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INTRODUCTION

In order to enabie an industrial machine with primitive computational abil-
ity to use complicated or difficult to compute functional relationships
repeatedly, efficiently, and accurately, it is necessary to supply the machine
with these functional relationships as sets of data in tabular form. It is
assumed that the machine can deal with continuous, piecewise linear functions
(linear splines). A graphics tube is a good example. Such a tube can draw only
straight lines, but drawing many short, connected line segments can represent an
arpitrary curve well., 1In order to represent these functions most accurately, a
nonuniform mesh must be used. Finding such a mesh is, in principle, a very dif-
ficult nonlinear optimization problem, but C. de Boor (refs 1-3) advocated a
general method by which the mesh can be found quickly, easily, robustly (and
approximately) without any recourse to optimization methods! We present herein
3 robust addition to de Boor's standard method which improves its accuracy

without increasing the essential complexity of his algorithm.

INTERPOLATORY ERROR
Let ? be the linear interpolant of function f on a subinterval of length h.

The error is given by
h h
flt) = 2(t) + e(t) (W-3 €t €us )

Expand e in a Taylor series around the midpoint (u) of the subintarval

e(t) = g fg‘;‘i (t-u)’

Applying the two boundary conditions

hy _ o 13
e(uy - 5) = 0 = e(u + 2)

ultimately yields
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Taking the first two terms of each sum

e(EE +u) = f%égl he (t2-1)

3
gigé hot(t2-1)

4
. fgei he(te-1)

273
¢n)
* 35750% h*t(t4-1) + O(he)
Letting
(2+1)
py = f(u) /fF" (W)
one has
ht _ £ P1 P2
e3t vy - -§§El he(t2-1)(1 + 23o e o 222 he(eeen)
P3 £
¢ sioazz nPt(reD) + o(he)) = BB neeeony(10s)
where
S = aqht + aph?(t2+1) + azh3t(t2+1) + 0(h*)
and
01 02 P3
a1 = 373 . A2 =3ty . A3 = zwIyng

INTERPOLATORY ERROR NORM
The local L" norm of the error on a subinterval of length h is defined by

u+h/2

Velln,n = ([, lett) I nat)

1/n



where 1 € n < o and n is an integer. Ffor n = o, we have the maximum error.
Now,
1
n h ht n
lelln =3 I-I le(i_ +u) | dt
but
et + ) = TBL neremq)(109)

So if we let h be sufficiently small so that | S| < 1 on (-1,1), we have

Lfr M2t 3

n
I e [_1 (1-t2)"(1+s5)"at

Since only the even terms of (1+S)" contribute to the integral, we have

n " n.2n+1 1
el n JLEnl) | hITT [ (1-t2)"Ev(1+5)"dt
' 0

where Ev(1+S)P denotes the even terms of (1+S)N,

Hence,
Ev(1+5)M = 1 + (])agh2(1+t2) + (D)afhzts + 0(h4)
Letting
1 "y
In,y = fo (1-t2) ¢ dt
we therefore have
1
Io (1-t2)"ev(1+s5)"dt
! n{n-1) 2
= J (1-t5)N(1eh#(nag(1et) + 223222 aje?) + O(h¢))dt

s In,o + nh2(az(In,o*ln,1) + 231 ajla, 1) + 0(ne)

n-1 1

= 1p,ol(l4nh2(ag(1 + f"') + -5° aj IRfo) + 0(h4))

Using integration-by-parts on In ; and solving the resulting recursion ult:-

mately yields
(29) ' {(1+n)!

- - ____-____--_._




from which we conclude that

2n+1

1 _2 ni{(n+1)!
n,1 = T712R%377°°°C
and
In,1 . _1__
In fo) 2n+3
Hence,
1
[ (1-t2)"Ev(1+5)"dt
2n
2¢M(n1)2 (n+1) n-1 2
(3R+177T" (1*P*(=3R337 32 * 37zn%3) 21) * 0(h*))
and
2n+1
n £r) MM inn)e 2(n+2) n-1 .
Helln n = TTTan(enen) (1+#nh2(=5==3° a2 372n33] 21) + 0(h*))
or
“enn'h = K ] £ () Ihz*l/n(1+hz(gégzgl ap + érgg%.‘sj a{) + 0(h*))
where

21 _(nt)z 1/
k=3 ((2n+1)!)

