is computed by taking the arctangent-of the relative

Y distance over the relative X distance.

The following describes the sequence of the final stage of establishing a heading.

If Target. > AC, then (Target is ahead of aircraft)

Heading = arctan(distancey/distance..) + ir

Else

Heading = arctan(distance,, /distance.,)

End If Target, < ACr then (Target is left of aircraft)

Heading = arctan(distancey /distance.,) + ir

74

Begin TgtSel
Called By Detect

Yes
One Target

No

Assign Target To
All Blue Aircraft

Two Targets Present
Reassign Targets Based on Proximity

Re urn

Figure 21. Target Assignment

75

Else

Heading = arctan(distancey /distance)

End

The final step in assigning a heading is to verify the heading is within 0 and 27r. Following the

verification, the function ends and control is returned to mainloop.

4.7.3 Track Angle. A common term found in high resolution aircraft combat models is the

term track angle. This term is defined as the angle between the aircraft's velocity vector and the

line of site (LOS) vector. The velocity vector generally extends in the same direction as the heading.

The LOS vector originates from the nose of the aircraft and terminates at the target. Figure 22

illustrates this definition.

ATACS makes use of the track angle concept in three sperate applications. These are: turn

limiting, determining turn direction, and target detection.

Up to this point in the main control loop, a new heading has been computed, but none of the

aircraft have moved during this cycle. The newly established heading points directly at the target.

This is the heading the pilot wants to steer to. The old heading is the current direction the aircraft

is pointing in. The difference between these two directions is the track angle.

The track angle is computed using the inside angle, hence angle lies between 0 and 7 radians.

Checks are performed to verify the angle lies in this range. An example is provided to illustrate this

procedure. Say the old heading was 30 degrees, and a new heading of 300 degrees was computed.

The difference between these two directions is 270 degrees, a value greater than 7r. The angle of

270 degrees is clearly not the inside angle. By subtracting this angle from 27r, the desired inside

angle of 90 degrees is obtained.

Turn Limiting. During the scenario input, the student selects an altitude, and two operating

velocities. The altitude and velocities determine the capable radius of turn for the aircraft. From

76

Vel Vector

Radar
Fan -:m

Track Angle

Reference
Aircraft

LOS Vector --

Target
Aircraft

Figure 22. Track Angle

77

the radius of turn, a turn rate is computed and is expressed as radians per second. Now, if the

tracking angle is 90 degrees (1.57 radians) as in the above example, and the turn rate is only 0.13

radians per second, its obvious the complete turn can not occur in the one second cycle. Therefore,

the turn will need to be constrained to the turn rate. During each cycle, the updated track angle

is compared to the turn rate. If the magnitude of the track angle drops within the constraint of

the aircraft's turn rate, the aircraft will turn an amount equal the magnitude of the track angle. If

the track angle is greater than the turn rate, the turn remains constrained.

Direction of Turn. Once an intruder has been detected and a new heading assigned, the

simulated pilot must decide whether a left or right turn is the best. For example, say at the time

the new heading is issued, the aircraft is flying a 180 degree due south heading. A new heading

of 90 degrees due east is issued by the ground controller. The best turn, if unobstructed, would

be to turn to the left. For ATACS to decide this, it must sample a left turn (much like looking to

the left) by adding uie unit of turn rate to the old heading. If this action reduces the track angle

(the objective of the optimal turn), then a left turn will be performed. Otherwise, a right turn is

initiated.

Track Angle and Target Detection.

The track angle is also used for target detection by the on-board radar. However, in this

application, the direction of the LOS vector is determined. Once the direction of the LOS vector is

known, then simply subtracting the LOS direction from the current heading yields the track angle.

The track angle is then compared to the aircraft's on-board radar sweep angle. A target will be

detected if it is within the sweep angle and the maximum range of the radar.

4.7.4 Missile Launch, Track, and Aircraft Kill. In ATACS, simulating the flight of a guided

missile to its intended target is very much like simulating the flight of an aircraft to its intended

target. However, there are two distinct difference. First, the simulated time base for the missile

is every 0.25 seconds as compared to one second for the aircraft. Second, target detection and

78

target selection is known. This decreases the number of required operations in the performance of

the simulation. The entire flow of the missile launch, flight, and destroy sequence is illustrated in

Figure 23

Launch Conditions and Missile Initialization Within MainLoop, the opportunity for a missile

launch is checked with each aircraft. Before an aircraft can launch a missile, three conditions must

be met. First, a missile must be available. Second, a target must be present. Third, the target

must be within optical range of the shooting aircraft. Once the initial conditions for firing are met,

subprogram MISSILE is called. Upon entering into the subprogram, the missile is initialized. The

coordinates of the target are passed to the missile, and the missile's rocket motor timer is set.

Missile Flight. Every simulated quarter second the missile is advanced towards its intended

target. Once the missile is advanced, its new location is compared to that of the target. When the

missile's range to target is within one half of the distance it travels in a quarter second, the target

is declared hit, and a call to subprogram PKILL is made. Otherwise, when four quarter seconds

have passed, a return to mainloop is executed.

Target Kill. In subprogram PKILL, a random number is drawn and compared to the missile's

probability of kill (Pk). If the random number value is less than or equal to the Pk of the missile,

subprogram DESTROY is called to destroy the target. If the random number is greater than the

Pk, the target is missed. If the target is missed and the firing conditions for the shooter still exist,

the shooter will launch another missile.

Destroying the Target. Destroying the target in the simulation means destroying the entity.

This operation is performed by subprogram DESTROY. DESTROY zeros out any numerical at-

tributes of the destroyed target, changes status attributes of the target to reflect its current status

of "Killed in Action (KIA)", and frees the shooter to engage another target or return to the pa-

trol station. As a visual indication of the targets destruction, a call to subprogram EXPLODE is

performed to animate the explosion of the target aircraft.

79

From MainLoop
Call missile

Sub
Missile

New

Initialize Missile

No Locate Missile withShooter Aircraft

Assign target to missile

[Advance Missile

Misl Yes RN < Yes Deto g

No No _
[Draw Missile Tgt Missed E dSu

Figure 23. Missile Flow

80

Animation of the Missile. The drawing of the missile is performed by subprogram MSL-

DRAW. The procedure to draw the missile is identical to the procedures described in Section 4.6.

The only exception to this is the fewer number of line segments required to draw the missile.

Missile Termination. If either the target aircraft is destroyed or the missile's rocket motor

burns out, the missile is terminated and the screen is refreshed. Missile termination is performed by

subprogram MSLTERM. The termination is accomplished by simply advancing the missile counter

belonging to the shooter. As a result of program structure, this procedure, in effect, cuts the missile

out of the simulation.

4.7.5 Aircraft Advance. This process begins by a call to subprogram ADV from the main

loop. The following outlines the steps taken in ADV. These steps are also illustrated in a flow

diagram shown in Fig 24.

1. Select appropriate velocity based on status

2. Compute the turn rate and fuel consumption based on velocity

3. Find the unit X and Y components of the new heading.

4. Compute new coordinates

5. Check fuel status

Fuel consumption is based on the fuel consumption rates computed in the GETDATA sub-

program. With each cycle, the status of the aircraft is determined. The status determines which

velocity the aircraft will operate at and the rate fuel is consumed. Since the consumption rates are

in pounds per second, and the time step based on the second, a unit consumption rate can be added

directly to the current consumption total. Following the sum, a new fuel-remaining percentage is

computed. In the unfortunate event the fuel-remaining percentage drops below zero, subprogram

DESTROY is called and the aircraft is removed from the simulation.

81

Begin Adv
Blue Blue Red

Yes Tgt Dist No Yes Detected No> RadRng
I

Select Select Select Select

Combat Vel Patrol Vel Attack Vel Cruise Vel

Compute Turn Rate

Compute Fuel Use

Compute New Coord
Y =Y + Vel •sin(Heading)

X =X + Vel •cos(Heading)

Big Bingo Mfaneuver

ue.Destroy

End Adv

Figure 24. Subprogram ADV

82

For Blue aircraft, if the fuel level drops below the student's defined "Bingo" level, subprogram

BING is called to perform a "Bingo" maneuver. If the aircraft does not have a target within optical

range, subprogram BING removes targets from the aircraft's target list and vectors the aircraft back

to its base.

4.7.6 Attribute Screen. ATACS provides a feature unlike any other provided by aircraft

combat models. This feature is an option for the student to view inside the simulation while it is

running.

The -Attribute Screen option provides the student the option to view the changing status of

the simulation in numerical and conditional terms. An image of the attribute screen display is

shown in Figure 25. As seen by the many attributes listed here, the student is able to look into

simulation and observe, verify, and validate the many processes occurring during the simulation's

operation.

To display the attribute screen, the student selects the option, function key F3, from the

options displayed at the bottom of the screen. Subprogram FRAME is called to create the borders

around the displayed data. The values of the aircraft attributes are then presented. Since the

attribute values change faster than most observers can absorb, they are updated on only every

tenth pass through the main loop.

4.7.7 Additional Features. The following discussion addresses additional features provided

by ATACS.

Top Line Status Board. At the top of both the animation screen and the Attribute Screen,

the current simulated time, the posture of the airbase (Low or High), and communication between

the airbase and the Blue aircraft is displayed.

Bottom Line Menu. At the bottom of both display screens, a menu of options are displayed.

These options include:

83

o

0 0

0

-r4I

-~ -0 ba

-~t 1.1~C

0 V U0

.0 0crm :, $

0 * ~ It

0 0......... 0-dFC
: ID MOM=0I 00 k. 4

lojl

* ~0 04

+31 04+

0. 000r

0 0 'V 04 -0 -Ho
00 hH 00+%4

0 , 0sO O 4-'

0 1 4i$$ 044
4.) 4,.04) *f$

44U :0 04l' 04.
4 , r+H 0 O4i

M 40 00 000 4 --4 4.
.' 4-) 0'00- $4 0 hiP-

0 004. 0 koo wUa
0 00*gg0 4
"4 00 -

1.41 00rm

0.' 4r
4

-I~.~.' 4'r0

" F1 Halt: halt the simulation

" F2 Resume: resume the simulation

" F3 Atrib Scrn: display the attribute screen

* F4 Graphics: display the graphics screen

" F5 Zoom-In: zoom in on center of the screen

" F6 Zoom-Out: zoom-out from the center of the screen

" F7 Quit: quit the simulation

Monitor Selection. ATACS is initially setup for a video graphics array graphics based system.

However, this may present a hardware compatibility problem for some students. ATACS attempts

to adjust for such a problem.

ATACS auto, .tically determines the type of monitor present. Upon entering this process

during initialization, a test of the BASIC graphics function PSET is conducted. Failure of the

function indicates to ATACS the program is not installed on a VGA compatible system. In this

event, ATACS reconfigures itself to be compatible with the enhanced graphics adaptor (EGA)

graphics display. If this fails, ATACS informs the student of the hardware incompatibility.

4.8 Output

ATACS can generate up to four types of reports. These are the Reflected Report, the Detailed

Summary Report, the Aircraft Performance Report and the Significant Event Summary Report.

To generate the reflected report, the scenario and aircraft performance data is retrieved and

formatted for display.

The data for the detailed summary report is generated at each pass through the loop. During

each pass, the status and values of aircraft attributes are written to a file to be later retrieved and

displayed.

85

The aircraft performance factors report is generated during the calculation of these factors.

Once the factors are calculated, their values are formatted for display.

When any significant event such as an intruder being detected, missile launch, or kill occurs,

simulation time and participants are recorded for later review in the significant event report.

4.9 Model Limitations

The ATACS combat demonstration is a combat model employing the simplest techniques to

simulate specific phenomena. In an attempt to allow the simulation to operate while displaying

graphics, some limitations on data accessing and reality had to be imposed. Altitude, although

selectable by the student, is constrained to a single horizontal plane. Velocity is similarly limited

to two constant values: military power and afterburner. Even though turn rate is considered, roll

rate and pitch was not.

Detection of targets make exclusive use of the cookie cutter method. Although this is an

acceptable method, it lacks the element of chance.

The missiles in ATACS are simple point masses directed to move to a location specified

by the missiles assigned target. No missile performance factors akin to those of the aircraft are

considered in ATACS. No specific missile guidance such as infrared or radar is modeled in the

ATACS. No proximity fuzing or warhead dynamic fragmentation patterns are modeled. Although

these limitations are significant, their impact is minimal given the intentional application of ATACS.

4.10 Summary

This section has presented the construction, operation, and use of ATACS' many features.

The discussion was organized into the three major areas of student menus, graphics generation, and

the actual combat model. Discussion of the logic flow of several of the principal ATACS operations

was presented. Where needed, pictorial illustrations were provided to enhance the discussion. The

86

final sections addressed the limitations of the air combat demonstration and the generation of the

output products.

87

V. Conclusions

5.1 Summary

The objective of this thesis was to develop a simple and portable air-to-air, few-on-few combat

simulation which demonstrates the fundamental concepts of air combat, combat modeling, and

simulation in a form which supports student learning of model design.

This objective was met. The animated tutor for air combat simulation (ATACS) fulfills this

objective.

ATACS is an aid which complements the AFIT combat modeling course material through

demonstration and provides the "seeing is believing" realism to key modeling processes.

ATACS is a portable system which can be operated with any IBM compatible desk top

computer supporting an enhance graphics adapter or better and color monitor.

ATACS is a menu driven system which hosts several dynamic and animated examples of

modeling processes used in simulating combat activities. These examples are designed to support

student learning of the more difficult combat phenomena simulated in combat models.

ATACS is a demonstration of simulated air-to-air combat. Features within the simulation

permit the student to view an animation of the simulation and monitor its continuously changing

states. Both of these features work in unison to support concepts of model scenario, target detection,

target selection, attack, and elimination. Additionally, both the animation and monitoring features

enforce techniques used in model verification and validation.

ATACS is a sample of output products which demonstrate those found accompanying most

large scale combat models. The output products reinforces student learning of output analysis and

model verification and validation.

Finally, ATACS is an example of proper program documentation. Contained in Appendix B is

ATACS' user manual. This manual addresses the concerns a student may have such as: identifying

88

ATACS' hardware requirements, operating ATACS, and defining ATACS' many program files. This

thesis document, in total, serves as an analyst/programmers manual for the student who desires to

learn more through exploration and modification of the program's code. Within the program code

lies another source of documentation as well. Over 900 comments have been included in ATACS'

computer code. These comments serve to classify variables, explain usage, and provide warning of

sensitive variable conventions. The extensive ATACS' documentation is yet one more pedagogical

feature provided by this dynamic educational aid.

5.2 Development of ATACS

The development of ATACS began by identifying the needs of instructors and students of

combat modeling.

The following paragraphs below summarize the methods used in the design and development

of ATACS. These methods consisted primarily of researci., identification and use of existing combat

model computer algorithms, interviews, and use of operation research techniques.

1. The scenario had to demonstrate to some degree Air Force doctrine, rules of engagement,

tactics, and decision rules. Development of the scenario was supported by interviews with

rated Air Force officers and allied officers to gain insight into mission planning, electronic

sensor use, maneuvering, and tactics employed during air-to-air combat.

2. The use of class notes from Military System Simulation, Military Systems Analysis, and

Combat Modeling High Resolution and Aggregated combat modeling were the core sources

of simulation techniques and applications of combat models.

3. A review of air-to-air combat models' operating manuals provided valuable insight into pro-

gram structure and algorithms used to represent the combat. From these manuals, the nec-

essary characteristics to sufficiently depict entities and their objectives were identified.

89

4. The methods used by air-to-air manual "board" wargames were studied as alternatives to

simulate movement, search, and detect processes associated with air-to-air combat. It was

hoped that these board games might reveal computationally efficient process algorithms.

Unfortunately, they did not.

5. To establish what ATACS should emphasized, instructors and students were interviewed.

The interviews focused on finding areas of combat modeling instructions that could be com-

plemented by a computer based demonstration. The instructor's and students' responses

provided the guidance in developing the animated examples found in ATACS.

5.3 Recommendation

Although this thesis met the original objective, there exists room for enhancement. This thesis

established a baseline from which a future ATACS may be developed. More time and additional

research could produce a tool that may extend beyond the classroom and into the offices of analysts

and decisionmakers. ATACS could evolve into a modeling primer offering fundamental insight into

the design, development, and application of high resolution combat models. This insight may

permit a more thorough understanding of a model's scope and intended purpose. In-turn, a future

ATACS could meet the challenge set forth by the General Accounting Office

Specific recommendation to ATACS include the following:

e Dynamic Examples

- Include such processes as event time step scheduling. Contrast both, fixed time step and

event time step timing mechanisms.

- Include an animated search example which points out the probabilistic nature of the

search activity.

90

- To enforce the many components that make up the probability measure, probability

of kill, an improved impact assessment example is recommended. This should point

out that the probability of eliminating a target may include aircraft reliability, launch

reliability, guidance reliability, fuzing reliability, and detonation reliability to mention a

few.

9 Air Combat Demonstration

- Permit intruding Red forces to be reactive

- Model aircraft maneuvers employing and demonstrating typical air tactics.

- Permit a full three degrees of freedom (X,Y,Z) of the aircraft's point mass.

- Find more efficient methods of determining aircraft performance parameters.

- Use methods other than the cookie cutter to simulate detection.

- Improve coordinate tatics between interceptors operators.

- Enhance missile flight performance. Consider missile flight dynamics and various guid-

ance and seeker techniques.

Several of these recommendations are features this author would have liked to introduce, but

time constraints prohibited such development. This author believes the accomplishment of any one

of these recommendations will greatly increase the instructional value of ATACS.

5.4 Conclusion

In conclusion, ATACS complements the instruction of combat modeling and possibly sim-

ulation in general. ATACS dynamically illustrates common processes found in combat models

and employs these processes in an animated demonstration of simulated air combat. ATACS has

the capability to immediately communicate complex multi-dimensional information about mod-

91

eling processes common to combat models. ATACS certainly has the capability to enhance the

effectiveness of instruction in combat models.

92

Appendix A. ATACS SIMTAX Classification

ATACS SIMTAX
TITLE: Animated Tutor for Air Combat Simulation

MODEL TYPE: Education and Training

PROPONENT:Air Force Institute of Technology Department of Operational Science

PURPOSE: To provide a demonstration of basic fundamentals of air-to-air combat modeling

to support student learning of modeling combat.

DESCRIPTION:

" Domain: Land and Air

* Span: Local

" Force Composition: Blue and Red

" Scope of Conflict: Air-to-Air Conventional

" Mission Area: Combat Air Patrol

* Level of Detail of Processes and Entities: Processes are of sufficient detail to demonstrate the

phenomena. Blue force entities maneuver and attack Red air targets. Red force entities attack

a predefined ground target.

CONSTRUCTION:

" Human participation: Animated examples require student participation. Scenario creation

may require student participation. No student participation required once the combat demon-

stration begins.

" Treatment of Randomness: Monte-Carlo

93

a Sidedness: Two sided, Blue forces reactive only

LIMITATIONS: Model is a first draft. Purpose of the model is to provided demonstration only.

Some activities are treated as first order processes only.

INPUT: Optional

OUTPUT: Detail and summary reports

HARDWARE AND SOFTWARE:

" Computer: IBM AT Compatible

" Peripherals: VGA or EGA color monitor

" Language: Compiled Microsoft Basic 4.5

" Documentation: User manual

SECURITY CLASSIFICATION: Unclassified

GENERAL DATA:

* Date Implemented: March 1992

" Data Base: Provided.

* CPU time per Cycle: Based on the default scenario file, actual demonstration of air-to-air

combat requires 1.5 minutes using an IBM AT equipped with a math coprocessor and oper-

ating at 12 MHz.

* Data Output Analysis: N/A

" Frequency of Use: Instructor Dependent

" Users: AFIT

94

Appendix B. ATACS' User Manual

ATACS User Manual
ATACS (animated tutor for air combat simulation) is a simple and portable, air-to-air, few-on-

few combat simulation which demonstrates the basic fundamentals of air combat and key elements

of combat modeling and simulation in a form which supports student learning of model design and

use in DoD studies.

Since ATACS is an educational tool, much effort was devoted to designing a simple to use

system requiring very little reference to a user manual. The primary purpose of this manual is to

identify hardware requirements, system files, introduce you to ATACS, and explain menu options

and screen displays in greater than that provided by the ATACS program.

Hardware Requirements

ATACS will cperate on any IBM compatible XT or AT machine with an enhance graphics

adaptor (EGA) or with video graphics array (VGA)

graphics capability. Although ATACS is compatible with an XT, it is not recommended

due to the slower processing speed of an XT. Although a math coprocessor is not required it is

recommended.

ATACS is provided on a 5 1/4 low density disk. To load ATACS on to your hard disk simply

copy all files over to the hard disk. While using ATACS, you have the option of creating new

scenario files. Additionally, ATACS must access data files and output files during the combat

demonstration. Due to this type of input/output operation, it is recommended that you create a

subdirectory for ATACS to be loaded in to.

ATACS Files

The files which makeup ATACS are listed below.

* ATACS.EXE: ATACS executable file.

95

" ATACS.BAS: The aircraft combat simulation source code.

" MAINMENU.BAS: The menu driver module.

" MODTITLE.BAS: The title generator

* MODRND.BAS: The random number example module.

" MODPDET.BAS: The probability of detection example module.

" MODSCRH.BAS: The search example module.

" MODPKIII.BAS: Impact assessment example module.

" MODMSG.BAS: Message module.

" MODOUT.BAS: Output module.

" BIPERF.DAT: Blue one's aircraft performance data.

" R1PERF.DAT: Red one's aircraft performance data.

" B2PERF.DAT: Blue two's aircraft performance data.

" R2PERF.DAT: Red two's aircraft performance data.

" BIPERF.DOC: Blue one's documented aircraft performance data.

" R1PERF.DOC: Red one's documented aircraft performance data.

" B2PERF.DOC: Blue two's documented aircraft performance data

" R2PERF.DOC: Red two's documented aircraft performance data

* MASTER.DAT: Default scenario data file

The above files are provided with the ATACS disk. The files with the BAS extension are

source code files. ATACS is written in Microsoft BASIC 4.5. All of ATACS source code is provided

and available for your review using a text editor or the Microsoft BASIC 4.5 editor.

The following files may be created when ATACS is used.

96

" ACPERF.DAT: Calculated aircraft performance factors.

" DETAIL.DAT: A Second-by-second detail listing of activities that occurred during the

simulation.

" OUTPUT.DAT: A listing of significant events that occurred during the simulation.

Running ATACS

Simply enter ATACS at the DOS prompt. ATACS is menu driven. The available menus are

shown in FIG 26.

Accompanying each displayed menu is a short explanation of each option. The opening menu

permits you to select the following options:

" Examples of Combat Modeling Processes

" Run Demonstration

" Display Input/Output

" Terminate the Program

Examples of Processes Following the selection of Examples of Processes you are

offered six examples of processes inherent to almost all dynamic high resolution combat models.

These processes are:

" Random Number Generation

" Target Searching

" Various Detection Methods

* Target Identification and Selection

" CEP Assessment

97

EXAMPLES MENU

Random Number Generator

Search

Detection

Target Selection

CEP Demonstration

Utility of Track Angle

Return to Main
MAIN MENU

MODEL MENU
Examples

Run Combat Express Load and Go

Model Load and Edit ScenarioDisflay

Oup Run Combat Demonstration

Terminate Return to Main

OUTPUT MENU

Reflected Input

Aircraft Performance
Factors

Detailed Summary

Significnat Event

Return to Main

Figure 26. ATACS menus

98

* Utility of Track Angle

Random Number Generation: This option presents a brief narrative describing the useful

purposes of the random number generator. You are prompted to enter the number of samples to

be taken from the random number generator and a seed to begin the generator with. A test of the

generator is then performed and the animated results displayed.

Target Searching: The second option presents a narrative on the simulation of search.

Detection Methods: The third option presents to you a narrative describing two methods

by which to simulate the detection process. The two methods presented are the deterministic

"cookie cutter" and a stochastic model for search radars. An illustration of both methods is

presented. The first is the "cookie cutter" method. In this illustration a step function is plotted

on the screen, showing the range at which detection occurs and the probability step from zero to

one at that range. You are prompted to enter a range-to-target value, the program evaluates the

range and places a maker on the curve corresponding to the range and probability of detection.

A second example of a detection method follows the cookie cutter illustration. This example

presents stochastic probability of detection model. A plot of the model is superimposed over the

step function as a means of comparing between these two simple approaches to modeling detection.

You are again prompted for a target range. Once entered, the probability is determined, and a

marker is plotted on the curve. The program then selects a random number. The random number

drawn is used to determine if the target was detected at the range entered you entered.

Target Identification and Selection: The fourth option displays a narrative describing

possible methods used to simulate this process as it pertains to the air-to-air combat environment.

Assessment of CEP: This option presents a narrative pertaining to various methods used

in the simulating this event. In this expmple the student is prompted to enter the number of test

firings. Each firing is then plotted on a target. At the completion of the firing the systematic

weapon's bias and cross range and down range dispersion of the impact points are calculated.

99

Based on these statistics the circular error probable (CEP) is calculated an a circle depicting the

CEP is drawn around the impact points. "The circular error probable is that radial distance from

the aim point within which half of the rounds will land (in a probability sense)". Following this

demonstration a plot of the probability of hit based on the calculated CEP is plotted. You may

enter target radii to determine what effect CEP and target size has on the on the probability of

hit.

Track Angle: The final example is also a narrative explaining the use of track angle in air

combat models.

Run Combat Simulation: Following this selection from the main menu, you are

offered three options. However, selection of these options is dependent on an order of selection. For

example a scenario file must be loaded first before the simulation can begin.

Express Load and Go: This option will load the default scenario file or a file of your choice

and begin the air combat simulation. When entering a scenario file name of your choice, remember

to include the filename extension such as "DAT." Before the simulation begins, a brief synopsis of

the scenario and function key definition is displayed.

Load and Edit Scenario File: This option will also allow you to select either the default

scenario file or one of your choice.

Before the scenario editor is displayed a brief synopsis of the scenario is presented. The

scenario file is then loaded into the editor. You are given the opportunity to change any value used

in the scenario file. However, you must observe the limitations on some data values. Simply enter

a new value at the prompt or press Enter/Return to accept the default value. The editor consists

of six screens. Once completed, you are returned to the menu. At this point you may select the

Run Simulation option.

Run Simulation: Once this option is selected you are required to enter a seed to begin the

random number generator. Once entered, the function key definition is displayed followed by the

100

sta:L of the simulation begins. The most important of the function keys is the Atrib Scrn key F3.

This option opens up the simulation by displaying the attribute values of several of the simulated

entities.

ATACS animates such entities as the airbase, aircraft, and missiles. The icons used to animate

these entities are shown in Fig 27.

The simulation will automatically terminate at the end of the default simulation time of 3000

seconds or the simulation time entered by you. However, the simulation may be terminated at any

time by pressing the F7 Quit key.

Display Output

Once a simulation has been executed, output is available for display. From the main menu

select Display Output. The available output are the following:

" Reflected/Echo Input Report

" Detailed Summary Report

" Aircraft Performance Factors

" Significant Event Summary Report

Reflected Input/Echo Report

This option produces a listing of all the input data, both user entered such as the scenario

file and embedded, such as the aircraft performance data file.

Detailed Summary Report This option produces a listing of selected variables and their

values collected at each time pulse of the simulation.

Aircraft Performance Factors

This report lists the aircraft performance factors calculated by the model. The display lists

such factors as aircraft thrust, fuel consumption rates, and turn performance.

101

Radar Frontier

A NrbseMisl

Figure 27. ATACS Icons

102

Significant Event Summary This final report provides a listing of the significant events

and their time of occurrence. Such events include detection of an intruder, target identification,

and target destruction.

Summary

ATACS offers you the opportunity to examine a combat model up close. To take it apart and

look inside. These opportunities are not likely to be offered with other combat models. As men-

tioned in the introduction, much effort was devoted to designing a simple to use, self-documented

system requiring very little reference to this manual. Once you have used ATACS you will find this

to be true.

103

Appendix C. ATACS Questionnaire

ATACS Questionnaire
Model Classification

Was the purpose of the combat demonstration-education and training or analysis ?

Classification by Qualities

What was the model's domain; was land in the domain?

What was the model's span?

What was the model's environment?

Was darkness modeled, and if not, would it make a difference in the outcome?

Was weather modeled, and if not, would it make a difference in the outcome?

What was the model's force composition?

What was the model's scope of conflict?

What was the model's mission area?

What was the model's level of detail of processes and entities?

Classification by Construction

Was your involvement required during the combat demonstration?

What time advanced mechanism (fixed step) or event step was used in the combat demon-

stration?

If fixed step, what was the size of the step, and was there more than one?

If event step, which events advanced the simulation time?

What time advance mechanism is best for this type of simulation and why?

Is the combat demonstration a deterministic or stochastic model?

104

Is the combat demonstration a Monte-Carlo simulation?

How many sides were represented in the demonstration?

Was treatment of the combatants symmetric or asymmetric?

If asymmetric, was only one side reactive?

Entities and Attributes

What entities were simulated by the combat demonstration?

What attributes did these entities posses?

Was the existence of these entities explicitly defined in the simulation or did they exist as a

collection of attributes?

How were entities destroyed?

What happens to entities when they are destroyed?

Aircraft

Was altitude a factor in the simulation of the aircraft performance?

Was the aircraft velocity a factor in the simulation?

What aircraft performance measures were used to simulate the aircraft's flight and maneu-

verability?

What sensors were did the aircraft posses?

Were these sensors active?

What aircraft resources were represented?

Were these resources consumed?

What was the outcome if these resources were expended?

Missiles

105

What missile performance measures were used in the simulation?

Did missiles share the same time mechanism as the aircraft?

If so, did the missile share the same time step?

Did missiles actively track their targets?

How was missile effectiveness (killing ability) modeled?

Could a missile miss a target?

Scenario

What was the scenario?

Was the scenario plausible and/or flexible?

Were you able to customize the scenario?

Search

What methods were used to simulate the process of search?

Were the processes of search explicit or implied?

Which simulated sensors, either explicitly or implicitly simulated, were actively searching for

intruders?

Were sensors modeled as entities or attributes of a higher entity?

Detection

What method was used to simulate the process of detection?

Was the method deterministic or stochastic?

Could the method be classified as Monte-Carlo?

Target Assignment

Was the target assignment random or was there an underlying rule?

106

Would the simulation]prmit the same target to be assigned to more than one shooter?

How many simultaneous targets could be assigned to one shooter?

Communication, Command, and Control

Was C3 present?

If so, who was in command; what did they command; and was C3 actively used to control

entity activities?

Could shooters coordinate or concentrate fire (more than one shooter shooting at a target)?

Advance

Did the advance mechanism for aircraft and missile use a fixed rate throughout the simulation

or was the rate altered by changes in entity status?

Target Destruction

To destroy a target, was the missile required to impact the target (Hint: think of the time

advance mechanism and advance mechanism)?

107

Appendix D. Variable Definitions

Variable Definitions For MODACS

Single Dimension Variables

Basex, Basey: Airbase location

GCIRg: Tactical surveillance radar range

Format: Flag for attribute screen format

AScreen: Attribute/animation screen flag

Scale: Graphics screen scaling factor

Wx, Wy: Graphics window dimensions

AR: Aspect ratio

endsim: Simulation run time

StatPtx, StatPty: Combat Air Patrol (CAP) station point

OEF: CAP orbit expansion factor

AltaArg: Number of altitude elements in altitude array

MachArg: Number of mach elements in mach array

SysStat: System posture (Hi/Low)

Icon Arrays

X(,Y0: Coordinate points of icon line segments

xxoid0,yyold0: Old translated and rotated coordinates of line segments

OldEndTop0, OldEndBoto: Old translaLed and rotated coordinates of radar frontier image

Mode: Color indicator for icons

108

Aircraft Location, Heading, Distance, Track Angle, and Targets Arrays

ACx,ACy: Location of aircraft

Tgtx, Tgty: Location of the target

ACHead,OldHead: Current and previous assigned heading

TDist: Distances between entities

Stat, IStat: Character and integer status variables

Trkang: Track angle of indexed aircraft

Tgt, ITgt: Target character and integer identifiers

TgtDetLvl: Indicator of sensor in range

Senario and Aircraft Performance Variables

Dat: Number of scenario data elements

Vel, Vp, TV, VelMax: Low velocity, hi velocity, temporary holding variable for present

velocity, and maximum permissible velocity

WgArea: Aircraft's wing area

MaxWt, MinWt: Maximum and minimum aircraft combat weight

MaxAlt, MinAlt: Maximum and minimum combat altitudes

MaxETA: Maximum normal force

ThrKF, DragKF: Multipliers for thrust and drag table factors

ThrMP, ThrAB: Military and afterburner thrust table values

THMP, THAB: Index aircraft thrust in military and afterburner

TurnRate, RadTurn, TTurn, RTmiles: Aircraft turn factors

FCMP, FCAB: Table values for fuel consumption

109

MPFC, ABFC: Fuel consumption rate for indexed aircraft

Bingo: Bingo fuel level for indexed aircraft

BurnRate: Fuel consumption rate based on current velocity

Sensor variables

OptRng: Optical maximum range

RadRng: Radar maximum range

Missile variables

NumMSL: Number of missile on indexed aircraft

MslV: Missile velocity

MslSenRg: Missile sensor range

MX, MY: Missile icon line segment coordinates

MF: Number of missiles fired from indexed aircraft

MTNOW: Missile timer

Pk: Probability of kill for missile

IMslStat: Integer value for missile status

IMTgt: Missile integer target identification

110

Appendix E. ATACS Source Code Listings

MODTITLE

111

'ATACS Title Generator

'Author: Capt R. Moore

'Date: 15 Feb 91

COMMON SHARED MonMode%, mennum%

SUB title
" Drawing of ATACS (Animated Tutor for air combat simulation

'MonMode% = 12

IF MonMode% = 12 THEN

SCREEN 12
VIEW (0, 0)-(620,460)
offset = 0 '70
Inum = 100
LOCATE 4, 20: PRINT "ANIMATED TUTOR FOR AIR COMBAT SIMULATION"
LOCATE 22, 14: PRINT "DESIGNED TO COMPLEMENT THE TEACHING OF
COMBAT MODELING"
LOCATE 22 + 5, 28: PRINT "PRESS ANY KEY TO BEGIN"
ELSE
SCREEN 9, , 1, 0
offset = 0' 50
Inum = 80
VIEW (0, 0)-(620, 340)
LOCATE 3, 20: PRINT "ANIMATED TUTOR FOR AIR COMBAT SIMULATION"
LOCATE 18, 14: PRINT "DESIGNED TO COMPLEMENT THE TEACHING OF
COMBAT MODELING"
LOCATE 18 + 5, 28: PRINT "PRESS ANY KEY TO BEGIN"
END IF

letwd = 10
letht = 100
clr = 3

" Letter a

start = 25
end = 125

delta = (tend - start)
mid = start + delta / 2
midht = Inum + (letht / 2)

FOR i = I TO letwd + 3
LINE (mid + i, Inum)-(start + i, Inum + letht), Or
LINE (mid + i, Inum)-(eend + i, Inum + letht), clr
NEXT i

FOR i = 1 TO (letwd - 3)
LINE (start + .3 * delta, Inur + 50 + i)-(eend - .2 * delta, Inur
+ 50 + i), clr
NEXT i

" letter t

Inum = Inum + offset

" Horizontal start and end
start = 142
end = 242

mid = start + (eend - start) / 2

FOR i = 0 TO letwd
LINE (start, Inum + i)-(eend, Inum + i), clr 'Top of T
LINE (((mid - letwd / 2) + i), lnum)-(((mid - letwd / 2) + i),

Inum + letht), clr
LINE (start, Inur + letwd + i)-((start - i + letwd), Inum +

letwd + i), clr'Let tail
LINE ((end - (letwd - i)), Inum + letwd + i)-(eend, Inum +

112

letwd + i), clr'Right tail
NEXT i

" Letter a

Inum = Inum + offset '- 35

start = 245
eend = 345
delta = (eend - start)
mid = start + delta / 2
midht = Inum + (letht / 2)

FOR i = 1 TO letwd + 3
LINE (mid + i, Inum)-(start + i, Inum + letht), clr
LINE (mid + i, lnum)-(eend + i, Inum + letht), clr
NEXT i

FOR i = 1 TO (letwd - 3)
LINE (start + .3 * delta, Inum + 50 + i)-(eend - .2 * delta, Inum
+ 50 + i), clr
NEXT i

" letter c

Inum = Inum + offset + 10

start = 385
eend = 485
delta = (eend - start)
mid = start + delta / 2
midht = Inum + (letht / 2)
cstr .017453 * 60
cstp = .017453 * 320

IF MonMode% 12 THEN
rl = 38: r2 = 48
ELSE
rl = 56: r2 = 68
END IF

FOR i = rl TO r2 STEP .1
CIRCLE (mid, midht - 10), i, clr, cstr, cstp
NEXT i

letter s

Inum = Inum + offset

start = 490
eend = 590
delta = (eend - start)
mid = 10 + start + delta / 2
midht = Inum + (letht / 2)
tcstr = .017453 45
tcstp = .017453 * 270
bcstrl = .017453 0
bcstpl = .017453 * 90
bcstr2 = .017453 * 195
bcstp2 = .017453 * 360
tmid = Inum + .25 * letht
bmid = Inum + .7 * letht

IF MonMode% = 12 THEN
rl = 17: r2 = 27
ELSE
rl = 23: r2 = 35
END IF

FOR i = rl TO r2 STEP .1
CIRCLE (mid, tmid - 8), i, clr, tcstr, tcstp
CIRCLE (mid, bmid - 8), i, clr, bcstrl, bcstpl
CIRCLE (mid, bmid - 8), i, clr, bcstr2, bcstp2

113

NEXT

IF MonMode% = 9 THEN
SCREEN 9, , 0, 1
END IF

DO WHILE INI(EYS =":LOOP

END SUB

114

MAINMENU

115

'Program: Menu module

'Author: Capt R. Moore

'Date: 15 Feb 91

DECLARE SUB Reflect 0
DECLARE SUB Sigevnt 0
DECLARE SUB ACperf 0
DECLARE SUB Detlrpt 0
DECLARE SUB msg (MsgNum%)
DECLARE SUB USERDAT 0
DECLARE SUB LoadGo 0
DECLARE SUB MainLoop (MonMode%)
DECLARE SUB GetData 0
DECLARE SUB CEPDEMO (MonMode%)
DECLARE SUB RNDDEMO (MonMode%)
DECLARE SUB SCRHDEMO (MonMode%)
DECLARE SUB PDETDEMO (MonMode%)
DECLARE FUNCTION Menu% (choices$()
DECLARE SUB DisplayMenuBox (choiceList$0, leftCoord%, promptS,
okS)
DECLARE SUB Frame (Left%, Right%, Top%, Bottom%)

COMMON SHARED MonMode%, mennum%, cornS

CONST false% = 0, true% = NOT false%

DATA Examples of Processes
DATA Combat Demonstration
DATA Display Output
DATA Terminate
DATA Random Number Generator
DATA Search
DATA detect
DATA target selection
DATA CEP demonstration
DATA Utilty of track angle
DATA main menu
DATA Express load and go
DATA Load and edit scenario file
DATA run demonstration
DATA main menu
DATA reflected input
DATA detailed summary
DATA Aircraft Performance Factors
DATA Summary of significant events
DATA main menu

SUB DisplayMenuBox (choiceListS0, leftCoord%, promptS, ok$)

Program Display Menu Box
Author: Capt R. Moore
Date: 14 Oct 92

Source: Micro-Soft Quick Basic 2nd Edition

Description: This subprogram list the menu options and
thenmakes
a call to frame. The argument values passed to frame are the
dimensions based on the size of the longest word in the option
list. Additionally, the prompt is created in the subprogram.

Called by Function Menu

Calls Sub Frame

* Find number of choices and initialize variables

numChoices% = UBOUND(choiceListS)
prompts
okS = ""
lngChoice% - 0

116

*Prepare the prompt string and the string of legal input
characters (okS).
*Find the length of the longest option (LngChoice%)

FOR i% = 1 TO numChoices%
first$S UCASES(LEFTS(choiceList$(i%), 1)) 'Grab the first

letter
ok$ = okS + first$
prompt$ = prompt$ + first$ +
longTemp% = LEN(choiceListS(i%)) 'Find the length of

eachchioce
IF longTemp% 4 lngChoice% THEN lngChoice% = longTemp%

NEXT i%

lngChoice% = lngChoice% + I
prompt$ = promptS + "1-i."

'Check and see if prompt string is longer than longest option

IF LEN(promptl) Z= lngChoice% THEN lngChoice% = LEN(promptS) + 1

Determine the coordinates for the menu frame based on
menuoptions

leftCoord% = 37 - IngChoice% " 2
rightCoord% = 80 - leftCoord%
topCoord% = 3
bottomCoord% = 10 + numChoices%
Frame leftCoord%, rightCoord%, topCoord%, bottomCoord%

FOR i% = 1 TO numChoices%
LOCATE 6 + iM leftCoord% + 3
COLOR 14, 0: PRINT UCASES(LEFT(choiceListS(i%), 1))
LOCATE 6 + i%, leftCoord% + 4
COLOR 7, 0: PRINT MlDS(choiceListS(i%), 2)

NEXT i%

COLOR 3
SELECT CASE mennum%
CASE 1

LOCATE 4, 35: PRINT "Main Menu"
CASE 2

LOCATE 4, 29: PRINT "Dynamic Examples Menu"
CASE 3

LOCATE 4, 31: PRINT "Demonstration Menu"
CASE 4

LOCATE 4, 34: PRINT "Output Menu"
END SELECT
COLOR 7

line$ = STRING S(lngChoice%, 196) ' 196 is the -", print it
longChoice times
LOCATE 5, leftCoord% + 3: PRINT line$ '3 is the margin from
border
LOCATE 7 + numChoices%, leftCoord% + 3: PRINT line$ 'print
bottomsingle line

Print the input prompt

LOCATE 9 + numChoices%, leftCoord% + 3: PRINT prompt$;

END SUB

SUB Frame (Leftl, Rsght%. Top%, Bottom%)

Program Frame
Author: Capt R. Moore
Date: 14 Oct 92

Source: Micro-Soft Quick Basic 2nd Edition

117

Description: The frame subprogram draw a double-line
rectangular

frame on the screen to enclose menu options.

Called by Sub DisplayMenuBox

Draw the four corners using the text-graphics character set
from
' extended ASCII character set.

LOCATE Top%, Left%: PRINT CHRS(201)
LOCATE Top%, Right%: PRINT CHRS(187)
LOCATE Bottom%, Left%: PRINT CHRS(200)
LOCATE Bottom%, Right%: PRINT CHRS(188)

' Draw vertical lines

FOR Vert% = Top% + I TO Bottom% - 1
LOCATE Vert%, Left%: PRINT CHR$(186)
LOCATE Vert%, Right%: PRINT CHRS(186)

NEXT Vert%

' Draw horizontal lines

Horz% = Right% - Left% - I
HlineS = STRINGS(Horz%, 205)
LOCATE Top%, Left% + 1: PRINT Hline$
LOCATE Bottom%, Left% + 1: PRINT Hline$

END SUB

SUB mainmenu

Program: MenuOptions
Author: Capt R. Moore
Date: 14 Oct 92

Source: Micro-Soft Quick Basic 2nd Edition

Description: This program sets up the menu options based on
selections from other menus

DIM menuOptl$(4), menuOpt2S(7), menuOpt3$(4), menuOpt4S(5)

CLS

SCREEN 0

' MenuOption Data

FOR i% = 1 TO 4
READ menuOptl$(i%)

NEXT iM

FORi = 5 TO 11
j% = i% - 4
READ menuOpt2$(j%)

NEXT i%

FOR i% = 12 TO 15
J% = i% - 11
READ menuOpt3$(j%)

NEXT i%

FOR i% = 16 TO 20
j% = i% - 15
READ menuOpt4$(j%)

NEXT i%

118

CLS
DO
Headl:
meg 101
mennum% = I
SELECT CASE Menu%(menuOptl$O)
CASE 1

CLS
GOTO Head2

CASE 2
CLS
GOTO Head3

CASE 3
CLS
IF GotData% = 2 THEN

GOTO head4
ELSE

BEEP
meg 1011
GOTO Head3

END IF
CASE 4

CLS: END
CASE ELSE

done% = true%
END SELECT

Head2:
msg 102
mennum% = 2
SELECT CASE Menu%(menuOpt2$0)
CASE 1

msg 110
SCREEN MonMode%
RNDDEMO MonMode%
SCREEN 0

CASE 2
msg 111
SCREEN MonMode%
SCRHDEMO MonMode%

SCREEN 0
CASE 3

meg 12
SCREEN MonMode%
PDETD-MO MonMode%
SCREEN 0

CASE 4
msg 113
SCREEN MonMode%
CLS
SCREEN 0

CASE 5
msg 114
SCREEN MonMode%
CEPDEMO MonMode%
SCREEN 0

CASE 6
meg 115
SCREEN MonMode%
SCREEN 0
CLS

CASE 7
GOTO Headl

CASE ELSE
done% = true%

END SELECT
GOTO Head2

Head3:
mag 103
mennum% = 3
SELECT CASE Menu%(menuOpt3$0)
CASE 1

CLS : LoadGo
CLS : GetData
IF GotData% i 2 THEN : msg 200: msg 210
MainLoop MonMode%

119

GotData% = 2
SCREEN 0
GOTO head4

CASE 2
CLS: USERDAT
GetData
GotData% = 1
CLS
CLOSE #5

CASE 3
IF GotData% = 1 THEN

msg 210
MainLoop MonMode%: CLS
CLOSE #10
GotData% = 2
SCREEN 0
GOTO head4

ELSEIF GotData% = 2 THEN
BEEP
msg 1032
GOTO Head3

ELSE
BEEP
msg 1031
GOTO Head3

END IF
CASE 4

GOTO Headl
CASE ELSE

done% = true%
END SELECT
GOTO Head3

head4:
meg 104
mennum% = 4
SELECT CASE Menu%(menuOpt4$0)
CASE i

CLS msg 1041: Reflect: CLS
CASE 2

CLS : msg 1042: Detlrpt: CLS
CASE 3

CLS : meg 1043: ACperf: CLS
CASE 4

CLS : meg 1044: Sigevnt: CLS
CASE 5

GOTO Headl
CASE ELSE

done% = true%
END SELECT
GOTO head4

Loopit:
IF NOT done% THEN

PRINT
PRINT "Press the spacebar to continue."

DO
chS = INKEYS

LOOP UNTIL chS = "'Indefinite Pause
CLS

END IF
RETURN

LOOP UNTIL done% 'End of main loop
END

END SUB

FUNCTION Menu% (choices$0) STATIC

'Program Menu
'Author: Capt R. Moore
Date: 14 Oct 92

120

*Source: Micro-Soft Quick Basic 2nd Edition

*Description: This function displays the options. Prompts for a
*choice and returns an integer value representing that choice.

Called by MainMenu

*Calls DispMenuBox

listlength% UBOUND(choices$) 'Find length of choice array

'Set up the menu display

DisplayMenuBox choices$(, leftmargin%, promptStr$, okStr$

* Get main menu chice. Validate and verify the choice

controlKeys$ = CHRS(13) + CHRS(27)
DO

LOCATE_ 1
charPos% =0
DO
answer$ UCASES(INKEYS) 'Return the uppercase of letter

slected
IF answer$ iZ "" THEN

charPos% = INSTR(okStr$, answer$) 'Match and return char
position

IF charPos% = 0 THEN BEEP
END IF

LOOP UNTIL charPos% 0

PRINT answer$
COLOR 14: LOCATE I1I + listlen~th%, 23, 0
PRINT " iEnterZ to confirm; iEscL to reslect."
COLOR 7
inchoice% = charPos%
charPos% = 0
DO

answer$ = INKEYS
IF answer$ iZ "" THEN

charPos% = I NSTR(control Keys$, answer$)
IF charPos% = 0 THEN BEEP

END IF
LOOP UNTIL charPos% z. 0

IF charPos% = I THEN
done% = true%
CLS

ELSE
done% = false%
LOCATE 11 + listlength%, 23: PRINT SPACES(35)
LOCATE 9 + listlength%, leftmargin% + 3 + LEN(promptStrS):

PRINT" "
LOCATE, P05(0). -1

END IF
LOOP UNTIL done%

Menu% = irichoice%

END FUNCTION

DECLARE SUB Reflect (
DECLARE SUB Sigevnt0
DECLARE SUB ACperf (
DECLARE SUB Detirpt (
DECLARE SUB mag (MagNum%)
DECLARE SUB USERDAT (
DECLARE SUB LoadGo ()
DECLARE SUB MainLoop (MonMode%)
DECLARE SUB GetData ()
DECLARE SUB CEPDEMO (MonMode%)

121

DECLARE SUB RNDDEMO (MonMode%)
DECLARE SUB SCRHDEMO (MonMode%)
DECLARE SUB PDETDEMO (MonMode%)
DECLARE FUNCTION Menu% (choicesS())
DECLARE SUB DisplayMenuBox (choiceList$(), leftCoord%, promptS,
okS)
DECLARE SUB Frame (Left%, Right%, Top%, Bottom%)

COMMON SHARED MonMode%, mennum%, corns

CONST false% = 0, true% = NOT false%

DATA Examples of Processes
DATA Combat Demonstration
DATA Display Output
DATA Terminate
DATA Random Number Generator
DATA Search
DATA detect
DATA target selection
DATA CEP demonstration
DATA Utilty of track angle
DATA main menu
DATA Express load and go
DATA Load and edit scenario file
DATA run demonstration
DATA main menu
DATA reflected input
DATA detailed summary
DATA Aircraft Performance Factors
DATA Summary of significant events
DATA main menu

SUB DisplayMenuBox (choiceList$(), leftCoord%, promptS, ok$)

Program Display Menu Box
Author: Capt R. Moore
Date: 14 Oct 92

Source: Micro-Soft Quick Basic 2nd Edition

Description: This subprogram list the menu options and
thenmakes

a call to frame. The argument values passed to frame are the
dimensions based on the size of the longest word in the option
list Additionally, the prompt is created in the subprogram.

Called by Function Menu

Calls Sub Frame

////

* Find number of choices and initialize variables

numChoices% = UBOUND(choiceList$)
prompts
okS =

""

lngChoice% = 0

Prepare the prompt string and the string of legal input
characters (ok$).
* Find the length of the longest option (LngChoice%)

FOR i% = 1 TO numChoices%
firsts = UCASES(LEFTS(choiceList$(i%), 1)) 'Grab the first

letter
okS = okS + firsts
prompts = prompts + firsts +..
longTemp% = LEN(choiceListS(i%)) ' Find the length of

eachchioce
IF longTemp% Z IngChoice% THEN lngChoice% = longTemp%

NEXT i%

122

IngChoice% = lngChoice% + 1

prompts = prompts + "-Z "

' Check and see if prompt string is longer than longest option

IF LEN(prompt$) Z= IngChoice% THEN IngChoice% = LEN(prompt$) + 1

Determine the coordinates for the menu frame based on
menuoptions

leftCoord% = 37 - lngChoice% " 2
rightCoord% = 80 - leftCoord%
topCoord% = 3
bottomCoord% = 10 + numChoices%
Frame leftCoord%, rightCoord%, topCoord%, bottomCoord%

FOR i% = 1 TO numChoices%
LOCATE 6 + i%, leftCoord% + 3
COLOR 14, 0: PRINT UCASES(LEFTS(choiceList$(i%), 1))
LOCATE 6 + i%, leftCoord% + 4
COLOR 7, 0: PRINT MIDS(choiceList$(i%), 2)

NEXT i%

COLOR 3
SELECT CASE mennum%
CASE I

LOCATE 4, 35: PRINT "Main Menu"
CASE 2

LOCATE 4, 29: PRINT "Dynamic Examples Menu"
CASE 3

LOCATE 4, 31: PRINT "Demonstration Menu"
CASE 4

LOCATE 4, 34: PRINT "Output Menu"
END SELECT
COLOR 7

lines = STRINGS(lngChoice%, 196) ' 196 is the "", print it
longChoice times
LOCATE 5, leftCoord% + 3: PRINT lines ' 3 is the margin from
border
LOCATE 7 + numChoices%, leftCoord% + 3: PRINT lines 'print
bottomsingle line

Print the input prompt

LOCATE 9 + numChoices%, leftCoord% + 3: PRINT promptS;

END SUB

SUB Frame (Left%, Right%, Top%, Bottom%)

Program Frame
Author: Capt R. Moore
Date: 14 Oct 92

Source: Micro-Soft Quick Basic 2nd Edition

Description: The frame subprogram draw a double-line
rectangular

frame on the screen to enclose menu options.

Called by Sub DisplayMenuBox

Draw the four corners using the text-graphics character set
from
' extended ASCII character set.

LOCATE Top%, Left%: PRINT CHRS(201)

123

LOCATE Top%, Right%: PRINT CHRS(187)
LOCATE Bottom%, Left%: PRINT CHRS(200)
LOCATE Bottom%, Right%: PRINT CHR$(188)

'Draw vertical lines

FOR Vert% =Top% + I TO Bottom% - 1
LOCATE Vert%, Left%: PRINT CHRS(186)
LOCATE Vert%, Right%: PRINT CHR$(186)

NEXT Vert%

'Draw horizontal lines

Horz% = Right% - Left% - 1
Hline$ STRINGS(Horz%, 205)
LOCATE Top%, Left% + 1: PRINT Hline$
LOCATE Bottom%, Left% + 1: PRINT Hline$

END SUB

SUB mainmenu

Program: MenuOptions
Author: Capt R. Moore
Date: 14 Oct 92

Source: Micro-Soft Quick Basic 2nd Edition

Description: This program sets up the menu options based on
selections from other menus

DIM menuOptl$(4), menuOpt2$(7), menuOpt3$(4), menuOpt4S(5)

CLS

SCREEN 0

' MenuOption Data

FOR i% = I TO 4
READ menuOptlS(i%)

NEXT i%

FOR i% = 5 TO 11
j%= i% - 4

READ menuOpt2$Oj%)
NEXT i%

FOR i% = 12 TO 15
jo = i%- 11
READ menuOpt3S$j%)

NEXT i%

FOR i% = 16 TO 20
A= i% - 15

READ menuOpt4$lO%)
NEXT i%

CLS
DO
Headi:
mag 101
mennum%=1
SELECT CASE Menu%(menuOptlSO))
CASE 1

CLS
GOTO Head2

CASE 2
CLS
GOTO Head3

CASE 3
CLS

124

IF GotData% = 2 THEN
GOTO head4

ELSE
BEEP
msg 1011
GOTO Head3

END IF
CASE 4

CLS: END
CASE ELSE

done% = true%
END SELECT

Head2:
msg 102
mennum% = 2
SELECT CASE Menu%(menuOpt2$0)
CASE 1

msg 110
SCREEN MonMode%
RNDDEMO MonMode%
SCREEN 0

CASE 2
msg 111
SCREEN MonMode%
SCRHDEMO MonMode%
SCREEN 0

CASE 3
msg 112
SCREEN MonMode%
PDETDEMO MonMode%
SCREEN 0

CASE 4
msg 113
SCREEN MonMode%
CLS
SCREEN 0

CASE 5
msg 114
SCREEN MonMode%
CEPDEMO MonMode%
SCREEN 0

CASE 6
msg 115
SCREEN MonMode%
SCREEN 0
CLS

CASE 7
GOTO Headl

CASE ELSE
done% = true%

END SELECT
GOTO Head2

Head3:
msg 103
mennum% = 3
SELECT CASE Menu%(menuOpt3$0)
CASE I

CLS: LoadGo
CLS : GetData
IF GotData% i 2 THEN mseg 200: meg 210
MainLoop MonMode%
GotData% = 2
SCREEN 0
GOTO head4

CASE 2
CLS: USERDAT
GetData
GotData% - 1
CLS
CLOSE #5

CASE 3
IF GotData% - I THEN

msg 210
MainLoop MonMode%: CLS
CLOSE #10

125

GotData% = 2
SCREEN 0
GOTO head4

ELSEIF GotData% = 2 THEN
BEEP
msg 1032
GOTO Head3

ELSE
BEEP
msg 1031
GOTO Head3

END IF
CASE 4

GOTO HeadI
CASE ELSE

done% = true%
END SELECT
GOTO Head3

head4:
msg 104
mennum% = 4
SELECT CASE Menu%(menuOpt4$0)
CASE 1

CLS : mag 1041: Reflect: CLS
CASE 2

CLS : msg 1042: Detlrpt: CLS
CASE 3

CLS : msg 1043: ACperf: CLS
CASE 4

CLS : msg 1044: Sigevnt: CLS
CASE 5

GOTO Headi
CASE ELSE

done% = true%
END SELECT
GOTO head4

Loopit:
IF NOT done% THEN

PRINT
PRINT "Press the spacebar to continue."