Using Stirling's approximation to the factorial, it is easy to show that

lim k = !
N-~c0 8
Recalling that
P2
a1 = 573 and ajp = 5373
we finally have
- ) h?  n+2 n-1 2
et n = k1 [0SR0 g (GS e ¢ sgassy p1) + 0GR

as h—-0, where




< 1 _[nl)2 \i/n
K = 2 ((2n+1)!
and
(2+1)
pi = f{u) /7f"(u)

NORM OF ARBITRARY FUNCTICN
The local Lp norm of arbitrary function ¢ over a subinterval of length h is
defined as

u+h/2

ol p = +) | Pag) /P
p.h (fu_h/2 lo(t) | Pat)

where p > 0, finite and real. In this context, we allow p < } even though
Minkowski's triangle inequality holds only for p 2 1.
Expand ¢ in a Taylor series around the midpoint of the subinterval

x©

o .
o(t) = d(u) T 7 (t-w)]
'i=0 1.
where
(1)
p; = d(p)/d(u)
Now,
P hol ht 5
oy n =5 [ To(z= «u)|7dt
but
8(3% + ) = ew)(148)
where
> <
S = 7 ajt'
i=1
and
Pi h i
2 = 57 (3

Hence, letting h be sufficiently small so that [S|< 1 on (-1,1), we have

1 1
P h h
lollg n = 5 | o) | °f , (1+5)Pdt = = | o(u) | Pf 1 Ev(1+5)Pdt




but

S = aqt + agt? + aztd + 0(h*)
hence

)
Ev(1+5)P = 1+ (J)agte + (Z)aitz + 0(h*)
We therefore have

1
P -
boUy n o= h | B(w) lpfo 1+ ptz(ay + 951 al) + 0(h4)dt

=h | | P1+ ggf (P2 + (P-1)pi) + 0O(h4))
or
lol n = 0P fe) | (1 + B3 (op + (p-1)pd) + 0(he))

as h--0.

STANDARD APPROXIMATION TO Nel,

Recalling that

hTHPuEG = ) | (1 s 22(92 + (p-1)p1) + 0(h*))

and
, " hz n+2 n-.
tein n = kn?TT e e B3GR ep ¢ 5rgnizy o) ¢ 0t
2+1/n

we multiply the first equation by kh and subtract from the second, getting

kn2* /M1y ey

helln p = h
2+1/n 4 ¢u hZ _ 0l In+8 _ )2
+ kh £ ) | (G3(- 3735 P2 *+ (gazg - PIPY) + O(h*))
n
If we now let p = 3n31’ we have
Belln, p = kIF"Un/(2n+1) ,h
4+1/n y gn 1. nsl 6nis1dne8 .
+ kh D) | G3(- 333 P2 * 13n733anss P1) * 0(h?))
= kI g p o+ k0N e L dii- anp + 0od) + 0(h2)

4+1/n

= K“f"“n/(zn*])'h + O(h )




For n = 1,2, and », respectively, we have

e
™)

lelly, n = If"*Wq/3,h + 0(h®)

lelip n = =2== 1€"l25 5 + 0(h/2

2v30

)

ey, n = é “f"“l/z,h + 0(h4)

STANDARD ERROR EQUIDISTRIBUTION FOR ANY BANACH NORM
In this section, we justify the standard method of error equidistribution

with respect to any Banach norm. The global L" norm of the error over interval

(a,n) is

° Nyeyl/N

helly = (J |e(t) ] dt)

a

Hence, for a mesh a = x| < X2 < ... < XN = Db
n N-1 X541 N-1 f
helly = 5 [ leite) | Mdt = T lelly
i=l X4 i=1

Let single bars around the error denote the standard approximation to the

error norm and analogously define

0 Teg?
le|N= Tlell
n i=1 n,hJ
but
xj.'.l y
el n, = ki = k() " () | Pary /P
J PN X
where
L
P 2n+1
Hence, letting
X 4
J+
Ip,h; =/ | £ () | Pdt
J X
b}
we have
| |n nN-l I2n+1
e = Kk
n =1 p,hJ




we will refer to the inteqrals Ip,h as the standard or de Boor integrals.