DO
ch$ = INKEYS

LOOP UNTIL ch$ ""'Indefinite Pause
CLS

END IF
RETURN

LOOP UNTIL done% 'End of main loop
END

END SUB

FUNCTION Menu% (choices$() STATIC

Program Menu
Author: Capt R. Moore
Date: 14 Oct 92

Source: Micro-Soft Quick Basic 2nd Edition

Description: This function displays the options. Prompts for a
choice and returns an integer value representing that choice.

Called by MainMenu

Calls DispMenuBox

listlength% UBOUND(choices$) 'Find length of choice array

126

' Set up the menu display

DisplayMenuBox choices$(, leftmargin%, promptStrS, okStr$

' Get main menu chice. Validate and verify the choice

controlKeys$ = CHRS(13) + CHRS(27)
DO
LOCATE,,
charPos% = 0
DO

answerS = UCASES(INKEYS) 'Return the uppercase of letter
slected

IF answers iZ "" THEN
charPos% = INSTR(okStrS, answerS) 'Match and return char

position
IF charPos% = 0 THEN BEEP

END IF
LOOP UNTIL charPos% z 0

PRINT answers
COLOR 14: LOCATE 11 + listlength%, 23, 0
PRINT "iEnter, to confirm; iEscZ to resiect."
COLOR 7
inchoice% = charPos%
charPos% = 0
DO

answers = INKEYS
IF answers iZ "" THEN

charPos% = INSTR(controlKeys$, answerS)
IF charPos% = 0 THEN BEEP

END IF
LOOP UNTIL charPos% 4. 0

IF charPos% = I THEN
done% = true%
CLS

ELSE
done% = false%
LOCATE 11 + listlength%, 23: PRINT SPACES(35)
LOCATE 9 + listlength%, leftmargin% + 3 + LEN(promptStr$):

PRINT " ;
LOCATE, POS(0) - 1

END IF
LOOP UNTIL done%

Menu% = inchoice%

END FUNCTION

127

MODRND

128

Program: Random Number Generator Test
Date: 19 Oct 91

Source: Maj Garranbone.

Description: Program makes n samples of BASICs random number
generator and plots the results

Called By: Main Menu

Program Calls:

DECLARE SUB RNDDEMO (MonMode%)

RNDDEMO (MonMode%)

END

SUB RNDDEMO (MonMode%)

' Screen set-up

CLS
Restart:

IF (MonMode% = 12) THEN
VIEW (46, 20)-(590, 252), 3, 4'Coordinates of screen disignated

for graphics
ELSE

VIEW (46, 15)-(590, 220), 3, 4'Coordinates of screen disignated
for graphics
END IF

WINDOW (-.08, 1.2)-(1.08, -. 2) 'Coordinates disignated within
the viewport
LINE (0, 1.18)-(0, 0) 'Vertical Axis
LINE (0, 0)-(1.1, 0) 'Horizontal Axis

IF (MonMode% = 12) THEN

'Axis labels

LOCATE 17,6: PRINT" FREQUENCY OF OCCURENCE

LOCATE 3,4: PRINT "P"
LOCATE 4, 4: PRINT "R"
LOCATE 5, 4: PRINT "0"
LOCATE 6, 4: PRINT "B"
LOCATE 7, 4: PRINT "A"
LOCATE 8, 4: PRINT "B"
LOCATE 9, 4: PRINT "I"
LOCATE 10, 4: PRINT "L"
LOCATE 11, 4: PRINT "I"
LOCATE 12, 4: PRINT "T"
LOCATE 13,4: PRINT "Y"

ELSE

EGAAdj = 2
LOCATE 17, 10. PRINT FREQUENCY OF OCCURENCE

LOCATE 3, 4: PRINT "P"
LOCATE 4, 4: PRINT "R"
LOCATE 5, 4: PRINT "0"
LOCATE 6, 4: PRINT "B"
LOCATE 7, 4: PRINT "A"
LOCATE 8, 4: PRINT "B"
LOCATE 9, 4: PRINT "I"
LOCATE 10, 4: PRINT "L"
LOCATE 11, 4: PRINT "I"
LOCATE 12, 4: PRINT "T"
LOCATE 13, 4: PRINT "Y"

129

END IF

' Print Graph Lables

LOCATE 4, 8: PRINT '0.1"
LOCATE 16, 70: PRINT "1.0"

' Print text

LOCATE 1, 25: PRINT "Random Number Generator Test"

' Prompt for input

LOCATE 19, 6: INPUT "Enter number of samples "; num
LOCATE 21,6: RANDOMIZE
LOCATE 19, 6: PRINT"

LOCATE 21,6: PRINT"

LOCATE 20, 25: PRINT "Number of random draws:"

' Define constants

SumSq = 0!
Mean = 0!

' Define end points for bargraph

xl = .02: xlr = .11
x21 = .125: x2r = .21
x31 = .225: x3r = .31
x41 = .325: x4r = .41
x5l = .425: x5r = .51
x6l = .525: x6r = .61
x7l = .625: x7r = .71
x8 = .725: x8r = .81
x9i = .825: x9r = .91
xl0i = .925: xlOr = 1.025
yl = .005: y2 = .005
y3 = .005: y4 = .005
y5 = .005: y6 = .005
y7 = .005: y8 = .005
y9 = .005: ylO = .005
al = 0: &2 = 0: s3 = 0: s4 = 0: s5 = 0
s6 = 0: 97 = 0: s8 = 0: @9 = 0: sl0 = 0

' Scale window

Scale = 10 / num

FOR i = 1 TO num

LOCATE 20, 50: PRINT i

Sample = RND(1)
SumSq = SumSq + Sample 2 'Capture Statistics
Mean = Mean + Sample 'Ditto

SELECT CASE (Sample)
CASE IS i= .1

al = 61 + 1
Sol = s1 / num
LOCATE 15, 12: PRINT USING" "al
yl = yl + Scale
LINE (xll, yl)-(xlr, yl), 4

CASE IS i= .2
92 s .2 + 1
n2 s2 / num
LOCATE 15, 18: PRINT USING" "ss2
y2 = y2 + Scale
LINE (x21, y2)-(x2r, y2), 4

CASE IS i= .3
s3=s3+ 1
s3 = *3 / num
LOCATE 15, 24: PRINT USING "s.3
y3 = y3 + Scale
LINE (x31, y3).(x3r, y3), 4

130

CASE IS i= .4
&4 .4 + I
ss4 s4 / num
LOCATE 15, 30: PRINT USING" .### "; a4
y4 = y4 + Scale
LINE (x4l, y4)-(x4r, y4), 4

CASE IS i= .5
35 = 65 + I
ss5 =5 / num
LOCATE 15, 36: PRINT USING" .### "; ss5
y5 = y5 + Scale
LINE (xSl, yS)-(x5r, y5), 4

CASE IS i= .6
.6 = s6 + I
ss6 = s6 / hum
LOCATE 15, 42: PRINT USING" .### "s &86
y6 = y6 + Scale
LINE (x61, y6)-(x6r, y6), 4

CASE IS i= .7
&7 = s7 + 1
ss7= &7 / num
LOCATE 15, 48: PRINT USING" .### " 7
y7 = y7 + Scale
LINE (x7l, y7)-(x7r, y

7), 4
CASE IS i= .8

8=88+ 1
a =s / num

LOCATE 15, 54: PRINT USING" ###"; s8
y8 = y8 + Scale
LINE (x8l, y8)-(x8r, y8), 4

CASE IS i= .9
.9 = s9 + I
ss9 s9 / num
LOCATE 15, 60: PRINT USING" .### "; s9
y9 = y9 + Scale
LINE (x91, y9)-(x9r, y9), 4

CASE IS i= 1.
.10 .10 + I
"10 = s0 / num
LOCATE 15, 66: PRINT USING .### 1s0
yl0 = yl0 + Scale
LINE (xl01, ylO)-(xl0r, y10), 4

END SELECT
NEXT i

'Draw the 0.1 line

LINE (0, 1.005)-(1.025, 1.005)

Mean = Mean / num
Sigma = SQR((SumSq - num * Mean 2) /num)
LOCATE 20, 20: PRINT"

LOCATE 19, 6: PRINT USING "The mean is #.## and standard
deviation is #.##", Mean; Sigma
LOCATE 21, 6: PRINT "What is your impression of this random
number generator?"

'Do it again
LOCATE 23, 16: INPUT "Would you like to test the generator again
.; Ans$

IF UCASES(Ans$) = "Y" THEN
Ans$ = " "

FOR i = 19 TO 25
LOCATE i -EGAAdj: PRINT"

NEXT I
GOTO Restart

END IF
CLS
END SUB

131

MODPDET

132

Program: PDETDEMO
Date: 19 Oct 91

Source: PACAM & Hartman

Description: This program demonstrates the probability
ofdetecting

I a target given an aspect ratio of one (head on
bsecase)

Called By:

Program Calls:

DECLARE FUNCTION PDet! (i!, RNom', LnConst!)
DECLARE SUB PDETDEMO (MonMode%)

PDETDEMO MonMode%

END

FUNCTION PDet (i, RNom, LnConst)
PDet = EXP(LnConst * (i / RNom) - 4)
END FUNCTION

SUB PDETDEMO (MonMode%)

Input Parameters for Cookie Cutter

R =40000

Input Parameters for Probability model

RMax = 97200! Rng for 0.5 probability of detection
OffSet = .3 *RMax Used for the graph display
Aspect = I!
Pwr = .25 'Sqr*Sqr
SixeFact I !
TgtRng =200000! 'Target Range
Res = 10 ' Resolution of Graph

* Intermediate Calculations for Proability model

Rfact =Aspect *SizeFact 'Pwr
RNorn Rfact RMax
LnConst =LOG(,5)
'MaxAx =RNomn (LOG(.001) / LOG(S5)) '.25

CLS

' Establish screen

IF (MonMode% = 12) THEN
VIEW (319, 1)-(639, 241), 3, 4'Coordinates of screen disignated

for graphics
WINDOW (-1 * Ofl~et, 1.1).(TgtRng + (Tgtflng 0.1),

-.1)'ViewportCoordinates
ELSE

VIEW (319, 1)-(639, 210), 3, 4'Coordinates of screen disignated
for graphics

WINDOW (-I * OffSet, 1.1)-(TgtRng + (TgtRng * .1),
S1)'Viewport Coordinates

END IF

'Print Text

LOCATE 1, 7: PRINT "Detection Demonstration"
LOCATE 2, 8: PRINT "(Cookie Cutter Method)"

*Temp text for cookie cutter, may read a data file later

Print Axis

133

LINE (0, 0)-(TgtRng, 0)'X Axis
LINE (0, 0)-(0, 1!)

' Print lables and Values

LOCATE 2, 42, 0
PRINT " 1.0"
LOCATE 15, 71, 0
PRINT TgtRng
LOCATE 7, 41, 0
PRINT "P(d)"
LOCATE 15, 55, 0
PRINT "Target Range"
LOCATE 15, 46, 0
PRINT "0"
LOCATE 14, 43
PRINT "0"

Graph step function
LINE (0, l!)-(RMax, 1)
LINE (RMax, l!)-(RMax, 0!)

LOCATE 4, 2: PRINT "Maximum Range set for 97200"

Restart 1:

LOCATE 6, 2: INPUT "Enter range of target (Ft): "; R

IF R , 97200 THEN
PSET (R, 0), 4
CIRCLE (R, 0), 500, 4
LOCATE 9, 2: PRINT "Target proability of detection is 0.0."
LOCATE 11, 2: PRINT "Target was not detected."

ELSE
PSET (R, 1)
CIRCLE (R, 1), 500, 4
LOCATE 9, 2: PRINT "Target proability of detection is 1.0"
LOCATE 11, 2: PRINT "Target was detected"

END IF

' Prompt for another sample

LOCATE 13, 2: INPUT "Select another range (Y/N): "; Ans$
IF UCASES(Ans$) = "Y" THEN

OR i = 6 TO 13
LOCATE i: PRINT"

NEXT i
GOTO Restart I

END IF

clear out cookie cutter text

FOR i = 2 TO 13
LOCATE i: PRINT"

NEXT i

clear out graphics

LOCATE 1, 7: PRINT "Detection Demonstration"
LOCATE 2, 4: PRINT "(Continuous Detection Model)"
LOCATE 17, 45, 0
PRINT "Probability Detection Curve"

' Now plot the function.

FOR i = 1 TO TgtRng STEP Res
PSET (i, PDet(i, RNom, LnConst))
NEXT i

' Do the interactive portion
10
LOCATE 4, 2
INPUT "Enter a Target Range "; R

Pd = 0
Pd = PDet(R, RNom, LnConst)

134

LOCATE 7, 2: PRINT USING "Probabilty of detection is #.####"; Pd

' Locate an tag the point

PSET (R, Pd), 4
CIR(.E (R, Pd), 500, 4

Test = RND(1)

LOCATE 9, 2: PRINT USING "Random number generated is #####";
Test

LOCATE 11, 2
IF Test i= Pd THEN

PRINT "The target has been detected"
ELSE

PRINT "The target was not detected"
END IF

' Do it again

LOCATE 14, 2: INPUT "Select another range (Y/N) "; Ans$
IF UCASES(AnsS) = "Y" THEN

FOR i = 2 TO 16
LOCATEi
PRINT"

NEXT i
GOTO 10

END IF
END SUB

135

MODCEP

136

Program: ModCEP
Date: 15 Oct 91

Source: Law and Kelton, "Simulation Modeling & Analysis", 2nd
ed.

* Description: This program demonstrates the simulation of the
testing

of a weapon system firing on a target "num" times.
Based on the results, CEP is collected and

displayed

* The generation on the random normal deviate is
based

based on the Polar Method.
Called By:

'Program Calls: CEPDEMO

DECLARE SUB CEPDEMO (MonMode%)
DECLARE SUB PhitPlot (cep)
DECLARE FUNCTION Phit (r, cep)

'SCREEN 9
'MonMode% = 9

CEPDEMO MonMode%
LOCATE 12, 20: RANDOMIZE
END

SUB CEPDEMO (MonMode%)
I

DIM RNXI(2), RNX2(2), Sigma(2), RNRadius(2)

LOCATE 1, 6: PRINT "Circular Error Probable"
LOCATE 2, 7: PRINT "(CEP); Demonstration"

' Screen set-up

5

IF (MonMode% = 12) THEN
VIEW (319, l)-(639, 241), 3, 4'Coordinates of screen disignated

for graphics
'Axis labels

LOCATE 17, 40: PRINT "-10 Horizontal Error 10"
LOCATE 1, 37: PRINT "10"
LOCATE 2, 38: PRINT "V"
LOCATE 3, 38: PRINT "E"
LOCATE 4, 38: PRINT "R"
LOCATE 5, 38: PRINT "T"
LOCATE 6, 38: PRINT "I"
LOCATE 7,38: PRINT "C"
LOCATE 8, 38: PRINT "A"
LOCATE 9, 38: PRINT "L"
LOCATE 11, 38: PRINT "E"
LOCATE 12, 38: PRINT "R"
LOCATE 13, 38: PRINT "R"
LOCATE 14, 38: PRINT "0"
LOCATE 15, 38: PRINT "R"
LOCATE 16, 37: PRINT "-10"

ELSE

EGAAdj = 2
VIEW (319, I-(639, 165), 3, 4'Coordinates of screen disignated
for graphics
LOCATE 13, 40: PRINT "-10 - Horizontal Error - 10"
LOCATE 1, 37: PRINT " 10"
LOCATE 2, 38: PRINT "V"
LOCATE 3, 38: PRINT "E"

137

LOCATE 4, 38: PRINT "R"
LOCATE 5,38: PRINT "T"
LOCATE 7, 38: PRINT "E"
LOCATE 8, 38: PRINT "R"
LOCATE 9, 38: PRINT "R"
LOCATE 10, 38: PRINT "0"
LOCATE 11, 38: PRINT "R"
LOCATE 12, 37: PRINT "-10"
END IF

WINDOW (-10, 10)-(10, -10) 'Coordinates disignated within the
viewport
LINE (-10, 0)-(10, 0), 0 'Horizontal Axis
LINE (0, 10)-(0, -10), 0 'Vertical Axis

c=4
LINE (-9, -1)-(-5, 2), c 'Draw AC body
LINE (-5, 2)-(5, 2), c
LINE (5, 2)-(6.5, 5), c
LINE (6.5, 5)-(9, 5), c
LINE (9, 5)-(8, -1), c
LINE (8, .1)-(-9, -1), c
CIRCLE (-4.5, 1.2), .75, c ,,,.35 'Cockpit
CIRCLE (1, 0), 3.5, c, ,, .09 'Wing
CIRCLE (7.6, 3.5), 1.2, c, , , .08 'Wing

' Future user input data. Use the data below for auto
demonstration

Kfac = 1 'K factor for expansion
mean = 1.5 'Mean point of impact, Bias
Sigma(l) = 1 'Dispersion in X, circular only
Sigma(2) = I 'Dispersion in Y

'Collect user input

wrong:

LOCATE 4, 2: PRINT "Enter number of shots to"
LOCATE 5, 2: INPUT "fire (5000 Max)"; Num

IF Num Z 5000 THEN
BEEP: LOCATE 6, 2: PRINT "Too Many"
LOCATE 3, 2: PRINT "
LOCATE 4, 2: PRINT "
GOTO wrong

END IF

' Define constants
DistSum = 0
DistSumSq = 0

FOR i = 1 TO Num
FOR j = I TO 2

' lst, generate two lID U(0,1) random variables

10
VI = 2 * RND(1) - 1 ' On the average, this should generate 50%
V2 - 2 * RND(1) - 1 ' positive and 50% negative values.

W - V1 * VI + V2* V2
IF W /. 1! THEN
GOTO 10
ELSE

RNXI(j) = (VI * (SQR((-l * 2 * LOG(W)) / W)) * Sigma(j) +
mean) * Kfac

RNX2(j) = (VI * (SQR((-l * 2 * LOG(W)) / W)) * Sigma(j) +
mean) * Kfac

END IF

'RNXI and RNX2 are lID N(0,Sigma) random variates
'Need to make to separate passes to create independence

NEXT j

CIRCLE (RNXI(1), RNXI(2)), .1 'Use only one pair

138

'CIRCLE (RNX2(l), RNX2(2)), .1
COLOR

Mdist = Mdist + RNXI(l)

Ydist = Ydist + RNXI(2)

dist =SQR(RNX1(l) -2 + RNXI(2) -2)

DistSumn = DistSum + dist

DistSumSq = DistSumSq + dist ^2

NEXT

'Calculate the mean impact point

MIP = DistSum / Num
MIPsg = SQRt((DistSumSq - (DistSum ' 2)/ Num) /(Num - 1))

Meanx = XMist /Num
Meany = Ydist /Num

Calcualte the boundry described by the CEP

Note: At this time, cnly circular error probable calculations
are performed. Sometime in the future, the ellipsoid may
be calculated.

cep = 1.1774 * N;IPsg 'Ref: Hartman 7-5, No Bias, symetrical
dispersion

LOCATE 9 - EGAAdj, 2: PRINT USING "Est. horizontal error is
#.###"; Meanx
LOCATE 11 - EGAAdj, 2: PRINT USING "Est. vertical error is
#.###"; Meany
LOCATE 13 - EGAAdj, 2: PRINT USING "Est. CEP #.##*"; cep,
"LOCATE 15 - EGAAdj, 2: PRINT USING "Radial standard deviation

is #.###"; MIPag

LOCATE 19 - EGAAdj, 2: PRINT "To display area enclosed by the
CEP, press the C key now."

DO UNTIL INKEYS = "C" OR INKEY$ = "c": LOOP

DO WHILE rr icep
CIRCLE (Meanx, Meany), rr, 7 'Draw CEP circular

rr = rr + .01
LOOP

CIRCLP (Meanx, Meany), cep, 0 'Draw CEP circular

LOCATE 21 - EGAAdj, 2: PRINT "To display the mean impact point
(MIP), press the M key now."

DO UNTIL INKEYS = "M" OR INKEYS = "in": LOOP

CIRCLE (Meanx, Meany), .05, 0

LOCATE 23 - EGAAdj, 2: PRINT "Given the MIP, and assumming the
aim point was the origin, it appears our "
LOCATE 24 - EGAAdj, 2: PRINT "weapon has a systematic error.
Press the S key to display the error"

DO UNTIL INKEYS = "5S" OR INKEYS "" LOOP

LINE (0, 0)-(Meanx, Meany), 0
LINE (.05, .05)-(Meanx + .05, Meany + .05), 0'Thicken the line

IF MonMode% = 12 THEN
LOCATE 28, 20: PRINT "Press spacebar to continue"
ELSE
LOCATE 23, 20: PRINT "Press spacebar to continue"
END IF

" pause
DO UNTIL INKEYS ""LOOP

139

Begin PHit graph demonstration

CLS 0

LOCATE 1, 7: PRINT "CEP Demonstration"
LOCATE 3, 1: PRINT USING "Using the calculated CEP of #.##"; cep
LOCATE 4, 1: PRINT "and correcting for bias, a graph"
LOCATE 5, 1: PRINT "of the 'probability of hit' is"
LOCATE 6, 1: PRINT "is generated."

Establish screen

IF (MonMode% = 12) THEN
VIEW (325, 1)-(639, 241), 3, 4'Coordinates of screen disignated

for graphics
'Axis labels

LOCATE 17,41: PRINT "0 - TARGET RADIUS 5"
LOCATE 1, 37: PRINT
LOCATE 2, 38: PRINT "1.0"
LOCATE 3,38: PRINT
LOCATE 4,38: PRINT "P"
LOCATE 5, 38: PRINT "R"
LOCATE 6, 38: PRINT "0"
LOCATE 7, 38: PRINT "B"
LOCATE 8,38: PRINT
LOCATE 9, 38: PRINT "0"
LOCATE 10, 38: PRINT "F"
LOCATE 11, 38: PRINT
LOCATE 12, 38: PRINT "H"
LOCATE 13,38: PRINT "I"
LOCATE 14, 38: PRINT "T"
LOCATE 15,38: PRINT
LOCATE 16, 37: PRINT " 0"

ELSE

EGAAdj = 2
VIEW (319, 1)(639, 165), 3, 4'Coordinates of screen disignated
for graphics
LOCATE 13, 41: PRINT "0 - TARGET RADIUS - 10"
LOCATE 1, 37: PRINT "1.0"
LOCATE 2, 38: PRINT
LOCATE 3, 38: PRINT "H"
LOCATE 4, 38: PRINT "I"
LOCATE 5, 38: PRINT "T"
LOCATE 6, 38: PRINT
LOCATE 7, 38: PRINT "P"
LOCATE 8, 38: PRINT "R"
LOCATE 9, 38: PRINT "0"
LOCATE 10, 38: PRINT "B"
LOCATE 11, 38: PRINT
LOCATE 12, 38: PRINT "0"
END IF

WINDOW (0, 1.1)-(5, 0) 'Coordinates disignated within the
viewport
LINE (0, 1)-(5, 1) '1.0 Line

newcep:

' Now plot the function.

PhitPlot cep

' Do the interactive portion

hittst:

LOCATE 10- EGAAdj, 2
INPUT "Enter a Target Radius"; r

Pk = 0
Pk = Phit(r, cep)

140

LOCATE 12 - EGAAdj, 2: PRINT USING "Probabilty of hit is #.####";

Pk

' Locate an tag the point

PSET (r, Pk), 4
CIRCLE (r, Pk), .1, 4

Test = RND(I)

LOCATE 14 - EGAAdj, 2: PRINT USING "Random number generated is
#.####"; Test

LOCATE 16- EGAAdj, 2
IF Test i= Pk THEN

PRINT "The target has been hit"
ELSE

PRINT "The target was not hit"
END IF

LOCATE 20- EGAAdj, 2: PRINT "Why is the probability -f hit
increasing as the target size"
LOCATE 21 - EGAAdj, 2: PRINT "approaches and exceeds the CEP?"

' Do it again

Anas$ = "
LOCATE 23 - EGAAdj, 2: INPUT "Select another target radius (Y/N)
"; Ans$
IF UCASE$(Ans$) = "Y" THEN
LOCATE 23 - EGAAdj, 2: PRINT"

FOR i = 8 TO 16
LOCATE i - EGAAdj
PRINT"
NEXTi
GOTO hittst

END IF

Ana$ = " "

LOCATE 23 - EGAAdj, 2: PRINT
"

LOCATE 23- EGAAdj, 2: INPUT "Select another CEP value (Y/N)";
Ana$
IF UCASE$(Ans$) = "Y" THEN

LOCATE 25 - EGAAdj, 2: INPUT "Enter new CEP value "; cep

LOCATE 23 - EGAAdj, 2: PRINT"

LOCATE 25 - EGAAdj, 2: PRINT"

LOCATE 3, 1: PRINT USING "Using the calculated CEP of #.###"; cep

FOR i = 8 TO 16
LOCATE i - EGAAdj
PRINT"

NEXTi
GOTO newcep:

END IF

END SUB

FUNCTION Phit (r, cep)

"Reference Przemieniecki's Book Mathematical Methods of

"Defense analysis. Pg 3.25, Eq 3.55

Phit = 1 - EXP(-.693147* (r - 2 / cep - 2))

END FUNCTION

SUB PhitPlot (cep)

FOR r = 0 TO 5 STEP .005
Pk = Phit(r, cep)
PSET (r, Pk)

NEXT r

141

END SUB

142

MODACS

143

'$DYNAMIC

Air Combat Simulator

Author: Capt R. Moore

Date: 15 Feb 92

DECLARE SUB title0
DECLARE SUB Init0
DECLARE SUB pause0
DECLARE SUB mainmenu (
DECLARE SUB MainLoop (MonMode%)
DECLARE SUB missile (1%)
DECLARE SUB Update (1%)
DECLARE SUB Klaxon (Hi%, Lo%)
DECLARE SUB MASTDAT 0)
DECLARE SUB TgtSel (Dist)
DECLARE SUB Station0
DECLARE SUB Refresh0
DECLARE SUB BLMenu0
DECLARE SUB Frame (Left%, Right%, Top%, Bottom%)
DECLARE SUB ANLST 0)
DECLARE SUB GetData ()
DECLARE SUB USERDAT0
DECLARE SUB Grid ()
DECLARE SUB BBase0
DECLARE SUB ACIcon (
DECLARE SUB ACDraw (AC%)
DECLARE SUB Adv (1%)
DECLARE SUB ZcomOut0
DECLARE SUB Zoomln0
DECLARE SUB Headline0
DECLARE SUB MSLDraw (AC%, Msl%)
DECLARE SUB MSLlcon ()
DECLARE SUB MSLAdv (AC%, Msl%)
DECLARE SUB Mslterm. (AC%)
DECLARE SUB PKilI (AC%, Hx, Hy)
DECLARE SUB Destroy (ITgt%)
DECLARE SUB detect ()
DECLARE SUB Explode (Tgt%)
DECLARE SUB ScrnSet (BadScrn%, MonMode%)
DECLARE SUB bing (1%)
DECLARE SUB LoadGo 0)
DECLARE SUB msg (MsgNum%)
DECLARE SUB Mmsg (MsgNum%, AC%, Msl%, ACT%)
DECLARE SUB ErrMsg (1%)
DECLARE SUB Sigevnt (
DECLARE SUB Detlrpt (
DECLARE SUB ACperf (

DECLARE FUNCTION tkag! (Blue%, Red%)
DECLARE FUNCTION MHead! (Ax!, Ay!, Bx!, By!)
DECLARE FUNCTION Dist! (dxl!, dx2!, dyl', dy2!)
DECLARE FUNCTION DMAX! (Fl', F2!)
DECLARE FUNCTION CLDES2' (CLMax!, THAB, SS!, ICL%, IM%, 1%)
DECLARE FUNCTION RHO (z) 'Density of air at alt Z
DECLARE FUNCTION SpdS (z) ' Speed of sound at alt Z
DECLARE FUNCTION DMIN (Fl, F2) 'Find minimum
DECLARE FUNCTION 'FrackAngle (1%)

COMMON SHARED MonMode%, mennum%
COMMON SHARED /Messages/ CamS, TNOW%
COMMON SHARED /Aircraft/ NumAC%

DIM SHARED Basex, Basey, GCIRg 'Base Attributes
DIM SHARED Format%, AScreen%
DIM SHARED Scale
DIM SHARED Wx, Wy, AR
DIM SHARED endsim%
DIM SHARED StatPtx, StatPty, 0EV
DIM SHARED AltArg%, MachArg%, CLArg%, z,
DIM SHARED SyaStatf, errfig%
DIM SHARED otpt%

Define Constants

144

CONST Pi = 3.14159

CONST TwoPi = 2! * P

'Define arrays indices

NumAC% = 4
NumMSL% =4
AltArg% = 8
MachArg% =14
CLArg% = 14

'Dimension shared arrays
Icon dimensions

DIM SHARED X(25), Y(25)
DIM SHARED xxold(NumAC%, 25), yyold(NumAC%, 25)
DIM SHARED OldEndTop(NumAC%), OldEndBot(NumAC%)
DIM SHARED Mode%(4)

'Screen variables
DIM SHARED MaxScrX%, MaxScrY%

Aircraft locations, headings, dist, track angles, and cargets
DIM SHARED ACx(NumAC%), ACy(NumAC%), Tgtx(NumAC%), Tgty(NumAC%)
DIM SHARED ACHead(NumAC%), OldHead(NumAC%)
DIM SHARED TDist((NumAC% + 1), (NumAC% + 1))
DIM SHARED StatS(NumAC%), IStat%(NumAC%)
DIM SHARED 'frkAng(NumAC%)
DIM SHARED TgtS(4), TgtDetLvl%(NumAC%), ITgt%(NumAC%)

'Senario, and AC performance
DIM SHARED Dat(100), Vp(NumAC%)
DIM SHARED V(NumAC%), TV(NumAC%), VelMax(NumAC%)
DIM SHARED ACS(NumAC%), WgArea(NumACs), MaxWt(NumAC%),
MinWt(NumAC%)
DIM SHARED AC%(NumAC%), MaxAlt(NumAC%), Mic.Alt(NumAC%),
MaxETA(NumAC%)
DIM SHARED ThrKF(NumAC%), DragKF(NumAC%)
DIM SHARED Alt(AltArg%), MMach(NumAC%, AltArg%)
DIM SHARED MachDat(NumAC%, MachArgs), MsxCL(NumAC%, MachArg%)
DIM SHARED ThrMP(AltArg%, MachArg%), ThrAB(AltArg%, MachArg%)
DIM SHARED Drag(CLArg%, MachArg%)
DIM SHARED THAB(NumAC%), THMP(NumAC%), SuaG
DIM SHARED 'TurnRate(NumAC%), Rad~urn(NumAC%, 2), Tlbrn(NumAC%),
RTmiles(NumAC%, 2)

DIM SHARED FCMP(AltArg%, MachArg%), FCAB(AltArg%, MachArgs)
DIM SHARED MPFC(NumAC%, 2), ABFC(NumAC%, 2)
DIM SHARED FuelLbe(NumAC%), Flzel(NumAC%), bingo(NumAC%),
FCKF(NumAC%)
DIM SHARED FieIRem(NumACP%), Ftemp(NumAC%), BurnRate(NumAC%)

'Sensors
DIM SHARED OptRng(NumAC%), PadRng(NumAC%)

NumMSL% =4
'Missiles are unique enities but are identified with an AC
DIM SHARED NumMSL%(NumAC%), MsLV(NumAC%), MsLSenRg(NumAC%)
DIM SHARED MX(10), MYC 10)
DIM SHARED mxxold(NumAC%, NumMSL%, 10), myyold(NumAC%, NumMSL%,
10)
DIM SHARED MSLHead(NumAC%, NumMSL%)
DIM SHARED MSLx(NumAC%, NumMSL%), MSLy(NumAC%, NumMSL%)
DIM SHARED MF%(NumAC%), MTNOW%(NumAC%, NumMSL%)
DIM SHARED Pk(NumAC%)
DIM SHARED IMslStat%(NumAC%, 5)
DIM SHARED IMTgtI(NumAC%, 5)

'Station
DIM SHARED DeltaCir(NumAC%)

'Define Keys and initialize
ON KEY(1) GOSUB FIKEY
ON KEY(3) GOSUB F3KEY
ON KEY(4) GOSUB F4KEY
ON KEY(S) GOSUB F5KEY

145

ON KEY(6) GOSUB F6KEY
ON KEY(7) GOSUB F7KEY

CLS
LOCATE 10, 10: INPUT "Enter Monitor type, VGA or EGA (EGA):"
MonTypeS
IF (UCASES(MonType$) ="VGA") THEN

MonMode% = 12
ELSE

MonMode% = 9
END IF
CLS

title
mainmenu
Last: END

On Key Subs
FIKEY: 'Pause mode
DO
chS = RIGHTS(INKEYS, 1)'Breakout the i character

LOOP UNTIL ch$ = "i" '" j" is the code for the F2 key
RETURN

F3KEY: 'Analyst screen mode
Delay% ADelay%
AScreen% = 1
KEY(4) ON
KEY(3) OFF
KEY(5) OFF
KEY(6) OFF

RETURN

'** Do not change the order of the F4 Key
F4KEY: ' Graphics screen mode, must keep the order of these
events

CLS 0
Format% = 0 'Controls the redrawing of the anal scrn boxes
AScreen% = 0 'Used to direct passes through main loop
SCREEN MonMode%
BLMenu
Refresh 'Refreshes the screen
Refs = TNOW%
Delay% = GDelay%
KEY(3) ON
KEY(4) OFF
KEY(5) ON
KEY(6) ON

RETURN

F5KEY:
ZoomIn

RETURN

F6KEY:
Zoomout

RETURN

F7KEY:
mug 10000
TNOW% = endsim%

RETURN

fileerr:
BEEP
ErrMsg 1
errflg% = I
LOCATE 14, 4: PRINT"

RESUME NEXT

SUB ACDraw (AC%)

DIM xx(25), yy(25)
DIM Segments%(NuniAC%)

146

*Compute radar fan coordinates based on 60 deg sweep ang.
*Radar fan is based on miles and is scaled to the map
the A/C inconts are not. Therefore, the development of the
fan incon is slightly different and will not be affected
by the incon scaling factor k.

IF (IStat%(AC%) =2 OR lStat%(AC%) =7) GOTO enddraw

IF (RadRng(AC%) = 0) THEN
Segments%(AC%) = 13
GOTO Skipi

ELSE
Segments%(AC%) = 16

END IF

X(15) = X(14) + RadRng(AC%) * COS(.S23599)
Y(15) = RadRng(AC%) * SIN(.523599)
X(17) = X(16) + RsdRng(AC%) * COS(-.523599)
Y(17) = RadRng(AC%) *SIN(-.523599)

'Erase old image of radar frontier

CIRCLE (xxold(AC%, 14), yyold(AC%, 14)), RadRng(AC%), 3,
OldHead(AC%), OldEndTop(AC%)

CIRCLE (xxold(ACs, 14), yyold(AC%, 14)), RadRng(AC%), 3,
OldEndBot(AC%), OldHead(AC%)

Skipl:

FOR I% = 2 TO Segments%(AC%) STEP 2 'Erase old image
LINE (xxold(AC%, I%), yyold(AC%, I%))-(xxold(AC%, (1% + 1)),

yyold(AC%, (1% + 1))), 3
NEXT 1%

'Orientate image to heading

FOR I% = 2 TO Segments%(AC%) + 1

xx(I%) = (X(I%) * COS(ACHead(AC%)).- Y(I%) *SIN(ACHead(AC%)))

+ ACx(AC%)
yy(I%) =(X(I%) *SIN(ACHead(AC%)) + Y(I%) COS(ACHead(ACo)))

" ACy(AC%)

Capture current values

xxold(AC%, 1%6) = xx(I%): yyold(AC%, 1%) =yy(I%)

NEXT 1%

Assign color to side

SELECT CASE AC% 'Establish colors
CASE 1

Side% = 1 '1st Blue aircraft
CASE 2

IF (IStat%(2) ii, 1) THEN
Side% = 0
Mode%(AC%) = 0

ELSE
Side% = 4 '1st Red aircraft
Mode%(AC%) = 4

END IF
CASE 3

Side% = 1 '2nd Blue aircraft
CASE 4

IF (lStat%(4) ii 1) THEN
Side% = 0
Mode%(AC%) = 0

ELSE
Side% = 4 '2nd Red aircraft
Mode%(AC%) = 4

END IF
END SELECT

Draw Image

147

FOR 1% = 2 TO Segxnents%(AC%) STEP 2
LINE (xx(I%), yy(1%))-(xx(]% + 1), yy(I% + 1)), Side%

NEXT 1%

IF RadRng(AC%) = 0 THEN GOTO enddraw

' Draw the radar fan frontier. 60 degree sector of a circle
center on
' the nose of the aircraft. The circle function is will not
except
'a start or end parameter greater the two pi or less than 0.
Both
'heading and endcirtop and bot have to be checked. The heading

is
'checked in the mainloop when heading is calculated.

EndCirTop = ACHead(AC%) + .523599
EndCirBot = ACHead(AC%) - .523599

IF (EndCirTop = TwoPi) THEN
EndCirTbp = End~irTop - TwoPi

END IF

IF (EndCirTop j=0) THEN
EndCirTop =EndCirTop + TwoPi

END IF

IF (EndCirBot 4= TwoPi) THEN
End~irBot = End~irBot - TwoPi

END IF

IF (EndCirBot i=0) THEN
EndCirBot = EndCirBot + TwoPi

END IF

OldEndTop(AC%) = EndCirTop 'Capture old radar fan image
OldEndBot(AC%) =EndCirBot

IF (AC% = 1 OR AC% = 3) THEN
SELECT CASE TgtDetLvl%(AC%)

CASE IS = 0
Mode%(AC%) = 1

CASE IS = 1
Mode%(AC%) = 1

CASE IS = 2
Mode%(AC%) =14

CASE IS = 3
Mode%(AC%) = 10

END SELECT
END IF

CIRCLE (xx(14), yy(14)), RadRng(AC%), Mode%(AC%), ACHead(AC%),
EndCirTop
CIRCLE (xx(14), yy(14)), RadRng(AC%), Mode%(AC%), EndCirBot,
ACHead(ACs)

enddraw:

END SUB

SUB ACIcon

Center: X(I), Y(1)
Nose: X(2,4), Y(2,4)

*Right wing tip X(5), Y(5)
Back of Wing X(6,7), Y(6,7)

*Tail Center point X(8,10), -2(8,10)
Left Han:z tip X(9), Y(9)
Right Hori: tip A(11), Y(11)

*Back of tail X(12,13), Y(12,13)
Radar Fan sides X(14,15), Y(14,15)

'Setup Icon. Both aircraft are the same shape, only difference
is color

X(2) = 4: Y(2) = 0

148

X(3) =-1: Y(3) =3
X(4) = 4: Y(4) = 0
X(S) = -1: Y(5) = -3
X(6) = -1: Y(6) = 3
X(7) = -1: Y(7) = -3
X(S) =-1: Y(8)= 0
X(9) = -4: Y(9) = 2
X(10) =-1: Y(1O) =0
X(11) =-4: Y(11) =-2
X(12) =-4: Y(12) =2
X(13) =-4: Y(13) =-2
X(14) =4: Y(14) 0
X(16) =4: Y(16) =0

'Scale adjustment used for calibration

k= I '((I! /Scale) *.7)

FOR 1 2 TO 14
X(I) =X(I) *k

Y(I) -Y(I) *k

NEXT I
X(16) = X(16) * k
Y(16) = Y(16) * k

Compute radar ran coordinates based on 60 deg sweep ang.
Radar fan is based on miles and is scaled to the map
the A/C incons are not. Therefore, the development of the
fan incon i slightly different and will not be affected
by the incon scaLing factor k.

RadRng% = RadRng(I) / 5280
X(15) = X(14) + RadRng% *COS(.523599)
Y(15) = RadRnVg% * SIN(.523599)
X(17) = X(16) + RadRng% 0COS(-.523599)
Y(17) = RadRng% * SIN(-.523599)

END SUB

SUB Adv (1%)

IF (IStat%(I%) = 2 OR IStat%(Is) = 7) GOTO endadv

'Cal fuel consumption rates and turn rate based on current vel.

'If Red has been detected or Blue is in pursuit but not within
'firing range cruise at high velocity

IF 1% =2 OR 1% = 4 GOTO redcase

I Blue Cse
IF (IStat%(I%) = 4 AD TgtDetLvl%(I%) i3) THEN

TV(l%) = Vp(l%)
BurnRate(l%) = ABFC(I%, 2)
PNrnRate(l%) = (TV(I%) * 3600 / RTmiles(l%, 2)) /3600'Radians

per second
GOTO advance

ELSE
TV(l%) = V(I%)
BurnRate(I%) =MPF"'(I%, 1)
Tu\rnRate(I%) = (TV(l%) * 3600 /RTmiles(I%, 1)) /3600'Radians

per second
GOTO advance

END IF

redcsse:

' - Red Case
IF (IStat%(I%) = 1) THEN

TV(I%) = Vp{I%)
BurnRate(l%) = ABFC(I%, 2)
Turnftate(I%) = (TV(I%' * 3600 / RImiles(ls, 2)) /3600'Radians

per second
ELSE

TV(I%) = V(I%)
BurnRate(I%)

= MPFC(I%,
1)14

Tu\rnRate(I%) =(TV(I%) * 3600 / RTmiles(I%, 1)) / 3600'Radians
per second
END IF

advance:

'Find new coordinates after advance
ACy(l%) =ACy(l%) + 'TV(I%) * SIN(ACHead(l%))
ACx(I%) = ACx(I%) + TV(I%) *COS(ACHead(I%))

'Burn fuel compute percentage remaining

Ftemp(l%) = Ftemp(I%) + Burnftate(I%)
Fuielltem(l%) = (1 - (Ftemp(I%) / Fuel(I%))) * 100!
IF ((Fuel(I%) - Ftemp(I%)) j=bingo(l%) AND 1~tat%(I%) i 6 AND

TgtDetLvl%(I%) i2) THEN

'If a target is within radar range hold off bingo.

bing (1%)
END IF

IF (FuelRem(I1%) i=0!) THEN
Destroy 1%

END IF

endadv:
END SUB

SUB ANLST

'Program ANALYST SCREEN
Author: Capt R. Moore
Date: 26 Oct 92

Source: Maj Garrambone and Head-Space

Description: This subprogram is displayed when the user
selects

it in lieu of the graphic image. It is call from
the main loop.

Called by Sub DisplayMenuBox

IF AScreen% = 0 GOTO endanlst
DIM ANG(NumAC%)

IF (Format% = 1) GOTO Update
SCREEN 0
BLMenu
Frame in the data boxes

CLS 1: CLS 2
Frame 1, 28, 2, 21
Frame 28, 41, 2, 21
Frame 41, 54, 2, 21
F rame 54, 67, 2, 21
Frame 67, 80, 2, 21
Bottom% = BLine% - 1
'Frame2 1, 80, 19, Bottom%

'Print column headings
COLOR 14
LOCATE 3, 5: PRINT "Aircraft Attributes"
COLOR 3
LOCATE 3, 31: PRINT "Blue 1"
LOCATE 3, 57: PRINT "Blue 2"
COLOR 4
LOCATE 3, 44: PRINT "Red 1"
LOCATE 3, 70: PRINT "Red 2"
COLOR 7
'Print row headings

'LOCATE 7, 3: PRINT "Altitud" (Feet)"

COLOR 15
LOCATE 5, 3: PRINT "Posture/Status"
LOCATE 7, 3: PRINT "X coordinate location"

150

LOCATE 8, 3: PRINT "Y coordinate location"

LOCATE 9, 3: PRINT "Heading (Deg)"
LOCATE 10, 3: PRINT "Velocity (MPH)"
LOCATE 11, 3: PRINT "Fuel remaining (Percent)"
LOCATE 13, 3: PRINT "Current target"
LOCATE 14, 3: PRINT "Range to target (Miles)"
LOCATE 15, 3: PRINT "Sensor in range of tgt"
LOCATE 17, 3: PRINT "Missile status"
LOCATE 18, 3: PRINT "Missile flight time (Sec)"
LOCATE 19, 3: PRINT "Missiles remaining"

Headline
Format% = I

' End format printing

Update:
KEY(4) OFF

Pulse% = TNOW% MOD 10
IF (Pulse% = 0!) THEN
' 11 spaces avail on inner frame
Strt% = 30

FOR 1% = 0 TO 3 'Can't allow upper end to be a variable
AC% = 1% + 1
LOCATE 5, Strt% + (1% * 13): PRINT USING "&"; StatS(AC%)
LOCATE 7, Strt% + (1% * 13): PRINT USING " ####"; ACx(AC%)
LOCATE 8, Strt% + (1% * 13): PRINT USING " ###.#"; ACy(AC%)
IF (IStat%(AC%) = 2 OR IStat%(AC%) - 6 OR IStat%(AC%) = 7) THEN

LOCATE 9, Strt% + (1% * 13): PRINT"
ELSE

LOCATE 9, Strt% + (1% * 13): PRINT USING " . (ACHead(AC%)
• 180 / Pi)
END IF
LOCATE 10, Strt% + (1% * 13): PRINT USING " # .#"; TV(AC%) *
3600
LOCATE 11, Strt% + (1% * 13): PRINT USING " ###.#"; FueIRem(AC%)
LOCATE 13, Strt% +. (1% * 13): PRINT USING "&"; TgtS(AC%)
IF (IStat%(AC%) = 1 OR IStat%(AC%) = 4 OR IStat%(AC%) - 0) THEN

LOCATE 14, Strt% + (1% * 13): PRINT USING " ###.#";
Dist(ACx(AC%), ACy(AC%), Tgtx(AC%), Tgty(AC%))
ELSE

LOCATE 14, Strt% + (1% * 13): PRINT" 0.0"
END IF
SELECT CASE TgtDetLvl%(AC%)

CASE IS = 0
Sensors = " None "

CASE IS = 1
Sensors = " GCI

CASE IS = 2
Sensors = " Radar "

CASE IS = 3
Sensors = " Optical "

END SELECT
LOCATE 15, Strt% + (1% * 13): PRINT USING "&; Sensors
j% = MF%(AC%)
SELECT CASE IMslStat%(AC%, j%)

CASE IS = 0
MsIS = " Carried

CASE IS = 1
MslS = " In-Fit

CASE IS - 2
MsIS = " Missed "

CASE IS - 3
Msl$ - " Hit Tgt "

END SELECT

IF MF%(AC%) , NumMSL%(AC%) THEN
-OCATE 17, Strt% + (1% * 13): PRINT " Out
LOCATE 18, Strt% + (1% * 13): PRINT " 0
LOCATE 19. Strt% + (1% * 13): PRINT " 0

ELSE
LOCATE 17, Strt% + (% * 13): PRINT USING "&" MslS
LOCATE 18, Strt% + (1% * 13): PRINT USING" ####"; MTNOW%(AC%,

MF%(AC%))

151

LOCATE 19, Strt% + (1% *13): PRINT USING" ###"; (NumMSL%(AC%)
+ 1 - MF%(AC%))
END IF

NEXT 1%
END IF
endanlst:
KEY(4) ON
END SUB

SUB BBase

'Draw GCI band

CIRCLE (Basex, Basey), GCIRg

'Draw runway

LINE (Basex - 10, Basey - 10)-(Basex + 10, Basey + 10), 0
LINE (Basex - 5, Basey - 12)-(Basex - 8, Basey + 5), 0
LINE (Basex - 12, Basey)-(Basex + 10, Basey), 0

END SUB

SUB bing (1%)
'Blue case

StatS(I%) ="Bingo
IStat%(I%) =6
Tgtx(l%) = Basex
Tgty(l%) = Basey
TgtS(I%) = " None
TgtDetLvl%(I%) = 0

END SUB

SUB BLMenu

IF AScreen% = 0 THEN
BLine% = 30

ELSE
BLine% = 25

END IF

IF MonMode% = 9 THEN BLine% =25

LOCATE BLine%, 1: PRINT "Fl=Halt F2=Resume F3=Atrib Scrn
F4=Graphics F5=Zoom-In F6=Zoom-Out F7=Quit":

END SUB

FUNCTION CLDES2 (CLMax, SS, THAB, ICL%, IM%, 1%)

RR = 1 -SS

CDReq = THAB(I%) / (Q * WgArea(I%))'Highest Coefficient of drag

CDTST1 = RR * Drag((ICL% - 1), (IM% - 1)) + SS * Drag((ICL% - 1),
IM%)
CDTST2 = RR * Drag(ICL%, (IM%.- 1)) + SS *Drag(ICL%, IM%)

IF (CDReq 4,= CDTST1) GOTO toohi
CLDES2 = 0!
GOTO 100

toohi.
CDHI = RR * Drag(MachArg%, IM%) + SS Drag(MachArg%, IM%)

IF (CDReq iCDHI) GOTO toolow
CLDES2 = CLMax
GOTO 100
toolow:

CDLO = RR *Drag((ICL% - 1), (IM% - 1)) + SS * Drag((ICL% - 1),
IM%)

TT = (CDReq - CDLO) / (CDHI - COLO)
CLDES2T = (1V - TT) * MaxCL(I%, (ICL% - 1)) + TT *MaxCL(I%,

ICL%)

152

CLDES2 = DMIN(CLDES2T, OLMax)
100 'Continue
END FUNCTION

SUB Destroy (Tgt%)
IF IStat%(Tgt%) =7 THEN

StatS(Tgt%) ="Landed

ACx(Tgt%) =Basex

ACy(Tgt%) =Basey

IF AScreen% = 0 THEN
BLMenu
OLS 2
Refresh

END IF
ELSE

FOR a% = 1 TO 4 STEP 2 'Destroy all missile inbound on
target

FOR m% = 1 TO 4
IF IMTgt%(a%, m%) = Tgt% THEN

IMslStat%(a%, m%) = 3
TgtDetLvl%(a%) = 0

END IF
NEXT m%

NEXT a%
Explode Tgt%
StatS(Tgt%) =" KIA " 'Change status
ACx(Tgt%) =0

ACy(Tgt%) =0

IStat%(Tgt%) = 2 'Change numerical status
END IF
ITgt%(Tgt%) = 0 'Delete target from target list
Tgtx(Tgt%) = 0 'Zero out locations
Tgty(Tgt%) = 0
Tgt$(Tgts) =" None
TV(Tgt%) = 0 'Zero out velocity
FuelRern(Tgt%) = 0 'Zero out fuel
MF%(Tgt%) = 5 'Max out missiles fired

IF (IStat%(2) = 2 AND IStat%(4) = 2) THEN
SysStat$ = "Low" 'Return to low posture

IF IStat%(1) = 4 THEN
IStat%(1) = 3

END IF

IF IStat%(3) = 4 THEN
IStat%(3) =3

END IF

TgtS(1) = "None "
TgtS(3) = "None "
mag 10

END IF
END SUB

SUB detect

'Since ATACS permits the user to establish any initial condition
'and the location of the entities are dynamic with entities
comming in
'and out of the ranges of sensors, constant monitoring of the
ranges
'must be accomplished The cost is a lot of computer overhead;
however,
'the return is a more beliveable simulation.

'Process:
1st compute distances between players and targets
2nd determine if GCI has detecte, intruder

make intia target assignment
3rd check if the intruder has been pick up by Blue

reassign targets if necessary
Last, check if within visuial range

lStat%(i%) Define
0- Red not detected
1: Red detected
2: Aircraft KIA

153

3: Blue not in pursuit
4: Blue in pursuit
6: Bingo fuel

'The order of distances is slightly stagered to facilitate
'do loop process below

TDist(2, 0) = Dist(ACx(2), ACy(2), Basex, Bsey)'Red 1 to tgt
TDist(4, 0) = Dist(ACx(4), ACy(4), Bssex, Basey)'Red 2 to tgt

'Compute distances between interceptors and intruders

FOR I% = 1 TO NumAC% STEP 2
FOR j% =2 TO NumAC% STEP 2

TDist(I%, j%) =Dist(ACx(l%), ACy(I%), ACx(j%), ACy(j%))
NEXT j%

NEXT 1%

'Target detection level is the current mode used by the Blue
forces

'Detection by GCI

FOR 1% = 2 TO NumAC% STEP 2
IF (IStat%(I%) = 2) GOTO d2
IF TDist(I%, 0) j=GCIRg AND lStat%(I%) = 0 THEN

StatS(I%) ="Detected
IStat%(I%) = 1
Klaxon 1200, 329

IF (IStat%(I% - 1) = 2 OR IStat%(I% - 1) =6) GOTO d2
Stat$(1) = "Pursuit"
StatS(3) = "Pursuit "
IStat%(1) = 4
IStat%(3) = 4
SysStat$ = "Hi"
TgtDetLvl%(1) = 1
TgtDetLvl%(3) = 1
TgtSel TDist 'Call targeting sub, Red 1 detected

END IF
d2:
NEXT 1%

'Check for detection of red 1 or red 2 by blue 1 or blue 2
on-board radar
'and and optical systems

FOR I% = 1 TO NumAC% STEP 2
IF (IStat%(I%) = 2 OR lStat%(I%) = 6) GOTO d4
FOR A% = 2 TO NumAC% STEP 2
IF (lStat%Uj%) = 2) THEN GOTO d3

'If you include TgtDetLvl here as an additional constraint, then
,once an interceptor has a target he can't id another

IF (TDist(I%, j%) iRadRng([%) AND tkag(I%, j%) i.5236) THEN
IF IStat%Uj%) = 0 THEN

BEEP
END IF
StatSUj%) = "Detected
Istat%Uj%) =1
IF IStat%(l) i,, 6 AND IStat%(1) i,. 2 THEN

IStat%(1) = 4
Stat$(1) = "Pursuit

END IF
IF [Stat%(3) j 6 AND IStat%(3) j4. 2 THEN

IStat%(3) = 4
Stat$(3) ="Pursuit

END IF
SysStatS = "Hi"
TgtDetLvl%(I%) 2
TgtSel TDist

END IF
d3:

NEXT j%
d4:
NEXT 1%

154

'Optics

FOR 1% = 1 TO NumAC% STEP 2
FOR j% = 2 TO NumAC% STEP 2
IF (TDist(l%, j%) i= OptRng(I%) AND TgtDetLvl%(I%) = 2) THEN
TgtDetLvl%(I%) = 3

END IF
NEXT j%

NEXT 1%

'Capture cases where targets move outside of sensor range

'Targets lost by GCI

IF SysStat$ = "Low" GOTO lossgci

Targets lost by aircraft sensors, 1st radar, 2nd optically
For each combination of Red and Blue distances, check out of
bounds for sensor associated with current target.