It follows trivially, using Leibnitz's rule, that

-

l "0 1 <i <N
3 e = < i <

X4 n
implies that

Ip,hj.p = Ip,ng 1 <1 <N
Hence, the condit.on Ip n = constant determines the mesh which minimizes the
standard global approximation to flell,.

For a linear spline approximation to f", it is a fairly simple (see
COMPUTATION) matter to find the mesh for which the de Boor integrals are
constant,

CONVERGENCE OF STANDARD METHOD

Recall that
Kk

lelln n = KIF"p n + 53 h* 1M €74y | (-apg+bo}) + O(h

6+1/n)

Letting
)+ orti]
Fo= ~af"(u)fu) + bf(u)?
we have the following one term approximation to the difference between lel |

and | «f .

Nel | . _kend*1/n
nh - lelan = sy
but

knZ* /M £ u) |

==
(1]
=

>3

e
]

Therefore, we also have

- - ——— . -~ - - - -

but also

" 1 / n
LA R ey |

’




hence,

X (Hf"ﬂp'h L Ié{g P Ip.n
rEwT) T rFWT T TR
In addition, for the correct mesh
I
Ie.h = {1
hence,
1
h & —ecee=- Peoee e
(N=1)] £ (n) | P
and therefore,
?ffﬂ:ﬁ--_[f_tﬂiﬁ - _-------EEE .........
el n 24 £ (u) | 2P (N-1) 2

. . . 1
This tells us that the relative difference between lell,  and | e ln,h is O(gz)
as N-x, which means that tne standard method works better and better
itellp, n will be more nearly constant) as N gets larger and larger. This is all

true. however, with the proviso that

P e

's pounded throughout the region of interest. [t stands to reason, therefore,
that the standard method will perform worst where f" is not bounded away from

Zero.

IMPROVED APPROXIMATION TO Nel,

Recall that

2+1/n h2 n+2 n-1 2

| = " e (m——— L. S

|le"n,h ] £ (u) [ n (1+ 24(2n+3 P2 * 3(2n+3) p1) + O(h*))
and

" 1/ " h? 2
M = 0 | (v 33002 ¢ (a-1)p1) + O(h4))
Multiplying h by r in the second equation, we have

- 2
- 1/quf"uq A EAITTRNEI gz(rng + r2(g-1)p]) + 0O(h*))

r




Multiplying this equation by khQ gives us

- 2
ke Qe e kn® G e | s Bireog « reas10]) v 0(he))

Now, in order to make this equation look as much like the very first one as
possible, we set

R+ BRI CR 1+ et

and

Solving for r, q, and Q, we have

.

and

A simple subtraction then gives us an improved approximation to lleun h

= ke VO Queny v o8N

h q,rh )

ueﬂn.

where before, we had

4+1/n) 4+1/n)

el = kiE + 0(h =|e| + 0(h

h p.h n,h

It must be mentioned however, that although this improved approximation is
asymptotically more efficient, no such approximation can be uniformly superior
in all cases. Bearing this in mind, we dispense with approximations on all
subintervals not having f" bounded away from zero and instead use the exact
error

x ot X=X 4 Xi+1 t

ei(x) = [ [ f'(u)dudt - -==---- / [ f"(u)dudt
X5 Xy Xi+17%Xi X4 X4

10




COMPUTATION
In actual computation, we assume the existence of a piecewise linear
approximation to [f" l. The mesh over which this function is defined is
referred to as the "original" mesh. In order to deal with the standard and
improved asymptotic integral approximations to the local error norm, we will
need to deal with integrals of the form
c+d
L=/ A(t)m/ngt
c
where A is a nonnegative linear function with sliope s
Alt) = A{¢c) + s(t-c)
with
A(t) 2 0 for c st sgc+ ¢
and where m and n are arbitrary positive integers.