FOR 1% = 1 TO NumAC% STEP 2
IF IStat%(I%) = 2 GOTO d6
IF (TgtDetLvl%(%) j= 2) THEN
Range = RadRng(l%)
FOR j% = 2 TO NumAC% STEP 2

IF IStat%(j%) = 2 GOTO d5
IF ((TDist(l%, j%) z Range OR tkag(I%, j%) 4 .5236) AND

ITgt%(I%) = j%) THEN
TgtDetLvl%(I%) = I

END IF
d5:

NEXT j%
END IF

d6:

NEXT 1%

FOR 1% = I TO NumAC% STEP 2
IF IStat%(I%) = 2 GOTO d8
IF (TgtDetLvl%(I%) = 3) THEN
Range = 1.01 * OptRng(I%)
FOR j% = 2 TO NumAC% STEP 2

IF IStat%(j%) = 2 GOTO d7
IF (TDist(I%, j%) z Range AND ITgt%(I%) = j%) THEN

TgtDetLvl%(l%) = 2
END IF

d7:
NEXT j%
END IF

d8:
NEXT 1%

Loss by GCI and Blue 1 or Blue 2 Radar

lossgci:

FOR 1% = I TO NumAC% STEP 2
IF (TgtDetLvl%(I%) = 1 AND TDist((I% + 1), 0) 4 GCIRg) THEN

TgtDetLvl%(I%) = 0
END IF
NEXT I%

IF SysStat$ = "Low" THEN
FOR 1% = 1 TO NumAC% STEP 2

TgtDetLvl%(I%) = 0
NEXT 1%

END IF

enddetect:

END SUB

FUNCTION Dist (dxl, dyl, dx2, dy2)
Dist = SQR((dx2 - dxl) - 2 + (dy2 - dyl) 2)
END FUNCTION

FUNCTION DMAX (Fl, F2)
IF (Fl j F2) THEN

155

DMAX = F2
ELSE

DMAX = F1
END IF

END FUNCTION

FUNCTION DMIN (F], F2)
IF (F1 4. F2) THEN

DMIN = F2
ELSE

DMIN = Fi
END IF

END FUNCTION

SUB ErrMsg (1%)

SELECT CASE I%

CASE 1
LOCATE 18, 15: PRINT "File not found, try again"

CASE ELSE

END SELECT

END SUB

SUB Explode (Tgt%) STATIC

X = ACx(Tgt%)
Y = ACy(Tgt%)

IF AScreen% = 1 GOTO endexplode
Radius = 20

IF MonMode% = 9 THEN Inc# = .5 ELSE Inc# = .41
FOR C# = 0 TO Radius STEP Inc#

CIRCLE (X, Y), C#, 14
NEXT C#

FOR C# = Radius TO 0 STEP (-1 * Inc#)
CIRCLE (X, Y), C*, 4
FOR I = 1 TO 500
NEXT I

NEXT C#

endexplode:

END SUB

SUB GetData

Description: This program reads various data files
File #1 is for Blue one's performance data
File #2 is for Red one's performance data
File #3 is for Blue two's performance data
File #4 is for Red two's performance data
File #5 is for the scenario data

The program is divided into two major section
The Ist reads in the data and the 2nd performs
a aircraft performance preprocessing function.

OPEN "BIPerf.dat" FOR INPUT AS #1 'Blue One performance data
OPEN "RIPerf.dat" FOR INPUT AS #2 'Red One performance data
OPEN "B2Perf.dat" FOR INPUT AS #3 'Blue Two performance data
OPEN "R2Perf.dat" FOR INPUT AS #4 'Red Two performance data
OPEN "Detail.dat" FOR OUTPUT AS #6 'Detail Summary file
OPEN "ACPerf.dat" FOR OUTPUT AS #7 'AC Performance factors
OPEN "Output.dat" FOR OUTPUT AS #10 'Significant event report

'By having BI and RI files first, the convention used to read
the data allows a one on one scenarios to be generated.

'******** Default system and initial values

endsim% = 5000
Delay% = 0
OEF = 25 'Orbit expansion factor
Tgt$(1) = " None

156

TgtS(2) = "
Blue Base "

Tgt$(3) = " None "
Tgt$(4) = " Blue Base "

Assign nomenclatures

AC%(1) = I
AC%(2) = 2
AC%(3) = 3
AC%(4) = 4

' Read in performance data for the four aircraft

FOR 1% = 1 TO NumAC%
INPUT #1%, AC$(I%) 'Side
INPUT #I%, WgArea(I%) 'Wing Area
INPUT #1%, M&xWt(W%) 'Max combat Wgt
INPUT #1%, MinWt(I%) 'Min combat Wgt

'FuelLbs(i%) = MxWt(i%) - MinWt(i%) 'Find fuel load

INPUT #1%, MaxAlt(I%) 'Max alt
INPUT #1%, MinAlt(I%) 'Min alt
INPUT #1%, MaxETA(I%) 'Max strutua gee force
INPUT #1%, ThrKF(I%) 'Thrust table multiplier (2 for 2 engines)
INPUT #1%, FCKF(I%) 'Fuel consumption multiplier
INPUT #1%, DragKF(I%) 'Drag multiplier

Get altitude arguments
FOR k% = I TO AltArg%

INPUT #1%, Alt(k%)
NEXT k%

Get Maximum mach arguments at altit'ides

FOR k% = I TO AltArg%
INPUT #1%, MMach(I%, k%)

NEXT k%

'Get Mach arguement which will correspond with the max cl

FOR k% = I TO MachArg%
INPUT #1%, MachDat(I%, k%)

NEXT k%

Get Maximum coefficient of lift at mach number i,l,k

FOR k% = I TO MachArg%
INPUT #1%, MaxCL(I%, k%)'Index 0 is a label

NEXT k%

Get Mil Power thrust values at altitude j% and mach k%

FOR j% = 1 TO AltArg%
FOR k% = 1 TO MachArg%

INPUT #1%, ThrMP(j%, k%)
ThrMP(j%, k%) = ThrMP(j%, k%) * ThrKF(I%)

NEXT k%
NEXT j%

Get After Burner thrust values at altitude j% and mach k%

FOR j% = 1 TO AltArg%
FOR k% = 1 TO MachArg%

INPUT #1%, ThrAB(j%, k%)
ThrAB(j%, k%) = ThrAB(j%, k%) * ThrKF(I%)

NEXT k%
NEXT j%

Get Mil Power fuel consumption values at altitude j% and mach
kF

FOR. j% = I TO AltArg%

FOR k% = I TO MachArg%
INPUT #I%, FCMP(j%, k%)

157

FCMPiU%, k%) = FCMP(j%, k%) * FCKF(I%)
NEXT k%

NEXT j%

Get After Burner fuel consumption values at altitude j% and
mach k%

FOR j% = I TO AltArg%
FOR k% = 1 TO MachArg%

INPUT #1%, FCABUj%, k%)
FCAB(j%, k%) = FCABU%, k%) * FCKF(I%)

NEXT k%
NEXT j%

'Get Drag coefficients for given mach and max CL

FOR j% = 1 TO CLArg%
FOR k% = 1 TO MachArg%

INPUT #1%, Drag(j%, k%)
Drag(j%, k%) = Drag(j%, k%) * DragKF(I%)

NEXT k%
NEXT j%
CLOSE #1%
NEXT 1%

Program Performance Calculator

*Note: Some of the calculated performance measures are not used
at

this time; however, they have been codded and debuged for use
with later model enhancements

Source: Mr Robert Mercier and PACAM 8
Functions and Constants pulled from PACAM documentation

FOR 1% = 1 TO NumAC%
FOR k% = 1 TO 2 'Compute performace based on the two velocities

IF k% = I THEN TempVel = V(I%)
IF k% = 2 THEN TempVel = Vp(I%)

'Compute altitude constants

Mach = TempVel /SpdS(z) 'Mach Number, A function of
speed

'of soundQ=.5 *RHO(z) *TempVel *TempVel 'Dynanic Pressure

Dynamic pressure is a function of wing area and weight.
Updates are not performed as the weight of the aircraft

changes.
This type resolution requires creates a computational load.
As a compromise, the mean wght will be used.

WGT = (MaxWt(l%) - MinWt(I%)) / 2

'Dynamic Pressure at the speed of sound

U = .5 * RHO(z) * SpdS(z) - 2 * (WgArea(I%) / WGT)

'Find the low and high index numbers which capture Alt and Mach

FOR j% = 1 TO AltArg%
IF (z jAltUj%)) THEN 'Find Argument index

IAlt% = j
GOTO 20

END IF
NEXT j%

20
FOR j% = I TO MachArg%

IF (Mach iMachDat(I%. j%)) THEN 'Find Argument index
IM% = j
ICL% = j
GOTO badmach

END IF
N E X T j%1

5

badmach: 'Continue

' Interpolate the Max Coeff of lift

IF (ICL% = I AND IM% = 1) THEN
Cl = 0
GOTO 40

ELSEIF (ICL% = 1) THEN
C1 = 0
GOTO 40

END IF

C1 = (MaxCL(I%, ICL%) - MaxCL(I%, (ICL%- 1))) / (MachDat(I%,
IM%) - MachDat(I%, (IM% - 1)))

40 'Continue

C2 = MaxCL(I%, (ICL% - 1)) - Cl * MachDat(l%, (IM% - 1))'CL
decreases as Mach inca.

SS = (Mach - MachDat(I%, (IM% - 1))) / (MachDat(I%, IM%) -
MachDat(l%, (IM% - 1)))

'Where SS is the slope for Mach arguements

'45 'Continue

TT = (z - Alt(IAlt% - 1)) / (Alt(liAlt%) - Alt(IAlt% - 1))

'Where TT is the interpolation factor for Alt arguements

UU = 1 - TT 'To be used for the double interpolation

'Begin double interpolation for thrust in Mil Pwr and AB
'and fuel consumption in Mil Pwr and AB. Thrust is in pounds
'and fuel consumption is in Pounds per hour.

El = UU * ThrAB((IAlt% - 1), (IM% - 1)) + TT * ThrAB(IAlt%, (IM%
- 1))

E2 - UU * ThrMP((IAlt% - 1), (IM% - 1)) + TT * ThrMP(IAlt%, (IM%
- 1))
E3 = UU * FCAB((IAlt% - 1), (IM% - 1)) + TT * FCAB(lAlt%, (IM% -
1))
E4 = UU * FCMP((IAlt% - 1), (IM% - 1)) + TT * FCMP(IAlt%, (IM% -
1))
Fl = UU * ThrAB((IAlt% - 1), IM%) + TT * ThrAB(IAlt%, IM%)
F2 = UU * ThrMP((IAlt% - 1), IM%) + TT * ThrMP(IAlt%, IM%)
F3 = UU * FCAB((IAit% - 1), IM%) + TT* FCAB(IAlt%, IM%)
F4 = UU * FCMP((IAlt% - 1), IM%) + TT * FCMP(IAlt%, IM%)

'Find Thrust AB and MP, Fuel AB and MP

THAB(I%) = El + SS * (FI - El)
THMP(I%) = E2 + SS * (F2 - E2)

ABFC(I%, k%) = (E3 + SS * (F3 - E3)) / 3600! 'fuel consumption
per sec
MPFC(I%, k%) = (F4 + SS * (F4 - E4)) / 3600! 'fuel consumption
per sec
Ftemp(l%) = 0

CLMax = MaxCL(l%, (ICL% - 1)) + SS * MaxCL(I%, ICL%) - MaxCL(I%,
(ICL% - 1))

'Where CLMax is the interpolated maximum coefficient of lift.

VelMax(l%) = SpdS(z) * MMach(l%, (IAlt% - 1)) + TT * (MMach(I%,
lAlt%) - MMach(l%, (IAlt% - I)))

'Where VelMax is the interpolated maximum vel for given altitude

' Begin determination of the sustained gee force for sweeping
turns
' Set up for another double interpolation of the coefficient of

'drag table. Call Sub CLDES2

159

'Can't drop below I gee or the aircraft has a bad day

SusG = DMAX(1!, CLDES2(CLMax, SS, THAB, ICL%, IM%, I%) *U

Mach)

CONST Gray = 32.2 'feet per second square
Convfac = 1.46666 'conversion factor to obtain Rad of turn in
feet

Radl'urn(I%, ks) = (TempVel '2 / (Gray DMIN(3!, SusG)))
Convfac 'Turning Radius

'Values Retained

PRINT #7, USING" Performance Specifications for
Aircraft & "; AC$(I%)

PRINT #7, USING "Performance based on velocity of #### mph
and altitude of #####"; TempVel; z

PRINT #7," Thrust in AB (Pounds): "; THAB(I%)
PRINT #7," Thrust in Mil Pwr (Pounds):

THMP(I%)
PRINT #7," Fuel consumption in AB (Pounds/sec):

ABFC(I%, k%)
PRINT #7,." Fuel consumption in Mil Pwr

(Pounds/sec): "; MPFC(I%, It%)
PRINT #7, Sustained Gees: "; SusG
PRINT #7, " Min Turning Radius (Ft):

Radllur(l%, ks)

NEXT k%
NEXT 1%

'**** Warning! Do not move the following calculation above
this point

'Calc the RI'miles for both vel, initialize TurnRate at the slower
vel.

FOR j% 1 TO NumAC%
FOR k% = 1 TO 2 'two velocity levels

RT'miles(j%, k%) = RadTurn(j%, It%) / 5280! 'Convert to feet
'Ref Shaw 'Fighter Combat', p390
NEXT k%
'TurnRateOj%) = (V(j%) / RTmiles(j%, 1)) / 3600'Radians per

second
NEXT j%

'The following code is used to establish the race track for
'the cap mission.

'Initialize the Blue aircraft on their station
'Place them Pi radians apart
'Operate at mil pwr

ACx(I) = StatPtx + (RTmiles(l, 1) * OEF)
ACy(1) = StatPty
ACx(3) = StatPtx - (RI'miles(3, 1) *OEF)
ACy(3) = StatPty

'Calc station keeper, the target the A/C follow to stay on track

1st find circumference
2nd find how many time pulses to travel circum, this divides
the circle up into small traveled segments
3rd find the radian equivalent of the small segment

FOR I% = I TO NumAC% STEP 2
circum = (RTmiles(l%, 1) *OEF) * 2 * Pi
timecircum = circum / (V(1%) / 3600)
Delt&CirQI%) = 2 * Pi / timecircumn

NEXT 1%

'***End Station Keeping Code

'Compute min turn rate in radians per sec other than station
keeping

160

'Convert velocity to feet per sec. Must be done after the above
'calculations since the table are base on miles per hour.

'**** Scale Aircraft Velocity
FOR j% = I TO NumAC%

V(j%) = VU%) / 3600
Vp(j%) = Vp(j%) / 3600

NEXT j%

'**** Scale Missile velocity
FOR 1% = I TO NumAC%

MsLV(I%) = MsLV(I%) / 14400'Missile velocity per quarter sec.
NEXT I%

'**** Scale Radar
FOR j% = I TO NumAC%

RadRng(j%) = RadRng(j%) / 5280!
NEXT j%

'**** Scale Optical
FOR j% = I TO NumAC%

OptRng(j%) = OptRng(j%) / 5280!
NEXT j%

CLOSE #1 'Close files
CLOSE #2
CLOSE #3
CLOSE #4
CLOSE #7
END SUB

SUB Grid
GScale = 1.5
FOR p% = -Wx GScale TO Wx * GScale STEP (GScale 10)
FOR sA = -Wy 'GScale TO Wy * GScale STEP (GScale 10)
PSET (p%, s%)
NEXT s%
NEXT p%
END SUB

SUB Headline

LOCATE 1, 1: PRINT "Sec:"
LOCATE 1, 12: PRINT "Posture:
LOCATE 1, 28: PRINT "Comm:"
LOCATE 1, 35: PRINT Com$
END SUB

REM $STATIC
SUB Init

'If the model is ran more than once, certain variables have to
'be reset back to zero
LOCATE 10, 9: PRINT "Enter"
LOCATE 10, 15: RANDOMIZE' Seed RNG

'Declare intial values for program variables

CLS
Scale = 1.5 'Step multiple for Zoom
GDelay% = 0 'Graphics Delay
ADelay% = 10 'Analyst Screen Delay
Refs = 1'Screen refresh counter
SysStat$ - "Low"
Corns =

BLMenu ' Set up and print bottom line menu

FOR 1% 1 ! TO NumAC% STEP 2 'Assign Targets, set detect flags
StatS(I%) = "Patrol
IStat%(I%) = 3
StatS(I% + 1) = "Undetected"
IStat%(I% + 1) = 0
TgtDetLvl%(I%) = 0'Detection currently being used to track

target
TTurnl%) = 0 'Station keeping turn

NEXT I%

161

FOR 1% = 2 TO NumACs STEP 2 'Assign Red Targets as the base
location

Tgtx(I%) = Basex
Tgty(I%) = Basey

NEXT 1%

'Assign Missile initial conditions

FOR I% = 1 TO NumAC%
MF%(I%) = 1 'Initialize Missiles fired counter
FOR j% 1 TO NumMSL%(I%)

IMSstat%(1%, j%) =0
MTNOWo(1%, j%) =0 'Initialize Missile burn timmer
MSLx(I%, j%) = 0
MSLy(I%, j%) = 0

NEXT j%
NEXT 1%

Load in Icons

ACIcon
MSLIcon

'Initialize Comm

msg 0

END SUB

REM $DYNAMIC
SUB Klaxon (His, Lo%) STATIC
SOUND Hi%, 5
SOUND Lo%, 5

END SUB

SUB LoadGo

Frame 1, 80,1, 20

msg 20

ON ERROR GOTO fileerr

getfile2:
LOCATE 14, 8: INPUT "Use default scenario file Y/N (Y) "; FAns$

IF (UCASES(DFAns$) = "N") THEN 'Get user defined file
errflg% = 0
LOCATE 16, 48: PRINT"
LOCATE 16, 8: INPUT "Enter scenario file name with

extension:" Scnfile$
OPEN Scnfile$ FOR INPUT AS #5 'Default Scenario file
IF errfig% = 1 GOTO getfile2:
otpt% = 0
LOCATE 18, 8: INPUT "Do you want a detail summary generated

Y/N (N)? "; outans$
IF UCASES(outans$) = "Y" THEN otpt%
MASTDAT
ELSE
otpt% =0
LOCATE 18, 8: INPUT "Do you want a detail summary generated

Y/N (N)? "; outansi
IF UCASES(outansl) = "Y" THEN otpt% =-
OPEN "Masterdat" FOR INPUT AS *5 'Default Scenario file
MASTDAT

END IF

ON ERROR GOTO 0

END SUB

162

SUB MainLoop (MonMode%)

'Main loop for the combat model

DIM RTT(NumAC%)

'Turn Keys On

KEY(1) ON 'F1 Halt Execution
P 2 Resume Function. Key 2 is used implicitly.

KEY(3) ON 7P3 Switch to analyst screen mode
KEY(4) OFF 'F4 Switch to graphics mode
KEY(5) ON 7P5 Enlarge Scale
KEY(6) ON 'F6 Decrease Scale
KEY(7) ON 'F7 Quit and return to main menu

ScrnSet BadScrn%, MonMode%

IF (BadScrn% = 1) GOTO endmainip

Init 'Initialize parameters

Refresh ' Initialize window setting, set Grid, and Base

Station 'Put Blue A/C on station

FOR 1% = 1 TO NumAC% 'Compute initial heading
ACHead(I%) =MHead(ACx(l%), ACy(1%), Tgtx(I9%), Tgty(l%))

NEXT 1%

Pass = 0 ' Draw first images

FOR 1% = 1 TO NumAC%
ACDraw (1%)

NEXT 1%

'Begin first outer loop

FOR TNOW% = 1 TO endsim%

FOR j% = 1 TO Delay% *1000: NEXT j%' Delay

'Call Detection sub

detect

Fly on station if no intruder detection

IF (SysStatS = "Low") THEN 'No intruders, fly on station
Station

ELSE 'Update Interceptors on target locations
FOR 1% = 1 TO NumAC% STEP 2

IF lStat%(I%) iZ 6 THEN
Update (1%)

END IF
NEXT 1%

END IF

'Call Heading

IF (TNOW% = 1) GOTO Skip

head:

FOR 1% = 1 TO NumAC%

Find new heading

ACHead(l%) =MHead(ACx(I%), ACy(I%), Tgtx(I%), Tgty(I%))

Test turn feasibility

TrkAng(I%) =TrackAngle(l%) 'Short cut calculation used for
constraining

'turn.

163

'Constrain turn if Trackangle Z. turnrate

IF ('lrkAng(l%) 4 TurnRate(I%)) THEN

Test for best direction to turn

TstHead = OldHead(l%) + Turnftate(l%) 'Sample a left turn
Tst'frkAng =ABS(ACHead(l%) - TatHead)

IF (Tst'frkAng 4 Pi) THEN
TstTrkAng = TwoPi.- TstTrkAng

END IF

IF (Tst'frkAng i frkAng(I%)) THEN
ACHead(I%) = OldHead(I%) + TurnRate(I%) 'Left

tturn
ELSE

ACHead(I%) = OldHead(I%) - TtirnRate(I%) 'Right

END IF

testl = ACHead(I%) - TwoPi 'Increased heading beyond 2
Pi

test2 = ACHead(I%) 'Set up to capture neg
heading

IF (testi 0) THEN ACHead(l%) =testi 'Reset to zero line
plus overage

IF (test2 i 0) THEN ACHead(l%) =TwoPi + test2'Reset to 2 Pi -
overage

END IF

slciphead:

NEXT 1%

Skip:

SELECT CASE (AScreen%)
CASE 0

Pulse% = TNOW% MOD 2
IF (Pulse% = 0) THEN
FOR 1% = 1 TO NumAC% STEP 2

ACDraw 1% 'Draw the icons
NEXT 1%
ELSE
FOR I% = 2 TO NumAC% STEP 2

ACDraw (1%) 'Draw the icons
NEXT 1%
END IF

CASE 1
ANLST

END SELECT

FOR 1% = 1 TO NumAC% STEP 2
IF (TgtDetLvl%(l%) 2 OR lMslStat%(l%, MF%(I%)) =1) THEN

missile (1%)
NEXT 1%

' Call Advance

FOR 1% = 1 TO NumAC%

Adv (I%)

NEXT 1%

IF (AScreen% = 0 AND TNOWo Refs) THEN
Eflase
Refs TNOW% + 30

END IF

FOR 1% =1 TO NurnAC%
OldHead(l%) = ACHead(]%) 'Save last heading

NEXT 1%

164

Display Data or Display screen
Update headline scoreboard

LOCATE 1, 6: PRINT USING "####"; TNOW% 'Update Header line
LOCATE 1, 21: PRINT USING "&"; SysStatS

IF otpt% = 0 GOTO skipdetl

RTT(1) = TDist(1, ITgt%(l))
RTT(2) = TDist(2, 0)
RTT(3) = TDist(3, ITgt%(1))
RTT(4) = TDist(4, 0)
FOR 1% = 1 TO NumAC%

ICoordinates Vel Heading Tgt
Coord Range Det Mal"

ISec AC X Y Stat (Mi/S) (Rad) Tgt
X Y to Tgt LvI Stat 1
PRINT #6, USING "#### # #### #### # #.### #.## #
#"; TNOW%; AC%(I%); ACx(I%); ACy(l%);

RTT(I%); TgtDetLvl%(I%); IMslStat%(I%, MF%(I%))
NEXT 1%

skipdetl:
FOR 1% = 1 TO NumAC% STEP 2
IF (IStat%(I%) = 6 AND Dist(ACx(I%), ACy(I%), Basex, Basey) i1

AND Landed = 0) THEN
IStat%(I%) = 7
Destroy 1%

END IF
NEXT 1%
NEXT TNOW%

endmainlp:

CLS
CLOSE #5
CLOSE #6
CLOSE #7
CLOSE #10
SCREEN 0
msg 5000

END SUB

SUB MASTDAT

Read in default scenario data

Read in the data

FOR I= 1ITO 100
INPUT #5, Dat(I)

NEXT I
CLOSE #5

'Base data Block of 10 data elements 1-10.

Basex = Dat(2)
Basey = Dat(3)
GCIRg = Dat(4)

'Environment: Block of 10 data elements 11-20

NumAC% = Dat(12) 'Number of aircraft
z= Dat(13) 'Altitude plane

StatPtx = Dat(14) 'CAP patrol station in x
StatPty = Dat(15) 'CAP patrol station in y

Aircraft data elements, block of 20 for each aircraft.
Blue 1: 21-40, Red 1: 41- 60, Blue 1: 61-80, Red 1:81-100

Blue 1 Blue 2

F.uel(1) = Dat(22): Fuel(3) = Dat(62) 'Fuel Load
bingo(I) = Dat(23): bingo(3) = Dat(63) 'Bingo weight

165

V(I) = Dat(24): V(3) = Dat(64) 'Cruise velocity
Vp(1) =Dat(25): Vp(3) = Dat(65) 'Pursuit velocity
OptRng(1) = Dat(26): OptRng(3) =Dat(66) 'Eye sight Range
RtadRng(l) = Dat(27): RadRng(3) =Dat(67) 'Radar Range
NumMSL%(1) =Dat(28): NumMSL%(3) = Dat(68) 'No. Msls
onboard
MsLV(1) =Dat(29): MsLV(3) = Dat(69) 'Vel of Missiles
MsLSenRg(l) = Dat(30): MsLSenRg(3) = Dat(70) 'Sensor range of
missiles

' Redi1 Red 2

ACx(2) = Dat(42): ACx(4) = Dat(82) 'Initial position
ACy(2) = Dat(43): ACy(4) = Dat(83) 'Initial position
F'uel(2) = Dat(44): Fuel(4) =Dat(84) 'Fuel weight
bingo(2) = Dat(45): bingo(4) = Dat(85) 'Bingo weight
V(2) = Dat(46): V(4) = Dat(86) 'Cruise velocity
Vp(2) = Dat(47): Vp(4) =Dat(87) 'Pursuit velocity
OptRng(2) = Dat(48): OptRxig(4) =Dat(88) 'Eye sight Range
RadRng(2) = Dat(49): RadRng(4) =Dat(89) 'Radar Range
NumMSL%(2) =Dat(50): NumMSL%(4) = Dat(90) 'No. Msls
onboard
MsLV(2) = Dat(51): MsLV(4) = Dat(91) 'Vel of missiles
MsLSenRg(2) = Dat(52): MsLSenRg(4) = Dat(92) 'Sensor range of
missiles

END SUB

FUNCTION MHead (Ax, Ay, Bx, By)

Finds Headings for aircraft

Convention: Compute the heading of A relative to the position
of B

Px = Ax - Bx 'Find x and y range between A and B
Py = Ay - By

Error T~rap for shared tongitudalLatitudal coordinates

IF (Px = 0) THEN
IF (By = Ay) THEN

THead = 1.570796
ELSE

THead = 4,712389
END IF
GOTO 11

END IF

IF (Py = 0) THEN
IF (Bx Z= Ax) THEN

THead = 0
ELSE

THead = 3.141593
END IF
GOTO 11

END IF

IF (By . Ay) THEN
Tllead = ATN(Py /Px) + Pi

ELSE
THe~ad = ATN(Py /Px)

END IF

IF (Bx i Ax) THEN
THead =ATN(Py /Px) + Pi

ELSE
THead = ATN(Py /Px)

END IF

'All of the above is used to determine the heading of the
aircraft

relative to their coordinate system and the their target. The
transformation below converts negative radians to positive.

The
ATN function yields negative values for coordinates in the neg
Y coordinates. Making this transformation permits easier

166

checking
'of changes in headings (don't have to worry about their sign).

11 IF (THead j0) THEN
MHead = 2 *Pi + THead

ELSE
MHead = TI-ead

END IF

END FUNCTION

SUB missile (AC%)
'Begin embedded missile loop, four missile cycles to one
aircraft.

Determine missile heading
Draw missile missile
Advance missile
Check for kill

'Assumptions: Only one missile is fired at a time per AC
Only one target at a time assigned to an AC
Missile heading will remain constant while in

embedded loop
At the end of missile b~rn, missile is terminated
Once launcheA, missiles are tied to the launching

AC tgt
I Missile flight performance will not be constrained

missle
I aerodynamics.

'Initialize location of missile at time of launch

IF MF%(AC%) Z NumMSL%(AC%) GOTO Wsend

IMsIStat%(AC%, MF%(AC%)) = 1

IF (MTNOW%(AC%, MF%(AC%)) = 1) THEN
MSLx(AC%, MF%(AC%)) = ACx(AC%)
MSLy(AC%, MF%(AC%)) = ACy(AC%)
IMTgt%(AC%, MF%(AC%)) = ITgt%(AC%)'Assign target
Mmsg 10, AC%, MF%(AC%), ITgt%(AC%)

END IF

'Update missile on tgt location

MTx = ACx(lMTgt%(AC%, MF%(AC%)))
MTy = ACy(IMTgt%(AC%, MF%(AC%)))

MSLHead(AC%, MF%(AC%)) = VtIead(MSLx(AC%, MF%(AC%)), MSLy(AC%,
MF%(AC%)), MTx, MTy)
Msl% = MF%(AC%)

FOR t% = MTNOW%(AC%, MF%(ACo)) TO MTNOW%(AC%, MF%(AC%)) + 4
MSLAdv ACM Msl% 'Advance the missile
IF AScreen% = 0 THEN 'Not in attrib screen

MSLDraw ACM Msl% 'Draw the missile
END IF
IF MTNOW%(AC%, MF%(AC%)) Z Burnt(AC%)*4 goto Mslend

If the missile either hit the target or missed, terminate the
missile and clean up the screeen.

IF IMslStat%(AC%, MF%(AC%)) Z 1 THEN
Mslterm AC% 'Advances MF%
IF AScreen% = 0 THEN

BLMenu
CLS 2
Refresh

END IF
GOTO Mslend

END IF
NEXT t%

'Update missile clock b) one s"-ond for each pass since each

167

'pass is equal to one second. The quarter seconds are not posted

'since MTOW is an integer value.

MTNOW%(AC%, MF%(AC%)) = MTNOW%(AC%, MF%(AC%)) + i

Mslend:

END SUB

SUB MSLAdv (AC%, Msl%)

'Find new missile coordinates after advance

MSLy(AC%, Msl%) = MSLy(AC%, Msl%) + MsLV(AC%) SIN(MSLHead(AC%,
Msl%))
MSLx(AC%, Msl%) = MSLx(AC%, Msl%) + MsLV(AC%) * COS(MSLHead(AC%,

Msl%))

Hx = ABS((MSLx(AC%, Msl%) - Tgtx(AC%)))
Hy = ABS((MSLy(AC%, Msl%) - Tgty(AC%)))

'if x and y coordinates are out of sync by very much the missile
will miss

IF (Hx i .5 * MsLV(AC%) AND Hy i.5 * MsLV(AC%)) THEN
PKill AC%, Hx, Hy

END IF

END SUB

SUB MSLDraw (AC%, Msl%)

DIM mxx(1O), myy(10)

'Orientate missile image to heading

IF MTNOW%(AC%, Msl%) i
=

2 GOTO endmsldw
FOR 1% = 2 TO 7 STEP 2 'Erase old image

LINE (mxxold(AC%, Msl%, 1%), myyold(AC%, Msl%,
I%))-(mxxold(AC%, Msl%, (1% + 1)), myyold(AC%, Msl%, (1% + 1))),
3
NEXT I%

FOR 1% = 2 TO 7
mxx(I%) = (MX(I%) * COS(MSLHead(AC%, Msl%)) - MY(I%) *

SIN(MSLHead(AC%, Msl%))) + MSLx(AC%, Msl%)
myy(l%) = (MX(I%) * SIN(MSLHead(AC%, Msl%)) + MY(I%) *

COS(MSLHead(AC%, Msl%))) + MSLy(AC%, Msl%)

Capture current values
mxxold(AC%, Msl%, 1%) = mxx(l%)
myyold(AC%, Msl%, 1%) = myy(l%)

NEXT 1%

' Draw Image

FOR 1% = 2 TO 7 STEP 2
LINE (mxx(l%), myy(l%))-(mxx(l% + 1), myy(I% + 1)), 1

NEXT 1%
endmsldw:

END SUB

SUB MSLIcon

Body: MX(2,3), MY(2,3)
Left tail tip MX(4,5), MY(4,5)

'Right tail tip MX(6,7), MY(6,7)

' Setup missile icon.

MX(2) = 0: MY(2)= 0
MX(3) = 5: MY(3)-- 0
MX(4)= G: MY(4) = 0
MX(5) = -5: MY(5)= .5

168

MX(6) = 0: MY(6)= 0
MX(7) = -. 5: MY(7)= -.5

' Scale adjustment used for calibration

k = I '((I! / Scale) * .7)

FOR I = 2 TO 7
MX(I) = MX(I) * k
MY(I) = MY(1) * k

NEXT I

END SUB

SUB Mslterm (AC%) STATIC

MF%(AC%) = MF%(AC%) + 1
IMslStat%(AC%, MF%) = 0

END SUB

SUB pause
'pauses the program until the space bar is pressed

DO
chS = INKEYS

LOOP UNTIL chS = "'Indefinite Pause

END SUB

SUB PKill (AC%, Hx, Hy)

'Sub PKill determines if the missile actually killed the aircraft
'The user provided Pk is used in this determination.
'The Pk value is compared to a random draw, if the random draw
'is less than the Pk, the target is eliminated.

'***** Temp Val ***
Pk(AC%) = .85

'*55** ******** ******

IF (RND i Pk(AC%)) THEN
Mmsg 20, AC%, MF%(AC%), I'Igt%(AC%)
Destroy lTgt%(AC%) 'this should yied the target index value

FOR b% = 1 TO NumAC% STEP 2 'alter sensors for wingman
FOR r% = 2 TO NumAC% STEP 2

IF (ITgt%(b%) = r% AND IStat%(r%) = 2) THEN
TgtDetLvl%(b%) = 0

END IF
NEXT r%
NEXT b%

IMsIStat%(AC%, MF%(A2.)) = 3 'Hit target
detect
TgtSel TDist

ELSE
Mmsg 30, AC%, MF%(AC%), ITgt%(AC%)
IMsIStat%(AC%, MF%(AC%)) = 2 'Missed target

END IF

END SUB

SUB Refresh
VIEW (1, 17)-(MaxScrX%, MaxScrY%), 3, 4
WINDOW (-Wx * Scale, Wy * Scale)-(Wx * Scale, -Wy Scale)
BBase
Grid

'LOCATE 1: PRINT"

Headline
END SUB

FUNCTION RHO (z)
I

'Constants from the PACAM User Manual. Used for computing the

169

'atmospheric density.

a = .0023769199#
b .000006875347#
C = 4.256155
D = .00070612811#

= .0000480634#

IF (z i ZBAR) THEN
RHO= a*(1-b*z) C

ELSE
RHO = D * EXP(-1 * e * (z - ZBAR))

END IF

END FUNCTION

SUB ScrnSet (BadScrn%, MonMode%)

'CLS
'LOCATE 10, 10: INPUT "Enter monitor type VGA or EGA (VGA)
MonType$
'CLS

' Find the screen mode that works
Set screen variables for that screen

'IF (UCASES(MonType$) = "EGA") THEN GOTO SetEGA
'ON ERROR GOTO SetEGA

IF (MonMode% = 9) GOTO SetEGA

SCREEN 12 ' Hi res VGA
PSET (0, 0) ' Test Graphics
MonMode% = 12 ' Screen Mode
MonType$ = "VGA" ' Set graphics type
Wx = 215 ' Range factor for widow setting
Wy = 150 ' and aspect normalization
MaxScrX% = 630 ' Set screen dimension in X(639)
MaxScrY% = 460 Set sact en dimension in Y - bottom line
pixel
'AR = .75 ' Just in case

' requirement
BLine% = 30 ' Set maximum lines per screen

GOTO OK

SetEGA:
'ON ERROR GOTO SetCGA
SCREEN 9: ' Hi res EGA
PSET (0, 0)
MonMode% = 9
MonTypeS = "EGA"
Wx = 215
Wy = 150
MaxScrX% = 630
MaxScrY% = 330
BLine% = 25
'AR = .75

GOTO OK

SetCGA: 'CGA is not currently permitted, too many
drawbacks.
GOTO PrnErr
'ON ERROR GOTO PrnErr
SCREEN 2
PSET (0, 0)
MonMode% = 2
MonType$ = "CGA"
Wx = 258!
Wy = 150
MaxScrX% = 310
MszScrY% = 180
BLine% = 25
'AR = .75

GOTO OK

170

PrnErr:
SCREEN 0
LOCATE 12, 5: PRINT "Sorry, your monitor is not compatible with
this program."
BadScrn% = 1

OK: ON ERROR GOTO 0

END SUB

FUNCTION SpdS (z)

'Constants from the PACAM User Manual. Used for computing the
'speed of sound

F = 49.040772#
G = 518.688
H = .00356616#
ZBAR - 36089

IF (z ZBAR) THEN
SpdS = F * (SQR(G - H * z))

ELSE
SpdS = 968.4652

END IF

END FUNCTION

SUB Station

TTurn(l) = Trurn(1) + DeltaCir(1)
TTurn(3) = TTurn(3) + DeltaCir(3)

'Find new coordinates for tgt centered on the station pt
'The Blue aircraft will follow the tgt, much like dog racing
'where the dog follows the mechanical rabbit.

'Convention: Station point + Radius * sin//cos of current radian
I Subscript I is Blue I and 3 is Blue 2.

IF IStat%(1) j4 6 THEN
Tgty(1) = StatPty + (RTmiles(1, 1) * OEF) * SIN(TTurn(I) + 0)
Tgtx(1) = StatPtx + (RTmiles(1, 1) * OEF) * COS(TTurn(1) + 0)

END IF
IF IStat%(3) i4 6 THEN
Tgty(3) = StatPty + (RTmiles(3, 1) * OEF) * SIN(TTuIrn(3) + Pi +

0)
Tgtx(3) = StatPtx + (RTmiles(3, 1) * OEF) * COS(TTurn(3) + Pi +

0)
END IF
END SUB

SUB TgtSel (TDist)

'Both Red 1 and Red 2 have been detected

IF (IStat%(2) = 1 AND IStat%(4) = 1) THEN GOTO decide:

IF IStat%(2) j4 1 AND IStat%(4) = 1 THEN
IF IStat%(3) ei. 6 AND IStat%(3) j4 2 THEN

Tgtx(3) = ACx(4)
Tgty(3) = ACy(4)
Tgt$(3) =" Red 2
ITgt%(3) = 4
mug 1

END IF
IF IStat%(1) i 6 AND IStat%(l) ii 2 THEN

Tgtx(1) = ACx(4)
Tgty(1) = ACy(4)
TgtS(I) =" Red 2
ITgt%(1) = 4

END IF
END IF

'Red 2 not detect, assign Red 1 to Blue units

171

IF IStat%(4) j4 I AND IStat%(2) 1 THEN
IF IStat%(3) iZ 6 AND IStat%(3) jZ 2 THEN

Tgtx(3) = ACx(2)
Tgty(3) = ACy(2)
Tgt$(3) = Red I
ITgt%(3) =2
mag 2

END IF
IF IStat%(1) iZ 6 AND IStat%(1) iZ 2 THEN

Tgtx(I) = ACx(2)
Tgty(1) =ACy(2)
Tgt() = Redi1
ITgt%(1) =2

END IF
END IF

'Red 1 is dead, Red 2 not detected

IF IStat%(2) =2 AND IStat%(4) =0 THEN
TgtS(1) = "None"

Tgt$(3) = "None

IStat%(1) =3
IStat%(3) =3
SysStatS = "Low"
msg 3

END IF

'Red 2 is dead, Red 1 not detected

IF IStat%(4) =2 AND IStat%(2) =0 THEN
TgtS(l) = "None"

TgtS(3) = "None"

IStat%(l) =3
IStat%(3) =3
SysStatS = "Low"
mag 4

END IF

GOTO endtgt:.

decide:

IF TDist(1, 2) i= TDist(3, 2) THEN 'BI is closer to RI than B2
is to RI

IF IStat%(1) j, 6 AND IStat%(l) j4 2 THEN
Tgtx(1) = ACx(2)
Tgty(1) = ACy(2)
Tgt() = Red I
ITgt%(1) =2
msg 5

END IF
IF IStat%(3) j4 6 AND IStat%(3) i4 2 THEN
Tgtx(3) = ACx(4)
Tgty(3) = ACy(4)
Tgt$(3) = Red 2
ITgt%(3) =4
mag 6

END IF
ELSE

IF IStat%(1) j4 6 AND IStat%(1) j4 2 THEN
Tgtx(I) =ACx(4)
Tgty(l) = ACy(4)
TgtS() = Red 2
ITgt%(1) =4
mag 7

END IF
IF IStat%(3) i4 6 AND IStat%(3) iZ 2 THEN
Tgtx(3) = ACx(2)
Tgty(3) = ACy(2)
Tgt*(3) = Red I
ITgt%(3) =2
msg 8

ZND IF
END IF

endtgt:

172

END SUB

FUNCTION tkag (Blue%, Red%)

Find LOS angle

Convention: Compute the LOS angle relative to Blue position

Px = ACx(Red%) - ACx(Blue%) 'Find x and y range between AC
Py = ACy(Red%) - ACy(Blue%)

' Error Trap for shared longitudal,Latitudal coordinates

IF (Px = 0) THEN
IF (ACy(Red%) 4= ACy(Blue%)) THEN

LOS = 1.570796
ELSE

LOS = 4.712389
END IF
GOTO tkend

END IF

IF (Py = 0) THEN
IF (ACx(Red%) = ACx(Blue%)) THEN

LOS = 0
ELSE

LOS = 3.141593
END IF
GOTO tkend

END IF

IF (ACy(Red%) Z ACy(Blue%)) THEN
LOS = ATN(Py / Px) + Pi

ELSE
LOS = ATN(Py / Px)

END IF

IF (ACx(Red%) i ACx(Blue%)) THEN
LOS = ATN(Py / Px) + Pi

ELSE
LOS = ATN(Py / Px)

END IF

tkend:
IF (LOS i 0) THEN

LOS = 2 Pi + LOS
ELSE

LOS = LOS
END IF

ttkag = ABS(ACHead(Blue%) - LOS)

'test for trackangle for boundness

IF ttkag i. Pi THEN
tkag = TwoPi - ttkag

ELSE
LkA ttkag

END IF

END FUNCTION

FUNCTION TrackAngle (IM)

TA = ABS(ACHead(l%)- OldHead(l%))
IF (TA 6 Pi) THEN

TrackAngle = TwoPi - TA
ELSE

TrackAngle = TA
END IF

END FUNCTION

SUB Update (AC%)

173

'Tgtx and Tgty are the Blue aircraft target coordinates
'ITgt%(i%) is the target index for the ith Blue aircraft
'Updates must be performed prior to calculating new heading

Tgtx(AC%) = ACx(ITgt%(AC%))
Tgty(AC%) = ACy(ITgt%(AC%))

END SUB

SUB USERDAT

' A subroutine to collect user scenario data.
Frame 1, 80, 4, 20

msg 40

ON ERROR GOTO fileerr:

getfile:
LOCATE 14, 8: INPUT "Use default scenario file Y/N (Y) "; DFAns$

IF (UCASE$(DFAns$) = "N") THEN 'Get user defined file
errflg% = 0
LOCATE 16, 48: PRINT"
LOCATE 16, 8: INPUT "Enter scenario file name with

extension:"; Scnfile$
OPEN ScnfileS FOR INPUT AS #5 'Modified Scenario file
IF errfig% = 1 GOTO getfile

ELSE
OPEN "Master.dat" FOR INPUT AS #5 'Default Scenario file

END IF

ON ERROR GOTO 3

msg 200

'Read in the data

FORI= ITO 100
INPUT #5, Dat(I)

NEXT I
CLOSE #5

' print 1st page

msg 30

FOR I = 2 TO 4
LOCATE (5 + I), 62: PRINT Dat(I)

NEXT I

FOR I= 12 TO 15
LOCATE (1), 62: PRINT Dat(I)

NEXT I

2 LOCATE 7, 72: INPUT tests 'forward operation x location
IF (tests , "") THEN 'Assign new value

Dat(2) = VAL(testS)
END IF
Basex = Dat(2)
LOCATE 7, 72: PRINT USING "####"; Basex

3 LOCATE 8, 72: INPUT tests 'forward operating y location
IF (tests ii ") THEN

Dat(3) = VAL(test$)
END IF
Basey = Dat(3)
LOCATES, 72: PRINT USING "####"; Basey

4 LOCATE 9, 72: INPUT tests 'GCI range
IF (test$.. "") THEN

Dat(4) = VAL(test$)
END IF
GCIRg = Dat(4)
IF GCIRg i 0 THEN

BEEP
LOCATE 9, 72: PRINT"

174

GOTO 4
END IF
LOCATE 9, 72: PRINT USING "####"; GCIRg

12 LOCATE 12, 72: INPUT test$ 'Number of aircraft
IF (test$ i4 I-) THEN

Dat(12) =VAL(testS)
END IF
NumAC% =Dat(12)
IF NumAC% i 0 OR NumAC% , 4 THEN

BEEP
LOCATE 12, 72: PRINT"
GOTO 12

END IF
LOCATE 12, 72: PRINT USING" #"; NumAC%

13 LOCATE 13, 72: INPUT test$ 'Altitude planie
IF (testS j4 "-) THEN

Dat(13) = VAL(testS)
END IF
z = Dat(13)
IF z i 1000 OR z Z 60000 THEN

BEEP
LOCATE 13, 72: PRINT"
GOTO 13

END IF
LOCATE 13, 72: PRINT USING z#~"

14 LOCATE 14, 72: INPUT test$ 'CAP x position
IF (test$ i4 -") THEN

Dat(14) = VAL(testl)
END IF
StatPtx = Dat(14)
LOCATE 14, 72: PRINT USING "####"; StatPtx

15 LOCATE 15, 72: INPUT test$ 'CAP y position
IF (test$ i4 -") THEN

Dat(15) = VAL(testS)
END IF
StatPty = Dat(15)
LOCATE 15, 72: PRINT USING "##;StatPty

Number of data elements per side

BiuDats 9
RedDat% =11

FOR k% I TO NumAC%
CLS
SELECT CASE k%
CASE 1

LOCATE 2, 10: PRINT "BLUE 1 SCENARIO DATA INPUT SCREEN"
mag S0
Ieep% = 0

CASE 2
LOCATE 2, 10: PRINT "RED 1 SCENARIO DATA INPUT SCREEN"
msg 60
leep% = 0
GOTO rdat

CASE 3
LOCATE 2, 10: PRINT "BLUE 2 SCENARIO DATA INPUT SCREEN"
meg 50
leep% = 40

CASE 4
LOCATE 2, 10: PRINT "RED 2 SCENARIO DATA INPUT SCREEN"
mag 60
leep% = 40
GOTO rdat

CASE ELSE
'free fighter
'later enhanacement

END SELECT

FOR I = 22 TO (21 + BluDat%)

175

LOCATE (I - 16), 62: PRINT Dat(I + leep%)
NEXT I

'Collect new data

22 LOCATE 6, 72: INPUT tests 'Max combat weight
IF (tests i "") THEN

Dat(22 + leep%) = VAL(testS)
END IF
Fuel(k%) = Dat(22 + leep%)
IF Fuel(k%) i 0 THEN

BEEP
LOCATE 6, 72: PRINT"
GOTO 22

END IF
LOCATE 6, 72: PRINT Fuel(k%)

23 LOCATE 7, 72: INPUT tests 'Bingo fuel weight
IF (tests . ") THEN

Dat(23 + leep%) = VAL(test$)
END IF
bingo(k%) = Dat(23 + leep%)
IF (bingo(k%) i 0 OR bingo(k%) L Fuel(k%)) THEN

BEEP
LOCATE 7, 72: PRINT"
GOTO 23

END IF
LOCATE 7, 72: PRINT bingo(k%)

24 LOCATE 8, 72: INPUT testS 'Patrol velocity
IF (tests .Z "") THEN

Dat(24 + leep%) = VAL(testS)
END IF
V(k%) = Dat(24 + leep%)
IF (V(k%) i 100 OR V(k%) 4 1500) THEN

BEEP
LOCATES, 72: PRINT"
GOTO 24

END IF
LOCATE 8, 72: PRINT V(k%)

25 LOCATE 9, 72: INPUT tests 'Pursuit velocity
IF (tests iiZ ") THEN

Dat(25 + leep%) = VAL(testS)
END IF
Vp(k%) = Dat(25 + leep%)
IF (Vp(k%) i 100 OR Vp(k%) L 1500) THEN

BEEP
LOCATE 9, 72: PRINT"
GOTO 25

END IF
LOCATE 9, 72: PRINT Vp(k%)

26 LOCATE 10, 72: INPUT tests 'Visual Range
IF (tests i. ") THEN

Dat(26 + leep%) = VAL(testS)
END IF
OptRng(k%) = Dat(26 + leep%)
IF (OptRng(k%) i 0) THEN

BEEP
LOCATE 10, 72: PRINT"
GOTO 26

END IF
LOCATE 10, 72: PRINT OptRng(k%)

27 LOCATE 11, 72: INPUT test' 'Visual Range
IF (teats i. "") THEN
Dat(27 + leep%) = VAL(testS)

END IF
RadRng(k%) = Dat(27 + leep%)
IF (RadRng(k%) i OptRng(k%)) THEN

BEEP
LOCATE 11, 72: PRINT"
GOTO 27

END IF
LOCATE 11, 72: PRINT RadRng(k%)

176

28 LOCATE 12, 72: INPUT tests 'Number of missiles
IF (tests a. "") THEN
Dat(28 + leep%) = VAL(testS)

END IF
NumMSL%(k%) = Dat(28 + leep%)
IF (NumMSL%(k%) ; 0 OR NumMSL%(k%) L. 4) THEN
BEEP
LOCATE 12, 72: PRINT"
GOTO 28

END IF
LOCATE 12, 72: PRINT NumMSL%(k%)

29 LOCATE 13, 72: INPUT tests 'Missile velocity
IF (tests j "") THEN

Dat(29 + leep%) = VAL(test$)
END IF
MsLV(k%) = Dat(29 + leep%)
IF (MsLV(k%) j V(k%)) THEN

BEEP
LOCATE 13, 72: PRINT"
GOTO 29

END IF
LOCATE 13, 72: PRINT MsLV(k%)

30 LOCATE 14, 72: INPUT tests 'Missile Sen Rng
IF (tests j "") THEN

Dat(30 + leep%) = VAL(testS)
END IF
MsLSenRg(k%) = Dat(30 + leep%)
IF (MsLSenRg(k%) i 0) THEN

BEEP
LOCATE 14, 72: PRINT"
GOTO 30

END IF
LOCATE 14, 72: PRINT MsLSenRg(k%)

GOTO endblue

rdat:

FOR I = 42 TO (41 + RedDat%)
LOCATE (I - 36), 62: PRINT Dat(I + leep%)

NEXT I

42 LOCATE 6, 72: INPUT tests 'Initial starting X position
IF (tests j "") THEN

Dat(42 + leep%) = VAL(test$)
END IF
ACx(k%) = Dat(42 + leep%)
LOCATE 6, 72: PRINT ACx(k%)

LOCATE 7, 72: INPUT tests 'Initial starting Y position
IF (tests i "") THEN

Dat(43 + leep%) = VAL(testS)
END IF
ACy(k%) = Dat(43 + leep%)
LOCATE 7, 72: PRINT ACy(k%)

44 LOCATE 8, 72: INPUT tests 'Max combat weight
IF (tests . ") THEN

Dat(44 + leep%) = VAL(testS)
END IF
Fuel(k%) = Dat(44 + leep%)
IF Fuel(k%) j 0 THEN

BEEP
LOCATE 6, 72: PRINT"
GOTO 44

END IF
LOCATE 8, 72: PRINT Fuel(k%)

45 LOCATE 9, 72: INPUT tests 'Bingo fuel weight
IF (tests i "") THEN

Dat(45 + leep%) = VAL(testS)
END IF
bingo(k%) = Dat(45 + leep%)
IF (bingo(k%) i 0 OR bingo(k%) . Fuel(k%)) THEN

177

BEEP
LOCATE 9, 72: PRINT'
GOTO 45

END IF
LOCATE 9, 72: PRINT bingo(k%)

46 LOCATE 10, 72: INPUT testS 'Patrol velocity
IF (tests j4 "') THEN

Dat(46 + leep%) = VAL(testS)
END IF
V(k%) = Dat(46 + leep%)
IF (V(k%) i 100 OR V(k%) Z 1500) THEN

BEEP
LOCATE 10, 72: PRINT"
GOTO 46

END IF
LOCATE 10, 72: PRINT V(k%)

47 LOCATE 11, 72: INPUT tests 'Pursuit velocity
IF (tests i "") THEN

Dat(47 + leep%) = VAL(testS)
END IF
Vp(k%) = Dat(47 + leep%)
IF (Vp(k%) j 100 OR Vp(k%) 4 150) THEN

BEEP
LOCATE 11, 72: PRINT"
GOTO 47

END IF
LOCATE 11, 72: PRINT Vp(k%)

48 LOCATE 12, 72: INPUT tests 'Visual Range
IF (tests iZ "") THEN

Dat(48 + leep%) = VAL(testS)
END IF
OptRng(k%) = Dat(48 + leep%)
IF (OptRng(k%) i 0) THEN

BEEP
LOCATE 12, 72: PAINT.
GOTO 48

END IF
LOCATE 12, 72: PRINT OptRng(k%)

49 LOCATE 13, 72: INPUT tests 'Visual Range
IF (tests i4 "") THEN
Dat(49 + leep%) = VAL(test$)

END IF
RadRng(k%) = Dat(49 + leep%)
IF (RadRng(k%) i OptRng(k%)) THEN

BEEP
LOCATE 13, 72: PRINT"
GOTO 49

END IF
LOCATE 13, 72: PRINT RadRng(k%)

50 LOCATE 14, 72: INPUT tests 'Number of missiles
IF (tests i4. "") THEN
Dat(50 + leep%) = VAL(testS)

END IF
NumMSL%(k%) = Dat(50 + leep%)
IF (NumMSL%(k%) i 0 OR NumMSL%(k%) , 4) THEN
BEEP
LOCATE 14, 72: PRINT"
GOTO 50

END IF
LOCATE 14, 72: PRINT NumMSL%(k%)

51 LOCATE 15, 72: INPUT tests 'Missile velocity
IF (tests ii "") THEN

Dat(51 + leep%) = VAL(testS)
END IF
MsLV(k%) = Dat(51 + lpep%)
IF (MsLV(k%) i V(k%)) THEN

BEEP
LOCATE 15, 72: PRINT"
GOTO 51

END IF
LOCATE 15, 72: PRINT MsLV(k%)

178

52 LOCATE 16, 72: INPUT tests 'Missile Sen Rng
IF (tests iZ "") THEN

Dat(52 + leep%) = VAL(testS)
END IF
MsLSenRg(k%) = Dat(52 + leep%)
IF (MsLSenRg(k%) 1 0) THEN

BEEP
LOCATE 16, 72: PRINT"
GOTO 52

END IF
LOCATE 16, 72: PRINT MsLSenRg(k%)

endblue:
NEXT k%

Begin page 6
CLS
Frame 1, 80, 1, 13
COLOR 3
LOCATE 3, 20: PRINT "FINAL PAGE"
COLOR 7
otpt% = 0
LOCATE 5, 4: INPUT "Do you want a detail summary generated Y/N
(N)? "; outans$
IF UCASES(outansS) = "Y" THEN otpt% = -1
LOCATE 7, 4: INPUT "Length of simulation (No limit): "; endsim%
LOCATE 9, 4: INPUT "Do you want to save this scenario Y/N (N):
ScnAns$

IF (UCASES(ScnAns$) = "Y") THEN
LOCATE 11, 8: INPUT "Enter the new scenario file name:

NewFileS
OPEN NewFile$ FOR OUTPUT AS #5 'Modified Scenario file

WRITE #5, "Base"
FOR I = 2 TO 10

WRITE #5, Dat(I)
NEXT I

WRITE #5, "Environment"
FOR I = 12 TO 20

WRITE #5, Dat(1)
NEXT I

WRITE #5, "Bluel"
FOR I = 22 TO 40

WRITE #5, Dat(I)
NEXT I

WRITE #5, "Redi"
FOR I = 42 TO 60

WRITE #5, Dat(I)
NEXT I

WRITE #5, "Blue2"
FOR I = 62 TO 80

WRITE #5, Dat(I)
NEXT I

WRITE #5, "Red2"
FOR I = 82 TO 100

WRITE #5, Dat(l)
NEXT I
CLOSE #5

END IF
END SUB

SUB Zoomln
CLS
Scale = Scale - .2
IF (Scale i .4) THEN

Scale = .2
END IF
VIEW (1, 17)-(MaxScrX%, MaxScrY%), 3, 4
WINDOW (-I! * Wx * Scale, Wy * Scale)-(Wx * Scale, -1! * Wy

Scale)
BBase
Grid

END SUB

SUB ZoomOut

179

CLS
Scale = Scale + .2
VIEW (1, 17)-(MaxScrX%, MaxScrY%), 3, 4
WINDOW (-1 *Wx * Scale, Wy * Scale)-(Wx *Scale, -1 * y*

Scale)
BBase
Grid

END SUB

180

MODOUT

181

'Program: Output Report Generator

'Author: Capt R. Moore

'Date: 15 Feb 91

DECLARE SUB pause 0
' Main program for Output module

DECLARE SUB Frame (Left%, Right%, Top%, Bottom%)
DECLARE SUB Reflect 0
DECLARE SUB Sigevnt 0
DECLARE SUB ACperf 0
DECLARE SUB Detlrpt 0
DECLARE SUB dtlhelp 0

COMMON SHARED /Aircraft/ NumAC%

SUB ACperf

CLOSE #7 'Assurance against file possibly left open

'Reads and displays the aircraft performance report

CLS
Frame 2, 78, 2, 20

COLOR 3: LOCATE 2, 18: PRINT "AIRCRAFT PERFORMANCE FACTORS
LISTING"
COLOR 7
OPEN "acperf.dat" FOR INPUT AS #7
i%= 2
DO WHILE NOT EOF(7)
i% = i% + 2
LINE INPUT #7, lines
LOCATE iM, 5: PRINT lines
IF i% = 18 THEN

COLOR 15: LOCATE 20, 25: PRINT "Press any key to continue"
COLOR 7
DO WHILE INKEYS = "": LOOP
CLS
Frame 2, 78, 2, 20
COLOR 3: LOCATE 2, 18: PRINT "AIRCRAFT PERFORMANCE FACTORS

LISTING"
COLOR 7
i%= 2

END IF
LOOP

COLOR 15: LOCATE 8, 17: PRINT "End of file, press any key to
continue"

COLOR 7
DO WHILE INKEYS - "": LOOP
CLS

CLOSE #7

END SUB

SUB Detlrpt

'Reads and displays the detail event report

CLS
COLOR 3: LOCATE 1, 25: PRINT "DETAIL EVENT LISTING"
LOCATE 3, 2: PRINT" Coordinates Vel Heading
Tgt Coord Range Det Msl"

LOCATE 4, 2: PRINT" Sec AC X Y Stat (Mi/S) (Rad) Tgt
X Y to Tgt Lvl Stat"
COLOR 7
CLOSE #6
OPEN "Detail.dat" FOR INPUT AS #6
i%= 4
DO WHILE NOT EOF(6)
i% = i% + I
LINE INPUT #6, lines
LOCATE i%, 2: PRINT lines

182

IF i% = 19 THEN
COLOR 15: LOCATE 23, 7: PRINT "Press iH. for help, spacebar to

exit, or any other key to continue"
COLOR 7
tests = ""
DO WHILE tests

tests = INKEYS
LOOP

IF tests "" GOTO enddetl
IF UCASE$(test$) = "H" THEN

dtlhelp
END IF

CLS
COLOR 3: LOCATE 1, 25: PRINT "DETAIL EVENT LISTING"
LOCATE 3, 2: PRINT " Coordinates Vel Heading
Tgt Coord Range Det Msl"
LOCATE 4, 2: PRINT " Sec AC X Y Stat (Mi/S) (Rad)

Tgt X Y to Tgt Lvl Stat"
COLOR 7
i%= 4

END IF
LOOP

COLOR 15: LOCATE 23, 12: PRINT "End of file, press any key to
continue"

COLOR 7
DO WHILE INKEY$ = "": LOOP
CLS

enddetl:
CLOSE #6
END SUB

SUB dtlhelp
CLS

LOCATE 3, 2: PRINT "Sec: The time of the simulation in seconds"
LOCATE 5, 2: PRINT "AC: The aircraft tail number"
LOCATE 6, 10: PRINT "1 -Z. Blue 1"
LOCATE 7, 10: PRINT "2 -. Red I"
LOCATE 8, 10: PRINT "3 -, Blue 2"
LOCATE 9, 10: PRINT "4 -Z Red 2"
LOCATE 11, 2: PRINT "Coordinates X and Y: Cartesian coordinates
of the ground"
LOCATE 13, 2: PRINT "Stat: Aircraft status:"
LOCATE 14, 10: PRINT "0 -Z Undetected"
LOCATE 15, 10: PRINT "1 -4 Detected"
LOCATE 16, 10: PRINT "2 -. KIA"
LOCATE 17, 10: PRINT "3 -. Patrol"
LOCATE 18, 10: PRINT "4 -Z Pursuit"
LOCATE 19, 10: PRINT "6 -, Bingo Fuel"
LOCATE 21, 2: PRINT "Vel (Mi/S): Current velocity in miles per
second"
LOCATE 24, 25: PRINT "Press spacebar to continue"
pause
CLS
LOCATE 3, 2: PRINT "Hading: Current heading, in radians, of the
aircraft"
LOCATE 5, 2: PRINT "Tgt: Current target assignment. Values
correspond with tail numbers above

"

LOCATE 7, 2: PRINT "Tgt Coord X and Y: Cartesian coordinates of
the target"
LOCATE 9, 2: PRINT "Rng to Tgt: Range, in miles, to currently
assigned target"
LOCATE 11, 2: PRINT "Det Lvl: Current sensor being used to track
intruder."
LOCATE 12, 10: PRINT "0 -. No sensor"
LOCATE 13, 10: PRINT "1 -Z Tactical surveillance radar"
LOCATE 14, 10: PRINT "2 - Interceptor's on-board radar"
LOCATE 15, 10: PRINT "3 -4. Interceptor's optical sensor"
LOCATE 17, 2: PRINT "Mal Stat: Missile status"
LOCATE 18, 10: PRINT "0 -i. Carried"
LOCATE 19, 10: PRINT "1 -4. In-flight"
LOCATE 20, 10: PRINT "2 -4, Destroyed"
LOCATE 24, 25: PRINT "Press spacebar to return to report"
pause
CLS

END SUB

183

SUB Reflect

'Reads and displays the scenario and performance files

CLS
Frame 2, 78, 2, 23

COLOR 3: LOCATE 2, 20: PRINT "DISPLAY OF DEFAULT SCENARIO INPUT
FILE"
COLOR 7
CLOSE #5
OPEN "MASTER.dat" FOR INPUT AS #5
i%= 3
DO WHILE NOT EOF(5)

=i = i% + 1
LINE INPUT #5, lines
LOCATE i%, 5: PRINT lines
IF i% = 21 THEN

COLOR 15: LOCATE 23, 25: PRINT "Press any key to continue"
COLOR 7
DO WHILE INKEY$ - "": LOOP
CLS
Frame 2, 78, 2, 23
COLOR 3: LOCATE 2, 20: PRINT "DISPLAY OF DEFAULT SCENARIO

INPUT FILE"
COLOR 7
i%= 3

END IF
LOOP

COLOR 15: LOCATE 23, 14: PRINT "End of scenario file, press
any key to continue"

COLOR 7
DO WHILE INKEYS "": LOOP
CLS

CLOSE #1
CLOSE #2
CLOSE #3
CLOSE #4

OPEN "BIPerf.doc" FOR INPUT AS #1 'Blue One performance data
OPEN "RIPerf.doc" FOR INPUT AS #2 'Red One performance data
OPEN "B2Perf.doc" FOR INPUT AS #3 'Blue Two performance data
OPEN "R2Perf.doc" FOR INPUT AS #4 'Red Two performance data

DIM ACS(NumAC%)

ACS(1) = "Blue I"
AC$(2) = "Red 1"
ACS(3) = "Blue 2"
ACS(4) = "Red 2"

FOR j% = I TO NumAC%
COLOR 3: LOCATE 2, 17: PRINT USING "DISPLAY OF & PERFORMANCE
INPUT FILE"; AC$(j%)
COLOR 7
% = 3

DO WHILE NOT EOFU%)
i% = i% + 1
INPUT #j%, lines
LOCATE i%, 5: PRINT lines
IF i% = 21 THEN

COLOR 15: LOCATE 23, 25: PRINT "Press any key to continue"
COLOR 7
DO WHILE INKEYS = "": LOOP
CLS
COLOR 3: LOCATE 2, 20: PRINT USING "DISPLAY OF & PERFORMANCE

INPUT FILE"; ACS(j%)
COLOR 7
i%= 3

END IF
LOOP

COLOR 15: LOCATE 23, 14: PRINT "End of file, press any key to
continue"

COLOR 7

184

DO WHILE INKEYS - "": LOOP
CLS

NEXT j%

CLOSE #1
CLOSE #2
CLOSE #3
CLOSE #4
CLOSE #5

END SUB

SUB Sigevnt

'Reads and displays the significant event report

CLS
Frame 2, 78, 2, 23

COLOR 3: LOCATE 2, 25: PRINT "SIGNIFICANT EVENT REPORT"
COLOR 7
CLOSE #12
OPEN "output.dat" FOR INPUT AS #12
i%= 3
DO WHILE NOT EOF(12)
i% = i% + 2
LINE INPUT #12, lines
LOCATE i%, 5: PRINT lines
IF i% = 19 THEN

COLOR 15: LOCATE 23, 25: PRINT "Press any key to continue"
COLOR 7
DO WHILE INKEY$ = "": LOOP
CLS
Frame 2, 78, 2, 23
COLOR 3: LOCATE 2, 25: PRINT "SIGNIFICANT EVENT REPORT"
COLOR 7
i%= 3

END IF
LOOP

COLOR 15: LOCATE 23, 18: PRINT "End of file, press any key to
continue"

COLOR 7
DO WHILE INKEYS = "": LOOP
CLS

CLOSE #12

END SUB

185

MODMSG

186

'Purpose: Select screen messages

'Author: Capt R. Moore

'Date: 15 Feb 91

DECLARE SUB Frame (Left%, Right%, Top%, Bottom%)
DECLARE SUB pause ()
COMMON SHARED /messages/ cornS, TNOW%

SUB Mmsg (msgnum%, AC%, MSL%, ACT%)
IF AC% = 1 THEN ACS = "Blue 1"
IF AC% = 2 THEN ACS = "Red 1"
IF AC% = 3 THEN ACS = "Blue 2"
IF AC% = 4 THEN AC$ = "Red 2"
IF ACT% = I THEN ACTS = "Blue 1"
IF ACT% = 2 THEN ACTS = "Red 1"
IF ACT% = 3 THEN ACTS = "Blue 2"
IF ACT% = 4 THEN ACTS = "Red 2"

SELECT CASE msgnum%
CASE 10
PRINT #10, USING "At #### seconds, & launched missile No. #

at & ."; TNOW%; AC$; MSL%; ACTS
CASE 20
PRINT #10, USING "At #### seconds, & missile, No. #,

destroyed & ."; TNOW%; ACS; MSL%; ACTS
CASE 30
PRINT #10, USING "At #### seconds, & missile, No. #,

missed & "; TNOW%; ACS; MSL%; ACTS
END SELECT

END SUB

SUB msg (msgnum%) STATIC

'May want to use aircraft numbers instead

a = 35 'Starting position for comm messages

'File 10 is the output file

SELECT CASE msgnum%
CASE 0 'Initialization case

Use1% = 0
Use2% = 0
Use3% = 0
Use4% = 0
Uses% = 0
Use6% = 0
Use7% = 0
Use8% = 0

CASE I
IF Usel% = 0 THEN

PRINT #10, USING "At #### seconds, target identified as Red
2 was assigned to Bluel and 2"; TNOW%

corns = "Blue I and 2 intercept boggie Red 2"
LOCATE 1, a: PRINT cornS
Usel% = 1

END IF
CASE 2
IF Use2% = 0 THEN

PRINT #10, USING "At *### seconds, target identified as Red
1 was assigned to Bluel and 2" TNOW%

corns = "Blue 1 and 2 intercept boggie Red I
LOCATE 1, a: PRINT com$

187

Use2% = 1
END IF

CASE 3
IF Use3% = 0 THEN

PRINT #10, USING "At #### seconds, System status went Low,
no targets observed"; TNOW%

END IF
Use3% = I

CASE 4
IF Use4% = 0 THEN

PRINT #10, USING "At #### seconds, System status went Low,
no targets observed"; TNOW%

END IF
Use4% = I

CASE 5
IF Use5% = 0 THEN

PRINT #10, USING "At #### seconds, target identified as Red
I was assigned to Bluel"; TNOW%

corns = "Blue 1 intercept boggie Red 1
LOCATE 1, a: PRINT corns
Use5% = I

END IF
CASE 6
IF Use6% = 0 THEN

PRINT #10, USING "At #### seconds, target identified as Red
2 was assigned to Blue2"; TNOW%

com= "Blue 2 intercept boggie Red 2
LOCATE 1, a: PRINT cornS
Use6% = 1

END IF
CASE 7
IF Use7% = 0 THEN

PRINT #10, USING "At #### seconds, target identified as Red
2 was assigned to Bluel", TNOW%

corns "Blue 1 intercept boggie Red 2
LOCATE 1, a: PRINT com$
Use7% = 1

END IF
CASE 8
IF Use8% = 0 THEN

PRINT #10, USING "At #### seconds, target identified as Red
1 was assigned to Blue2"; TNOW%

cornS = "Blue 2 intercept boggie Red 1
LOCATE 1, a: PRINT com$
Use8% = 1

END IF
CASE 10
corns = " Its Miller Time!
LOCATE 1, a: PRINT com$

Begin Examples description

CASE 20 'Load and Go opening text

COLOR 3
LOCATE 3, 20: PRINT "LOAD SCENARIO AND BEGIN SIMULATION"
COLOR 7
LOCATE 6, 8: PRINT "This option allows you to load an existing

"

LOCATE 7, 8: PRINT "scenario file and automatically begin the
"

LOCATE 8, 8: PRINT "simulation without returning to the menu.
"

LOCATE 10, 8: PRINT "If you want to use a scenario file other
than the

"

LOCATE 11, 8: PRINT "default file, enter an 'N' at the next
prompt, "
LOCATE 12, 8: PRINT "otherwise iRTN,."

CASE 30 '1st page of scenario editor

CLS

Frame 1, 60, 1, 23
Frame 60, 70, 1, 23
Frame 70, 80, 1, 23
COLOR 3

12345678901234567890123456789012345678901234567890

188

LOCATE 3, 10: PRINT "SCENARIO DATA INPUT SCREEN, PAGE 1"
LOCATE 5, 61: PRINT "DEFAULTS"
LOCATE 5, 74: PRINT "NEW"
LOCATE 6, 4: PRINT "GROUND UNIT DATA"
LOCATE 11, 4: PRINT "GENERAL AIRCRAFT DATA"
COLOR 7
LOCATE 7, 4: PRINT "Forward operating location X coordinate
(-250,250):"
LOCATE 8, 4: PRINT "Forward operating location Y coordinate
(-250,250):"
LOCATE 9, 4: PRINT "Forward operating location GCI max range
(250):"

LOCATE 12, 4: PRINT "Number of aircraft in simulation (Limit 4):"
LOCATE 13,4: PRINT "Altitude for which simulation takes place
(20000):"
LOCATE 14, 4: PRINT "CAP station location X coordinate
(-250,250):"
LOCATE 15, 4: PRINT "CAP station location Y coordinate
(-250,250):"

CASE 40 'Edit Scenario text

COLOR 3
LOCATE 2, 20: PRINT "USER DEFINED SCENARIO OPTION"
COLOR 7
LOCATE 6, 8: PRINT "This option permits you the flexibility to
create"
LOCATE 7, 8: PRINT "a new scenario file from data contained
within the"
LOCATE 8, 8: PRINT "default scenario or from a previously
modified scenario file."
LOCATE 10, 8: PRINT "If you want to create a new scenario based
on the default"
LOCATE 11, 8: PRINT "file, press 'Enter' at the next prompt,
otherwise type"
LOCATE 12, 9: PRINT "N and press 'Enter'."

CASE 50 'Blue labels for scenario editor
COLOR 3
Frame 1, 60, 1, 23
Frame 60, 70, 1, 23
Frame 70, 80, 1, 23

LOCATE 4, 10: PRINT" AIRCRAFT DATA ELEMENTS"
LOCATE 4, 61: PRINT "DEFAULTS"
LOCATE 4, 74: PRINT "NEW"
COLOR 7
LOCATE 6, 4: PRINT "Initial fuel (Ibs):"
LOCATE 7, 4: PRINT "Bingo fuel level (greater than initial):"
LOCATE 8, 4: PRINT "Patrol velocity (min: 100, max 1500 mph):"
LOCATE 9, 4: PRINT "Pursuit velocity (min: 100, max 1500 mph):"
LOCATE 10, 4: PRINT "Optical range for 0.5 probability of
detection:"
LOCATE 11, 4: PRINT "Radar range for 0.5 probability of
detection:"
LOCATE 12, 4: PRINT "Initial missile count (min: 0, max: 4):"
LOCATE 13, 4: PRINT "Missile steady state velocity (mph)-"
LOCATE 14, 4: PRINT "Missile sensor range for 0.5 probability of
lock-on:"

CASE 60 'Red labels for scenario editor

COLOR 4

Frame 1, 60, 1, 23
Frame 60, 70, 1, 23
Frame 70, 80, 1, 23

LOCATE 4, 4: PRINT" AIRCRAFT DATA ELEMENTS"
LOCATE 4, 61: PRINT "DEFAULTS"
LOCATE 4, 74: PRINT "NEW"
COLOR 7
LOCATE 6, 4: PRINT "Initial X coordinate (Range: -250, 250):"
LOCATE 7, 4: PRINT "Initial Y coordinate (Range: -250, 250):"

189

LOCATE 8, 4: PRINT "Initial fuel (min: max: lbs):"
LOCATE 9, 4: PRINT "Bingo fuel level (greater than initial):"
LOCATE 10, 4: PRINT "Attack velocity (min: 100, max 1000 mph):"
LOCATE 11, 4: PRINT "Evade velocity (min: 100, max 1000 mph):"
LOCATE 12, 4: PRINT "Optical range for 0.5 probability of
detection:"
LOCATE 13, 4: PRINT "Radar range for 0.5 probability of
detection:"
LOCATE 14, 4: PRINT "Initial missile count (min: 0, max: 4):"
LOCATE 15, 4: PRINT "Missile steady state velocity (mph):"
LOCATE 16, 4: PRINT "Missile sensor range for 0.5 probability of
lock-on:"

CASE 101 'Main menu text

LOCATE 17, 3: PRINT "The menu displayed above is ATACS' main
menu. The first option, Examples"

LOCATE 18, 3: PRINT "of Processes, introduces a host of textual
and animated examples of common"

LOCATE 19, 3: PRINT "features found in most combat models. The
second option, Combat "

LOCATE 20, 3: PRINT "Demonstration, introduces the model's
scenario and presents an animated "

LOCATE 21, 3: PRINT "demonstration of simulated air-to-air
combat. The third option, Display"

LOCATE 22, 3: PRINT "Output, presents output products commonly
found in a simulation of this type."

LOCATE 23, 3: PRINT "The final option, Terminate, is
self-explanatory. To select an option,"

LOCATE 24, 3: PRINT "enter the highlighted letter of that
option."

CASE 1011
LOCATE 12, 5: PRINT "You have not ran the combat demonstration

as of yet. You must run the "
LOCATE 13, 5: PRINT "demonstration first before any output will

be produced. I'll direct"
LOCATE 14, 5: PRINT "you to the demonstration menu."
LOCATE 18, 20: PRINT "Press the spacebar to return."
pause
CLS

CASE 102 'Examples menu text
LOCATE 20, 5: PRINT "The purpose of each example is to

demonstrate some possible feature or "
LOCATE 21, 5: PRINT "process typically found in combat models.

Several of the examples are"
LOCATE 22, 5: PRINT "animated and require your participation."

CASE 103 'Demonstration menu text
LOCATE 17, 5: PRINT "The first option, Express Load and Go,

offers you the opportunity to select"
LOCATE 18, 5: PRINT "an existing scenario file and begin the

simulation directly. The second"
LOCATE 19, 5: PRINT "option, Load and Edit, permits viewing and

editing of any existing "
LOCATE 20, 5: PRINT "scenario file. Following an edit session

of a scenario file, select "
LOCATE 21, 5: PRINT "Run Demonstration to begin the air-to-air

combat simulation."

CASE 1031
LOCATE 12, 5: PRINT "You have not loaded a scenario file as of

yet. You must select"
LOCATE 13, 5: PRINT "the second option, Load and Edit Scenario

File, before running the"
LOCATE 14, 5: PRINT "demonstration or use the express option to

by pass it all."
LOCATE 18, 20: PRINT "Press the spacebar to return"
pause
CLS

CASE 1032
LOCATE 12, 5: PRINT "You must reload a scenario before the

demonstration can be ran again"
LOCATE 18, 20: PRINT "Press the spacebar to return"

190

pause
CLS

CASE 104

LOCATE 20, 3: PRINT "This menu lists ATACS' available output
options. A description of each "

LOCATE 21, 3: PRINT "output listing is available upon selection
of that option."

CASE 1041 'Reflected input report
CLS
COLOR 3
LOCATE 2, 25: PRINT "REFLECTED INPUT"
COLOR 7
LOCATE 5, 5: PRINT "This feature allows the student to see the
extent of data "
LOCATE 7, 5: PRINT "that may be embedded in the model without the
user's knowledge"
LOCATE 9, 5: PRINT "of its existence. The point here is to bring
about an awareness"
LOCATE 11, 5: PRINT "of embedded data which is not always
apparent to the"
LOCATE 13, 5: PRINT "user of the combat model."
LOCATE 16, 5: PRINT "The first listing displayed is the scenario
data used as "
LOCATE 18, 5: PRINT "the default scenario file. The same data
can been seen when"
LOCATE 20, 5: PRINT "editing the scenario file. The second
listing displayed is"
LOCATE 22, 5: PRINT "the raw aircraft performance data."
LOCATE 24, 20: PRINT "Press the spacebar to begin."

pause
CLS

CASE 1042 'Detailed output report
CLS
COLOR 3
LOCATE 6, 25: PRINT "Detail Summary"
COLOR 7
LOCATE 9, 5: PRINT "A detailed summary is an option found in most
cumbat models."
LOCATE 11, 5: PRINT "Its purpose is to provided the model user
with a second by "
LOCATE 13, 5: PRINT "second account of events occurring during
the simulation. "
LOCATE 24, 20: PRINT "Press the spacebar to begin."

pause
CLS

CASE 1043 'Aircraft performance
COLOR 3
LOCATE 6, 25: PRINT "Detail Summary"
COLOR 7
LOCATE 9, 5: PRINT "This option displays aircraft parameters
computed by the model"
LOCATE 11, 5: PRINT "during initialization. For each of the
aircraft's two velocity "
LOCATE 13, 5: PRINT "settings, performance parameters are
calculated. Those dis-"
LOCATE 15, 5: PRINT "played here were used in modeling such
activities as fuel"
LOCATE 17, 5: PRINT "consumption, sustained G-force for
maintaining level turns "
LOCATE 19, 5: PRINT "and the turning radius given the altitude
and velocity. "
LOCATE 24, 20: PRINT "Press the spacebar to begin."

pause
CLS

CASE 1044 'Sig event report
COLOR 3
LOCATE 3, 25: PRINT "Significant Events Summary"
COLOR 7
LOCATE 6, 5: PRINT "The final report, the Summary of Significant

191

Events, provides"
LOCATE 8, 5: PRINT "a condensed listing of significant events,
the participants, and"
LOCATE 10, 5: PRINT "the time of their occurrence. The advantage
of such a report "
LOCATE 12, 5: PRINT "permits examination of the state conditions
of the simulation"
LOCATE 14, 5: PRINT "without having to search through detailed
listing like that

"

LOCATE 16, 5: PRINT "provided by the second option, Detail
Summary. This report is"
LOCATE 18, 5: PRINT "is typical of reports used by modelers in
debugging and "
LOCATE 20, 5: PRINT "validating models."
LOCATE 24, 20: PRINT "Press the spacebar to begin."

pause
CLS

CASE 110 'Random number example text

CLS
ans$
LOCATE 10, 20: INPUT "Display Random Number Generation
Introduction (Y/N)"; ans$
IF UCASES(ans$) = "N" GOTO endrngx

CLS
COLOR 3
LOCATE 3, 25: PRINT "Random Number Generation"
COLOR 7

LOCATE 6, 5: PRINT "A random number generator (RNG) lies at the
core of any Monte-Carlo"
LOCATE 8, 5: PRINT "simulation. Its purpose is to simulate the
random chance or"
LOCATE 10, 5: PRINT "uncertainty that occurs in real world
systems. Since the RNG plays"
LOCATE 12, 5: PRINT "such an important role in simulation, as a
minimum, the RNG should"
LOCATE 14, 5: PRINT "be graphically validated. The purpose of
this example is to"
LOCATE 16, 5: PRINT "provide that visual validation and
interaction with the RNG."

LOCATE 19, 5: PRINT "The uniform RNG generates independent,
identically distributed"
LOCATE 21, 5: PRINT "random variates from a uniform (0,1)
distribution. Typically, a RNG"

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "produces random variates ranging between 0 to
1. The"
LOCATE 5, 5: PRINT "probability of any value occurring in the
generator's range"
LOCATE 7, 5: PRINT "is the same for each value."

LOCATE 10, 5: PRINT "You begin the demonstration by entering the
number of samples to be"
LOCATE 12, 5: PRINT "taken. The number of samples should be 500
or more. You will then"
LOCATE 14, 5: PRINT "need to enl,-r a seed value (a starting
point) for the generator."
LOCATE 16, 5: PRINT "When the test begins, an animated bar chart
displays the progress of."
LOCATE 18, 5: PRINT "the test. Once the test is complete, the
mean and variance of the

"

LOCATE 20, 5: PRINT "samples are computed and displayed.

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "The demonstration allows you to perform the

192

test over and over."
LOCATE 5, 5: PRINT "You may want to investigate what impact seed
values have on the"
LOCATE 7, 5: PRINT "RNG."

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause

endrngx:
CLS

CASE 111

CLS
COLOR 3
LOCATE 3, 25: PRINT "The Process of Search"
COLOR 7

LOCATE 5, 5: PRINT "To search implies a process of physically
looking or possibly"
LOCATE 7, 5: PRINT "electronically scanning over an area for a
specified period of'
LOCATE 9, 5: PRINT "time. In simulating this process, the
looking may be an attempt to"
LOCATE 11, 5: PRINT "detect, and the frequency at which the
simulation attempts to"
LOCATE 13, 5: PRINT "detect may be a recursive loop slaved to a
timing mechanism. In"
LOCATE 15, 5: PRINT "such a case, the process of searching is
more implicitly modeled"
LOCATE 17, 5: PRINT "than explicitly. That is, search may exists
as a function of some"
LOCATE 19, 5: PRINT "other explicitly simulated process. Such is
the case in this"
LOCATE 21, 5: PRINT "combat demonstrator."