In the following, let

and

First, we need to compute L as a function of ¢

< IWmenci | o)
(m+n)sn_1

where

8= (A(c) + st)¥/"

Second, we need to compute ! as a function of L

L{m+n)Spn-1
1: ---------- =BL)
NSmen-1 -
where
8 = (A(c)™M1 , (E + 1)sL) 1/ (m+n)

11




A and B are therefore inverse functions, i.e.,
A(B(x)) = x = B(A(x})
or
A= = B and B™' = A
Now let values of u dencte the original mesh and let g be the piecewise linear
interpolant to the (u;,| f;" | ) data.
Define the integral

X
6(x) = [ a(t)™ Mgt
V]

1
Now if uj € x € uj41,
s0x) = [ g()y™Nat e g (t)™ "at
uy U
= G(uj) + L

where A = g4, ¢ = U3, and £ = x-u;. Hence,

G({x) = G(u;) *+ A(x-uj5)
explicitly defines G for all x in the domain of interest.

In order to get the standard mesh, we will also have to compute the inverse
of G (only for m/n = p).
B(G(x) - G(uj)) = B(A(x-uj;}) = x-uj

Hence,

X = uq + B(G(x) - G(uy))
but if G{x) = y, then x = G~'(y). Therefore,

G™'(y) = uqj + B(y - G(u;3))
for
G(uj) € v € G(ujsq)

and provided

G(uj) # G(uj+q)

12




Define

ere x is the standard or improved mesh, obtained by prescribing values for the

{'s. The standard method prescribes

For the improved mesh, the I's wil] vary, but the mesh is still obtained in the
standard way. Since

G(xj41) = G{x5) + Iy
we have immediately that

X341 = 67 (G(x4) *+ I;) i =1,2,...,N-2

ALGORITHM
Let * denote a standard or improved mesh and ** denote the succeeding
improved mesh. We have seen that the main contributor to the ratios

lelly p**/leliy p* and | e | n p**/Ad e | o n* is

(DX 2+ 1/m £ (uTT)
h* £ (u*)

we therefore have the approximate asymptotic relation

- - - o s o - -

or

13




We calculate the I's accordingly and multiply them by the appropriate constant

to get

The quantities Henn,h: are computed either from the improved asymptotic
approximation or exactly (relative to the original data) depending on whether or
not f" is bounded away from zero on the subinterval in gquestion. It is impor-
tant to note that this approximate relation between the * and ** meshes can lead
to exact convergence (rapidly) to the minimax mesh. If the * mesh is the
minimax mesh (lleiy n* = constant), then the de Boor integrals (Ip p) on the **
mesh will be no different from those on the * mesh.

The practical convergence properties of this algorithm are as follows. If
f" is well bounded away from zero, the standard de Boor method gives impeccable
results without any iteration., If f" is not bounded away from zero, convergence
to a virtually perfect minimax mesh can easily occur in only two iterations. A
few iterations may be needed in the presence of multiple inflection points.

In any case, even the very first iteration improves the mesh markedly.

14




REFERENCES

C. de Boor, "Good Approximation by Splines With Variable Knots,"” in:

Spline Functions and Approximation Theory (A. Meir and A. Sharma, eds.),

Birkhauser Verlag, Basel, 1973, pp. 57-72.
C. de Boor, "Good Approximation by Splines With Variable Knots, I1," in:

Numerical Solution of Differential Eguations (G.A. Watson, ed.), Lecture

Notes in Math, No. 363, Springer Verlag, 1974, pp. 12-20.

C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978,

15




TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

CHIEF, ODEVELOPMENT ENGINEERING DIVISION
ATTN: SMCAR-CCB-DA
-0C
-01
-DR
-DS (SYSTEMS)

CHIEF, ENGINEERING SUPPORT OIVISION
ATTN: SMCAR-CCB-S
-SD
-SE

CHIEF, RESEARCH DIVISION
ATTN: SMCAR-CCB-R

~-RA

~RE

-RM

-RP

-RT

TECHNICAL LIBRARY
ATTN: SMCAR-CCB-TL

TECHNICAL PUBLICATIONS & EDITING SECTION
ATTN: SMCAR-CCB-TL

OPERATIONS DIRECTORATE
ATTN: SMCWV-ODP-P

DIRECTOR, PROCUREMENT DIRECTORATE
ATTN: SMCWv-PP

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE
ATTN: SMCWV-QA

NO. OF
COPIES

[P S R S

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF

ANY ADDRESS CHANGES.




TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF NO. OF
COPIES COPIES
ASST SEC OF THE ARMY COMMANDER
RESEARCH AND DEVELOPMENT ROCK ISLAND ARSENAL
ATTN: DEPT FOR SCI AND TECH 1 ATTN: SMCRI-ENM
THE PENTAGON ROCK ISLAND, IL 61299-5000
WASHINGTON, D.C. 20310-0103
DIRECTOR
ADMINISTRATOR US ARMY INDUSTRIAL BASE ENGR ACTV
DEFENSE TECHNICAL INFO CENTER 12 ATTN: AMXIB-P
ATTN: DTIC-FDAC ROCK ISLAND, IL 61299-7260
CAMERON STATION
ALEXANDRIA, VA 22304-6145 COMMANDER
US ARMY TANK-AUTMV R&D COMMAND
COMMANDER ATTN: AMSTA-DDL (TECH LIB)
US ARMY ARDEC WARREN, MI 48397-5000
ATTN: SMCAR-AEE 1
SMCAR-AES. BLDG. 321 1 COMMANDER
SMCAR-AET-0, BLDG. 351N 1 US MILITARY ACADEMY
SMCAR-CC 1 ATTN: DEPARTMENT OF MECHANICS
SMCAR-CCP-A 1 WEST POINT, NY 10996-1792
SMCAR-FSA 1
SMCAR-FSM-E 1 US ARMY MISSILE COMMAND
SMCAR-FSS-0, BLDG. 94 1 REDSTONE SCIENTIFIC INFQ CTR
SMCAR-IMI-I (STINFO) BLDG. 59 2  ATTN: DOCUMENTS SECT, BLOG. 4484

PTICATINNY ARSENAL, NJ 07806-5000

DIRECTOR

US ARMY BALLISTIC RESEARCH LABORATORY

ATTN: SLCBR-DD-T, BLDG. 305

ABERDEEN PROVING GROUND, MD 21005-5066

DIRECTOR

US ARMY MATERIEL SYSTEMS ANALYSIS ACTV

ATTN: AMXSY-MP

ABERDEEN PROVING GROUNDO, MD 21005-5071

1

1

REDSTONE ARSENAL, AL 35898-524!

COMMANDER

US ARMY FGN SCIENCE AND TECH CTR
ATTN: DRXST-SD

220 TTH STREET, N.E.
CHARLOTTESVILLE, VA 22901

COMMANDER

US ARMY LABCOM

MATERIALS TECHNOLOGY LAB
ATTN: SLCMT-IML (TECH LIB)

COMMANDER WATERTOWN, MA 02172-0001

HQ, AMCCOM

ATTN: AMSMC-IMP-L 1

ROCK ISLAND, IL 61299-5000

NOTE:. PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING

CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,

WATERVLIET. NY

12189-4050, OF ANY ADDRESS CHANGES.




TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF NO. OF
COPIES COPIES
COMMANDER COMMANDER
US ARMY LABCOM, ISA AIR FORCE ARMAMENT LABORATORY
ATTN: SLCIS-IM-TL 1 ATTN: AFATL/MN 1
2800 POWDER MILL ROAD EGLIN AFB, FL 32542-5434
ADELPHI, MD 20783-1145
COMMANDER
COMMANDER AIR FORCE ARMAMENT (_ABORATORY
US ARMY RESEARCH OFFICE ATTN: AFATL/MNF
ATTN: CHIEF, IPO 1 EGLIN AFB, FL 32542-5434 1
P.O. BOX 12211
RESEARCH TRIANGLE PARK, NC 27709-2211 MIAC/CINDAS
PURDUE UNIVERSITY

DIRECTOR 2595 YEAGER ROAD
US NAVAL RESEARCH LAB WEST LAFAYETTE, IN 47905 1
ATTN: MATERIALS SCI & TECH DIVISION 1

CODE 26-27 (DOC LIB; 1
WASHINGTON, D.C. 20375
DIRECTOR
US ARMY BALLISTIC RESEARCH LABORATORY
ATTN: SLCBR-IB-M (DR. BRUCE BURNS) 1

ABERDEEN PROVING GROUND, MD 21005-5066

1 NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING
CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL,
WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.