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

CASE 112

CLS
ansS
LOCATE 10, 15: INPUT "Display Process of Detection Introduction
(Y/N)"; ansS
IF UCASE$(ans$) = "N" GOTO enddetx

CLS
COLOR 3
LOCATE 3, 25: PRINT "The Process of Detection"
COLOR 7
LOCATE 5, 5: PRINT "The purpose of this example is to illustrate
and contrast"
LOCATE 7, 5: PRINT "two simple methods used in simulating target
detection.

"

LOCATE 9, 5: PRINT "These two are the cookie cutter and
continuous detection methods."

LOCATE 12, 5: PRINT "The first example begins by plotting the
cookie cutter step"
LOCATE 14, 5: PRINT "function. From the plot, you may observe
that this function"
LOCATE 16, 5: PRINT "offers two probabilities of detection.
These are 0 and 1."
LOCATE 18, 5: PRINT "The transition from 0 to 1 takes place at
the maximum range.

"

LOCATE 20, 5: PRINT "For the cookie cutter, this value is that
range at which the"
LOCATE 22, 5: PRINT "probability of detection is 0.5.
LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "Once the step function has been plotted, you
are prompted to"

193

LOCATE 5, 5: PRINT "enter a range-to-target. The program
evaluates this"
LOCATE 7, 5: PRINT "range, places a maker on the plot
corresponding to this"
LOCATE 9, 5: PRINT "range, and displays the outcome of the
detection event. "

LOCATE 12, 5: PRINT "The second example introduces the continuous
detection method. A"
LOCATE 14, 5: PRINT "plot generated by the continuous detection
exponential model is"
LOCATE 16, 5: PRINT "over laid on the previous step function to
contrast these two"
LOCATE 18, 5: PRINT "methods. From the plot of the output, you
may observe there exists"
LOCATE 20, 5: PRINT "an infinite number of probability values.
Pay particular attention"
LOCATE 22, 5: PRINT "at the point where the two functions cross.

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "As before, you are prompted for a target
range. Once entered, the"
LOCATE 5, 5: PRINT "probability of detection is determined and a
marker is placed on"
LOCATE 7, 5: PRINT "the curve. The program then generates a
random number. The random"
LOCATE 9, 5: PRINT "number is compared to the probability of
detection. If the random"
LOCATE 11, 5: PRINT "number is lower, then the target was
detected; otherwise, the"
LOCATE 13, 5: PRINT "target was not detected."
LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause

enddetx:
CLS

CASE 113

CLS
COLOR 3
LOCATE 3, 20: PRINT "The Process of Target Selection"
COLOR 7
LOCATE 5, 5: PRINT "The simulation of target selection is very
much simulation specific."
LOCATE 7, 5: PRINT "There are no target selection models readily
available to the combat"
LOCATE 9, 5: PRINT "modeler. This is, because quite often target
selection is rule based."
LOCATE 11, 5: PRINT "A rule of engagement (ROE) is but one such
example. The ROE may"
LOCATE 13, 5: PRINT "dictate what, how, and when a target is
selected and engaged."

LOCATE 16, 5: PRINT "In some cases, target selection is a process
of prioritization. An"
LOCATE 18, 5: PRINT "example where the simulated environment may
be rich with targets,"
LOCATE 20, 5: PRINT "or the targets present different threat
levels, a rule or"
LOCATE 2?, 5: PRINT "prioritization must dictate the selection
order. "

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "These rules may be represented as a set of
conditional statements"
LOCATE 5, 5: PRINT "embedded in the computer code. The ATACS
combat demonstration has"
LOCATE 7, 5: PRINT "a target selection rule based on proximity.
Whichever interceptor"
LOCATE 9, 5: PRINT "is closer to a newly detected target is

194

assigned that target."
LOCATE 11, 5: PRINT "Additional interceptor's, possibly wingman,
are then free to engage"
LOCATE 13, 5: PRINT "additional targets as they are discovered.

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

CASE 114

CLS
anss
LOCATE 10, 22: INPUT "Display CEP Introduction (Y/N)"; ans$
IF UCASES(ans$) = "N" GOTO endcepx

CLS
COLOR 3
LOCATE 2, 19: PRINT "An Example of Circular Erorr Probable"
COLOR 7
LOCATE 4, 5: PRINT "The circular error probable (CEP) example is
designed"
LOCATE 6, 5: PRINT "to illustrate the concept and application of
the CEP factor. "

LOCATE 9, 5: PRINT "You begin the demonstration by test firing a
simulated weapon."
LOCATE 11, 5: PRINT "The data generated by the impact points are
used to determine"
LOCATE 13, 5: PRINT "dispersion characteristics of the weapon.
The mean impact point"
LOCATE 15, 5: PRINT "(MIP), the systematic dependent error,
referred as bias, and the"
LOCATE 17, 5: PRINT "CEP are computed and used to describe our
simulated weapon."

LOCATE 20, 5: PRINT "The MIP is the arithmetic mean of all of the
impact point"
LOCATE 22, 5: PRINT "coordinates. If the calculated mean impact
point does not"
LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "correspond to the aim point, then an
unfortunate systematic error"
LOCATE 5, 5: PRINT "is present. Fortunately, this error, once
known, can be eliminated"
LOCATE 7, 5: PRINT "with appropriate offset of the weapon.

LOCATE 10, 5: PRINT "The final weapon characteristic is the CEP.
The CEP denotes a"
LOCATE 12, 5: PRINT "radius. The meaning of this radius is that
50% of all the impact"
LOCATE 14, 5: PRINT "points will fall within it. The CEP, once
determined, is then used"
LOCATE 16, 5: PRINT "to plot the probability of hit cumulative
distribution curve. Once"
LOCATE 18, 5: PRINT "the curve has been plotted, you can select
various target"
LOCATE 20, 5: PRINT "radii and observe their impact on the hit
probabilities."
LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "To contrast the impact of CEP on the
probability of hit, you may enter"
LOCATE 5, 5: PRINT "additional CEP values to generate new plots.
Again you can select"
LOCATE 7, 5: PRINT "target radii and compare the outcome between
plots."

LOCATE 24, 20: PRINT "Press the spacebar to continue"

195

pause

endcepx:
CLS

CASE 115

CLS
COLOR 3
LOCATE 3, 17: PRINT "The Concept and Application of Track Angle"
COLOR 7
LOCATE 5, 5: PRINT "A common term found in high resolution
aircraft combat models is"
LOCATE 7, 5: PRINT "the term track angle. This term is commonly
defined as the angle"
LOCATE 9, 5: PRINT "between the aircraft's velocity vector and
the line of site (LOS)"
LOCATE 11, 5: PRINT "vector. The velocity vector generally
extends in the same"
LOCATE 13, 5: PRINT "direction as the heading. The LOS vector
originates from tWe nose"
LOCATE 15, 5: PRINT "of the aircraft and terminates at the
target. For example, an"
LOCATE 17, 5: PRINT "aircraft that has a target directly off its
beam has a track angle"
LOCATE 19, 5: PRINT "of 90 degrees. If the target is directly
behind the aircraft,"
LOCATE 21, 5: PRINT "then the track angle is 180 degrees."

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "ATACS combat demonstrator makes use of the
track angle concept in"
LOCATE 5, 5: PRINT "two sperate applications. In one case, the
track angle is used in"
LOCATE 7, 5: PRINT "limiting an aircraft's turn towards a target.
If the magnitude of"
LOCATE 9, 5: PRINT "the track angle is greater than the
aircraft's turn rate per"
LOCATE 11, 5: PRINT "second, the turn is then limited to the turn
rate. In the second"
LOCATE 13, 5: PRINT "application track angle is used to determine
if a target is within"
LOCATE 15, 5: PRINT "the sweep angle of the aircraft's radar.

LOCATE 18, 5: PRINT "Additional applications of the track angle
include prioritization"
LOCATE 20, 5: PRINT "of threats. If the track angle between, say
A/C I and A/C 2, is"
LOCATE 22, 5: PRINT "high (120-180 degrees) and the track angle
between A/C 2 and A/C 1"

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "is low (0-30 degrees), then A/C 2 is behind
A/C I and pointing"
LOCATE 5, 5: PRINT "toward the tail of A/C 1. Given this
condition, A/C 2 becomes a"
LOCATE 7, 5: PRINT "high priority threat for A/C 1. The action
t"c. by A/C 1 is then"
LOCATE 9, 5: PRINT "dependent on the embedded target selection
r-iles."

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause

endtkx:
CLS

CASE 200 'Introduction to the Model

CLS
ans$

196

LOCATE 10, 22: INPUT "Present Scenario Synopsis (Y/N)"; ans$
IF UCASE$(ans$) = "N" GOTO endscen

CLS
COLOR 3
LOCATE 3, 25: PRINT "A Brief Scenario Synopsis"
COLOR 7

LOCATE 6, 5: PRINT "Three principal types of entities exist in
this model. They are"
LOCATE 8, 5: PRINT "the Red forces, Blue forces, and Blue's
airbase. The objective of"
LOCATE 10, 5: PRINT "the Red force is to attack Blue's airbase.
Blue's objective is"
LOCATE 12, 5: PRINT "of course to defend the airbase. The
airbase provides long"
LOCATE 14, 5: PRINT "range, early warning detection with a
tactical surveillance radar."

LOCATE 17, 5: PRINT "Red forces begin at the location specified
by the scenario with a"
LOCATE 19, 5: PRINT "heading directed towards the airbase. Red
is non-reactive and will"
LOCATE 21, 5: PRINT "continue on this initial heading throughout
the simulation."
LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 3, 5: PRINT "Blue aircraft are initially on airborne alert
flying a combat air"
LOCATE 5, 5: PRINT "patrol (CAP) mission. Blue will continue to
fly the CAP until a"
LOCATE 7, 5: PRINT "threat has been detected. The location of
the CAP is provided by"
LOCATE 9, 5: PRINT "the scenario file."

LOCATE 12, 5: PRINT "Until the Red intruders are detected their
existence is unknown to"
LOCATE 14, 5: PRINT "Blue. Once detected, either by the
surveillance radar or aircraft"
LOCATE 16, 5: PRINT "radar, Blue forces are vectored to Red's
location by ground"
LOCATE 18, 5: PRINT "controllers until airborne radar contact is
made. Radar contact of"
LOCATE 20, 5: PRINT "an intruder by a Blue interceptor in
signified by a color change or'
LOCATE 22, 5: PRINT "the interceptors radar frontier."

LOCATE 24, 20. PRINT "Press the spacebar to continue"
pause
CLS

LOCATE 4, 5: PRINT "An embedded rule of engagement requires Blue
to make visual"
LOCATE 6, 5: PRINT "identification of the Red intruder before
defensive action can be"
LOCATE 8, 5: PRINT "taken. Visual identification is also
signified by a change in"
LOCATE 10, 5: PRINT "color of the radar frontier. Once the
intruder is visually

"

LOCATE 12, 5: PRINT "identified as a threat, Blue will then
attempt to destroy it."
LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
endscen:

COLOR 7

CASE 210
CLS
COLOR 3
LOCATE 2, 17: PRINT "Features of the Air Combat Simulator
COLOR 7

197

LOCATE 4, 2: PRINT "These keys are active only during the
simulation "

LOCATE 6, 5: PRINT "F1 Halt: Temporarily suspends the

simulation."

LOCATE 8, 5: PRINT "F2 Resume: Causes simulation to resume."

LOCATE 10, 5: PRINT "F3 Atrib Scrn: Displays the status of the
simulation and"
LOCATE 11, 5: PRINT " entities. Permits you to
look inside"
LOCATE 12, 5: PRINT " the simulation and see the
changing states."
LOCATE 13, 5: PRINT " May be used to accelerate
simulation. "

LOCATE 15, 5: PRINT "F4 Graphics: Returns you to the animation
screen."

LOCATE 17, 5: PRINT "F6 Zoom In: Moves the point of view
further in."

LOCATE 19, 5: PRINT "F5 Zoom Out: Moves the point of view
farther out."

LOCATE 21, 5: PRINT "F7 Quit: Ends the simulation."

LOCATE 24, 20: PRINT "Press the spacebar to continue"
pause
CLS

CASE 5000
CLS
LOCATE 12, 15: INPUT "Display ATACS Review Questions Y/N (Y)";
QAns$
IF UCASE$(QAnsS) = "N" GOTO endquest
CLS
COLOR 3: LOCATE 3, 30: PRINT "POINTS TO PONDER"

COLOR 15: LOCATE 6, 2: PRINT "MODEL CLASSIFICATION"

COLOR 7
LOCATE 8, 2: PRINT "Was the purpose of the combat demonstration
for education and training"
LOCATE 9, 2: PRINT "or analysis ?"
COLOR 15: LOCATE 11, 2: PRINT "CLASSIFICATION BY QUALITIES"
COLOR 7
LOCATE 13, 2: PRINT "What was the model's domain; was land in the
domain?"
LOCATE 15, 2: PRINT "What was the model's span?"
LOCATE 17, 2: PRINT "What was the model's environment?"
LOCATE 19, 2: PRINT "Was darkness modeled, and if not, would it
make a difference in the outcomes"
LOCATE 21, 2: PRINT "Was weather modeled, and if not, would it
make a difference in the outcome?"

LOCATE 24, 15: PRINT "Hit space bar to continue"
pause
CLS

LOCATE 3, 2: PRINT "What was the model's force composition?"
LOCATE 5, 2: PRINT "What ws the model's scope of conflict?"
LOCATE 7, 2: PRINT "What was the model's mission area?"
LOCATE 9, 2 PRINT "What was the model's level of detail of
processes and entities

7
"

COLOR 15: LOCATE 11, 2: PRINT "CLASSIFICATION BY CONSTRUCTION"
COLOR 7
LOCATE 13, 2: PRINT "Was your involvement required during the
combat demonstration?"
LOCATE 15, 2: PRINT "What time advanced mechanism (fixed step or
event step) was"
LOCATE 16, 2: PRINT "used in the combat demonstration?"
LOCATE 18, 2- PRINT "If fixed step, what was the size of the
step, and was there more than one size'"
LOCATE 20, 2. PRINT "If event step, which events advanced the

198

simulation time?"
LOCATE 22, 2: PRINT "What time advance mechanism is best for this
type of simulation and why?"

LOCATE 24, 15: PRINT "Hit space bar to continue"
pause
CLS

LOCATE 3, 2: PRINT "Is the combat demonstration a deterministic
or stochastic model?"
LOCATE 5, 2. PRINT "Is the combat demonstration a Monte-Carlo
simulation?"
LOCATE 7, 2: PRINT "How many sides were represented in the
demonstration?"
LOCATE 9, 2: PRINT "Was treatment of the sides symmetric or
asymmetric?"
LOCATE 11, 2: PRINT "If asymmetric, was only one or both sides
reactive?"
COLOR 15: LOCATE 13, 2: PRINT "ENTITIES AND ATTRIBUTES"
COLOR 7
LOCATE 15, 2: PRINT "What entities were simulated by the combat
demonstration?"
LOCATE 17, 2: PRINT "What attributes did these entities posses?"
LOCATE 19, 2: PRINT "Was the existence of these entities
explicitly defined in the simulation"
LOCATE 20, 2: PRINT "or did they exist as a collection of
attributes?"

LOCATE 24, 15: PRINT "Hit space bar to continue"
pause
CLS

LOCATE 3, 2: PRINT "How were these entities destroyed?"
LOCATE 5, 2: PRINT "What happens to entities when they are
destroyed?"
COLOR 15: LOCATE 7, 2: PRINT "AIRCRAFT"
COLOR 7
LOCATE 9, 2: PRINT "Was altitude a factor in the simulation of
the aircraft performance?"
LOCATE 11, 2: PRINT "Was the aircraft velocity a factor in the
simulation?"
LOCATE 13, 2: PRINT "What aircraft performance measures were used
in the simulation of"
LOCATE 14, 2: PRINT "the aircraft's flight and maneuverability?"
LOCATE 16, 2: PRINT "What sensors did the aircraft posses?"
LOCATE 18, 2: PRINT "Were these sensors active?"
LOCATE 20, 2: PRINT "What aircraft resources were represented?"

LOCATE 24, 15: PRINT "Hit space bar to continue"
pause
CLS

LOCATE 3, 2: PRINT "Were these resources consumed?"
LOCATE 5, 2: PRINT "What was the outcome if these resources were
expended?"
COLOR 15: LOCATE 7, 2: PRINT "MISSILES"
COLOR 7
LOCATE 9, 2: PRINT "What missile performance measures were used
in the simulation?"
LOCATE 11, 2: PRINT "Did missiles share the same time mechanism
as the aircraft?"
LOCATE 13, 2: PRINT "If so, did the missile share the same time
step?"
LOCATE 15, 2: PRINT "Did missiles actively track their targets?"
LOCATE 17, 2: PRINT "How was the missile effectiveness (killing
ability) modeled?"
LOCATE 19, 2: PRINT "Could a missile miss a target?"

LOCATE 24, 15: PRINT "Hit space bar to continue"
pause
CLS

COLOR 15: LOCATE 3, 2: PRINT "SEARCH"
COLOR 7
LOCATE 5, 2: PRINT "What methods were used to simulate the
process of search"
LOCATE 7, 2: PRINT "Was the process of search explicit or

199

implied?"
LOCATE 9, 2: PRINT "Which simulated sensors, either explicitly or
implicitly"
LOCATE 10, 2: PRINT "simulated, were actively searching for
intruders?"
LOCATE 12, 2: PRINT "Were sensors modeled as entities or
attributes of a higher entity?"
COLOR 15: LOCATE 14, 2: PRINT "DETECTION"
COLOR 7
LOCATE 16, 2: PRINT "What method was used to simulate the process
of detection?"
LOCATE 18, 2: PRINT "Was the method deterministic or stochastic?"
LOCATE 20, 2: PRINT "Could the method be classified as
Monte-Carlo?"

LOCATE 24, 15: PRINT "Hit space bar to continue"
pause
CLS

COLOR 15: LOCATE 3, 2: PRINT "TARGET ASSIGMENT"
COLOR 7
LOCATE 5, 2: PRINT "Was the target assignment random or was there
an underlying rule?"
LOCATE 7, 2: PRINT "Would the simulation permit the same target
to be assigned to more"
LOCATE 8, 2: PRINT "than one shooter?"
LOCATE 10, 2: PRINT "How many simultaneous targets could be
assigned to one shooter?"
COLOR 15: LOCATE 12, 2: PRINT "COMMUNICATION, COMMAND, AND
CONTROL"
COLOR 7
LOCATE 14, 2: PRINT "Was C3 present?"
LOCATE 16, 2: PRINT "If so, who was in command; what did they
command; and was C3"
LOCATE 17, 2: PRINT "actively used to control entity activities?"
LOCATE 19, 2: PRINT "Could shooters coordinate or concentrated
fire (more than one"
LOCATE 20, 2: PRINT "shooter shooting at a target)?"

LOCATE 24, 15: PRINT "Hit space bar to continue"
pause
CLS

COLOR 15: LOCATE 3, 2: PRINT "ADVANCE"
COLOR 7
LOCATE 5, 2: PRINT "Did the entity advance mechanism for aircraft
and missiles use a fixed"
LOCATE 6, 2: PRINT "rate throughout the simulation or was the
rate altered by changes"
LOCATE 7, 2: PRINT "in the entity's status?"
COLOR 15: LOCATE 9, 2: PRINT "TARGET DESTRUCTION"
COLOR 7
LOCATE 11, 2: PRINT "To destroy a target, was the missile
required to impact the target"
LOCATE 12, 2: PRINT "(Hint: think of the time advance and entity
advance mechanism)?"

LOCATE 17, 10: PRINT "That's it. Hit space bar to exit."
pause

CLS

endquest:
CLS

CASE 10000
PRINT #10,
PRINT #10, USING "Simulation was terminated at #### seconds.";
TNOW%

END SELECT

200

ac launch msl # at tnow. Rng to tgt was ####
msl # hit/missed ac at tnow, tgt destroyed
ac went bingo fuel at tnow

END SUB

201

Bibliography

1. Aeronautical Systems Division, Air Force Systems Command. Piloted Air Commat Analysis
Model User's Mcaual. Technical Report No./ 83-5018, Vol 1. Wright-Patterson AFB OH,
November 1983.

2. Aeronautical Systems Division, Air Force Systems Command. Piloted Air Commat Analysis
Model Analyst Manual. Technical Report No./ 83-5018, Vol 3, Part 1. Wright-Patterson AFB
OH, May 1984.

3. Aeronautical Systems Division, Air Force Systems Command. Piloted Air Commat Analysis
Model Analyst Manual. Technical Report No./ 83-5018, Vol 3, Part 2A. Wright-Patterson AFB
OH, November 1983.

4. Aeronautical Systems Division, Air Force Systems Command. Piloted Air Commat Analysis
Model Analyst Manual. Technical Report No./ 83-5018, Vol 3, Part 2B. Wright-Patterson AFB
OH, November 1983.

5. Aeronautical Systems Division, Air Force Systems Command. Piloted Air Commat Analysis
Model Analyst Manual. Technical Report No./ 83-5018, Vol 3, Part 2C. Wright-Patterson AFB
OH, November 1983.

6. Brewer, G.D. and Hall, 0. Policy Analysis by Computer Simulation: The Need for Appraisal,
P-4893, The Rand Corporation, Santa Monica, California, August 1972.

7. Cushman, John et al. "On Representing Warfare," Article prepared for the Joint Analysis
Directorate, OJCS, 28 February 86, rev 9 April 1986.

8. DeArmon, James. "Improving Random Number Generators on Micro Computers," Computers
and Operations Research, 17:283-290 (March 1990).

9. Department of the Air Force. US Air Force Basic Doctrine. AFM 1-1. Air University, Maxwell
Air Force Base, Alabama, March 1984

10. Department of Defense. Catalog of Wargaming and Military Simulation Models Joint Analysis
Directorate, Organization of the Joint Chiefs of Staff J8, Tecnical Support Division, 11th ed.,
1989.

11. Dimas, Chris. "Strategy For Developing Computer Aided Instructions," Education and Tech-
nology, 28:26-28 (April 1987).

12. Duisberg, Robert A. "Animation Using Temporal Constraints: An Overview of the Animas
System," Human- Computer Interactions, 3:275-307, 1987-88.

13. Dunningan, James F. The Complete Wargames Handbook. Willam Morrow, NY, 1980.

14. Dupuy, Trevor, Curt Johnsom, and Grace P. Hays. Dictionary of Military Terms. New York:
The H.W. Wilson Company, 1986

15. Edmunds. Robert A. The Prentice-Hall Encyclopedia of Information Technology. Englewood
Cliffs NJ: Prentice-Hall, 1987.

16. Etter D. M. Structured FORTRAN for Engineers and Scientists (Second Edition). MA: Ben-
jamin/Cummings Publishing Company Inc., 1987.

17. Foxbat and Phantom Tactical Aerial Combat in the 1970's. NY: Simulations Publications Inc.
1973.

202

18. Garrambone, Major Michael W. Personal conversations, class lectures, and handouts. OPER
775, Land Combat Modeling I. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH. July-September 1991.

19. Hartman, James K. Lecture Notes in High Resolution Combat Modeling. James K_ Hartman,
1985.

20. Hathaway, Michael D. "Variables of Computer Screen Display and How They Affect Learn-
ing,"Education Technology, 14:7-11, (January 1984).

21. Hoeke, Carol M. "CAI: A Guideline for Effective Use, " Interface, 10:103-104 (Winter 1988/89).

22. Hughes, Wayne P. Jr. Military Modeling. Washington DC: Government Printing Office, 1984.

23. Knuth, D. The Art of Computer Programming, Maryland: Addison-Westley, 1973.

24. Law, Averill M. and Kelton, David W.Simulation Modeling and Analysis. New York: McGraw-
Hill Book Company, 1982.

25. Military Operations Research. SIMTAX: A Taxonomy for Warfare Simulation, 1987.

26. McLeod, John. "But Mr. President-Is It Ethical?," Procedings of the 1987 Winter Simulation
Conference, 86:69-71, (1986).

27. Mercier, Robert, Piloted Air Combat Analysis Model Developer. Personal interview. Wright-
Patterson AFB, 10 October 1991.

28. Perla, Peter P. Wargame Design, Dcvelopment, and Play. Research Memorandum, Center for
Naval Analysis, Washington DC: Government Printing Office, February 1986.

29. Perla, Peter P.A Guide to Navy Wargaming. Research Memorandum, Center for Naval Anal-
ysis, Washington DC: Government Printing Office, May 1986.

30. Perla, Peter P. The Art of Wargaming: A Guide for Professionais and Hobbyists. Annapolis,
Maryland: United States Naval Institute, 1990.

31. Pesapane, Capt John B. and irvine, Maj Robert B Jr. Derivation of CEP Formula to Approx-
imate RAND-234 Tables. Research Memorandum, Ballistic Missile Evaluation, Headquarters
Strategic Air Command, Washington DC: Government Printing Office, February 1977.

32. Pritsker, A. A. Introduction to Simulation and SLAM II (Second Edition). NY: A Halsted
Press Book, 1984.

33. Przemieniecki, J. S. Introduction to Mathematical Methods of Defense Analysis (Draft). Air
Force Institute of Technology, Wright-Patterson AFB, 1989.

34. Roskem, Jan Flight Dynamics of Ridgid and Elastic Airplanes. KN: Roskem Aviation and
Engineering Corporation, 1976.

35. Sargent, Robert G. "An Overview of Verification and Validation of Simulation Mod-
els",Procedings of the 1987 Winter Simulation Conference, 87:33-39, (1987).

36. Savanaes, Deg. "Simulation Models + User Interfaces = Interactive Application," Computers
and Education, 14:363-370 (April 1990).

37. Schruben, Lee. "Using Simulation To Solve Problems: A Tutorial on the Analysis of Simulation
Output," Procedings of the 1987 Winter Simulation Conference, 87:40-41, (1987).

38. Seidel, Robert J. et al. "Tip for Managing Computer Aided Instruction," Education and Tech-
nology, 18:33-36 (April 1987).

39. Shammas, Namir S. "The BASIC Revival," Byte, 13:295-300 (September 1988).

40. Shannon, Robert E. "Models and Artifical Intellengence", Procedings of the 1987 Winter Sim-
ulation Conference, 87:19-20, (1987).

203

41. Shaw, Robert L. Fighter Combat Tactics and Maneuvering. Maryland: United States Navel
Institute Press, 1985.

42. Siebert, Karl, Piloted Air Combat Analysis Model Manager. Personal interview. Booz-Allen
INC., Fairborn OH, 26 July 1991.

43. CACI Inc. SIMSCRIPT 1.5 Programing Language. CA: CACI Inc, 1983.

44. United States General Accounting Office. Models, Data, And War: A Critique Of The Foun-
dation For Defense Analysis. Washington DC: Government Printing Press, 1980.

45. Hergerrt, Douglas Microsoft Quick Basic 4.5. Washington: Microsoft Press, 1988.

204

Vita

Captain Richard S. Moore was born on 25 November 1955 in Lakeland, Florida. Following his

graduation from Riverview High School in Sarasota, Florida he entered the Air Force. During his

12 years of enlisted service he performed maintenance on RF-4C Phantom reconnaissance sensor

systems and managed databases in support of developmental and operational testing. During this

period, he completed his Bachelor of Science degree. Upon commissioning, Captain Moore served as

a logistics analyst for the Global Positioning System (GPS). His assignments include 67th Avionics

Maintenance Squadron (AMS) at Bergstrom AFB, Texas, 26th AMS at Zweibrucken AB, FRG,

4243 AMS and Armament Division Engineering Directorate at Eglin AFB, Florida, Headquarters

Air Force Operational Test and Evaluation Center at Albuquerque, New Mexico, and the Air Force

Institute of Technology where he earned the Degree of Master of Science in operations research. In

March of 1992, he was assigned to Headquarters Air Force Logistics Command Wright-Patterson

AFB at Dayton, Ohio.

Permanent address: 2252 Mill Terrace
Sarasota, Florida 33581

205

